Home | History | Annotate | Line # | Download | only in dev
octeon_rnm.c revision 1.12
      1 /*	$NetBSD: octeon_rnm.c,v 1.12 2020/06/18 13:52:08 simonb Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007 Internet Initiative Japan, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Cavium Octeon Random Number Generator / Random Number Memory `RNM'
     31  *
     32  *	The RNM unit consists of:
     33  *
     34  *	1. 128 ring oscillators
     35  *	2. an LFSR/SHA-1 conditioner
     36  *	3. a 512-byte FIFO
     37  *
     38  *	When the unit is enabled, there are three modes of operation:
     39  *
     40  *	(a) deterministic: the ring oscillators are disabled and the
     41  *	    LFSR/SHA-1 conditioner operates on fixed inputs to give
     42  *	    reproducible results for testing,
     43  *
     44  *	(b) conditioned entropy: the ring oscillators are enabled and
     45  *	    samples from them are fed through the LFSR/SHA-1
     46  *	    conditioner before being put into the FIFO, and
     47  *
     48  *	(c) raw entropy: the ring oscillators are enabled, and a group
     49  *	    of eight of them selected at any one time is sampled and
     50  *	    fed into the FIFO.
     51  *
     52  *	Details:
     53  *
     54  *	- The FIFO is refilled whenever we read out of it, either with
     55  *	  a load address or an IOBDMA operation.
     56  *
     57  *	- The conditioner takes 81 cycles to produce a 64-bit block of
     58  *	  output in the FIFO whether in deterministic or conditioned
     59  *	  entropy mode, each block consisting of the first 64 bits of a
     60  *	  SHA-1 hash.
     61  *
     62  *	- A group of eight ring oscillators take 8 cycles to produce a
     63  *	  64-bit block of output in the FIFO in raw entropy mode, each
     64  *	  block consisting of eight consecutive samples from each RO in
     65  *	  parallel.
     66  *
     67  *	The first sample of each RO always seems to be zero.  Further,
     68  *	consecutive samples from a single ring oscillator are not
     69  *	independent, so naive debiasing like a von Neumann extractor
     70  *	falls flat on its face.  And parallel ring oscillators powered
     71  *	by the same source may not be independent either, if they end
     72  *	up locked.
     73  *
     74  *	We read out one FIFO's worth of raw samples from groups of 8
     75  *	ring oscillators at a time, of 128 total, by going through them
     76  *	round robin.  We take 32 consecutive samples from each ring
     77  *	oscillator in a group of 8 in parallel before we count one bit
     78  *	of entropy.  To get 256 bits of entropy, we read 4Kbit of data
     79  *	from each of two 8-RO groups.
     80  *
     81  *	We could use the on-board LFSR/SHA-1 conditioner like the Linux
     82  *	driver written by Cavium does, but it's not clear how many RO
     83  *	samples go into the conditioner, and our entropy pool is a
     84  *	perfectly good conditioner itself, so it seems there is little
     85  *	advantage -- other than expedience -- to using the LFSR/SHA-1
     86  *	conditioner.  All the manual says is that it samples 125 of the
     87  *	128 ROs.  But the Cavium SHA-1 CPU instruction is advertised to
     88  *	have a latency of 100 cycles, so it seems implausible that much
     89  *	more than one sample from each RO could be squeezed in there.
     90  *
     91  *	The hardware exposes only 64 bits of each SHA-1 hash, and the
     92  *	Linux driver uses 32 bits of that -- which, if treated as full
     93  *	entropy, would mean an assessment of 3.9 bits of RO samples to
     94  *	get 1 bit of entropy, whereas we take 256 bits of RO samples to
     95  *	get one bit of entropy, so this seems reasonably conservative.
     96  *
     97  * Reference: Cavium Networks OCTEON Plus CN50XX Hardware Reference
     98  * Manual, CN50XX-HM-0.99E PRELIMINARY, July 2008.
