ralink_eth.c revision 1.19 1 /* $NetBSD: ralink_eth.c,v 1.19 2019/06/03 06:04:20 msaitoh Exp $ */
2 /*-
3 * Copyright (c) 2011 CradlePoint Technology, Inc.
4 * All rights reserved.
5 *
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY CRADLEPOINT TECHNOLOGY, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* ralink_eth.c -- Ralink Ethernet Driver */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: ralink_eth.c,v 1.19 2019/06/03 06:04:20 msaitoh Exp $");
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/callout.h>
37 #include <sys/device.h>
38 #include <sys/endian.h>
39 #include <sys/errno.h>
40 #include <sys/ioctl.h>
41 #include <sys/intr.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47
48 #include <uvm/uvm_extern.h>
49
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_ether.h>
54 #include <net/if_vlanvar.h>
55
56 #include <net/bpf.h>
57
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 #include <dev/mii/mii_bitbang.h>
61
62 #include <mips/ralink/ralink_var.h>
63 #include <mips/ralink/ralink_reg.h>
64 #if 0
65 #define CPDEBUG /* XXX TMP DEBUG FIXME */
66 #define RALINK_ETH_DEBUG /* XXX TMP DEBUG FIXME */
67 #define ENABLE_RALINK_DEBUG_ERROR 1
68 #define ENABLE_RALINK_DEBUG_MISC 1
69 #define ENABLE_RALINK_DEBUG_INFO 1
70 #define ENABLE_RALINK_DEBUG_FORCE 1
71 #define ENABLE_RALINK_DEBUG_REG 1
72 #endif
73 #include <mips/ralink/ralink_debug.h>
74
75
76 /* PDMA RX Descriptor Format */
77 struct ralink_rx_desc {
78 uint32_t data_ptr;
79 uint32_t rxd_info1;
80 #define RXD_LEN1(x) (((x) >> 0) & 0x3fff)
81 #define RXD_LAST1 (1 << 14)
82 #define RXD_LEN0(x) (((x) >> 16) & 0x3fff)
83 #define RXD_LAST0 (1 << 30)
84 #define RXD_DDONE (1 << 31)
85 uint32_t unused;
86 uint32_t rxd_info2;
87 #define RXD_FOE(x) (((x) >> 0) & 0x3fff)
88 #define RXD_FVLD (1 << 14)
89 #define RXD_INFO(x) (((x) >> 16) & 0xff)
90 #define RXD_PORT(x) (((x) >> 24) & 0x7)
91 #define RXD_INFO_CPU (1 << 27)
92 #define RXD_L4_FAIL (1 << 28)
93 #define RXD_IP_FAIL (1 << 29)
94 #define RXD_L4_VLD (1 << 30)
95 #define RXD_IP_VLD (1 << 31)
96 };
97
98 /* PDMA TX Descriptor Format */
99 struct ralink_tx_desc {
100 uint32_t data_ptr0;
101 uint32_t txd_info1;
102 #define TXD_LEN1(x) (((x) & 0x3fff) << 0)
103 #define TXD_LAST1 (1 << 14)
104 #define TXD_BURST (1 << 15)
105 #define TXD_LEN0(x) (((x) & 0x3fff) << 16)
106 #define TXD_LAST0 (1 << 30)
107 #define TXD_DDONE (1 << 31)
108 uint32_t data_ptr1;
109 uint32_t txd_info2;
110 #define TXD_VIDX(x) (((x) & 0xf) << 0)
111 #define TXD_VPRI(x) (((x) & 0x7) << 4)
112 #define TXD_VEN (1 << 7)
113 #define TXD_SIDX(x) (((x) & 0xf) << 8)
114 #define TXD_SEN(x) (1 << 13)
115 #define TXD_QN(x) (((x) & 0x7) << 16)
116 #define TXD_PN(x) (((x) & 0x7) << 24)
117 #define TXD_PN_CPU 0
118 #define TXD_PN_GDMA1 1
119 #define TXD_PN_GDMA2 2
120 #define TXD_TCP_EN (1 << 29)
121 #define TXD_UDP_EN (1 << 30)
122 #define TXD_IP_EN (1 << 31)
123 };
124
125 /* TODO:
126 * try to scale number of descriptors swith size of memory
127 * these numbers may have a significant impact on performance/memory/mbuf usage
128 */
129 #if RTMEMSIZE >= 64
130 #define RALINK_ETH_NUM_RX_DESC 256
131 #define RALINK_ETH_NUM_TX_DESC 256
132 #else
133 #define RALINK_ETH_NUM_RX_DESC 64
134 #define RALINK_ETH_NUM_TX_DESC 64
135 #endif
136 /* maximum segments per packet */
137 #define RALINK_ETH_MAX_TX_SEGS 1
138
139 /* define a struct for ease of dma memory allocation */
140 struct ralink_descs {
141 struct ralink_rx_desc rxdesc[RALINK_ETH_NUM_RX_DESC];
142 struct ralink_tx_desc txdesc[RALINK_ETH_NUM_TX_DESC];
143 };
144
145 /* Software state for transmit jobs. */
146 struct ralink_eth_txstate {
147 struct mbuf *txs_mbuf; /* head of our mbuf chain */
148 bus_dmamap_t txs_dmamap; /* our DMA map */
149 int txs_idx; /* the index in txdesc ring that */
150 /* this state is tracking */
151 SIMPLEQ_ENTRY(ralink_eth_txstate) txs_q;
152 };
153
154 SIMPLEQ_HEAD(ralink_eth_txsq, ralink_eth_txstate);
155
156 /*
157 * Software state for receive jobs.
158 */
159 struct ralink_eth_rxstate {
160 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
161 bus_dmamap_t rxs_dmamap; /* our DMA map */
162 };
163
164 typedef struct ralink_eth_softc {
165 device_t sc_dev; /* generic device information */
166 bus_space_tag_t sc_memt; /* bus space tag */
167 bus_space_handle_t sc_sy_memh; /* handle at SYSCTL_BASE */
168 bus_space_handle_t sc_fe_memh; /* handle at FRAME_ENGINE_BASE */
169 bus_space_handle_t sc_sw_memh; /* handle at ETH_SW_BASE */
170 int sc_sy_size; /* size of Sysctl regs space */
171 int sc_fe_size; /* size of Frame Engine regs space */
172 int sc_sw_size; /* size of Ether Switch regs space */
173 bus_dma_tag_t sc_dmat; /* bus DMA tag */
174 void *sc_ih; /* interrupt handle */
175
176 /* tx/rx dma mapping */
177 bus_dma_segment_t sc_dseg;
178 int sc_ndseg;
179 bus_dmamap_t sc_pdmamap; /* PDMA DMA map */
180 #define sc_pdma sc_pdmamap->dm_segs[0].ds_addr
181
182 struct ralink_descs *sc_descs;
183 #define sc_rxdesc sc_descs->rxdesc
184 #define sc_txdesc sc_descs->txdesc
185
186 #define RALINK_MIN_BUF 64
187 char ralink_zero_buf[RALINK_MIN_BUF];
188
189 struct ralink_eth_txstate sc_txstate[RALINK_ETH_NUM_TX_DESC];
190 struct ralink_eth_rxstate sc_rxstate[RALINK_ETH_NUM_RX_DESC];
191
192 struct ralink_eth_txsq sc_txfreeq; /* free Tx descsofts */
193 struct ralink_eth_txsq sc_txdirtyq; /* dirty Tx descsofts */
194
195 struct ethercom sc_ethercom; /* ethernet common data */
196 u_int sc_pending_tx;
197
198 /* mii */
199 struct mii_data sc_mii;
200 struct callout sc_tick_callout;
201
202 struct evcnt sc_evcnt_spurious_intr;
203 struct evcnt sc_evcnt_rxintr;
204 struct evcnt sc_evcnt_rxintr_skip_len;
205 struct evcnt sc_evcnt_rxintr_skip_tag_none;
206 struct evcnt sc_evcnt_rxintr_skip_tag_inval;
207 struct evcnt sc_evcnt_rxintr_skip_inact;
208 struct evcnt sc_evcnt_txintr;
209 struct evcnt sc_evcnt_input;
210 struct evcnt sc_evcnt_output;
