octeon_rnm.c revision 1.2.4.2 1 1.2.4.2 martin /* $NetBSD: octeon_rnm.c,v 1.2.4.2 2020/05/19 17:39:04 martin Exp $ */
2 1.1 hikaru
3 1.1 hikaru /*
4 1.1 hikaru * Copyright (c) 2007 Internet Initiative Japan, Inc.
5 1.1 hikaru * All rights reserved.
6 1.1 hikaru *
7 1.1 hikaru * Redistribution and use in source and binary forms, with or without
8 1.1 hikaru * modification, are permitted provided that the following conditions
9 1.1 hikaru * are met:
10 1.1 hikaru * 1. Redistributions of source code must retain the above copyright
11 1.1 hikaru * notice, this list of conditions and the following disclaimer.
12 1.1 hikaru * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 hikaru * notice, this list of conditions and the following disclaimer in the
14 1.1 hikaru * documentation and/or other materials provided with the distribution.
15 1.1 hikaru *
16 1.1 hikaru * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
17 1.1 hikaru * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 hikaru * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 hikaru * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
20 1.1 hikaru * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 hikaru * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 hikaru * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 hikaru * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 hikaru * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 hikaru * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 hikaru * SUCH DAMAGE.
27 1.1 hikaru */
28 1.1 hikaru
29 1.2.4.1 martin /*
30 1.2.4.1 martin * Cavium Octeon Random Number Generator / Random Number Memory `RNM'
31 1.2.4.1 martin *
32 1.2.4.1 martin * The RNM unit consists of:
33 1.2.4.1 martin *
34 1.2.4.1 martin * 1. 128 ring oscillators
35 1.2.4.1 martin * 2. an LFSR/SHA-1 conditioner
36 1.2.4.1 martin * 3. a 512-byte FIFO
37 1.2.4.1 martin *
38 1.2.4.1 martin * When the unit is enabled, there are three modes of operation:
39 1.2.4.1 martin *
40 1.2.4.1 martin * (a) deterministic: the ring oscillators are disabled and the
41 1.2.4.1 martin * LFSR/SHA-1 conditioner operates on fixed inputs to give
42 1.2.4.1 martin * reproducible results for testing,
43 1.2.4.1 martin *
44 1.2.4.1 martin * (b) conditioned entropy: the ring oscillators are enabled and
45 1.2.4.1 martin * samples from them are fed through the LFSR/SHA-1
46 1.2.4.1 martin * conditioner before being put into the FIFO, and
47 1.2.4.1 martin *
48 1.2.4.1 martin * (c) raw entropy: the ring oscillators are enabled, and a group
49 1.2.4.1 martin * of eight of them selected at any one time is sampled and
50 1.2.4.1 martin * fed into the FIFO.
51 1.2.4.1 martin *
52 1.2.4.1 martin * Details:
53 1.2.4.1 martin *
54 1.2.4.1 martin * - The FIFO is refilled whenever we read out of it, either with
55 1.2.4.1 martin * a load address or an IOBDMA operation.
56 1.2.4.1 martin *
57 1.2.4.1 martin * - The conditioner takes 81 cycles to produce a 64-bit block of
58 1.2.4.1 martin * output in the FIFO whether in deterministic or conditioned
59 1.2.4.1 martin * entropy mode, each block consisting of the first 64 bits of a
60 1.2.4.1 martin * SHA-1 hash.
61 1.2.4.1 martin *
62 1.2.4.1 martin * - A group of eight ring oscillators take 8 cycles to produce a
63 1.2.4.1 martin * 64-bit block of output in the FIFO in raw entropy mode, each
64 1.2.4.1 martin * block consisting of eight consecutive samples from each RO in
65 1.2.4.1 martin * parallel.
66 1.2.4.1 martin *
67 1.2.4.1 martin * The first sample of each RO always seems to be zero. Further,
68 1.2.4.1 martin * consecutive samples from a single ring oscillator are not
69 1.2.4.1 martin * independent, so naive debiasing like a von Neumann extractor
70 1.2.4.1 martin * falls flat on its face. And parallel ring oscillators powered
71 1.2.4.1 martin * by the same source may not be independent either, if they end
72 1.2.4.1 martin * up locked.
