octeon_rnm.c revision 1.12 1 /* $NetBSD: octeon_rnm.c,v 1.12 2020/06/18 13:52:08 simonb Exp $ */
2
3 /*
4 * Copyright (c) 2007 Internet Initiative Japan, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Cavium Octeon Random Number Generator / Random Number Memory `RNM'
31 *
32 * The RNM unit consists of:
33 *
34 * 1. 128 ring oscillators
35 * 2. an LFSR/SHA-1 conditioner
36 * 3. a 512-byte FIFO
37 *
38 * When the unit is enabled, there are three modes of operation:
39 *
40 * (a) deterministic: the ring oscillators are disabled and the
41 * LFSR/SHA-1 conditioner operates on fixed inputs to give
42 * reproducible results for testing,
43 *
44 * (b) conditioned entropy: the ring oscillators are enabled and
45 * samples from them are fed through the LFSR/SHA-1
46 * conditioner before being put into the FIFO, and
47 *
48 * (c) raw entropy: the ring oscillators are enabled, and a group
49 * of eight of them selected at any one time is sampled and
50 * fed into the FIFO.
51 *
52 * Details:
53 *
54 * - The FIFO is refilled whenever we read out of it, either with
55 * a load address or an IOBDMA operation.
56 *
57 * - The conditioner takes 81 cycles to produce a 64-bit block of
58 * output in the FIFO whether in deterministic or conditioned
59 * entropy mode, each block consisting of the first 64 bits of a
60 * SHA-1 hash.
61 *
62 * - A group of eight ring oscillators take 8 cycles to produce a
63 * 64-bit block of output in the FIFO in raw entropy mode, each
64 * block consisting of eight consecutive samples from each RO in
65 * parallel.
66 *
67 * The first sample of each RO always seems to be zero. Further,
68 * consecutive samples from a single ring oscillator are not
69 * independent, so naive debiasing like a von Neumann extractor
70 * falls flat on its face. And parallel ring oscillators powered
71 * by the same source may not be independent either, if they end
72 * up locked.
73 *
74 * We read out one FIFO's worth of raw samples from groups of 8
75 * ring oscillators at a time, of 128 total, by going through them
76 * round robin. We take 32 consecutive samples from each ring
77 * oscillator in a group of 8 in parallel before we count one bit
78 * of entropy. To get 256 bits of entropy, we read 4Kbit of data
79 * from each of two 8-RO groups.
80 *
81 * We could use the on-board LFSR/SHA-1 conditioner like the Linux
82 * driver written by Cavium does, but it's not clear how many RO
83 * samples go into the conditioner, and our entropy pool is a
84 * perfectly good conditioner itself, so it seems there is little
85 * advantage -- other than expedience -- to using the LFSR/SHA-1
86 * conditioner. All the manual says is that it samples 125 of the
87 * 128 ROs. But the Cavium SHA-1 CPU instruction is advertised to
88 * have a latency of 100 cycles, so it seems implausible that much
89 * more than one sample from each RO could be squeezed in there.
90 *
91 * The hardware exposes only 64 bits of each SHA-1 hash, and the
92 * Linux driver uses 32 bits of that -- which, if treated as full
93 * entropy, would mean an assessment of 3.9 bits of RO samples to
94 * get 1 bit of entropy, whereas we take 256 bits of RO samples to
95 * get one bit of entropy, so this seems reasonably conservative.
96 *
97 * Reference: Cavium Networks OCTEON Plus CN50XX Hardware Reference
98 * Manual, CN50XX-HM-0.99E PRELIMINARY, July 2008.
