if_ae.c revision 1.44 1 /* $NetBSD: if_ae.c,v 1.44 2024/06/29 12:11:11 riastradh Exp $ */
2 /*-
3 * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
4 * Copyright (c) 2006 Garrett D'Amore.
5 * All rights reserved.
6 *
7 * This code was written by Garrett D'Amore for the Champaign-Urbana
8 * Community Wireless Network Project.
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer in the documentation and/or other materials provided
18 * with the distribution.
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgements:
21 * This product includes software developed by the Urbana-Champaign
22 * Independent Media Center.
23 * This product includes software developed by Garrett D'Amore.
24 * 4. Urbana-Champaign Independent Media Center's name and Garrett
25 * D'Amore's name may not be used to endorse or promote products
26 * derived from this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
29 * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
30 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
31 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
33 * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
35 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
36 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
37 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
39 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
40 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 */
42 /*-
43 * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
44 * All rights reserved.
45 *
46 * This code is derived from software contributed to The NetBSD Foundation
47 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
48 * NASA Ames Research Center; and by Charles M. Hannum.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 * notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 * notice, this list of conditions and the following disclaimer in the
57 * documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
60 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the onboard ethernet MAC found on the AR5312
74 * chip's AHB bus.
75 *
76 * This device is very simliar to the tulip in most regards, and
77 * the code is directly derived from NetBSD's tulip.c. However, it
78 * is different enough that it did not seem to be a good idea to
79 * add further complexity to the tulip driver, so we have our own.
80 *
81 * Also tulip has a lot of complexity in it for various parts/options
82 * that we don't need, and on these little boxes with only ~8MB RAM, we
83 * don't want any extra bloat.
84 */
85
86 /*
87 * TODO:
88 *
89 * 1) Find out about BUS_MODE_ALIGN16B. This chip can apparently align
90 * inbound packets on a half-word boundary, which would make life easier
91 * for TCP/IP. (Aligning IP headers on a word.)
92 *
93 * 2) There is stuff in original tulip to shut down the device when reacting
94 * to a change in link status. Is that needed.
95 *
96 * 3) Test with variety of 10/100 HDX/FDX scenarios.
97 *
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.44 2024/06/29 12:11:11 riastradh Exp $");
102
103
104 #include <sys/param.h>
105 #include <sys/bus.h>
106 #include <sys/callout.h>
107 #include <sys/device.h>
108 #include <sys/endian.h>
109 #include <sys/errno.h>
110 #include <sys/intr.h>
111 #include <sys/ioctl.h>
112 #include <sys/kernel.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115
116 #include <uvm/uvm_extern.h>
117
118 #include <net/if.h>
119 #include <net/if_dl.h>
120 #include <net/if_media.h>
121 #include <net/if_ether.h>
122
123 #include <net/bpf.h>
124
125 #include <dev/mii/mii.h>
126 #include <dev/mii/miivar.h>
127 #include <dev/mii/mii_bitbang.h>
128
129 #include <mips/atheros/include/arbusvar.h>
130 #include <mips/atheros/dev/aereg.h>
131 #include <mips/atheros/dev/aevar.h>
132
133 static const struct {
134 uint32_t txth_opmode; /* OPMODE bits */
135 const char *txth_name; /* name of mode */
136 } ae_txthresh[] = {
137 { OPMODE_TR_32, "32 words" },
138 { OPMODE_TR_64, "64 words" },
139 { OPMODE_TR_128, "128 words" },
140 { OPMODE_TR_256, "256 words" },
141 { OPMODE_SF, "store and forward mode" },
142 { 0, NULL },
143 };
144
145 static int ae_match(device_t, struct cfdata *, void *);
146 static void ae_attach(device_t, device_t, void *);
147 static int ae_detach(device_t, int);
148 static int ae_activate(device_t, enum devact);
149
150 static int ae_ifflags_cb(struct ethercom *);
151 static void ae_reset(struct ae_softc *);
152 static void ae_idle(struct ae_softc *, uint32_t);
153
154 static void ae_start(struct ifnet *);
155 static void ae_watchdog(struct ifnet *);
156 static int ae_ioctl(struct ifnet *, u_long, void *);
157 static int ae_init(struct ifnet *);
158 static void ae_stop(struct ifnet *, int);
159
160 static void ae_shutdown(void *);
161
162 static void ae_rxdrain(struct ae_softc *);
163 static int ae_add_rxbuf(struct ae_softc *, int);
164
165 static int ae_enable(struct ae_softc *);
166 static void ae_disable(struct ae_softc *);
167 static void ae_power(int, void *);
168
169 static void ae_filter_setup(struct ae_softc *);
170
171 static int ae_intr(void *);
172 static void ae_rxintr(struct ae_softc *);
173 static void ae_txintr(struct ae_softc *);
174
175 static void ae_mii_tick(void *);
176 static void ae_mii_statchg(struct ifnet *);
177
178 static int ae_mii_readreg(device_t, int, int, uint16_t *);
179 static int ae_mii_writereg(device_t, int, int, uint16_t);
180
181 #ifdef AE_DEBUG
182 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
183 printf x
184 #else
185 #define DPRINTF(sc, x) /* nothing */
186 #endif
187
188 #ifdef AE_STATS
189 static void ae_print_stats(struct ae_softc *);
190 #endif
191
192 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
193 ae_match, ae_attach, ae_detach, ae_activate);
194
195 /*
196 * ae_match:
197 *
198 * Check for a device match.
199 */
200 int
201 ae_match(device_t parent, struct cfdata *cf, void *aux)
202 {
203 struct arbus_attach_args *aa = aux;
204
205 if (strcmp(aa->aa_name, cf->cf_name) == 0)
206 return 1;
207
208 return 0;
209
210 }
211
212 /*
213 * ae_attach:
214 *
215 * Attach an ae interface to the system.
216 */
217 void
218 ae_attach(device_t parent, device_t self, void *aux)
219 {
220 const uint8_t *enaddr;
221 prop_data_t ea;
222 struct ae_softc *sc = device_private(self);
223 struct arbus_attach_args *aa = aux;
224 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
225 struct mii_data * const mii = &sc->sc_mii;
226 int i, error;
227
228 sc->sc_dev = self;
229
230 callout_init(&sc->sc_tick_callout, 0);
231
232 printf(": Atheros AR531X 10/100 Ethernet\n");
233
234 /*
235 * Try to get MAC address.
236 */
237 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
238 if (ea == NULL) {
239 printf("%s: unable to get mac-addr property\n",
240 device_xname(sc->sc_dev));
241 return;
242 }
243 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
244 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
245 enaddr = prop_data_data_nocopy(ea);
246
247 /* Announce ourselves. */
248 printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
249 ether_sprintf(enaddr));
250
251 sc->sc_cirq = aa->aa_cirq;
252 sc->sc_mirq = aa->aa_mirq;
253 sc->sc_st = aa->aa_bst;
254 sc->sc_dmat = aa->aa_dmat;
255
256 SIMPLEQ_INIT(&sc->sc_txfreeq);
257 SIMPLEQ_INIT(&sc->sc_txdirtyq);
258
259 /*
260 * Map registers.