73 1.2.4.1 martin *
74 1.2.4.1 martin * We read out one FIFO's worth of raw samples from groups of 8
75 1.2.4.1 martin * ring oscillators at a time, of 128 total, by going through them
76 1.2.4.1 martin * round robin. We take 32 consecutive samples from each ring
77 1.2.4.1 martin * oscillator in a group of 8 in parallel before we count one bit
78 1.2.4.1 martin * of entropy. To get 256 bits of entropy, we read 4Kbit of data
79 1.2.4.1 martin * from each of two 8-RO groups.
80 1.2.4.1 martin *
81 1.2.4.1 martin * We could use the on-board LFSR/SHA-1 conditioner like the Linux
82 1.2.4.1 martin * driver written by Cavium does, but it's not clear how many RO
83 1.2.4.1 martin * samples go into the conditioner, and our entropy pool is a
84 1.2.4.1 martin * perfectly good conditioner itself, so it seems there is little
85 1.2.4.1 martin * advantage -- other than expedience -- to using the LFSR/SHA-1
86 1.2.4.1 martin * conditioner. All the manual says is that it samples 125 of the
87 1.2.4.1 martin * 128 ROs. But the Cavium SHA-1 CPU instruction is advertised to
88 1.2.4.1 martin * have a latency of 100 cycles, so it seems implausible that much
89 1.2.4.1 martin * more than one sample from each RO could be squeezed in there.
90 1.2.4.1 martin *
91 1.2.4.1 martin * The hardware exposes only 64 bits of each SHA-1 hash, and the
92 1.2.4.1 martin * Linux driver uses 32 bits of that -- which, if treated as full
93 1.2.4.1 martin * entropy, would mean an assessment of 3.9 bits of RO samples to
94 1.2.4.1 martin * get 1 bit of entropy, whereas we take 256 bits of RO samples to
95 1.2.4.1 martin * get one bit of entropy, so this seems reasonably conservative.
96 1.2.4.1 martin *
97 1.2.4.1 martin * Reference: Cavium Networks OCTEON Plus CN50XX Hardware Reference
98 1.2.4.1 martin * Manual, CN50XX-HM-0.99E PRELIMINARY, July 2008.
99 1.2.4.1 martin */
100 1.2.4.1 martin
101 1.1 hikaru #include <sys/cdefs.h>
102 1.2.4.2 martin __KERNEL_RCSID(0, "$NetBSD: octeon_rnm.c,v 1.2.4.2 2020/05/19 17:39:04 martin Exp $");
103 1.1 hikaru
104 1.1 hikaru #include <sys/param.h>
105 1.1 hikaru #include <sys/device.h>
106 1.1 hikaru #include <sys/kernel.h>
107 1.1 hikaru #include <sys/rndsource.h>
108 1.2.4.1 martin #include <sys/systm.h>
109 1.1 hikaru
110 1.1 hikaru #include <mips/locore.h>
111 1.1 hikaru #include <mips/cavium/include/iobusvar.h>
112 1.1 hikaru #include <mips/cavium/dev/octeon_rnmreg.h>
113 1.1 hikaru #include <mips/cavium/dev/octeon_corereg.h>
114 1.1 hikaru #include <mips/cavium/octeonvar.h>
115 1.1 hikaru
116 1.1 hikaru #include <sys/bus.h>
117 1.1 hikaru
118 1.2.4.1 martin //#define OCTEON_RNM_DEBUG
119 1.1 hikaru
120 1.2.4.1 martin #define ENT_DELAY_CLOCK 8 /* cycles for each 64-bit RO sample batch */
121 1.2.4.1 martin #define RNG_DELAY_CLOCK 81 /* cycles for each SHA-1 output */
122 1.2.4.1 martin #define NROGROUPS 16
123 1.2.4.1 martin #define RNG_FIFO_WORDS (512/sizeof(uint64_t))
124 1.1 hikaru
125 1.1 hikaru struct octeon_rnm_softc {
126 1.1 hikaru bus_space_tag_t sc_bust;
127 1.1 hikaru bus_space_handle_t sc_regh;
128 1.2.4.1 martin kmutex_t sc_lock;
129 1.1 hikaru krndsource_t sc_rndsrc; /* /dev/random source */