211 struct evcnt sc_evcnt_watchdog;
212 struct evcnt sc_evcnt_wd_reactivate;
213 struct evcnt sc_evcnt_wd_tx;
214 struct evcnt sc_evcnt_wd_spurious;
215 struct evcnt sc_evcnt_add_rxbuf_hdr_fail;
216 struct evcnt sc_evcnt_add_rxbuf_mcl_fail;
217 } ralink_eth_softc_t;
218
219 /* alignment so the IP header is aligned */
220 #define RALINK_ETHER_ALIGN 2
221
222 /* device functions */
223 static int ralink_eth_match(device_t, cfdata_t, void *);
224 static void ralink_eth_attach(device_t, device_t, void *);
225 static int ralink_eth_detach(device_t, int);
226 static int ralink_eth_activate(device_t, enum devact);
227
228 /* local driver functions */
229 static void ralink_eth_hw_init(ralink_eth_softc_t *);
230 static int ralink_eth_intr(void *);
231 static void ralink_eth_reset(ralink_eth_softc_t *);
232 static void ralink_eth_rxintr(ralink_eth_softc_t *);
233 static void ralink_eth_txintr(ralink_eth_softc_t *);
234
235 /* partition functions */
236 static int ralink_eth_enable(ralink_eth_softc_t *);
237 static void ralink_eth_disable(ralink_eth_softc_t *);
238
239 /* ifnet functions */
240 static int ralink_eth_init(struct ifnet *);
241 static void ralink_eth_rxdrain(ralink_eth_softc_t *);
242 static void ralink_eth_stop(struct ifnet *, int);
243 static int ralink_eth_add_rxbuf(ralink_eth_softc_t *, int);
244 static void ralink_eth_start(struct ifnet *);
245 static void ralink_eth_watchdog(struct ifnet *);
246 static int ralink_eth_ioctl(struct ifnet *, u_long, void *);
247
248 /* mii functions */
249 #if defined(RT3050) || defined(RT3052)
250 static void ralink_eth_mdio_enable(ralink_eth_softc_t *, bool);
251 #endif
252 static void ralink_eth_mii_statchg(struct ifnet *);
253 static void ralink_eth_mii_tick(void *);
254 static int ralink_eth_mii_read(device_t, int, int, uint16_t *);
255 static int ralink_eth_mii_write(device_t, int, int, uint16_t);
256
257 CFATTACH_DECL_NEW(reth, sizeof(struct ralink_eth_softc),
258 ralink_eth_match, ralink_eth_attach, ralink_eth_detach,
259 ralink_eth_activate);
260
261 static inline uint32_t
262 sy_read(const ralink_eth_softc_t *sc, const bus_size_t off)
263 {
264 return bus_space_read_4(sc->sc_memt, sc->sc_sy_memh, off);
265 }
266
267 static inline void
268 sy_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
269 {
270 bus_space_write_4(sc->sc_memt, sc->sc_sy_memh, off, val);
271 }
272
273 static inline uint32_t
274 fe_read(const ralink_eth_softc_t *sc, const bus_size_t off)
275 {
276 return bus_space_read_4(sc->sc_memt, sc->sc_fe_memh, off);
277 }
278
279 static inline void
280 fe_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
281 {
282 bus_space_write_4(sc->sc_memt, sc->sc_fe_memh, off, val);
283 }
284
285 static inline uint32_t
286 sw_read(const ralink_eth_softc_t *sc, const bus_size_t off)
287 {
288 return bus_space_read_4(sc->sc_memt, sc->sc_sw_memh, off);
289 }
290
291 static inline void
292 sw_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
