octeon_rnm.c revision 1.2.4.1 1 /* $NetBSD: octeon_rnm.c,v 1.2.4.1 2020/05/19 17:35:50 martin Exp $ */
2
3 /*
4 * Copyright (c) 2007 Internet Initiative Japan, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 /*
30 * Cavium Octeon Random Number Generator / Random Number Memory `RNM'
31 *
32 * The RNM unit consists of:
33 *
34 * 1. 128 ring oscillators
35 * 2. an LFSR/SHA-1 conditioner
36 * 3. a 512-byte FIFO
37 *
38 * When the unit is enabled, there are three modes of operation:
39 *
40 * (a) deterministic: the ring oscillators are disabled and the
41 * LFSR/SHA-1 conditioner operates on fixed inputs to give
42 * reproducible results for testing,
43 *
44 * (b) conditioned entropy: the ring oscillators are enabled and
45 * samples from them are fed through the LFSR/SHA-1
46 * conditioner before being put into the FIFO, and
47 *
48 * (c) raw entropy: the ring oscillators are enabled, and a group
49 * of eight of them selected at any one time is sampled and
50 * fed into the FIFO.
51 *
52 * Details:
53 *
54 * - The FIFO is refilled whenever we read out of it, either with
55 * a load address or an IOBDMA operation.
56 *
57 * - The conditioner takes 81 cycles to produce a 64-bit block of
58 * output in the FIFO whether in deterministic or conditioned
59 * entropy mode, each block consisting of the first 64 bits of a
60 * SHA-1 hash.
61 *
62 * - A group of eight ring oscillators take 8 cycles to produce a
63 * 64-bit block of output in the FIFO in raw entropy mode, each
64 * block consisting of eight consecutive samples from each RO in
65 * parallel.
66 *
67 * The first sample of each RO always seems to be zero. Further,
68 * consecutive samples from a single ring oscillator are not
69 * independent, so naive debiasing like a von Neumann extractor
70 * falls flat on its face. And parallel ring oscillators powered
71 * by the same source may not be independent either, if they end
72 * up locked.
73 *
74 * We read out one FIFO's worth of raw samples from groups of 8
75 * ring oscillators at a time, of 128 total, by going through them
76 * round robin. We take 32 consecutive samples from each ring
77 * oscillator in a group of 8 in parallel before we count one bit
78 * of entropy. To get 256 bits of entropy, we read 4Kbit of data
79 * from each of two 8-RO groups.
80 *
81 * We could use the on-board LFSR/SHA-1 conditioner like the Linux
82 * driver written by Cavium does, but it's not clear how many RO
83 * samples go into the conditioner, and our entropy pool is a
84 * perfectly good conditioner itself, so it seems there is little
85 * advantage -- other than expedience -- to using the LFSR/SHA-1
86 * conditioner. All the manual says is that it samples 125 of the
87 * 128 ROs. But the Cavium SHA-1 CPU instruction is advertised to
88 * have a latency of 100 cycles, so it seems implausible that much
89 * more than one sample from each RO could be squeezed in there.
90 *
91 * The hardware exposes only 64 bits of each SHA-1 hash, and the
92 * Linux driver uses 32 bits of that -- which, if treated as full
93 * entropy, would mean an assessment of 3.9 bits of RO samples to
94 * get 1 bit of entropy, whereas we take 256 bits of RO samples to
95 * get one bit of entropy, so this seems reasonably conservative.
96 *
97 * Reference: Cavium Networks OCTEON Plus CN50XX Hardware Reference
98 * Manual, CN50XX-HM-0.99E PRELIMINARY, July 2008.