130 1.2.4.1 martin unsigned sc_rogroup;
131 1.1 hikaru };
132 1.1 hikaru
133 1.1 hikaru static int octeon_rnm_match(device_t, struct cfdata *, void *);
134 1.1 hikaru static void octeon_rnm_attach(device_t, device_t, void *);
135 1.2.4.1 martin static void octeon_rnm_rng(size_t, void *);
136 1.2.4.1 martin static void octeon_rnm_reset(struct octeon_rnm_softc *);
137 1.2.4.1 martin static void octeon_rnm_conditioned_deterministic(struct octeon_rnm_softc *);
138 1.2.4.1 martin static void octeon_rnm_conditioned_entropy(struct octeon_rnm_softc *);
139 1.2.4.1 martin static void octeon_rnm_raw_entropy(struct octeon_rnm_softc *, unsigned);
140 1.2.4.1 martin static uint64_t octeon_rnm_load(struct octeon_rnm_softc *);
141 1.2.4.1 martin static void octeon_rnm_iobdma(struct octeon_rnm_softc *, uint64_t *, unsigned);
142 1.2.4.1 martin static void octeon_rnm_delay(uint32_t);
143 1.1 hikaru
144 1.1 hikaru CFATTACH_DECL_NEW(octeon_rnm, sizeof(struct octeon_rnm_softc),
145 1.1 hikaru octeon_rnm_match, octeon_rnm_attach, NULL, NULL);
146 1.1 hikaru
147 1.1 hikaru static int
148 1.1 hikaru octeon_rnm_match(device_t parent, struct cfdata *cf, void *aux)
149 1.1 hikaru {
150 1.1 hikaru struct iobus_attach_args *aa = aux;
151 1.1 hikaru
152 1.1 hikaru if (strcmp(cf->cf_name, aa->aa_name) != 0)
153 1.2.4.1 martin return 0;
154 1.1 hikaru if (cf->cf_unit != aa->aa_unitno)
155 1.2.4.1 martin return 0;
156 1.2.4.1 martin return 1;
157 1.1 hikaru }
158 1.1 hikaru
159 1.1 hikaru static void
160 1.1 hikaru octeon_rnm_attach(device_t parent, device_t self, void *aux)
161 1.1 hikaru {
162 1.1 hikaru struct octeon_rnm_softc *sc = device_private(self);
163 1.1 hikaru struct iobus_attach_args *aa = aux;
164 1.2.4.1 martin uint64_t bist_status, sample, expected = UINT64_C(0xd654ff35fadf866b);
165 1.1 hikaru
166 1.1 hikaru aprint_normal("\n");
167 1.1 hikaru
168 1.2.4.1 martin /* Map the device registers, all two of them. */
169 1.1 hikaru sc->sc_bust = aa->aa_bust;
170 1.2.4.1 martin if (bus_space_map(aa->aa_bust, aa->aa_unit->addr, RNM_SIZE,
171 1.2.4.1 martin 0, &sc->sc_regh) != 0) {
172 1.2.4.1 martin aprint_error_dev(self, "unable to map device\n");
173 1.2.4.1 martin return;
174 1.2.4.1 martin }
175 1.1 hikaru
176 1.2.4.1 martin /* Verify that the built-in self-test succeeded. */
177 1.2.4.1 martin bist_status = bus_space_read_8(sc->sc_bust, sc->sc_regh,
178 1.2.4.1 martin RNM_BIST_STATUS_OFFSET);
179 1.2.4.1 martin if (bist_status) {
180 1.2.4.1 martin aprint_error_dev(self, "RNG built in self test failed: %#lx\n",
181 1.2.4.1 martin bist_status);
182 1.2.4.1 martin return;
183 1.2.4.1 martin }
184 1.1 hikaru
185 1.2.4.1 martin /* Create a mutex to serialize access to the FIFO. */
186 1.2.4.1 martin mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
187 1.1 hikaru
188 1.2.4.1 martin /*
189 1.2.4.1 martin * Reset the core, enable the RNG engine without entropy, wait
190 1.2.4.1 martin * 81 cycles for it to produce a single sample, and draw the
191 1.2.4.1 martin * deterministic sample to test.
192 1.2.4.1 martin *
193 1.2.4.1 martin * XXX Verify that the output matches the SHA-1 computation
194 1.2.4.1 martin * described by the data sheet, not just a known answer.