     99  */
    100 
    101 #include <sys/cdefs.h>
    102 __KERNEL_RCSID(0, "$NetBSD: octeon_rnm.c,v 1.12 2020/06/18 13:52:08 simonb Exp $");
    103 
    104 #include <sys/param.h>
    105 #include <sys/device.h>
    106 #include <sys/kernel.h>
    107 #include <sys/rndsource.h>
    108 #include <sys/systm.h>
    109 
    110 #include <mips/locore.h>
    111 #include <mips/cavium/octeonreg.h>
    112 #include <mips/cavium/octeonvar.h>
    113 #include <mips/cavium/include/iobusvar.h>
    114 #include <mips/cavium/dev/octeon_rnmreg.h>
    115 #include <mips/cavium/dev/octeon_corereg.h>
    116 
    117 #include <sys/bus.h>
    118 
    119 //#define	OCTRNM_DEBUG
    120 
    121 #define	ENT_DELAY_CLOCK 8	/* cycles for each 64-bit RO sample batch */
    122 #define	RNG_DELAY_CLOCK 81	/* cycles for each SHA-1 output */
    123 #define	NROGROUPS	16
    124 #define	RNG_FIFO_WORDS	(512/sizeof(uint64_t))
    125 
    126 struct octrnm_softc {
    127 	uint64_t		sc_sample[RNG_FIFO_WORDS];
    128 	bus_space_tag_t		sc_bust;
    129 	bus_space_handle_t	sc_regh;
    130 	kmutex_t		sc_lock;
    131 	krndsource_t		sc_rndsrc;	/* /dev/random source */
    132 	unsigned		sc_rogroup;
    133 };
    134 
    135 static int octrnm_match(device_t, struct cfdata *, void *);
    136 static void octrnm_attach(device_t, device_t, void *);
    137 static void octrnm_rng(size_t, void *);
    138 static void octrnm_reset(struct octrnm_softc *);
    139 static void octrnm_conditioned_deterministic(struct octrnm_softc *);
    140 static void octrnm_conditioned_entropy(struct octrnm_softc *);
    141 static void octrnm_raw_entropy(struct octrnm_softc *, unsigned);
    142 static uint64_t octrnm_load(struct octrnm_softc *);
    143 static void octrnm_iobdma(struct octrnm_softc *, uint64_t *, unsigned);
    144 static void octrnm_delay(uint32_t);
    145 
    146 CFATTACH_DECL_NEW(octrnm, sizeof(struct octrnm_softc),
    147     octrnm_match, octrnm_attach, NULL, NULL);
    148 
    149 static int
    150 octrnm_match(device_t parent, struct cfdata *cf, void *aux)
    151 {
    152 	struct iobus_attach_args *aa = aux;
    153 
    154 	if (strcmp(cf->cf_name, aa->aa_name) != 0)
    155 		return 0;
    156 	if (cf->cf_unit != aa->aa_unitno)
    157 		return 0;
    158 	return 1;
    159 }
    160 
    161 static void
    162 octrnm_attach(device_t parent, device_t self, void *aux)
    163 {
    164 	struct octrnm_softc *sc = device_private(self);
    165 	struct iobus_attach_args *aa = aux;
    166 	uint64_t bist_status, sample, expected = UINT64_C(0xd654ff35fadf866b);
    167 
    168 	aprint_normal("\n");
    169 
    170 	/* Map the device registers, all two of them.  */
    171 	sc->sc_bust = aa->aa_bust;
    172 	if (bus_space_map(aa->aa_bust, aa->aa_unit->addr, RNM_SIZE,
    173 	    0, &sc->sc_regh) != 0) {
    174 		aprint_error_dev(self, "unable to map device\n");
    175 		return;
    176 	}
    177 
    178 	/* Verify that the built-in self-test succeeded.  */
    179 	bist_status = bus_space_read_8(sc->sc_bust, sc->sc_regh,
    180 	    RNM_BIST_STATUS_OFFSET);
    181 	if (bist_status) {
    182 		aprint_error_dev(self, "RNG built in self test failed: %#lx\n",
    183 		    bist_status);
    184 		return;
    185 	}
    186 
    187 	/* Create a mutex to serialize access to the FIFO.  */
    188 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
    189 
    190 	/*
    191 	 * Reset the core, enable the RNG engine without entropy, wait
    192 	 * 81 cycles for it to produce a single sample, and draw the
    193 	 * deterministic sample to test.
    194 	 *
    195 	 * XXX Verify that the output matches the SHA-1 computation
    196 	 * described by the data sheet, not just a known answer.
