Home | History | Annotate | Line # | Download | only in dev
octeon_rnm.c revision 1.2.4.1
      1 /*	$NetBSD: octeon_rnm.c,v 1.2.4.1 2020/05/19 17:35:50 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2007 Internet Initiative Japan, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Cavium Octeon Random Number Generator / Random Number Memory `RNM'
     31  *
     32  *	The RNM unit consists of:
     33  *
     34  *	1. 128 ring oscillators
     35  *	2. an LFSR/SHA-1 conditioner
     36  *	3. a 512-byte FIFO
     37  *
     38  *	When the unit is enabled, there are three modes of operation:
     39  *
     40  *	(a) deterministic: the ring oscillators are disabled and the
     41  *	    LFSR/SHA-1 conditioner operates on fixed inputs to give
     42  *	    reproducible results for testing,
     43  *
     44  *	(b) conditioned entropy: the ring oscillators are enabled and
     45  *	    samples from them are fed through the LFSR/SHA-1
     46  *	    conditioner before being put into the FIFO, and
     47  *
     48  *	(c) raw entropy: the ring oscillators are enabled, and a group
     49  *	    of eight of them selected at any one time is sampled and
     50  *	    fed into the FIFO.
     51  *
     52  *	Details:
     53  *
     54  *	- The FIFO is refilled whenever we read out of it, either with
     55  *	  a load address or an IOBDMA operation.
     56  *
     57  *	- The conditioner takes 81 cycles to produce a 64-bit block of
     58  *	  output in the FIFO whether in deterministic or conditioned
     59  *	  entropy mode, each block consisting of the first 64 bits of a
     60  *	  SHA-1 hash.
     61  *
     62  *	- A group of eight ring oscillators take 8 cycles to produce a
     63  *	  64-bit block of output in the FIFO in raw entropy mode, each
     64  *	  block consisting of eight consecutive samples from each RO in
     65  *	  parallel.
     66  *
     67  *	The first sample of each RO always seems to be zero.  Further,
     68  *	consecutive samples from a single ring oscillator are not
     69  *	independent, so naive debiasing like a von Neumann extractor
     70  *	falls flat on its face.  And parallel ring oscillators powered
     71  *	by the same source may not be independent either, if they end
     72  *	up locked.
     73  *
     74  *	We read out one FIFO's worth of raw samples from groups of 8
     75  *	ring oscillators at a time, of 128 total, by going through them
     76  *	round robin.  We take 32 consecutive samples from each ring
     77  *	oscillator in a group of 8 in parallel before we count one bit
     78  *	of entropy.  To get 256 bits of entropy, we read 4Kbit of data
     79  *	from each of two 8-RO groups.
     80  *
     81  *	We could use the on-board LFSR/SHA-1 conditioner like the Linux
     82  *	driver written by Cavium does, but it's not clear how many RO
     83  *	samples go into the conditioner, and our entropy pool is a
     84  *	perfectly good conditioner itself, so it seems there is little
     85  *	advantage -- other than expedience -- to using the LFSR/SHA-1
     86  *	conditioner.  All the manual says is that it samples 125 of the
     87  *	128 ROs.  But the Cavium SHA-1 CPU instruction is advertised to
     88  *	have a latency of 100 cycles, so it seems implausible that much
     89  *	more than one sample from each RO could be squeezed in there.
     90  *
     91  *	The hardware exposes only 64 bits of each SHA-1 hash, and the
     92  *	Linux driver uses 32 bits of that -- which, if treated as full
     93  *	entropy, would mean an assessment of 3.9 bits of RO samples to
     94  *	get 1 bit of entropy, whereas we take 256 bits of RO samples to
     95  *	get one bit of entropy, so this seems reasonably conservative.
     96  *
     97  * Reference: Cavium Networks OCTEON Plus CN50XX Hardware Reference
     98  * Manual, CN50XX-HM-0.99E PRELIMINARY, July 2008.