195 1.2.4.1 martin */
196 1.2.4.1 martin octeon_rnm_reset(sc);
197 1.2.4.1 martin octeon_rnm_conditioned_deterministic(sc);
198 1.2.4.1 martin octeon_rnm_delay(RNG_DELAY_CLOCK*1);
199 1.2.4.1 martin sample = octeon_rnm_load(sc);
200 1.2.4.1 martin if (sample != expected)
201 1.2.4.1 martin aprint_error_dev(self, "self-test: read %016"PRIx64","
202 1.2.4.1 martin " expected %016"PRIx64, sample, expected);
203 1.2.4.1 martin
204 1.2.4.1 martin /*
205 1.2.4.1 martin * Reset the core again to clear the FIFO, and enable the RNG
206 1.2.4.1 martin * engine with entropy exposed directly. Start from the first
207 1.2.4.1 martin * group of ring oscillators; as we gather samples we will
208 1.2.4.1 martin * rotate through the rest of them.
209 1.2.4.1 martin */
210 1.2.4.1 martin octeon_rnm_reset(sc);
211 1.2.4.1 martin sc->sc_rogroup = 0;
212 1.2.4.1 martin octeon_rnm_raw_entropy(sc, sc->sc_rogroup);
213 1.2.4.1 martin octeon_rnm_delay(ENT_DELAY_CLOCK*RNG_FIFO_WORDS);
214 1.2.4.1 martin
215 1.2.4.1 martin /* Attach the rndsource. */
216 1.2.4.1 martin rndsource_setcb(&sc->sc_rndsrc, octeon_rnm_rng, sc);
217 1.2.4.2 martin rnd_attach_source(&sc->sc_rndsrc, device_xname(self), RND_TYPE_UNKNOWN,
218 1.2.4.1 martin RND_FLAG_DEFAULT | RND_FLAG_HASCB);
219 1.1 hikaru }
220 1.1 hikaru
221 1.1 hikaru static void
222 1.2.4.1 martin octeon_rnm_rng(size_t nbytes, void *vsc)
223 1.1 hikaru {
224 1.2.4.1 martin const unsigned BPB = 256; /* bits of data per bit of entropy */
225 1.2.4.1 martin uint64_t sample[32];
226 1.1 hikaru struct octeon_rnm_softc *sc = vsc;
227 1.2.4.1 martin size_t needed = NBBY*nbytes;
228 1.2.4.1 martin unsigned i;
229 1.1 hikaru
230 1.2.4.1 martin /* Sample the ring oscillators round-robin. */
231 1.2.4.1 martin mutex_enter(&sc->sc_lock);
232 1.2.4.1 martin while (needed) {
233 1.1 hikaru /*
234 1.2.4.1 martin * Switch to the next RO group once we drain the FIFO.
235 1.2.4.1 martin * By the time rnd_add_data is done, we will have
236 1.2.4.1 martin * processed all 512 bytes of the FIFO. We assume it
237 1.2.4.1 martin * takes at least one cycle per byte (realistically,
238 1.2.4.1 martin * more like ~80cpb to draw from the FIFO and then
239 1.2.4.1 martin * process it with rnd_add_data), so there is no need
240 1.2.4.1 martin * for any other delays.
241 1.1 hikaru */
242 1.2.4.1 martin sc->sc_rogroup++;
243 1.2.4.1 martin sc->sc_rogroup %= NROGROUPS;
244 1.2.4.1 martin octeon_rnm_raw_entropy(sc, sc->sc_rogroup);
245 1.2.4.1 martin
246 1.2.4.1 martin /*
247 1.2.4.1 martin * Gather half the FIFO at a time -- we are limited to
248 1.2.4.1 martin * 256 bytes because of limits on the CVMSEG buffer.