261 */
262 sc->sc_size = aa->aa_size;
263 if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
264 &sc->sc_sh)) != 0) {
265 printf("%s: unable to map registers, error = %d\n",
266 device_xname(sc->sc_dev), error);
267 goto fail_0;
268 }
269
270 /*
271 * Allocate the control data structures, and create and load the
272 * DMA map for it.
273 */
274 if ((error = bus_dmamem_alloc(sc->sc_dmat,
275 sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
276 1, &sc->sc_cdnseg, 0)) != 0) {
277 printf("%s: unable to allocate control data, error = %d\n",
278 device_xname(sc->sc_dev), error);
279 goto fail_1;
280 }
281
282 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
283 sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
284 BUS_DMA_COHERENT)) != 0) {
285 printf("%s: unable to map control data, error = %d\n",
286 device_xname(sc->sc_dev), error);
287 goto fail_2;
288 }
289
290 if ((error = bus_dmamap_create(sc->sc_dmat,
291 sizeof(struct ae_control_data), 1,
292 sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
293 printf("%s: unable to create control data DMA map, "
294 "error = %d\n", device_xname(sc->sc_dev), error);
295 goto fail_3;
296 }
297
298 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
299 sc->sc_control_data, sizeof(struct ae_control_data), NULL,
300 0)) != 0) {
301 printf("%s: unable to load control data DMA map, error = %d\n",
302 device_xname(sc->sc_dev), error);
303 goto fail_4;
304 }
305
306 /*
307 * Create the transmit buffer DMA maps.
308 */
309 for (i = 0; i < AE_TXQUEUELEN; i++) {
310 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
311 AE_NTXSEGS, MCLBYTES, 0, 0,
312 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
313 printf("%s: unable to create tx DMA map %d, "
314 "error = %d\n", device_xname(sc->sc_dev), i, error);
315 goto fail_5;
316 }
317 }
318
319 /*
320 * Create the receive buffer DMA maps.
321 */
322 for (i = 0; i < AE_NRXDESC; i++) {
323 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
324 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
325 printf("%s: unable to create rx DMA map %d, "
326 "error = %d\n", device_xname(sc->sc_dev), i, error);
327 goto fail_6;
328 }
329 sc->sc_rxsoft[i].rxs_mbuf = NULL;
330 }
331
332 /*
333 * Reset the chip to a known state.
334 */
335 ae_reset(sc);
336
337 /*
338 * From this point forward, the attachment cannot fail. A failure
339 * before this point releases all resources that may have been
340 * allocated.
341 */
342 sc->sc_flags |= AE_ATTACHED;
343
344 /*
345 * Initialize our media structures. This may probe the MII, if
346 * present.
347 */
348 mii->mii_ifp = ifp;
349 mii->mii_readreg = ae_mii_readreg;
350 mii->mii_writereg = ae_mii_writereg;
351 mii->mii_statchg = ae_mii_statchg;
352 sc->sc_ethercom.ec_mii = mii;
353 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
354 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
355 MII_OFFSET_ANY, 0);
356
357 if (LIST_FIRST(&mii->mii_phys) == NULL) {
358 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
359 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
360 } else
361 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
362
363 sc->sc_tick = ae_mii_tick;
364
365 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
366 ifp->if_softc = sc;
367 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
368 sc->sc_if_flags = ifp->if_flags;
369 ifp->if_ioctl = ae_ioctl;
370 ifp->if_start = ae_start;
371 ifp->if_watchdog = ae_watchdog;
372 ifp->if_init = ae_init;
373 ifp->if_stop = ae_stop;
374 IFQ_SET_READY(&ifp->if_snd);
375
376 /*
377 * We can support 802.1Q VLAN-sized frames.
378 */
379 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
380
381 /*
382 * Attach the interface.
383 */
384 if_attach(ifp);
385 if_deferred_start_init(ifp, NULL);
386 ether_ifattach(ifp, enaddr);
387 ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
388
389 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
390 RND_TYPE_NET, RND_FLAG_DEFAULT);
391
392 /*
393 * Make sure the interface is shutdown during reboot.
394 */
395 sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
396 if (sc->sc_sdhook == NULL)
397 printf("%s: WARNING: unable to establish shutdown hook\n",
398 device_xname(sc->sc_dev));
399
400 /*
401 * Add a suspend hook to make sure we come back up after a
402 * resume.
403 */
404 sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
405 ae_power, sc);
406 if (sc->sc_powerhook == NULL)
407 printf("%s: WARNING: unable to establish power hook\n",
408 device_xname(sc->sc_dev));
409 return;
410
411 /*
412 * Free any resources we've allocated during the failed attach
413 * attempt. Do this in reverse order and fall through.
414 */
415 fail_6:
416 for (i = 0; i < AE_NRXDESC; i++) {
417 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
418 bus_dmamap_destroy(sc->sc_dmat,
419 sc->sc_rxsoft[i].rxs_dmamap);
420 }
421 fail_5:
422 for (i = 0; i < AE_TXQUEUELEN; i++) {
423 if (sc->sc_txsoft[i].txs_dmamap != NULL)
424 bus_dmamap_destroy(sc->sc_dmat,
425 sc->sc_txsoft[i].txs_dmamap);
426 }
427 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
428 fail_4:
429 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
430 fail_3:
431 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
432 sizeof(struct ae_control_data));
433 fail_2:
434 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
435 fail_1:
436 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
437 fail_0:
438 return;
439 }
440
441 /*
442 * ae_activate:
443 *
444 * Handle device activation/deactivation requests.
445 */
446 int
447 ae_activate(device_t self, enum devact act)
448 {
449 struct ae_softc *sc = device_private(self);
450
451 switch (act) {
452 case DVACT_DEACTIVATE:
453 if_deactivate(&sc->sc_ethercom.ec_if);
454 return 0;
455 default:
456 return EOPNOTSUPP;
457 }
458 }
459
460 /*
461 * ae_detach:
462 *
463 * Detach a device interface.
464 */
465 int
466 ae_detach(device_t self, int flags)
467 {
468 struct ae_softc *sc = device_private(self);
469 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
470 struct ae_rxsoft *rxs;
471 struct ae_txsoft *txs;
472 int i;
473
474 /*
475 * Succeed now if there isn't any work to do.
476 */
477 if ((sc->sc_flags & AE_ATTACHED) == 0)
478 return (0);
479
480 /* Unhook our tick handler. */
481 if (sc->sc_tick)
482 callout_stop(&sc->sc_tick_callout);
483
484 /* Detach all PHYs */
485 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
486
487 rnd_detach_source(&sc->sc_rnd_source);
488 ether_ifdetach(ifp);
489 if_detach(ifp);
490
491 /* Delete all remaining media. */
492 ifmedia_fini(&sc->sc_mii.mii_media);
493
494 for (i = 0; i < AE_NRXDESC; i++) {
495 rxs = &sc->sc_rxsoft[i];
496 if (rxs->rxs_mbuf != NULL) {
497 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
498 m_freem(rxs->rxs_mbuf);
499 rxs->rxs_mbuf = NULL;
500 }
501 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
502 }
503 for (i = 0; i < AE_TXQUEUELEN; i++) {
504 txs = &sc->sc_txsoft[i];
505 if (txs->txs_mbuf != NULL) {
506 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
507 m_freem(txs->txs_mbuf);
508 txs->txs_mbuf = NULL;
509 }
510 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
511 }
512 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
513 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
514 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
515 sizeof(struct ae_control_data));
516 bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
517
518 shutdownhook_disestablish(sc->sc_sdhook);
519 powerhook_disestablish(sc->sc_powerhook);
520
521 bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
522
523
524 return (0);
525 }
526
527 /*
528 * ae_shutdown:
529 *
530 * Make sure the interface is stopped at reboot time.