99 */
100
101 #include <sys/cdefs.h>
102 __KERNEL_RCSID(0, "$NetBSD: octeon_rnm.c,v 1.2.4.1 2020/05/19 17:35:50 martin Exp $");
103
104 #include <sys/param.h>
105 #include <sys/device.h>
106 #include <sys/kernel.h>
107 #include <sys/rndsource.h>
108 #include <sys/systm.h>
109
110 #include <mips/locore.h>
111 #include <mips/cavium/include/iobusvar.h>
112 #include <mips/cavium/dev/octeon_rnmreg.h>
113 #include <mips/cavium/dev/octeon_corereg.h>
114 #include <mips/cavium/octeonvar.h>
115
116 #include <sys/bus.h>
117
118 //#define OCTEON_RNM_DEBUG
119
120 #define ENT_DELAY_CLOCK 8 /* cycles for each 64-bit RO sample batch */
121 #define RNG_DELAY_CLOCK 81 /* cycles for each SHA-1 output */
122 #define NROGROUPS 16
123 #define RNG_FIFO_WORDS (512/sizeof(uint64_t))
124
125 struct octeon_rnm_softc {
126 bus_space_tag_t sc_bust;
127 bus_space_handle_t sc_regh;
128 kmutex_t sc_lock;
129 krndsource_t sc_rndsrc; /* /dev/random source */
130 unsigned sc_rogroup;
131 };
132
133 static int octeon_rnm_match(device_t, struct cfdata *, void *);
134 static void octeon_rnm_attach(device_t, device_t, void *);
135 static void octeon_rnm_rng(size_t, void *);
136 static void octeon_rnm_reset(struct octeon_rnm_softc *);
137 static void octeon_rnm_conditioned_deterministic(struct octeon_rnm_softc *);
138 static void octeon_rnm_conditioned_entropy(struct octeon_rnm_softc *);
139 static void octeon_rnm_raw_entropy(struct octeon_rnm_softc *, unsigned);
140 static uint64_t octeon_rnm_load(struct octeon_rnm_softc *);
141 static void octeon_rnm_iobdma(struct octeon_rnm_softc *, uint64_t *, unsigned);
142 static void octeon_rnm_delay(uint32_t);
143
144 CFATTACH_DECL_NEW(octeon_rnm, sizeof(struct octeon_rnm_softc),
145 octeon_rnm_match, octeon_rnm_attach, NULL, NULL);
146
147 static int
148 octeon_rnm_match(device_t parent, struct cfdata *cf, void *aux)
149 {
150 struct iobus_attach_args *aa = aux;
151
152 if (strcmp(cf->cf_name, aa->aa_name) != 0)
153 return 0;
154 if (cf->cf_unit != aa->aa_unitno)
155 return 0;
156 return 1;
157 }
158
159 static void
160 octeon_rnm_attach(device_t parent, device_t self, void *aux)
161 {
162 struct octeon_rnm_softc *sc = device_private(self);
163 struct iobus_attach_args *aa = aux;
164 uint64_t bist_status, sample, expected = UINT64_C(0xd654ff35fadf866b);
165
166 aprint_normal("\n");
167
168 /* Map the device registers, all two of them. */
169 sc->sc_bust = aa->aa_bust;
170 if (bus_space_map(aa->aa_bust, aa->aa_unit->addr, RNM_SIZE,
171 0, &sc->sc_regh) != 0) {
172 aprint_error_dev(self, "unable to map device\n");
173 return;
174 }
175
176 /* Verify that the built-in self-test succeeded. */
177 bist_status = bus_space_read_8(sc->sc_bust, sc->sc_regh,
178 RNM_BIST_STATUS_OFFSET);
179 if (bist_status) {
180 aprint_error_dev(self, "RNG built in self test failed: %#lx\n",
181 bist_status);
182 return;
183 }
184
185 /* Create a mutex to serialize access to the FIFO. */
186 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_VM);
187
188 /*
189 * Reset the core, enable the RNG engine without entropy, wait
190 * 81 cycles for it to produce a single sample, and draw the
191 * deterministic sample to test.
192 *
193 * XXX Verify that the output matches the SHA-1 computation
194 * described by the data sheet, not just a known answer.