249 1.2.4.1 martin */
250 1.2.4.1 martin CTASSERT(sizeof sample == 256);
251 1.2.4.1 martin CTASSERT(2*__arraycount(sample) == RNG_FIFO_WORDS);
252 1.2.4.1 martin for (i = 0; i < 2; i++) {
253 1.2.4.1 martin octeon_rnm_iobdma(sc, sample, __arraycount(sample));
254 1.2.4.1 martin #ifdef OCTEON_RNM_DEBUG
255 1.2.4.1 martin hexdump(printf, "rnm", sample, sizeof sample);
256 1.2.4.1 martin #endif
257 1.2.4.1 martin rnd_add_data_sync(&sc->sc_rndsrc, sample,
258 1.2.4.1 martin sizeof sample, NBBY*sizeof(sample)/BPB);
259 1.2.4.1 martin needed -= MIN(needed, MAX(1, NBBY*sizeof(sample)/BPB));
260 1.2.4.1 martin }
261 1.2.4.1 martin
262 1.2.4.1 martin /* Yield if requested. */
263 1.2.4.1 martin if (__predict_false(curcpu()->ci_schedstate.spc_flags &
264 1.2.4.1 martin SPCF_SHOULDYIELD)) {
265 1.2.4.1 martin mutex_exit(&sc->sc_lock);
266 1.2.4.1 martin preempt();
267 1.2.4.1 martin mutex_enter(&sc->sc_lock);
268 1.2.4.1 martin }
269 1.1 hikaru }
270 1.2.4.1 martin mutex_exit(&sc->sc_lock);
271 1.2.4.1 martin
272 1.2.4.1 martin /* Zero the sample. */
273 1.2.4.1 martin explicit_memset(sample, 0, sizeof sample);
274 1.2.4.1 martin }
275 1.2.4.1 martin
276 1.2.4.1 martin /*
277 1.2.4.1 martin * octeon_rnm_reset(sc)
278 1.2.4.1 martin *
279 1.2.4.1 martin * Reset the RNM unit, disabling it and clearing the FIFO.
280 1.2.4.1 martin */
281 1.2.4.1 martin static void
282 1.2.4.1 martin octeon_rnm_reset(struct octeon_rnm_softc *sc)
283 1.2.4.1 martin {
284 1.2.4.1 martin
285 1.2.4.1 martin bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
286 1.2.4.1 martin RNM_CTL_STATUS_RNG_RST|RNM_CTL_STATUS_RNM_RST);
287 1.2.4.1 martin }
288 1.1 hikaru
289 1.2.4.1 martin /*
290 1.2.4.1 martin * octeon_rnm_conditioned_deterministic(sc)
291 1.2.4.1 martin *
292 1.2.4.1 martin * Switch the RNM unit into the deterministic LFSR/SHA-1 mode with
293 1.2.4.1 martin * no entropy, for the next data loaded into the FIFO.
294 1.2.4.1 martin */
295 1.2.4.1 martin static void
296 1.2.4.1 martin octeon_rnm_conditioned_deterministic(struct octeon_rnm_softc *sc)
297 1.2.4.1 martin {
298 1.2.4.1 martin
299 1.2.4.1 martin bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
300 1.2.4.1 martin RNM_CTL_STATUS_RNG_EN);
301 1.2.4.1 martin }
302 1.2.4.1 martin
303 1.2.4.1 martin /*
304 1.2.4.1 martin * octeon_rnm_conditioned_entropy(sc)
305 1.2.4.1 martin *
306 1.2.4.1 martin * Switch the RNM unit to generate ring oscillator samples
307 1.2.4.1 martin * conditioned with an LFSR/SHA-1, for the next data loaded into
308 1.2.4.1 martin * the FIFO.
309 1.2.4.1 martin */
310 1.2.4.1 martin static void __unused
311 1.2.4.1 martin octeon_rnm_conditioned_entropy(struct octeon_rnm_softc *sc)
312 1.2.4.1 martin {
313 1.2.4.1 martin
314 1.2.4.1 martin bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
315 1.2.4.1 martin RNM_CTL_STATUS_RNG_EN|RNM_CTL_STATUS_ENT_EN);
316 1.1 hikaru }
317 1.1 hikaru
318 1.2.4.1 martin /*
319 1.2.4.1 martin * octeon_rnm_raw_entropy(sc, rogroup)
320 1.2.4.1 martin *
321 1.2.4.1 martin * Switch the RNM unit to generate raw ring oscillator samples
322 1.2.4.1 martin * from the specified group of eight ring oscillator.