531 */
532 static void
533 ae_shutdown(void *arg)
534 {
535 struct ae_softc *sc = arg;
536
537 ae_stop(&sc->sc_ethercom.ec_if, 1);
538 }
539
540 /*
541 * ae_start: [ifnet interface function]
542 *
543 * Start packet transmission on the interface.
544 */
545 static void
546 ae_start(struct ifnet *ifp)
547 {
548 struct ae_softc *sc = ifp->if_softc;
549 struct mbuf *m0, *m;
550 struct ae_txsoft *txs;
551 bus_dmamap_t dmamap;
552 int error, firsttx, nexttx, lasttx = 1, ofree, seg;
553
554 DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
555 device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
556
557
558 if ((ifp->if_flags & IFF_RUNNING) == 0)
559 return;
560
561 /*
562 * Remember the previous number of free descriptors and
563 * the first descriptor we'll use.
564 */
565 ofree = sc->sc_txfree;
566 firsttx = sc->sc_txnext;
567
568 DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
569 device_xname(sc->sc_dev), ofree, firsttx));
570
571 /*
572 * Loop through the send queue, setting up transmit descriptors
573 * until we drain the queue, or use up all available transmit
574 * descriptors.
575 */
576 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
577 sc->sc_txfree != 0) {
578 /*
579 * Grab a packet off the queue.
580 */
581 IFQ_POLL(&ifp->if_snd, m0);
582 if (m0 == NULL)
583 break;
584 m = NULL;
585
586 dmamap = txs->txs_dmamap;
587
588 /*
589 * Load the DMA map. If this fails, the packet either
590 * didn't fit in the allotted number of segments, or we were
591 * short on resources. In this case, we'll copy and try
592 * again.
593 */
594 if (((mtod(m0, uintptr_t) & 3) != 0) ||
595 bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
596 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
597 MGETHDR(m, M_DONTWAIT, MT_DATA);
598 if (m == NULL) {
599 printf("%s: unable to allocate Tx mbuf\n",
600 device_xname(sc->sc_dev));
601 break;
602 }
603 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
604 if (m0->m_pkthdr.len > MHLEN) {
605 MCLGET(m, M_DONTWAIT);
606 if ((m->m_flags & M_EXT) == 0) {
607 printf("%s: unable to allocate Tx "
608 "cluster\n", device_xname(sc->sc_dev));
609 m_freem(m);
610 break;
611 }
612 }
613 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
614 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
615 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
616 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
617 if (error) {
618 printf("%s: unable to load Tx buffer, "
619 "error = %d\n", device_xname(sc->sc_dev),
620 error);
621 break;
622 }
623 }
624
625 /*
626 * Ensure we have enough descriptors free to describe
627 * the packet.
628 */
629 if (dmamap->dm_nsegs > sc->sc_txfree) {
630 /*
631 * Not enough free descriptors to transmit this
632 * packet. We haven't committed to anything yet,
633 * so just unload the DMA map, put the packet
634 * back on the queue, and punt. Notify the upper
635 * layer that there are no more slots left.
636 *
637 * XXX We could allocate an mbuf and copy, but
638 * XXX it is worth it?
639 */
640 bus_dmamap_unload(sc->sc_dmat, dmamap);
641 if (m != NULL)
642 m_freem(m);
643 break;
644 }
645
646 IFQ_DEQUEUE(&ifp->if_snd, m0);
647 if (m != NULL) {
648 m_freem(m0);
649 m0 = m;
650 }
651
652 /*
653 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
654 */
655
656 /* Sync the DMA map. */
657 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
658 BUS_DMASYNC_PREWRITE);
659
660 /*
661 * Initialize the transmit descriptors.
662 */
663 for (nexttx = sc->sc_txnext, seg = 0;
664 seg < dmamap->dm_nsegs;
665 seg++, nexttx = AE_NEXTTX(nexttx)) {
666 /*
667 * If this is the first descriptor we're
668 * enqueueing, don't set the OWN bit just
669 * yet. That could cause a race condition.
670 * We'll do it below.
671 */
672 sc->sc_txdescs[nexttx].ad_status =
673 (nexttx == firsttx) ? 0 : ADSTAT_OWN;
674 sc->sc_txdescs[nexttx].ad_bufaddr1 =
675 dmamap->dm_segs[seg].ds_addr;
676 sc->sc_txdescs[nexttx].ad_ctl =
677 (dmamap->dm_segs[seg].ds_len <<
678 ADCTL_SIZE1_SHIFT) |
679 (nexttx == (AE_NTXDESC - 1) ?
680 ADCTL_ER : 0);
681 lasttx = nexttx;
682 }
683
684 KASSERT(lasttx != -1);
685
686 /* Set `first segment' and `last segment' appropriately. */
687 sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
688 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
689
690 #ifdef AE_DEBUG
691 if (ifp->if_flags & IFF_DEBUG) {
692 printf(" txsoft %p transmit chain:\n", txs);
693 for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
694 printf(" descriptor %d:\n", seg);
695 printf(" ad_status: 0x%08x\n",
696 sc->sc_txdescs[seg].ad_status);
697 printf(" ad_ctl: 0x%08x\n",
698 sc->sc_txdescs[seg].ad_ctl);
699 printf(" ad_bufaddr1: 0x%08x\n",
700 sc->sc_txdescs[seg].ad_bufaddr1);
701 printf(" ad_bufaddr2: 0x%08x\n",
702 sc->sc_txdescs[seg].ad_bufaddr2);
703 if (seg == lasttx)
704 break;
705 }
706 }
707 #endif
708
709 /* Sync the descriptors we're using. */
710 AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
711 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
712
713 /*
714 * Store a pointer to the packet so we can free it later,
715 * and remember what txdirty will be once the packet is
716 * done.
717 */
718 txs->txs_mbuf = m0;
719 txs->txs_firstdesc = sc->sc_txnext;
720 txs->txs_lastdesc = lasttx;
721 txs->txs_ndescs = dmamap->dm_nsegs;
722
723 /* Advance the tx pointer. */
724 sc->sc_txfree -= dmamap->dm_nsegs;
725 sc->sc_txnext = nexttx;
726
727 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
728 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
729
730 /*
731 * Pass the packet to any BPF listeners.
732 */
733 bpf_mtap(ifp, m0, BPF_D_OUT);
734 }
735
736 if (sc->sc_txfree != ofree) {
737 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
738 device_xname(sc->sc_dev), lasttx, firsttx));
739 /*
740 * Cause a transmit interrupt to happen on the
741 * last packet we enqueued.