99 */
100
101 #include <sys/cdefs.h>
102 __KERNEL_RCSID(0, "$NetBSD: octeon_rnm.c,v 1.12 2020/06/18 13:52:08 simonb Exp $");
103
104 #include <sys/param.h>
105 #include <sys/device.h>
106 #include <sys/kernel.h>
107 #include <sys/rndsource.h>
108 #include <sys/systm.h>
109
110 #include <mips/locore.h>
111 #include <mips/cavium/octeonreg.h>
112 #include <mips/cavium/octeonvar.h>
113 #include <mips/cavium/include/iobusvar.h>
114 #include <mips/cavium/dev/octeon_rnmreg.h>
115 #include <mips/cavium/dev/octeon_corereg.h>
116
117 #include <sys/bus.h>
118
119 //#define OCTRNM_DEBUG
120
121 #define ENT_DELAY_CLOCK 8 /* cycles for each 64-bit RO sample batch */
122 #define RNG_DELAY_CLOCK 81 /* cycles for each SHA-1 output */
123 #define NROGROUPS 16
124 #define RNG_FIFO_WORDS (512/sizeof(uint64_t))
125
126 struct octrnm_softc {
127 uint64_t sc_sample[RNG_FIFO_WORDS];
128 bus_space_tag_t sc_bust;
129 bus_space_handle_t sc_regh;
130 kmutex_t sc_lock;
131 krndsource_t sc_rndsrc; /* /dev/random source */
132 unsigned sc_rogroup;
133 };
134
135 static int octrnm_match(device_t, struct cfdata *, void *);
136 static void octrnm_attach(device_t, device_t, void *);
137 static void octrnm_rng(size_t, void *);
138 static void octrnm_reset(struct octrnm_softc *);
139 static void octrnm_conditioned_deterministic(struct octrnm_softc *);
140 static void octrnm_conditioned_entropy(struct octrnm_softc *);
141 static void octrnm_raw_entropy(struct octrnm_softc *, unsigned);
142 static uint64_t octrnm_load(struct octrnm_softc *);
143 static void octrnm_iobdma(struct octrnm_softc *, uint64_t *, unsigned);
144 static void octrnm_delay(uint32_t);
145
146 CFATTACH_DECL_NEW(octrnm, sizeof(struct octrnm_softc),
147 octrnm_match, octrnm_attach, NULL, NULL);
148
149 static int
150 octrnm_match(device_t parent, struct cfdata *cf, void *aux)
151 {
152 struct iobus_attach_args *aa = aux;
153
154 if (strcmp(cf->cf_name, aa->aa_name) != 0)
155 return 0;
156 if (cf->cf_unit != aa->aa_unitno)
157 return 0;
158 return 1;
159 }
160
161 static void
162 octrnm_attach(device_t parent, device_t self, void *aux)
163 {
164 struct octrnm_softc *sc = device_private(self);
165 struct iobus_attach_args *aa = aux;
166 uint64_t bist_status, sample, expected = UINT64_C(0xd654ff35fadf866b);
167
168 aprint_normal("\n");
169
170 /* Map the device registers, all two of them. */
171 sc->sc_bust = aa->aa_bust;
172 if (bus_space_map(aa->aa_bust, aa->aa_unit->addr, RNM_SIZE,
173 0, &sc->sc_regh) != 0) {
174 aprint_error_dev(self, "unable to map device\n");
175 return;
176 }
177
178 /* Verify that the built-in self-test succeeded. */
179 bist_status = bus_space_read_8(sc->sc_bust, sc->sc_regh,
180 RNM_BIST_STATUS_OFFSET);
181 if (bist_status) {
182 aprint_error_dev(self, "RNG built in self test failed: %#lx\n",
183 bist_status);
184 return;
185 }
186
187 /* Create a mutex to serialize access to the FIFO. */
188 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
189
190 /*
191 * Reset the core, enable the RNG engine without entropy, wait
192 * 81 cycles for it to produce a single sample, and draw the
193 * deterministic sample to test.
194 *
195 * XXX Verify that the output matches the SHA-1 computation
196 * described by the data sheet, not just a known answer.