    197 	 */
    198 	octrnm_reset(sc);
    199 	octrnm_conditioned_deterministic(sc);
    200 	octrnm_delay(RNG_DELAY_CLOCK*1);
    201 	sample = octrnm_load(sc);
    202 	if (sample != expected)
    203 		aprint_error_dev(self, "self-test: read %016"PRIx64","
    204 		    " expected %016"PRIx64, sample, expected);
    205 
    206 	/*
    207 	 * Reset the core again to clear the FIFO, and enable the RNG
    208 	 * engine with entropy exposed directly.  Start from the first
    209 	 * group of ring oscillators; as we gather samples we will
    210 	 * rotate through the rest of them.
    211 	 */
    212 	octrnm_reset(sc);
    213 	sc->sc_rogroup = 0;
    214 	octrnm_raw_entropy(sc, sc->sc_rogroup);
    215 	octrnm_delay(ENT_DELAY_CLOCK*RNG_FIFO_WORDS);
    216 
    217 	/* Attach the rndsource.  */
    218 	rndsource_setcb(&sc->sc_rndsrc, octrnm_rng, sc);
    219 	rnd_attach_source(&sc->sc_rndsrc, device_xname(self), RND_TYPE_RNG,
    220 	    RND_FLAG_DEFAULT | RND_FLAG_HASCB);
    221 }
    222 
    223 static void
    224 octrnm_rng(size_t nbytes, void *vsc)
    225 {
    226 	const unsigned BPB = 256; /* bits of data per bit of entropy */
    227 	struct octrnm_softc *sc = vsc;
    228 	uint64_t *samplepos;
    229 	size_t needed = NBBY*nbytes;
    230 	unsigned i;
    231 
    232 	/* Sample the ring oscillators round-robin.  */
    233 	mutex_enter(&sc->sc_lock);
    234 	while (needed) {
    235 		/*
    236 		 * Switch to the next RO group once we drain the FIFO.
    237 		 * By the time rnd_add_data is done, we will have
    238 		 * processed all 512 bytes of the FIFO.  We assume it
    239 		 * takes at least one cycle per byte (realistically,
    240 		 * more like ~80cpb to draw from the FIFO and then
    241 		 * process it with rnd_add_data), so there is no need
    242 		 * for any other delays.
    243 		 */
    244 		sc->sc_rogroup++;
    245 		sc->sc_rogroup %= NROGROUPS;
    246 		octrnm_raw_entropy(sc, sc->sc_rogroup);
    247 
    248 		/*
    249 		 * Gather quarter the FIFO at a time -- we are limited
    250 		 * to 128 bytes because of limits on the CVMSEG buffer.
    251 		 */
    252 		CTASSERT(sizeof sc->sc_sample == 512);
    253 		CTASSERT(__arraycount(sc->sc_sample) == RNG_FIFO_WORDS);
    254 		for (samplepos = sc->sc_sample, i = 0; i < 4; i++) {
    255 			octrnm_iobdma(sc, samplepos, RNG_FIFO_WORDS / 4);
    256 			samplepos += RNG_FIFO_WORDS / 4;
    257 		}
    258 #ifdef OCTRNM_DEBUG
    259 		hexdump(printf, "rnm", sc->sc_sample, sizeof sc->sc_sample);
    260 #endif
    261 		rnd_add_data_sync(&sc->sc_rndsrc, sc->sc_sample,
    262 		    sizeof sc->sc_sample, NBBY*sizeof(sc->sc_sample)/BPB);
    263 		needed -= MIN(needed, MAX(1, NBBY*sizeof(sc->sc_sample)/BPB));
    264 
    265 		/* Yield if requested.  */
    266 		if (__predict_false(curcpu()->ci_schedstate.spc_flags &
    267 			SPCF_SHOULDYIELD)) {
    268 			mutex_exit(&sc->sc_lock);
    269 			preempt();
    270 			mutex_enter(&sc->sc_lock);
    271 		}
    272 	}
    273 	mutex_exit(&sc->sc_lock);
    274 
    275 	/* Zero the sample.  */
    276 	explicit_memset(sc->sc_sample, 0, sizeof sc->sc_sample);
    277 }
    278 
    279 /*
    280  * octrnm_reset(sc)
    281  *
    282  *	Reset the RNM unit, disabling it and clearing the FIFO.