742 */
743 sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
744 AE_CDTXSYNC(sc, lasttx, 1,
745 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
746
747 /*
748 * The entire packet chain is set up. Give the
749 * first descriptor to the chip now.
750 */
751 sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
752 AE_CDTXSYNC(sc, firsttx, 1,
753 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
754
755 /* Wake up the transmitter. */
756 /* XXX USE AUTOPOLLING? */
757 AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
758 AE_BARRIER(sc);
759
760 /* Set a watchdog timer in case the chip flakes out. */
761 ifp->if_timer = 5;
762 }
763 }
764
765 /*
766 * ae_watchdog: [ifnet interface function]
767 *
768 * Watchdog timer handler.
769 */
770 static void
771 ae_watchdog(struct ifnet *ifp)
772 {
773 struct ae_softc *sc = ifp->if_softc;
774 int doing_transmit;
775
776 doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
777
778 if (doing_transmit) {
779 printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
780 if_statinc(ifp, if_oerrors);
781 }
782 else
783 printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
784
785 (void) ae_init(ifp);
786
787 /* Try to get more packets going. */
788 ae_start(ifp);
789 }
790
791 /* If the interface is up and running, only modify the receive
792 * filter when changing to/from promiscuous mode. Otherwise return
793 * ENETRESET so that ether_ioctl will reset the chip.
794 */
795 static int
796 ae_ifflags_cb(struct ethercom *ec)
797 {
798 struct ifnet *ifp = &ec->ec_if;
799 struct ae_softc *sc = ifp->if_softc;
800 u_short change = ifp->if_flags ^ sc->sc_if_flags;
801
802 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
803 return ENETRESET;
804 else if ((change & IFF_PROMISC) != 0)
805 ae_filter_setup(sc);
806 return 0;
807 }
808
809 /*
810 * ae_ioctl: [ifnet interface function]
811 *
812 * Handle control requests from the operator.
813 */
814 static int
815 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
816 {
817 struct ae_softc *sc = ifp->if_softc;
818 int s, error;
819
820 s = splnet();
821
822 error = ether_ioctl(ifp, cmd, data);
823 if (error == ENETRESET) {
824 if (ifp->if_flags & IFF_RUNNING) {
825 /*
826 * Multicast list has changed. Set the
827 * hardware filter accordingly.
828 */
829 ae_filter_setup(sc);
830 }
831 error = 0;
832 }
833
834 /* Try to get more packets going. */
835 if (AE_IS_ENABLED(sc))
836 ae_start(ifp);
837
838 sc->sc_if_flags = ifp->if_flags;
839 splx(s);
840 return (error);
841 }
842
843 /*
844 * ae_intr:
845 *
846 * Interrupt service routine.
847 */
848 int
849 ae_intr(void *arg)
850 {
851 struct ae_softc *sc = arg;
852 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
853 uint32_t status, rxstatus, txstatus;
854 int handled = 0, txthresh;
855
856 DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
857
858 #ifdef DEBUG
859 if (AE_IS_ENABLED(sc) == 0)
860 panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
861 #endif
862
863 /*
864 * If the interface isn't running, the interrupt couldn't
865 * possibly have come from us.
866 */
867 if ((ifp->if_flags & IFF_RUNNING) == 0 ||
868 !device_is_active(sc->sc_dev)) {
869 printf("spurious?!?\n");
870 return (0);
871 }
872
873 for (;;) {
874 status = AE_READ(sc, CSR_STATUS);
875 if (status) {
876 AE_WRITE(sc, CSR_STATUS, status);
877 AE_BARRIER(sc);
878 }
879
880 if ((status & sc->sc_inten) == 0)
881 break;
882
883 handled = 1;
884
885 rxstatus = status & sc->sc_rxint_mask;
886 txstatus = status & sc->sc_txint_mask;
887
888 if (rxstatus) {
889 /* Grab new any new packets. */
890 ae_rxintr(sc);
891
892 if (rxstatus & STATUS_RU) {
893 printf("%s: receive ring overrun\n",
894 device_xname(sc->sc_dev));
895 /* Get the receive process going again. */
896 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
897 AE_BARRIER(sc);
898 break;
899 }
900 }
901
902 if (txstatus) {
903 /* Sweep up transmit descriptors. */
904 ae_txintr(sc);
905
906 if (txstatus & STATUS_TJT)
907 printf("%s: transmit jabber timeout\n",
908 device_xname(sc->sc_dev));
909
910 if (txstatus & STATUS_UNF) {
911 /*
912 * Increase our transmit threshold if
913 * another is available.
914 */
915 txthresh = sc->sc_txthresh + 1;
916 if (ae_txthresh[txthresh].txth_name != NULL) {
917 uint32_t opmode;
918 /* Idle the transmit process. */
919 opmode = AE_READ(sc, CSR_OPMODE);
920 ae_idle(sc, OPMODE_ST);
921
922 sc->sc_txthresh = txthresh;
923 opmode &= ~(OPMODE_TR | OPMODE_SF);
924 opmode |=
925 ae_txthresh[txthresh].txth_opmode;
926 printf("%s: transmit underrun; new "
927 "threshold: %s\n",
928 device_xname(sc->sc_dev),
929 ae_txthresh[txthresh].txth_name);
930
931 /*
932 * Set the new threshold and restart
933 * the transmit process.
934 */
935 AE_WRITE(sc, CSR_OPMODE, opmode);
936 AE_BARRIER(sc);
937 }
938 /*
939 * XXX Log every Nth underrun from
940 * XXX now on?
941 */
942 }
943 }
944
945 if (status & (STATUS_TPS | STATUS_RPS)) {
946 if (status & STATUS_TPS)
947 printf("%s: transmit process stopped\n",
948 device_xname(sc->sc_dev));
949 if (status & STATUS_RPS)
950 printf("%s: receive process stopped\n",
951 device_xname(sc->sc_dev));
952 (void) ae_init(ifp);
953 break;
954 }
955
956 if (status & STATUS_SE) {
957 const char *str;
958
959 if (status & STATUS_TX_ABORT)
960 str = "tx abort";
961 else if (status & STATUS_RX_ABORT)
962 str = "rx abort";
963 else
964 str = "unknown error";
965
966 printf("%s: fatal system error: %s\n",
967 device_xname(sc->sc_dev), str);
968 (void) ae_init(ifp);
969 break;
970 }
971
972 /*
973 * Not handled:
974 *
975 * Transmit buffer unavailable -- normal
976 * condition, nothing to do, really.
977 *
978 * General purpose timer experied -- we don't
979 * use the general purpose timer.
980 *
981 * Early receive interrupt -- not available on
982 * all chips, we just use RI. We also only
983 * use single-segment receive DMA, so this
984 * is mostly useless.
985 */
986 }
987
988 /* Try to get more packets going. */
989 if_schedule_deferred_start(ifp);
990
991 if (handled)
992 rnd_add_uint32(&sc->sc_rnd_source, status);
993 return (handled);
994 }
995
996 /*
997 * ae_rxintr:
998 *
999 * Helper; handle receive interrupts.