197 */
198 octrnm_reset(sc);
199 octrnm_conditioned_deterministic(sc);
200 octrnm_delay(RNG_DELAY_CLOCK*1);
201 sample = octrnm_load(sc);
202 if (sample != expected)
203 aprint_error_dev(self, "self-test: read %016"PRIx64","
204 " expected %016"PRIx64, sample, expected);
205
206 /*
207 * Reset the core again to clear the FIFO, and enable the RNG
208 * engine with entropy exposed directly. Start from the first
209 * group of ring oscillators; as we gather samples we will
210 * rotate through the rest of them.
211 */
212 octrnm_reset(sc);
213 sc->sc_rogroup = 0;
214 octrnm_raw_entropy(sc, sc->sc_rogroup);
215 octrnm_delay(ENT_DELAY_CLOCK*RNG_FIFO_WORDS);
216
217 /* Attach the rndsource. */
218 rndsource_setcb(&sc->sc_rndsrc, octrnm_rng, sc);
219 rnd_attach_source(&sc->sc_rndsrc, device_xname(self), RND_TYPE_RNG,
220 RND_FLAG_DEFAULT | RND_FLAG_HASCB);
221 }
222
223 static void
224 octrnm_rng(size_t nbytes, void *vsc)
225 {
226 const unsigned BPB = 256; /* bits of data per bit of entropy */
227 struct octrnm_softc *sc = vsc;
228 uint64_t *samplepos;
229 size_t needed = NBBY*nbytes;
230 unsigned i;
231
232 /* Sample the ring oscillators round-robin. */
233 mutex_enter(&sc->sc_lock);
234 while (needed) {
235 /*
236 * Switch to the next RO group once we drain the FIFO.
237 * By the time rnd_add_data is done, we will have
238 * processed all 512 bytes of the FIFO. We assume it
239 * takes at least one cycle per byte (realistically,
240 * more like ~80cpb to draw from the FIFO and then
241 * process it with rnd_add_data), so there is no need
242 * for any other delays.
243 */
244 sc->sc_rogroup++;
245 sc->sc_rogroup %= NROGROUPS;
246 octrnm_raw_entropy(sc, sc->sc_rogroup);
247
248 /*
249 * Gather quarter the FIFO at a time -- we are limited
250 * to 128 bytes because of limits on the CVMSEG buffer.
251 */
252 CTASSERT(sizeof sc->sc_sample == 512);
253 CTASSERT(__arraycount(sc->sc_sample) == RNG_FIFO_WORDS);
254 for (samplepos = sc->sc_sample, i = 0; i < 4; i++) {
255 octrnm_iobdma(sc, samplepos, RNG_FIFO_WORDS / 4);
256 samplepos += RNG_FIFO_WORDS / 4;
257 }
258 #ifdef OCTRNM_DEBUG
259 hexdump(printf, "rnm", sc->sc_sample, sizeof sc->sc_sample);
260 #endif
261 rnd_add_data_sync(&sc->sc_rndsrc, sc->sc_sample,
262 sizeof sc->sc_sample, NBBY*sizeof(sc->sc_sample)/BPB);
263 needed -= MIN(needed, MAX(1, NBBY*sizeof(sc->sc_sample)/BPB));
264
265 /* Yield if requested. */
266 if (__predict_false(curcpu()->ci_schedstate.spc_flags &
267 SPCF_SHOULDYIELD)) {
268 mutex_exit(&sc->sc_lock);
269 preempt();
270 mutex_enter(&sc->sc_lock);
271 }
272 }
273 mutex_exit(&sc->sc_lock);
274
275 /* Zero the sample. */
276 explicit_memset(sc->sc_sample, 0, sizeof sc->sc_sample);
277 }
278
279 /*
280 * octrnm_reset(sc)
281 *
282 * Reset the RNM unit, disabling it and clearing the FIFO.