     99  */
    100 
    101 #include <sys/cdefs.h>
    102 __KERNEL_RCSID(0, "$NetBSD: octeon_rnm.c,v 1.2.4.1 2020/05/19 17:35:50 martin Exp $");
    103 
    104 #include <sys/param.h>
    105 #include <sys/device.h>
    106 #include <sys/kernel.h>
    107 #include <sys/rndsource.h>
    108 #include <sys/systm.h>
    109 
    110 #include <mips/locore.h>
    111 #include <mips/cavium/include/iobusvar.h>
    112 #include <mips/cavium/dev/octeon_rnmreg.h>
    113 #include <mips/cavium/dev/octeon_corereg.h>
    114 #include <mips/cavium/octeonvar.h>
    115 
    116 #include <sys/bus.h>
    117 
    118 //#define	OCTEON_RNM_DEBUG
    119 
    120 #define	ENT_DELAY_CLOCK 8	/* cycles for each 64-bit RO sample batch */
    121 #define	RNG_DELAY_CLOCK 81	/* cycles for each SHA-1 output */
    122 #define	NROGROUPS	16
    123 #define	RNG_FIFO_WORDS	(512/sizeof(uint64_t))
    124 
    125 struct octeon_rnm_softc {
    126 	bus_space_tag_t		sc_bust;
    127 	bus_space_handle_t	sc_regh;
    128 	kmutex_t		sc_lock;
    129 	krndsource_t		sc_rndsrc;	/* /dev/random source */
    130 	unsigned		sc_rogroup;
    131 };
    132 
    133 static int octeon_rnm_match(device_t, struct cfdata *, void *);
    134 static void octeon_rnm_attach(device_t, device_t, void *);
    135 static void octeon_rnm_rng(size_t, void *);
    136 static void octeon_rnm_reset(struct octeon_rnm_softc *);
    137 static void octeon_rnm_conditioned_deterministic(struct octeon_rnm_softc *);
    138 static void octeon_rnm_conditioned_entropy(struct octeon_rnm_softc *);
    139 static void octeon_rnm_raw_entropy(struct octeon_rnm_softc *, unsigned);
    140 static uint64_t octeon_rnm_load(struct octeon_rnm_softc *);
    141 static void octeon_rnm_iobdma(struct octeon_rnm_softc *, uint64_t *, unsigned);
    142 static void octeon_rnm_delay(uint32_t);
    143 
    144 CFATTACH_DECL_NEW(octeon_rnm, sizeof(struct octeon_rnm_softc),
    145     octeon_rnm_match, octeon_rnm_attach, NULL, NULL);
    146 
    147 static int
    148 octeon_rnm_match(device_t parent, struct cfdata *cf, void *aux)
    149 {
    150 	struct iobus_attach_args *aa = aux;
    151 
    152 	if (strcmp(cf->cf_name, aa->aa_name) != 0)
    153 		return 0;
    154 	if (cf->cf_unit != aa->aa_unitno)
    155 		return 0;
    156 	return 1;
    157 }
    158 
    159 static void
    160 octeon_rnm_attach(device_t parent, device_t self, void *aux)
    161 {
    162 	struct octeon_rnm_softc *sc = device_private(self);
    163 	struct iobus_attach_args *aa = aux;
    164 	uint64_t bist_status, sample, expected = UINT64_C(0xd654ff35fadf866b);
    165 
    166 	aprint_normal("\n");
    167 
    168 	/* Map the device registers, all two of them.  */
    169 	sc->sc_bust = aa->aa_bust;
    170 	if (bus_space_map(aa->aa_bust, aa->aa_unit->addr, RNM_SIZE,
    171 	    0, &sc->sc_regh) != 0) {
    172 		aprint_error_dev(self, "unable to map device\n");
    173 		return;
    174 	}
    175 
    176 	/* Verify that the built-in self-test succeeded.  */
    177 	bist_status = bus_space_read_8(sc->sc_bust, sc->sc_regh,
    178 	    RNM_BIST_STATUS_OFFSET);
    179 	if (bist_status) {
    180 		aprint_error_dev(self, "RNG built in self test failed: %#lx\n",
    181 		    bist_status);
    182 		return;
    183 	}
    184 
    185 	/* Create a mutex to serialize access to the FIFO.  */
    186 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
    187 
    188 	/*
    189 	 * Reset the core, enable the RNG engine without entropy, wait
    190 	 * 81 cycles for it to produce a single sample, and draw the
    191 	 * deterministic sample to test.
    192 	 *
    193 	 * XXX Verify that the output matches the SHA-1 computation
    194 	 * described by the data sheet, not just a known answer.