1000 */
1001 static void
1002 ae_rxintr(struct ae_softc *sc)
1003 {
1004 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1005 struct ae_rxsoft *rxs;
1006 struct mbuf *m;
1007 uint32_t rxstat;
1008 int i, len;
1009
1010 for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
1011 rxs = &sc->sc_rxsoft[i];
1012
1013 AE_CDRXSYNC(sc, i,
1014 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1015
1016 rxstat = sc->sc_rxdescs[i].ad_status;
1017
1018 if (rxstat & ADSTAT_OWN) {
1019 /*
1020 * We have processed all of the receive buffers.
1021 */
1022 break;
1023 }
1024
1025 /*
1026 * If any collisions were seen on the wire, count one.
1027 */
1028 if (rxstat & ADSTAT_Rx_CS)
1029 if_statinc(ifp, if_collisions);
1030
1031 /*
1032 * If an error occurred, update stats, clear the status
1033 * word, and leave the packet buffer in place. It will
1034 * simply be reused the next time the ring comes around.
1035 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
1036 * error.
1037 */
1038 if (rxstat & ADSTAT_ES &&
1039 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
1040 (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
1041 ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
1042 #define PRINTERR(bit, str) \
1043 if (rxstat & (bit)) \
1044 printf("%s: receive error: %s\n", \
1045 device_xname(sc->sc_dev), str)
1046 if_statinc(ifp, if_ierrors);
1047 PRINTERR(ADSTAT_Rx_DE, "descriptor error");
1048 PRINTERR(ADSTAT_Rx_RF, "runt frame");
1049 PRINTERR(ADSTAT_Rx_TL, "frame too long");
1050 PRINTERR(ADSTAT_Rx_RE, "MII error");
1051 PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
1052 PRINTERR(ADSTAT_Rx_CE, "CRC error");
1053 #undef PRINTERR
1054 AE_INIT_RXDESC(sc, i);
1055 continue;
1056 }
1057
1058 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1059 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1060
1061 /*
1062 * No errors; receive the packet. Note the chip
1063 * includes the CRC with every packet.
1064 */
1065 len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
1066
1067 /*
1068 * XXX: the Atheros part can align on half words. what
1069 * is the performance implication of this? Probably
1070 * minimal, and we should use it...
1071 */
1072 #ifdef __NO_STRICT_ALIGNMENT
1073 /*
1074 * Allocate a new mbuf cluster. If that fails, we are
1075 * out of memory, and must drop the packet and recycle
1076 * the buffer that's already attached to this descriptor.
1077 */
1078 m = rxs->rxs_mbuf;
1079 if (ae_add_rxbuf(sc, i) != 0) {
1080 if_statinc(ifp, if_ierrors);
1081 AE_INIT_RXDESC(sc, i);
1082 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1083 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1084 continue;
1085 }
1086 #else
1087 /*
1088 * The chip's receive buffers must be 4-byte aligned.
1089 * But this means that the data after the Ethernet header
1090 * is misaligned. We must allocate a new buffer and
1091 * copy the data, shifted forward 2 bytes.
1092 */
1093 MGETHDR(m, M_DONTWAIT, MT_DATA);
1094 if (m == NULL) {
1095 dropit:
1096 if_statinc(ifp, if_ierrors);
1097 AE_INIT_RXDESC(sc, i);
1098 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1099 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1100 continue;
1101 }
1102 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1103 if (len > (MHLEN - 2)) {
1104 MCLGET(m, M_DONTWAIT);
1105 if ((m->m_flags & M_EXT) == 0) {
1106 m_freem(m);
1107 goto dropit;
1108 }
1109 }
1110 m->m_data += 2;
1111
1112 /*
1113 * Note that we use clusters for incoming frames, so the
1114 * buffer is virtually contiguous.
1115 */
1116 memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
1117
1118 /* Allow the receive descriptor to continue using its mbuf. */
1119 AE_INIT_RXDESC(sc, i);
1120 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1121 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1122 #endif /* __NO_STRICT_ALIGNMENT */
1123
1124 m_set_rcvif(m, ifp);
1125 m->m_pkthdr.len = m->m_len = len;
1126
1127 /* Pass it on. */
1128 if_percpuq_enqueue(ifp->if_percpuq, m);
1129 }
1130
1131 /* Update the receive pointer. */
1132 sc->sc_rxptr = i;
1133 }
1134
1135 /*
1136 * ae_txintr:
1137 *
1138 * Helper; handle transmit interrupts.
1139 */
1140 static void
1141 ae_txintr(struct ae_softc *sc)
1142 {
1143 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1144 struct ae_txsoft *txs;
1145 uint32_t txstat;
1146
1147 DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
1148 device_xname(sc->sc_dev), sc->sc_flags));
1149
1150 /*
1151 * Go through our Tx list and free mbufs for those
1152 * frames that have been transmitted.
1153 */
1154 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1155 AE_CDTXSYNC(sc, txs->txs_lastdesc,
1156 txs->txs_ndescs,
1157 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1158
1159 #ifdef AE_DEBUG
1160 if (ifp->if_flags & IFF_DEBUG) {
1161 int i;
1162 printf(" txsoft %p transmit chain:\n", txs);
1163 for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
1164 printf(" descriptor %d:\n", i);
1165 printf(" ad_status: 0x%08x\n",
1166 sc->sc_txdescs[i].ad_status);
1167 printf(" ad_ctl: 0x%08x\n",
1168 sc->sc_txdescs[i].ad_ctl);
1169 printf(" ad_bufaddr1: 0x%08x\n",
1170 sc->sc_txdescs[i].ad_bufaddr1);
1171 printf(" ad_bufaddr2: 0x%08x\n",
1172 sc->sc_txdescs[i].ad_bufaddr2);
1173 if (i == txs->txs_lastdesc)
1174 break;
1175 }
1176 }
1177 #endif
1178
1179 txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
1180 if (txstat & ADSTAT_OWN)
1181 break;
1182
1183 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1184
1185 sc->sc_txfree += txs->txs_ndescs;
1186
1187 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1188 0, txs->txs_dmamap->dm_mapsize,
1189 BUS_DMASYNC_POSTWRITE);
1190 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1191 m_freem(txs->txs_mbuf);
1192 txs->txs_mbuf = NULL;
1193
1194 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1195
1196 /*
1197 * Check for errors and collisions.
1198 */
1199 #ifdef AE_STATS
1200 if (txstat & ADSTAT_Tx_UF)
1201 sc->sc_stats.ts_tx_uf++;
1202 if (txstat & ADSTAT_Tx_TO)
1203 sc->sc_stats.ts_tx_to++;
1204 if (txstat & ADSTAT_Tx_EC)
1205 sc->sc_stats.ts_tx_ec++;
1206 if (txstat & ADSTAT_Tx_LC)
1207 sc->sc_stats.ts_tx_lc++;
1208 #endif
1209
1210 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1211 if (txstat & (ADSTAT_Tx_UF | ADSTAT_Tx_TO))
1212 if_statinc_ref(ifp, nsr, if_oerrors);
1213
1214 if (txstat & ADSTAT_Tx_EC)
1215 if_statadd_ref(ifp, nsr, if_collisions, 16);
1216 else if (ADSTAT_Tx_COLLISIONS(txstat))
1217 if_statadd_ref(ifp, nsr, if_collisions,
1218 ADSTAT_Tx_COLLISIONS(txstat));
1219 if (txstat & ADSTAT_Tx_LC)
1220 if_statinc_ref(ifp, nsr, if_collisions);
1221
1222 if_statinc_ref(ifp, nsr, if_opackets);
1223 IF_STAT_PUTREF(ifp);
1224 }
1225
1226 /*
1227 * If there are no more pending transmissions, cancel the watchdog
1228 * timer.