293 {
294 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, off, val);
295 }
296
297 /*
298 * ralink_eth_match
299 */
300 int
301 ralink_eth_match(device_t parent, cfdata_t cf, void *aux)
302 {
303 return 1;
304 }
305
306 /*
307 * ralink_eth_attach
308 */
309 void
310 ralink_eth_attach(device_t parent, device_t self, void *aux)
311 {
312 ralink_eth_softc_t * const sc = device_private(self);
313 const struct mainbus_attach_args *ma = aux;
314 struct mii_data *mii = &sc->sc_mii;
315 int error;
316 int i;
317
318 aprint_naive(": Ralink Ethernet\n");
319 aprint_normal(": Ralink Ethernet\n");
320
321 evcnt_attach_dynamic(&sc->sc_evcnt_spurious_intr, EVCNT_TYPE_INTR, NULL,
322 device_xname(self), "spurious intr");
323 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr, EVCNT_TYPE_INTR, NULL,
324 device_xname(self), "rxintr");
325 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_len,
326 EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
327 device_xname(self), "rxintr skip: no room for VLAN header");
328 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_none,
329 EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
330 device_xname(self), "rxintr skip: no VLAN tag");
331 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_inval,
332 EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
333 device_xname(self), "rxintr skip: invalid VLAN tag");
334 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_inact,
335 EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
336 device_xname(self), "rxintr skip: partition inactive");
337 evcnt_attach_dynamic(&sc->sc_evcnt_txintr, EVCNT_TYPE_INTR, NULL,
338 device_xname(self), "txintr");
339 evcnt_attach_dynamic(&sc->sc_evcnt_input, EVCNT_TYPE_INTR, NULL,
340 device_xname(self), "input");
341 evcnt_attach_dynamic(&sc->sc_evcnt_output, EVCNT_TYPE_INTR, NULL,
342 device_xname(self), "output");
343 evcnt_attach_dynamic(&sc->sc_evcnt_watchdog, EVCNT_TYPE_INTR, NULL,
344 device_xname(self), "watchdog");
345 evcnt_attach_dynamic(&sc->sc_evcnt_wd_tx,
346 EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
347 device_xname(self), "watchdog TX timeout");
348 evcnt_attach_dynamic(&sc->sc_evcnt_wd_spurious,
349 EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
350 device_xname(self), "watchdog spurious");
351 evcnt_attach_dynamic(&sc->sc_evcnt_wd_reactivate,
352 EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
353 device_xname(self), "watchdog reactivate");
354 evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_hdr_fail,
355 EVCNT_TYPE_INTR, NULL,
356 device_xname(self), "add rxbuf hdr fail");
357 evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_mcl_fail,
358 EVCNT_TYPE_INTR, NULL,
359 device_xname(self), "add rxbuf mcl fail");
360
361 /*
362 * In order to obtain unique initial Ethernet address on a host,
363 * do some randomisation using the current uptime. It's not meant
364 * for anything but avoiding hard-coding an address.