323 1.2.4.1 martin */
324 1.2.4.1 martin static void
325 1.2.4.1 martin octeon_rnm_raw_entropy(struct octeon_rnm_softc *sc, unsigned rogroup)
326 1.2.4.1 martin {
327 1.2.4.1 martin uint64_t ctl = 0;
328 1.2.4.1 martin
329 1.2.4.1 martin ctl |= RNM_CTL_STATUS_RNG_EN; /* enable FIFO */
330 1.2.4.1 martin ctl |= RNM_CTL_STATUS_ENT_EN; /* enable entropy source */
331 1.2.4.1 martin ctl |= RNM_CTL_STATUS_EXP_ENT; /* expose entropy without LFSR/SHA-1 */
332 1.2.4.1 martin ctl |= __SHIFTIN(rogroup, RNM_CTL_STATUS_ENT_SEL_MASK);
333 1.2.4.1 martin
334 1.2.4.1 martin bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
335 1.2.4.1 martin ctl);
336 1.2.4.1 martin }
337 1.2.4.1 martin
338 1.2.4.1 martin /*
339 1.2.4.1 martin * octeon_rnm_load(sc)
340 1.2.4.1 martin *
341 1.2.4.1 martin * Load a single 64-bit word out of the FIFO.
342 1.2.4.1 martin */
343 1.2.4.1 martin static uint64_t
344 1.1 hikaru octeon_rnm_load(struct octeon_rnm_softc *sc)
345 1.1 hikaru {
346 1.1 hikaru uint64_t addr =
347 1.1 hikaru RNM_OPERATION_BASE_IO_BIT |
348 1.1 hikaru __BITS64_SET(RNM_OPERATION_BASE_MAJOR_DID, 0x08) |
349 1.1 hikaru __BITS64_SET(RNM_OPERATION_BASE_SUB_DID, 0x00);
350 1.1 hikaru
351 1.1 hikaru return octeon_xkphys_read_8(addr);
352 1.1 hikaru }
353 1.1 hikaru
354 1.2.4.1 martin /*
355 1.2.4.1 martin * octeon_rnm_iobdma(sc, buf, nwords)
356 1.2.4.1 martin *
357 1.2.4.1 martin * Load nwords, at most 32, out of the FIFO into buf.
358 1.2.4.1 martin */
359 1.2.4.1 martin static void
360 1.2.4.1 martin octeon_rnm_iobdma(struct octeon_rnm_softc *sc, uint64_t *buf, unsigned nwords)
361 1.1 hikaru {
362 1.2.4.1 martin size_t scraddr = OCTEON_CVMSEG_OFFSET(csm_rnm);
363 1.2.4.1 martin uint64_t iobdma =
364 1.2.4.1 martin __SHIFTIN(scraddr/sizeof(uint64_t), IOBDMA_SCRADDR) |
365 1.2.4.1 martin __SHIFTIN(nwords, IOBDMA_LEN) |
366 1.2.4.1 martin __SHIFTIN(RNM_IOBDMA_MAJORDID, IOBDMA_MAJORDID) |
367 1.2.4.1 martin __SHIFTIN(RNM_IOBDMA_SUBDID, IOBDMA_SUBDID);
368 1.2.4.1 martin
369 1.2.4.1 martin KASSERT(nwords < 256); /* iobdma address restriction */
370 1.2.4.1 martin KASSERT(nwords <= 32); /* octeon_cvmseg_map limitation */
371 1.2.4.1 martin
372 1.2.4.1 martin octeon_iobdma_write_8(iobdma);
373 1.2.4.1 martin OCTEON_SYNCIOBDMA;
374 1.2.4.1 martin for (; nwords --> 0; scraddr += 8)
375 1.2.4.1 martin *buf++ = octeon_cvmseg_read_8(scraddr);
376 1.1 hikaru }
377 1.1 hikaru
378 1.2.4.1 martin /*
379 1.2.4.1 martin * octeon_rnm_delay(ncycles)
380 1.2.4.1 martin *
381 1.2.4.1 martin * Wait ncycles, at most UINT32_MAX/2 so we behave reasonably even
382 1.2.4.1 martin * if the cycle counter rolls over.
383 1.2.4.1 martin */
384 1.2.4.1 martin static void
385 1.2.4.1 martin octeon_rnm_delay(uint32_t ncycles)
386 1.1 hikaru {
387 1.2.4.1 martin uint32_t deadline = mips3_cp0_count_read() + ncycles;
388 1.1 hikaru
389 1.2.4.1 martin KASSERT(ncycles <= UINT32_MAX/2);
390 1.1 hikaru
391 1.2.4.1 martin while ((deadline - mips3_cp0_count_read()) < ncycles)
392 1.2.4.1 martin continue;
393 1.1 hikaru }
394