1229 */
1230 if (txs == NULL)
1231 ifp->if_timer = 0;
1232 }
1233
1234 #ifdef AE_STATS
1235 void
1236 ae_print_stats(struct ae_softc *sc)
1237 {
1238
1239 printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
1240 device_xname(sc->sc_dev),
1241 sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
1242 sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
1243 }
1244 #endif
1245
1246 /*
1247 * ae_reset:
1248 *
1249 * Perform a soft reset on the chip.
1250 */
1251 void
1252 ae_reset(struct ae_softc *sc)
1253 {
1254 int i;
1255
1256 AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
1257 AE_BARRIER(sc);
1258
1259 /*
1260 * The chip doesn't take itself out of reset automatically.
1261 * We need to do so after 2us.
1262 */
1263 delay(10);
1264 AE_WRITE(sc, CSR_BUSMODE, 0);
1265 AE_BARRIER(sc);
1266
1267 for (i = 0; i < 1000; i++) {
1268 /*
1269 * Wait a bit for the reset to complete before peeking
1270 * at the chip again.
1271 */
1272 delay(10);
1273 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
1274 break;
1275 }
1276
1277 if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
1278 printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
1279
1280 delay(1000);
1281 }
1282
1283 /*
1284 * ae_init: [ ifnet interface function ]
1285 *
1286 * Initialize the interface. Must be called at splnet().
1287 */
1288 static int
1289 ae_init(struct ifnet *ifp)
1290 {
1291 struct ae_softc *sc = ifp->if_softc;
1292 struct ae_txsoft *txs;
1293 struct ae_rxsoft *rxs;
1294 const uint8_t *enaddr;
1295 int i, error = 0;
1296
1297 if ((error = ae_enable(sc)) != 0)
1298 goto out;
1299
1300 /*
1301 * Cancel any pending I/O.
1302 */
1303 ae_stop(ifp, 0);
1304
1305 /*
1306 * Reset the chip to a known state.
1307 */
1308 ae_reset(sc);
1309
1310 /*
1311 * Initialize the BUSMODE register.
1312 */
1313 AE_WRITE(sc, CSR_BUSMODE,
1314 /* XXX: not sure if this is a good thing or not... */
1315 //BUSMODE_ALIGN_16B |
1316 BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
1317 AE_BARRIER(sc);
1318
1319 /*
1320 * Initialize the transmit descriptor ring.
1321 */
1322 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1323 for (i = 0; i < AE_NTXDESC; i++) {
1324 sc->sc_txdescs[i].ad_ctl = 0;
1325 sc->sc_txdescs[i].ad_bufaddr2 =
1326 AE_CDTXADDR(sc, AE_NEXTTX(i));
1327 }
1328 sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
1329 AE_CDTXSYNC(sc, 0, AE_NTXDESC,
1330 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1331 sc->sc_txfree = AE_NTXDESC;
1332 sc->sc_txnext = 0;
1333
1334 /*
1335 * Initialize the transmit job descriptors.
1336 */
1337 SIMPLEQ_INIT(&sc->sc_txfreeq);
1338 SIMPLEQ_INIT(&sc->sc_txdirtyq);
1339 for (i = 0; i < AE_TXQUEUELEN; i++) {
1340 txs = &sc->sc_txsoft[i];
1341 txs->txs_mbuf = NULL;
1342 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1343 }
1344
1345 /*
1346 * Initialize the receive descriptor and receive job
1347 * descriptor rings.
1348 */
1349 for (i = 0; i < AE_NRXDESC; i++) {
1350 rxs = &sc->sc_rxsoft[i];
1351 if (rxs->rxs_mbuf == NULL) {
1352 if ((error = ae_add_rxbuf(sc, i)) != 0) {
1353 printf("%s: unable to allocate or map rx "
1354 "buffer %d, error = %d\n",
1355 device_xname(sc->sc_dev), i, error);
1356 /*
1357 * XXX Should attempt to run with fewer receive
1358 * XXX buffers instead of just failing.
1359 */
1360 ae_rxdrain(sc);
1361 goto out;
1362 }
1363 } else
1364 AE_INIT_RXDESC(sc, i);
1365 }
1366 sc->sc_rxptr = 0;
1367
1368 /*
1369 * Initialize the interrupt mask and enable interrupts.
1370 */
1371 /* normal interrupts */
1372 sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
1373
1374 /* abnormal interrupts */
1375 sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
1376 STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
1377
1378 sc->sc_rxint_mask = STATUS_RI | STATUS_RU;
1379 sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT;
1380
1381 sc->sc_rxint_mask &= sc->sc_inten;
1382 sc->sc_txint_mask &= sc->sc_inten;
1383
1384 AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
1385 AE_WRITE(sc, CSR_STATUS, 0xffffffff);
1386
1387 /*
1388 * Give the transmit and receive rings to the chip.
1389 */
1390 AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
1391 AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
1392 AE_BARRIER(sc);
1393
1394 /*
1395 * Set the station address.
1396 */
1397 enaddr = CLLADDR(ifp->if_sadl);
1398 AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
1399 AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
1400 enaddr[1] << 8 | enaddr[0]);
1401 AE_BARRIER(sc);
1402
1403 /*
1404 * Set the receive filter. This will start the transmit and
1405 * receive processes.
1406 */
1407 ae_filter_setup(sc);
1408
1409 /*
1410 * Set the current media.
1411 */
1412 if ((error = ether_mediachange(ifp)) != 0)
1413 goto out;
1414
1415 /*
1416 * Start the mac.
1417 */
1418 AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
1419 AE_BARRIER(sc);
1420
1421 /*
1422 * Write out the opmode.
1423 */
1424 AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
1425 ae_txthresh[sc->sc_txthresh].txth_opmode);
1426 /*
1427 * Start the receive process.
1428 */
1429 AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
1430 AE_BARRIER(sc);
1431
1432 if (sc->sc_tick != NULL) {
1433 /* Start the one second clock. */
1434 callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
1435 }
1436
1437 /*
1438 * Note that the interface is now running.
1439 */
1440 ifp->if_flags |= IFF_RUNNING;
1441 sc->sc_if_flags = ifp->if_flags;
1442
1443 out:
1444 if (error) {
1445 ifp->if_flags &= ~IFF_RUNNING;
1446 ifp->if_timer = 0;
1447 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1448 }
1449 return (error);
1450 }
1451
1452 /*
1453 * ae_enable:
1454 *
1455 * Enable the chip.