365 */
366 #ifdef RALINK_ETH_MACADDR
367 uint8_t enaddr[ETHER_ADDR_LEN];
368 ether_aton_r(enaddr, sizeof(enaddr), ___STRING(RALINK_ETH_MACADDR));
369 #else
370 uint8_t enaddr[ETHER_ADDR_LEN] = { 0x00, 0x30, 0x44, 0x00, 0x00, 0x00 };
371 #endif
372
373 sc->sc_dev = self;
374 sc->sc_dmat = ma->ma_dmat;
375 sc->sc_memt = ma->ma_memt;
376 sc->sc_sy_size = 0x10000;
377 sc->sc_fe_size = 0x10000;
378 sc->sc_sw_size = 0x08000;
379
380 /*
381 * map the registers
382 *
383 * we map the Sysctl, Frame Engine and Ether Switch registers
384 * separately so we can use the defined register offsets sanely
385 */
386 if ((error = bus_space_map(sc->sc_memt, RA_SYSCTL_BASE,
387 sc->sc_sy_size, 0, &sc->sc_sy_memh)) != 0) {
388 aprint_error_dev(self, "unable to map Sysctl registers, "
389 "error=%d\n", error);
390 goto fail_0a;
391 }
392 if ((error = bus_space_map(sc->sc_memt, RA_FRAME_ENGINE_BASE,
393 sc->sc_fe_size, 0, &sc->sc_fe_memh)) != 0) {
394 aprint_error_dev(self, "unable to map Frame Engine registers, "
395 "error=%d\n", error);
396 goto fail_0b;
397 }
398 if ((error = bus_space_map(sc->sc_memt, RA_ETH_SW_BASE,
399 sc->sc_sw_size, 0, &sc->sc_sw_memh)) != 0) {
400 aprint_error_dev(self, "unable to map Ether Switch registers, "
401 "error=%d\n", error);
402 goto fail_0c;
403 }
404
405 /* Allocate desc structures, and create & load the DMA map for them */
406 if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct ralink_descs),
407 PAGE_SIZE, 0, &sc->sc_dseg, 1, &sc->sc_ndseg, 0)) != 0) {
408 aprint_error_dev(self, "unable to allocate transmit descs, "
409 "error=%d\n", error);
410 goto fail_1;
411 }
412
413 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg,
414 sizeof(struct ralink_descs), (void **)&sc->sc_descs,
415 BUS_DMA_COHERENT)) != 0) {
416 aprint_error_dev(self, "unable to map control data, "
417 "error=%d\n", error);
418 goto fail_2;
419 }
420
421 if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct ralink_descs),
422 1, sizeof(struct ralink_descs), 0, 0, &sc->sc_pdmamap)) != 0) {
423 aprint_error_dev(self, "unable to create control data DMA map, "
424 "error=%d\n", error);
425 goto fail_3;
426 }
427
428 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_pdmamap, sc->sc_descs,
429 sizeof(struct ralink_descs), NULL, 0)) != 0) {
430 aprint_error_dev(self, "unable to load control data DMA map, "
431 "error=%d\n", error);
432 goto fail_4;
433 }
434
435 /* Create the transmit buffer DMA maps. */
436 for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
437 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
438 RALINK_ETH_MAX_TX_SEGS, MCLBYTES, 0, 0,
439 &sc->sc_txstate[i].txs_dmamap)) != 0) {
440 aprint_error_dev(self,
441 "unable to create tx DMA map %d, error=%d\n",
442 i, error);
443 goto fail_5;
444 }
445 }
446
447 /* Create the receive buffer DMA maps. */
448 for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
449 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
450 MCLBYTES, 0, 0, &sc->sc_rxstate[i].rxs_dmamap)) != 0) {
451 aprint_error_dev(self,
452 "unable to create rx DMA map %d, error=%d\n",
453 i, error);
454 goto fail_6;
455 }
456 sc->sc_rxstate[i].rxs_mbuf = NULL;
457 }
458
459 /* this is a zero buffer used for zero'ing out short packets */
460 memset(sc->ralink_zero_buf, 0, RALINK_MIN_BUF);
461
462 /* setup some address in hardware */
463 fe_write(sc, RA_FE_GDMA1_MAC_LSB,
464 (enaddr[5] | (enaddr[4] << 8) |
465 (enaddr[3] << 16) | (enaddr[2] << 24)));
466 fe_write(sc, RA_FE_GDMA1_MAC_MSB,
467 (enaddr[1] | (enaddr[0] << 8)));
468
469 /*
470 * iterate through ports
471 * slickrock must use specific non-linear sequence
472 * others are linear
473 */
474 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
475
476 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
477
478 /*
479 * Initialize our media structures.
480 * This may probe the PHY, if present.