    195 	 */
    196 	octeon_rnm_reset(sc);
    197 	octeon_rnm_conditioned_deterministic(sc);
    198 	octeon_rnm_delay(RNG_DELAY_CLOCK*1);
    199 	sample = octeon_rnm_load(sc);
    200 	if (sample != expected)
    201 		aprint_error_dev(self, "self-test: read %016"PRIx64","
    202 		    " expected %016"PRIx64, sample, expected);
    203 
    204 	/*
    205 	 * Reset the core again to clear the FIFO, and enable the RNG
    206 	 * engine with entropy exposed directly.  Start from the first
    207 	 * group of ring oscillators; as we gather samples we will
    208 	 * rotate through the rest of them.
    209 	 */
    210 	octeon_rnm_reset(sc);
    211 	sc->sc_rogroup = 0;
    212 	octeon_rnm_raw_entropy(sc, sc->sc_rogroup);
    213 	octeon_rnm_delay(ENT_DELAY_CLOCK*RNG_FIFO_WORDS);
    214 
    215 	/* Attach the rndsource.  */
    216 	rndsource_setcb(&sc->sc_rndsrc, octeon_rnm_rng, sc);
    217 	rnd_attach_source(&sc->sc_rndsrc, device_xname(self), RND_TYPE_RNG,
    218 	    RND_FLAG_DEFAULT | RND_FLAG_HASCB);
    219 }
    220 
    221 static void
    222 octeon_rnm_rng(size_t nbytes, void *vsc)
    223 {
    224 	const unsigned BPB = 256; /* bits of data per bit of entropy */
    225 	uint64_t sample[32];
    226 	struct octeon_rnm_softc *sc = vsc;
    227 	size_t needed = NBBY*nbytes;
    228 	unsigned i;
    229 
    230 	/* Sample the ring oscillators round-robin.  */
    231 	mutex_enter(&sc->sc_lock);
    232 	while (needed) {
    233 		/*
    234 		 * Switch to the next RO group once we drain the FIFO.
    235 		 * By the time rnd_add_data is done, we will have
    236 		 * processed all 512 bytes of the FIFO.  We assume it
    237 		 * takes at least one cycle per byte (realistically,
    238 		 * more like ~80cpb to draw from the FIFO and then
    239 		 * process it with rnd_add_data), so there is no need
    240 		 * for any other delays.
    241 		 */
    242 		sc->sc_rogroup++;
    243 		sc->sc_rogroup %= NROGROUPS;
    244 		octeon_rnm_raw_entropy(sc, sc->sc_rogroup);
    245 
    246 		/*
    247 		 * Gather half the FIFO at a time -- we are limited to
    248 		 * 256 bytes because of limits on the CVMSEG buffer.
    249 		 */
    250 		CTASSERT(sizeof sample == 256);
    251 		CTASSERT(2*__arraycount(sample) == RNG_FIFO_WORDS);
    252 		for (i = 0; i < 2; i++) {
    253 			octeon_rnm_iobdma(sc, sample, __arraycount(sample));
    254 #ifdef OCTEON_RNM_DEBUG
    255 			hexdump(printf, "rnm", sample, sizeof sample);
    256 #endif
    257 			rnd_add_data_sync(&sc->sc_rndsrc, sample,
    258 			    sizeof sample, NBBY*sizeof(sample)/BPB);
    259 			needed -= MIN(needed, MAX(1, NBBY*sizeof(sample)/BPB));
    260 		}
    261 
    262 		/* Yield if requested.  */
    263 		if (__predict_false(curcpu()->ci_schedstate.spc_flags &
    264 			SPCF_SHOULDYIELD)) {
    265 			mutex_exit(&sc->sc_lock);
    266 			preempt();
    267 			mutex_enter(&sc->sc_lock);
    268 		}
    269 	}
    270 	mutex_exit(&sc->sc_lock);
    271 
    272 	/* Zero the sample.  */
    273 	explicit_memset(sample, 0, sizeof sample);
    274 }
    275 
    276 /*
    277  * octeon_rnm_reset(sc)
    278  *
    279  *	Reset the RNM unit, disabling it and clearing the FIFO.
    280  */
    281 static void
    282 octeon_rnm_reset(struct octeon_rnm_softc *sc)
    283 {
    284 
    285 	bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
    286 	    RNM_CTL_STATUS_RNG_RST|RNM_CTL_STATUS_RNM_RST);
    287 }
    288 
    289 /*
    290  * octeon_rnm_conditioned_deterministic(sc)
    291  *
    292  *	Switch the RNM unit into the deterministic LFSR/SHA-1 mode with
    293  *	no entropy, for the next data loaded into the FIFO.