1456 */
1457 static int
1458 ae_enable(struct ae_softc *sc)
1459 {
1460
1461 if (AE_IS_ENABLED(sc) == 0) {
1462 sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
1463 ae_intr, sc);
1464 if (sc->sc_ih == NULL) {
1465 printf("%s: unable to establish interrupt\n",
1466 device_xname(sc->sc_dev));
1467 return (EIO);
1468 }
1469 sc->sc_flags |= AE_ENABLED;
1470 }
1471 return (0);
1472 }
1473
1474 /*
1475 * ae_disable:
1476 *
1477 * Disable the chip.
1478 */
1479 static void
1480 ae_disable(struct ae_softc *sc)
1481 {
1482
1483 if (AE_IS_ENABLED(sc)) {
1484 arbus_intr_disestablish(sc->sc_ih);
1485 sc->sc_flags &= ~AE_ENABLED;
1486 }
1487 }
1488
1489 /*
1490 * ae_power:
1491 *
1492 * Power management (suspend/resume) hook.
1493 */
1494 static void
1495 ae_power(int why, void *arg)
1496 {
1497 struct ae_softc *sc = arg;
1498 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1499 int s;
1500
1501 printf("power called: %d, %x\n", why, (uint32_t)arg);
1502 s = splnet();
1503 switch (why) {
1504 case PWR_STANDBY:
1505 /* do nothing! */
1506 break;
1507 case PWR_SUSPEND:
1508 ae_stop(ifp, 0);
1509 ae_disable(sc);
1510 break;
1511 case PWR_RESUME:
1512 if (ifp->if_flags & IFF_UP) {
1513 ae_enable(sc);
1514 ae_init(ifp);
1515 }
1516 break;
1517 case PWR_SOFTSUSPEND:
1518 case PWR_SOFTSTANDBY:
1519 case PWR_SOFTRESUME:
1520 break;
1521 }
1522 splx(s);
1523 }
1524
1525 /*
1526 * ae_rxdrain:
1527 *
1528 * Drain the receive queue.
1529 */
1530 static void
1531 ae_rxdrain(struct ae_softc *sc)
1532 {
1533 struct ae_rxsoft *rxs;
1534 int i;
1535
1536 for (i = 0; i < AE_NRXDESC; i++) {
1537 rxs = &sc->sc_rxsoft[i];
1538 if (rxs->rxs_mbuf != NULL) {
1539 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1540 m_freem(rxs->rxs_mbuf);
1541 rxs->rxs_mbuf = NULL;
1542 }
1543 }
1544 }
1545
1546 /*
1547 * ae_stop: [ ifnet interface function ]
1548 *
1549 * Stop transmission on the interface.
1550 */
1551 static void
1552 ae_stop(struct ifnet *ifp, int disable)
1553 {
1554 struct ae_softc *sc = ifp->if_softc;
1555 struct ae_txsoft *txs;
1556
1557 if (sc->sc_tick != NULL) {
1558 /* Stop the one second clock. */
1559 callout_stop(&sc->sc_tick_callout);
1560 }
1561
1562 /* Down the MII. */
1563 mii_down(&sc->sc_mii);
1564
1565 /* Disable interrupts. */
1566 AE_WRITE(sc, CSR_INTEN, 0);
1567
1568 /* Stop the transmit and receive processes. */
1569 AE_WRITE(sc, CSR_OPMODE, 0);
1570 AE_WRITE(sc, CSR_RXLIST, 0);
1571 AE_WRITE(sc, CSR_TXLIST, 0);
1572 AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
1573 AE_BARRIER(sc);
1574
1575 /*
1576 * Release any queued transmit buffers.
1577 */
1578 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1579 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1580 if (txs->txs_mbuf != NULL) {
1581 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1582 m_freem(txs->txs_mbuf);
1583 txs->txs_mbuf = NULL;
1584 }
1585 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1586 }
1587
1588 /*
1589 * Mark the interface down and cancel the watchdog timer.
1590 */
1591 ifp->if_flags &= ~IFF_RUNNING;
1592 sc->sc_if_flags = ifp->if_flags;
1593 ifp->if_timer = 0;
1594
1595 if (disable) {
1596 ae_rxdrain(sc);
1597 ae_disable(sc);
1598 }
1599
1600 /*
1601 * Reset the chip (needed on some flavors to actually disable it).
1602 */
1603 ae_reset(sc);
1604 }
1605
1606 /*
1607 * ae_add_rxbuf:
1608 *
1609 * Add a receive buffer to the indicated descriptor.
1610 */
1611 static int
1612 ae_add_rxbuf(struct ae_softc *sc, int idx)
1613 {
1614 struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
1615 struct mbuf *m;
1616 int error;
1617
1618 MGETHDR(m, M_DONTWAIT, MT_DATA);
1619 if (m == NULL)
1620 return (ENOBUFS);
1621
1622 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1623 MCLGET(m, M_DONTWAIT);
1624 if ((m->m_flags & M_EXT) == 0) {
1625 m_freem(m);
1626 return (ENOBUFS);
1627 }
1628
1629 if (rxs->rxs_mbuf != NULL)
1630 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1631
1632 rxs->rxs_mbuf = m;
1633
1634 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1635 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1636 BUS_DMA_READ | BUS_DMA_NOWAIT);
1637 if (error) {
1638 printf("%s: can't load rx DMA map %d, error = %d\n",
1639 device_xname(sc->sc_dev), idx, error);
1640 panic("ae_add_rxbuf"); /* XXX */
1641 }
1642
1643 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1644 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1645
1646 AE_INIT_RXDESC(sc, idx);
1647
1648 return (0);
1649 }
1650
1651 /*
1652 * ae_filter_setup:
1653 *
1654 * Set the chip's receive filter.
1655 */
1656 static void
1657 ae_filter_setup(struct ae_softc *sc)
1658 {
1659 struct ethercom *ec = &sc->sc_ethercom;
1660 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1661 struct ether_multi *enm;
1662 struct ether_multistep step;
1663 uint32_t hash, mchash[2];
1664 uint32_t macctl = 0;
1665
1666 /*
1667 * If the chip is running, we need to reset the interface,
1668 * and will revisit here (with IFF_RUNNING) clear. The
1669 * chip seems to really not like to have its multicast
1670 * filter programmed without a reset.
1671 */
1672 if (ifp->if_flags & IFF_RUNNING) {
1673 (void) ae_init(ifp);
1674 return;
1675 }
1676
1677 DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
1678 device_xname(sc->sc_dev), sc->sc_flags));
1679
1680 macctl = AE_READ(sc, CSR_MACCTL);
1681 macctl &= ~(MACCTL_PR | MACCTL_PM);
1682 macctl |= MACCTL_HASH;
1683 macctl |= MACCTL_HBD;
1684 macctl |= MACCTL_PR;
1685
1686 if (ifp->if_flags & IFF_PROMISC) {
1687 macctl |= MACCTL_PR;
1688 goto allmulti;
1689 }
1690
1691 mchash[0] = mchash[1] = 0;
1692
1693 ETHER_LOCK(ec);
1694 ETHER_FIRST_MULTI(step, ec, enm);
1695 while (enm != NULL) {
1696 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1697 /*
1698 * We must listen to a range of multicast addresses.