481 */
482 mii->mii_ifp = ifp;
483 mii->mii_readreg = ralink_eth_mii_read;
484 mii->mii_writereg = ralink_eth_mii_write;
485 mii->mii_statchg = ralink_eth_mii_statchg;
486 sc->sc_ethercom.ec_mii = mii;
487 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
488 mii_attach(sc->sc_dev, mii, ~0, MII_PHY_ANY, MII_OFFSET_ANY,
489 MIIF_FORCEANEG | MIIF_DOPAUSE | MIIF_NOISOLATE);
490
491 if (LIST_EMPTY(&mii->mii_phys)) {
492 #if 1
493 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_1000_T |
494 IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE, 0, NULL);
495 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_1000_T |
496 IFM_FDX | IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE);
497 #else
498 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
499 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
500 #endif
501 } else {
502 /* Ensure we mask ok for the switch multiple phy's */
503 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
504 }
505
506 ifp->if_softc = sc;
507 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
508 ifp->if_init = ralink_eth_init;
509 ifp->if_start = ralink_eth_start;
510 ifp->if_ioctl = ralink_eth_ioctl;
511 ifp->if_stop = ralink_eth_stop;
512 ifp->if_watchdog = ralink_eth_watchdog;
513 IFQ_SET_READY(&ifp->if_snd);
514
515 /* We can support 802.1Q VLAN-sized frames. */
516 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
517
518 /* We support IPV4 CRC Offload */
519 ifp->if_capabilities |=
520 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
521 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
522 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
523
524 /* Attach the interface. */
525 if_attach(ifp);
526 if_deferred_start_init(ifp, NULL);
527 ether_ifattach(ifp, enaddr);
528
529 /* init our mii ticker */
530 callout_init(&sc->sc_tick_callout, 0);
531 callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
532
533 return;
534
535 /*
536 * Free any resources we've allocated during the failed attach
537 * attempt. Do this in reverse order and fall through.
538 */
539 fail_6:
540 for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
541 if (sc->sc_rxstate[i].rxs_dmamap != NULL)
542 bus_dmamap_destroy(sc->sc_dmat,
543 sc->sc_rxstate[i].rxs_dmamap);
544 }
545 fail_5:
546 for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
547 if (sc->sc_txstate[i].txs_dmamap != NULL)
548 bus_dmamap_destroy(sc->sc_dmat,
549 sc->sc_txstate[i].txs_dmamap);
550 }
551 bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
552 fail_4:
553 bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
554 fail_3:
555 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
556 sizeof(struct ralink_descs));
557 fail_2:
558 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
559 fail_1:
560 bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
561 fail_0c:
562 bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
563 fail_0b:
564 bus_space_unmap(sc->sc_memt, sc->sc_sy_memh, sc->sc_fe_size);
565 fail_0a:
566 return;
567 }
568
569 /*
570 * ralink_eth_activate:
571 *
572 * Handle device activation/deactivation requests.
573 */
574 int
575 ralink_eth_activate(device_t self, enum devact act)
576 {
577 ralink_eth_softc_t * const sc = device_private(self);
578 int error = 0;
579 int s;
580
581 s = splnet();
582 switch (act) {
583 case DVACT_DEACTIVATE:
584 if_deactivate(&sc->sc_ethercom.ec_if);
585 break;
586 }
587 splx(s);
588
589 return error;
590 }
591
592 /*
593 * ralink_eth_partition_enable
594 */
595 static int
596 ralink_eth_enable(ralink_eth_softc_t *sc)
597 {
598 RALINK_DEBUG_FUNC_ENTRY();
599
600 if (sc->sc_ih != NULL) {
601 RALINK_DEBUG(RALINK_DEBUG_MISC, "%s() already active",
602 __func__);
603 return EALREADY;
604 }
605
606 sc->sc_pending_tx = 0;
607
608 int s = splnet();
609 ralink_eth_hw_init(sc);
610 sc->sc_ih = ra_intr_establish(RA_IRQ_FENGINE,
611 ralink_eth_intr, sc, 1);
612 splx(s);
613 if (sc->sc_ih == NULL) {
614 RALINK_DEBUG(RALINK_DEBUG_ERROR,