    294  */
    295 static void
    296 octeon_rnm_conditioned_deterministic(struct octeon_rnm_softc *sc)
    297 {
    298 
    299 	bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
    300 	    RNM_CTL_STATUS_RNG_EN);
    301 }
    302 
    303 /*
    304  * octeon_rnm_conditioned_entropy(sc)
    305  *
    306  *	Switch the RNM unit to generate ring oscillator samples
    307  *	conditioned with an LFSR/SHA-1, for the next data loaded into
    308  *	the FIFO.
    309  */
    310 static void __unused
    311 octeon_rnm_conditioned_entropy(struct octeon_rnm_softc *sc)
    312 {
    313 
    314 	bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
    315 	    RNM_CTL_STATUS_RNG_EN|RNM_CTL_STATUS_ENT_EN);
    316 }
    317 
    318 /*
    319  * octeon_rnm_raw_entropy(sc, rogroup)
    320  *
    321  *	Switch the RNM unit to generate raw ring oscillator samples
    322  *	from the specified group of eight ring oscillator.
    323  */
    324 static void
    325 octeon_rnm_raw_entropy(struct octeon_rnm_softc *sc, unsigned rogroup)
    326 {
    327 	uint64_t ctl = 0;
    328 
    329 	ctl |= RNM_CTL_STATUS_RNG_EN;	/* enable FIFO */
    330 	ctl |= RNM_CTL_STATUS_ENT_EN;	/* enable entropy source */
    331 	ctl |= RNM_CTL_STATUS_EXP_ENT;	/* expose entropy without LFSR/SHA-1 */
    332 	ctl |= __SHIFTIN(rogroup, RNM_CTL_STATUS_ENT_SEL_MASK);
    333 
    334 	bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
    335 	    ctl);
    336 }
    337 
    338 /*
    339  * octeon_rnm_load(sc)
    340  *
    341  *	Load a single 64-bit word out of the FIFO.
    342  */
    343 static uint64_t
    344 octeon_rnm_load(struct octeon_rnm_softc *sc)
    345 {
    346 	uint64_t addr =
    347 	    RNM_OPERATION_BASE_IO_BIT |
    348 	    __BITS64_SET(RNM_OPERATION_BASE_MAJOR_DID, 0x08) |
    349 	    __BITS64_SET(RNM_OPERATION_BASE_SUB_DID, 0x00);
    350 
    351 	return octeon_xkphys_read_8(addr);
    352 }
    353 
    354 /*
    355  * octeon_rnm_iobdma(sc, buf, nwords)
    356  *
    357  *	Load nwords, at most 32, out of the FIFO into buf.
    358  */
    359 static void
    360 octeon_rnm_iobdma(struct octeon_rnm_softc *sc, uint64_t *buf, unsigned nwords)
    361 {
    362 	size_t scraddr = OCTEON_CVMSEG_OFFSET(csm_rnm);
    363 	uint64_t iobdma =
    364 	    __SHIFTIN(scraddr/sizeof(uint64_t), IOBDMA_SCRADDR) |
    365 	    __SHIFTIN(nwords, IOBDMA_LEN) |
    366 	    __SHIFTIN(RNM_IOBDMA_MAJORDID, IOBDMA_MAJORDID) |
    367 	    __SHIFTIN(RNM_IOBDMA_SUBDID, IOBDMA_SUBDID);
    368 
    369 	KASSERT(nwords < 256);	/* iobdma address restriction */
    370 	KASSERT(nwords <= 32);	/* octeon_cvmseg_map limitation */
    371 
    372 	octeon_iobdma_write_8(iobdma);
    373 	OCTEON_SYNCIOBDMA;
    374 	for (; nwords --> 0; scraddr += 8)
    375 		*buf++ = octeon_cvmseg_read_8(scraddr);
    376 }
    377 
    378 /*
    379  * octeon_rnm_delay(ncycles)
    380  *
    381  *	Wait ncycles, at most UINT32_MAX/2 so we behave reasonably even
    382  *	if the cycle counter rolls over.
    383  */
    384 static void
    385 octeon_rnm_delay(uint32_t ncycles)
    386 {
    387 	uint32_t deadline = mips3_cp0_count_read() + ncycles;
    388 
    389 	KASSERT(ncycles <= UINT32_MAX/2);
    390 
    391 	while ((deadline - mips3_cp0_count_read()) < ncycles)
    392 		continue;
    393 }
    394