195 */
196 octeon_rnm_reset(sc);
197 octeon_rnm_conditioned_deterministic(sc);
198 octeon_rnm_delay(RNG_DELAY_CLOCK*1);
199 sample = octeon_rnm_load(sc);
200 if (sample != expected)
201 aprint_error_dev(self, "self-test: read %016"PRIx64","
202 " expected %016"PRIx64, sample, expected);
203
204 /*
205 * Reset the core again to clear the FIFO, and enable the RNG
206 * engine with entropy exposed directly. Start from the first
207 * group of ring oscillators; as we gather samples we will
208 * rotate through the rest of them.
209 */
210 octeon_rnm_reset(sc);
211 sc->sc_rogroup = 0;
212 octeon_rnm_raw_entropy(sc, sc->sc_rogroup);
213 octeon_rnm_delay(ENT_DELAY_CLOCK*RNG_FIFO_WORDS);
214
215 /* Attach the rndsource. */
216 rndsource_setcb(&sc->sc_rndsrc, octeon_rnm_rng, sc);
217 rnd_attach_source(&sc->sc_rndsrc, device_xname(self), RND_TYPE_RNG,
218 RND_FLAG_DEFAULT | RND_FLAG_HASCB);
219 }
220
221 static void
222 octeon_rnm_rng(size_t nbytes, void *vsc)
223 {
224 const unsigned BPB = 256; /* bits of data per bit of entropy */
225 uint64_t sample[32];
226 struct octeon_rnm_softc *sc = vsc;
227 size_t needed = NBBY*nbytes;
228 unsigned i;
229
230 /* Sample the ring oscillators round-robin. */
231 mutex_enter(&sc->sc_lock);
232 while (needed) {
233 /*
234 * Switch to the next RO group once we drain the FIFO.
235 * By the time rnd_add_data is done, we will have
236 * processed all 512 bytes of the FIFO. We assume it
237 * takes at least one cycle per byte (realistically,
238 * more like ~80cpb to draw from the FIFO and then
239 * process it with rnd_add_data), so there is no need
240 * for any other delays.
241 */
242 sc->sc_rogroup++;
243 sc->sc_rogroup %= NROGROUPS;
244 octeon_rnm_raw_entropy(sc, sc->sc_rogroup);
245
246 /*
247 * Gather half the FIFO at a time -- we are limited to
248 * 256 bytes because of limits on the CVMSEG buffer.
249 */
250 CTASSERT(sizeof sample == 256);
251 CTASSERT(2*__arraycount(sample) == RNG_FIFO_WORDS);
252 for (i = 0; i < 2; i++) {
253 octeon_rnm_iobdma(sc, sample, __arraycount(sample));
254 #ifdef OCTEON_RNM_DEBUG
255 hexdump(printf, "rnm", sample, sizeof sample);
256 #endif
257 rnd_add_data_sync(&sc->sc_rndsrc, sample,
258 sizeof sample, NBBY*sizeof(sample)/BPB);
259 needed -= MIN(needed, MAX(1, NBBY*sizeof(sample)/BPB));
260 }
261
262 /* Yield if requested. */
263 if (__predict_false(curcpu()->ci_schedstate.spc_flags &
264 SPCF_SHOULDYIELD)) {
265 mutex_exit(&sc->sc_lock);
266 preempt();
267 mutex_enter(&sc->sc_lock);
268 }
269 }
270 mutex_exit(&sc->sc_lock);
271
272 /* Zero the sample. */
273 explicit_memset(sample, 0, sizeof sample);
274 }
275
276 /*
277 * octeon_rnm_reset(sc)
278 *
279 * Reset the RNM unit, disabling it and clearing the FIFO.
280 */
281 static void
282 octeon_rnm_reset(struct octeon_rnm_softc *sc)
283 {
284
285 bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
286 RNM_CTL_STATUS_RNG_RST|RNM_CTL_STATUS_RNM_RST);
287 }
288
289 /*
290 * octeon_rnm_conditioned_deterministic(sc)
291 *
292 * Switch the RNM unit into the deterministic LFSR/SHA-1 mode with
293 * no entropy, for the next data loaded into the FIFO.