1699 * For now, just accept all multicasts, rather than
1700 * trying to set only those filter bits needed to match
1701 * the range. (At this time, the only use of address
1702 * ranges is for IP multicast routing, for which the
1703 * range is big enough to require all bits set.)
1704 */
1705 ETHER_UNLOCK(ec);
1706 goto allmulti;
1707 }
1708
1709 /* Verify whether we use big or little endian hashes */
1710 hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
1711 mchash[hash >> 5] |= 1 << (hash & 0x1f);
1712 ETHER_NEXT_MULTI(step, enm);
1713 }
1714 ETHER_UNLOCK(ec);
1715 ifp->if_flags &= ~IFF_ALLMULTI;
1716 goto setit;
1717
1718 allmulti:
1719 ifp->if_flags |= IFF_ALLMULTI;
1720 mchash[0] = mchash[1] = 0xffffffff;
1721 macctl |= MACCTL_PM;
1722
1723 setit:
1724 AE_WRITE(sc, CSR_HTHI, mchash[0]);
1725 AE_WRITE(sc, CSR_HTHI, mchash[1]);
1726
1727 AE_WRITE(sc, CSR_MACCTL, macctl);
1728 AE_BARRIER(sc);
1729
1730 DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
1731 device_xname(sc->sc_dev), macctl));
1732 }
1733
1734 /*
1735 * ae_idle:
1736 *
1737 * Cause the transmit and/or receive processes to go idle.
1738 */
1739 void
1740 ae_idle(struct ae_softc *sc, uint32_t bits)
1741 {
1742 static const char * const txstate_names[] = {
1743 "STOPPED",
1744 "RUNNING - FETCH",
1745 "RUNNING - WAIT",
1746 "RUNNING - READING",
1747 "-- RESERVED --",
1748 "RUNNING - SETUP",
1749 "SUSPENDED",
1750 "RUNNING - CLOSE",
1751 };
1752 static const char * const rxstate_names[] = {
1753 "STOPPED",
1754 "RUNNING - FETCH",
1755 "RUNNING - CHECK",
1756 "RUNNING - WAIT",
1757 "SUSPENDED",
1758 "RUNNING - CLOSE",
1759 "RUNNING - FLUSH",
1760 "RUNNING - QUEUE",
1761 };
1762
1763 uint32_t csr, ackmask = 0;
1764 int i;
1765
1766 if (bits & OPMODE_ST)
1767 ackmask |= STATUS_TPS;
1768
1769 if (bits & OPMODE_SR)
1770 ackmask |= STATUS_RPS;
1771
1772 AE_CLR(sc, CSR_OPMODE, bits);
1773
1774 for (i = 0; i < 1000; i++) {
1775 if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
1776 break;
1777 delay(10);
1778 }
1779
1780 csr = AE_READ(sc, CSR_STATUS);
1781 if ((csr & ackmask) != ackmask) {
1782 if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
1783 (csr & STATUS_TS) != STATUS_TS_STOPPED) {
1784 printf("%s: transmit process failed to idle: "
1785 "state %s\n", device_xname(sc->sc_dev),
1786 txstate_names[(csr & STATUS_TS) >> 20]);
1787 }
1788 if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
1789 (csr & STATUS_RS) != STATUS_RS_STOPPED) {
1790 printf("%s: receive process failed to idle: "
1791 "state %s\n", device_xname(sc->sc_dev),
1792 rxstate_names[(csr & STATUS_RS) >> 17]);
1793 }
1794 }
1795 }
1796
1797 /*****************************************************************************
1798 * Support functions for MII-attached media.
1799 *****************************************************************************/
1800
1801 /*
1802 * ae_mii_tick:
1803 *
1804 * One second timer, used to tick the MII.
1805 */
1806 static void
1807 ae_mii_tick(void *arg)
1808 {
1809 struct ae_softc *sc = arg;
1810 int s;
1811
1812 if (!device_is_active(sc->sc_dev))
1813 return;
1814
1815 s = splnet();
1816 mii_tick(&sc->sc_mii);
1817 splx(s);
1818
1819 callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
1820 }
1821
1822 /*
1823 * ae_mii_statchg: [mii interface function]
1824 *
1825 * Callback from PHY when media changes.
1826 */
1827 static void
1828 ae_mii_statchg(struct ifnet *ifp)
1829 {
1830 struct ae_softc *sc = ifp->if_softc;
1831 uint32_t macctl, flowc;
1832
1833 //opmode = AE_READ(sc, CSR_OPMODE);
1834 macctl = AE_READ(sc, CSR_MACCTL);
1835
1836 /* XXX: do we need to do this? */
1837 /* Idle the transmit and receive processes. */
1838 //ae_idle(sc, OPMODE_ST | OPMODE_SR);
1839
1840 if (sc->sc_mii.mii_media_active & IFM_FDX) {
1841 flowc = FLOWC_FCE;
1842 macctl &= ~MACCTL_DRO;
1843 macctl |= MACCTL_FDX;
1844 } else {
1845 flowc = 0; /* cannot do flow control in HDX */
1846 macctl |= MACCTL_DRO;
1847 macctl &= ~MACCTL_FDX;
1848 }
1849
1850 AE_WRITE(sc, CSR_FLOWC, flowc);
1851 AE_WRITE(sc, CSR_MACCTL, macctl);
1852
1853 /* restore operational mode */
1854 //AE_WRITE(sc, CSR_OPMODE, opmode);
1855 AE_BARRIER(sc);
1856 }
1857
1858 /*
1859 * ae_mii_readreg:
1860 *
1861 * Read a PHY register.
1862 */
1863 static int
1864 ae_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1865 {
1866 struct ae_softc *sc = device_private(self);
1867 uint32_t addr;
1868 int i;
1869
1870 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
1871 AE_WRITE(sc, CSR_MIIADDR, addr);
1872 AE_BARRIER(sc);
1873 for (i = 0; i < 100000000; i++) {
1874 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1875 break;
1876 }
1877
1878 if (i >= 100000000)
1879 return ETIMEDOUT;
1880
1881 *val = AE_READ(sc, CSR_MIIDATA) & 0xffff;
1882 return 0;
1883 }
1884
1885 /*
1886 * ae_mii_writereg:
1887 *
1888 * Write a PHY register.
1889 */
1890 static int
1891 ae_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1892 {
1893 struct ae_softc *sc = device_private(self);
1894 uint32_t addr;
1895 int i;
1896
1897 /* write the data register */
1898 AE_WRITE(sc, CSR_MIIDATA, val);
1899
1900 /* write the address to latch it in */
1901 addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
1902 MIIADDR_WRITE;
1903 AE_WRITE(sc, CSR_MIIADDR, addr);
1904 AE_BARRIER(sc);
1905
1906 for (i = 0; i < 100000000; i++) {
1907 if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
1908 break;
1909 }
1910
1911 if (i >= 100000000)
1912 return ETIMEDOUT;
1913
1914 return 0;
1915 }
1916