283 */
284 static void
285 octrnm_reset(struct octrnm_softc *sc)
286 {
287
288 bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
289 RNM_CTL_STATUS_RNG_RST|RNM_CTL_STATUS_RNM_RST);
290 }
291
292 /*
293 * octrnm_conditioned_deterministic(sc)
294 *
295 * Switch the RNM unit into the deterministic LFSR/SHA-1 mode with
296 * no entropy, for the next data loaded into the FIFO.
297 */
298 static void
299 octrnm_conditioned_deterministic(struct octrnm_softc *sc)
300 {
301
302 bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
303 RNM_CTL_STATUS_RNG_EN);
304 }
305
306 /*
307 * octrnm_conditioned_entropy(sc)
308 *
309 * Switch the RNM unit to generate ring oscillator samples
310 * conditioned with an LFSR/SHA-1, for the next data loaded into
311 * the FIFO.
312 */
313 static void __unused
314 octrnm_conditioned_entropy(struct octrnm_softc *sc)
315 {
316
317 bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
318 RNM_CTL_STATUS_RNG_EN|RNM_CTL_STATUS_ENT_EN);
319 }
320
321 /*
322 * octrnm_raw_entropy(sc, rogroup)
323 *
324 * Switch the RNM unit to generate raw ring oscillator samples
325 * from the specified group of eight ring oscillator.
326 */
327 static void
328 octrnm_raw_entropy(struct octrnm_softc *sc, unsigned rogroup)
329 {
330 uint64_t ctl = 0;
331
332 ctl |= RNM_CTL_STATUS_RNG_EN; /* enable FIFO */
333 ctl |= RNM_CTL_STATUS_ENT_EN; /* enable entropy source */
334 ctl |= RNM_CTL_STATUS_EXP_ENT; /* expose entropy without LFSR/SHA-1 */
335 ctl |= __SHIFTIN(rogroup, RNM_CTL_STATUS_ENT_SEL_MASK);
336
337 bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
338 ctl);
339 }
340
341 /*
342 * octrnm_load(sc)
343 *
344 * Load a single 64-bit word out of the FIFO.
345 */
346 static uint64_t
347 octrnm_load(struct octrnm_softc *sc)
348 {
349 uint64_t addr = OCTEON_ADDR_IO_DID(RNM_MAJOR_DID, RNM_SUB_DID);
350
351 return octeon_xkphys_read_8(addr);
352 }
353
354 /*
355 * octrnm_iobdma(sc, buf, nwords)
356 *
357 * Load nwords, at most 32, out of the FIFO into buf.
358 */
359 static void
360 octrnm_iobdma(struct octrnm_softc *sc, uint64_t *buf, unsigned nwords)
361 {
362 /* ``scraddr'' part is index in 64-bit words, not address */
363 size_t scraddr = OCTEON_CVMSEG_OFFSET(csm_rnm);
364 uint64_t iobdma = IOBDMA_CREATE(RNM_MAJOR_DID, RNM_SUB_DID,
365 scraddr / sizeof(uint64_t), nwords, 0);
366
367 KASSERT(nwords < 128); /* iobdma address restriction */
368 KASSERT(nwords <= CVMSEG_LM_RNM_SIZE); /* size of CVMSEG LM buffer */
369
370 octeon_iobdma_write_8(iobdma);
371 OCTEON_SYNCIOBDMA;
372 for (; nwords --> 0; scraddr += 8)
373 *buf++ = octeon_cvmseg_read_8(scraddr);
374 }
375
376 /*
377 * octrnm_delay(ncycles)
378 *
379 * Wait ncycles, at most UINT32_MAX/2 so we behave reasonably even
380 * if the cycle counter rolls over.
381 */
382 static void
383 octrnm_delay(uint32_t ncycles)
384 {
385 uint32_t deadline = mips3_cp0_count_read() + ncycles;
386
387 KASSERT(ncycles <= UINT32_MAX/2);
388
389 while ((deadline - mips3_cp0_count_read()) < ncycles)
390 continue;
391 }
392