    283  */
    284 static void
    285 octrnm_reset(struct octrnm_softc *sc)
    286 {
    287 
    288 	bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
    289 	    RNM_CTL_STATUS_RNG_RST|RNM_CTL_STATUS_RNM_RST);
    290 }
    291 
    292 /*
    293  * octrnm_conditioned_deterministic(sc)
    294  *
    295  *	Switch the RNM unit into the deterministic LFSR/SHA-1 mode with
    296  *	no entropy, for the next data loaded into the FIFO.
    297  */
    298 static void
    299 octrnm_conditioned_deterministic(struct octrnm_softc *sc)
    300 {
    301 
    302 	bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
    303 	    RNM_CTL_STATUS_RNG_EN);
    304 }
    305 
    306 /*
    307  * octrnm_conditioned_entropy(sc)
    308  *
    309  *	Switch the RNM unit to generate ring oscillator samples
    310  *	conditioned with an LFSR/SHA-1, for the next data loaded into
    311  *	the FIFO.
    312  */
    313 static void __unused
    314 octrnm_conditioned_entropy(struct octrnm_softc *sc)
    315 {
    316 
    317 	bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
    318 	    RNM_CTL_STATUS_RNG_EN|RNM_CTL_STATUS_ENT_EN);
    319 }
    320 
    321 /*
    322  * octrnm_raw_entropy(sc, rogroup)
    323  *
    324  *	Switch the RNM unit to generate raw ring oscillator samples
    325  *	from the specified group of eight ring oscillator.
    326  */
    327 static void
    328 octrnm_raw_entropy(struct octrnm_softc *sc, unsigned rogroup)
    329 {
    330 	uint64_t ctl = 0;
    331 
    332 	ctl |= RNM_CTL_STATUS_RNG_EN;	/* enable FIFO */
    333 	ctl |= RNM_CTL_STATUS_ENT_EN;	/* enable entropy source */
    334 	ctl |= RNM_CTL_STATUS_EXP_ENT;	/* expose entropy without LFSR/SHA-1 */
    335 	ctl |= __SHIFTIN(rogroup, RNM_CTL_STATUS_ENT_SEL_MASK);
    336 
    337 	bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
    338 	    ctl);
    339 }
    340 
    341 /*
    342  * octrnm_load(sc)
    343  *
    344  *	Load a single 64-bit word out of the FIFO.
    345  */
    346 static uint64_t
    347 octrnm_load(struct octrnm_softc *sc)
    348 {
    349 	uint64_t addr = OCTEON_ADDR_IO_DID(RNM_MAJOR_DID, RNM_SUB_DID);
    350 
    351 	return octeon_xkphys_read_8(addr);
    352 }
    353 
    354 /*
    355  * octrnm_iobdma(sc, buf, nwords)
    356  *
    357  *	Load nwords, at most 32, out of the FIFO into buf.
    358  */
    359 static void
    360 octrnm_iobdma(struct octrnm_softc *sc, uint64_t *buf, unsigned nwords)
    361 {
    362  	/* ``scraddr'' part is index in 64-bit words, not address */
    363 	size_t scraddr = OCTEON_CVMSEG_OFFSET(csm_rnm);
    364 	uint64_t iobdma = IOBDMA_CREATE(RNM_MAJOR_DID, RNM_SUB_DID,
    365 	    scraddr / sizeof(uint64_t), nwords, 0);
    366 
    367 	KASSERT(nwords < 128);			/* iobdma address restriction */
    368 	KASSERT(nwords <= CVMSEG_LM_RNM_SIZE);	/* size of CVMSEG LM buffer */
    369 
    370 	octeon_iobdma_write_8(iobdma);
    371 	OCTEON_SYNCIOBDMA;
    372 	for (; nwords --> 0; scraddr += 8)
    373 		*buf++ = octeon_cvmseg_read_8(scraddr);
    374 }
    375 
    376 /*
    377  * octrnm_delay(ncycles)
    378  *
    379  *	Wait ncycles, at most UINT32_MAX/2 so we behave reasonably even
    380  *	if the cycle counter rolls over.
    381  */
    382 static void
    383 octrnm_delay(uint32_t ncycles)
    384 {
    385 	uint32_t deadline = mips3_cp0_count_read() + ncycles;
    386 
    387 	KASSERT(ncycles <= UINT32_MAX/2);
    388 
    389 	while ((deadline - mips3_cp0_count_read()) < ncycles)
    390 		continue;
    391 }
    392