294 */
295 static void
296 octeon_rnm_conditioned_deterministic(struct octeon_rnm_softc *sc)
297 {
298
299 bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
300 RNM_CTL_STATUS_RNG_EN);
301 }
302
303 /*
304 * octeon_rnm_conditioned_entropy(sc)
305 *
306 * Switch the RNM unit to generate ring oscillator samples
307 * conditioned with an LFSR/SHA-1, for the next data loaded into
308 * the FIFO.
309 */
310 static void __unused
311 octeon_rnm_conditioned_entropy(struct octeon_rnm_softc *sc)
312 {
313
314 bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
315 RNM_CTL_STATUS_RNG_EN|RNM_CTL_STATUS_ENT_EN);
316 }
317
318 /*
319 * octeon_rnm_raw_entropy(sc, rogroup)
320 *
321 * Switch the RNM unit to generate raw ring oscillator samples
322 * from the specified group of eight ring oscillator.
323 */
324 static void
325 octeon_rnm_raw_entropy(struct octeon_rnm_softc *sc, unsigned rogroup)
326 {
327 uint64_t ctl = 0;
328
329 ctl |= RNM_CTL_STATUS_RNG_EN; /* enable FIFO */
330 ctl |= RNM_CTL_STATUS_ENT_EN; /* enable entropy source */
331 ctl |= RNM_CTL_STATUS_EXP_ENT; /* expose entropy without LFSR/SHA-1 */
332 ctl |= __SHIFTIN(rogroup, RNM_CTL_STATUS_ENT_SEL_MASK);
333
334 bus_space_write_8(sc->sc_bust, sc->sc_regh, RNM_CTL_STATUS_OFFSET,
335 ctl);
336 }
337
338 /*
339 * octeon_rnm_load(sc)
340 *
341 * Load a single 64-bit word out of the FIFO.
342 */
343 static uint64_t
344 octeon_rnm_load(struct octeon_rnm_softc *sc)
345 {
346 uint64_t addr =
347 RNM_OPERATION_BASE_IO_BIT |
348 __BITS64_SET(RNM_OPERATION_BASE_MAJOR_DID, 0x08) |
349 __BITS64_SET(RNM_OPERATION_BASE_SUB_DID, 0x00);
350
351 return octeon_xkphys_read_8(addr);
352 }
353
354 /*
355 * octeon_rnm_iobdma(sc, buf, nwords)
356 *
357 * Load nwords, at most 32, out of the FIFO into buf.
358 */
359 static void
360 octeon_rnm_iobdma(struct octeon_rnm_softc *sc, uint64_t *buf, unsigned nwords)
361 {
362 size_t scraddr = OCTEON_CVMSEG_OFFSET(csm_rnm);
363 uint64_t iobdma =
364 __SHIFTIN(scraddr/sizeof(uint64_t), IOBDMA_SCRADDR) |
365 __SHIFTIN(nwords, IOBDMA_LEN) |
366 __SHIFTIN(RNM_IOBDMA_MAJORDID, IOBDMA_MAJORDID) |
367 __SHIFTIN(RNM_IOBDMA_SUBDID, IOBDMA_SUBDID);
368
369 KASSERT(nwords < 256); /* iobdma address restriction */
370 KASSERT(nwords <= 32); /* octeon_cvmseg_map limitation */
371
372 octeon_iobdma_write_8(iobdma);
373 OCTEON_SYNCIOBDMA;
374 for (; nwords --> 0; scraddr += 8)
375 *buf++ = octeon_cvmseg_read_8(scraddr);
376 }
377
378 /*
379 * octeon_rnm_delay(ncycles)
380 *
381 * Wait ncycles, at most UINT32_MAX/2 so we behave reasonably even
382 * if the cycle counter rolls over.
383 */
384 static void
385 octeon_rnm_delay(uint32_t ncycles)
386 {
387 uint32_t deadline = mips3_cp0_count_read() + ncycles;
388
389 KASSERT(ncycles <= UINT32_MAX/2);
390
391 while ((deadline - mips3_cp0_count_read()) < ncycles)
392 continue;
393 }
394