615 "%s: unable to establish interrupt\n",
616 device_xname(sc->sc_dev));
617 return EIO;
618 }
619
620 return 0;
621 }
622
623 /*
624 * ralink_eth_partition_disable
625 */
626 static void
627 ralink_eth_disable(ralink_eth_softc_t *sc)
628 {
629 RALINK_DEBUG_FUNC_ENTRY();
630
631 int s = splnet();
632 ralink_eth_rxdrain(sc);
633 ra_intr_disestablish(sc->sc_ih);
634 sc->sc_ih = NULL;
635
636 /* stop the mii ticker */
637 callout_stop(&sc->sc_tick_callout);
638
639 /* quiesce the block */
640 ralink_eth_reset(sc);
641 splx(s);
642 }
643
644 /*
645 * ralink_eth_detach
646 */
647 static int
648 ralink_eth_detach(device_t self, int flags)
649 {
650 RALINK_DEBUG_FUNC_ENTRY();
651 ralink_eth_softc_t * const sc = device_private(self);
652 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
653 struct ralink_eth_rxstate *rxs;
654 struct ralink_eth_txstate *txs;
655 int i;
656
657 ralink_eth_disable(sc);
658 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
659 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
660 ether_ifdetach(ifp);
661 if_detach(ifp);
662
663 for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
664 rxs = &sc->sc_rxstate[i];
665 if (rxs->rxs_mbuf != NULL) {
666 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
667 m_freem(rxs->rxs_mbuf);
668 rxs->rxs_mbuf = NULL;
669 }
670 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
671 }
672
673 for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
674 txs = &sc->sc_txstate[i];
675 if (txs->txs_mbuf != NULL) {
676 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
677 m_freem(txs->txs_mbuf);
678 txs->txs_mbuf = NULL;
679 }
680 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
681 }
682
683 bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
684 bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
685 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
686 sizeof(struct ralink_descs));
687 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
688
689 bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
690 bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
691
692 return 0;
693 }
694
695 /*
696 * ralink_eth_reset
697 */
698 static void
699 ralink_eth_reset(ralink_eth_softc_t *sc)
700 {
701 RALINK_DEBUG_FUNC_ENTRY();
702 uint32_t r;
703
704 /* Reset the frame engine */
705 r = sy_read(sc, RA_SYSCTL_RST);
706 r |= RST_FE;
707 sy_write(sc, RA_SYSCTL_RST, r);
708 r ^= RST_FE;
709 sy_write(sc, RA_SYSCTL_RST, r);
710
711 /* Wait until the PDMA is quiescent */
712 for (;;) {
713 r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
714 if (r & FE_PDMA_GLOBAL_CFG_RX_DMA_BUSY) {
715 aprint_normal_dev(sc->sc_dev, "RX DMA BUSY\n");
716 continue;
717 }
718 if (r & FE_PDMA_GLOBAL_CFG_TX_DMA_BUSY) {
719 aprint_normal_dev(sc->sc_dev, "TX DMA BUSY\n");
720 continue;
721 }
722 break;
723 }
724 }
725
726 /*
727 * ralink_eth_hw_init
728 */
729 static void
730 ralink_eth_hw_init(ralink_eth_softc_t *sc)
731 {
732 RALINK_DEBUG_FUNC_ENTRY();
733 struct ralink_eth_txstate *txs;
734 uint32_t r;
735 int i;
736
737 /* reset to a known good state */
738 ralink_eth_reset(sc);
739
740 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
741 /* Bring the switch to a sane default state (from linux driver) */
742 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SGC2,
743 0x00000000);
744 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PFC1,
745 0x00405555); /* check VLAN tag on port forward */
746 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VLANI0,
747 0x00002001);
748 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC0,
749 0x00001002);
750 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC1,
751 0x00001001);
752 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC2,
753 0x00001001);
754 #if defined(MT7628)
755 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VMSC0,
756 0xffffffff);
757 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC0,
758 0x10007f7f);
759 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC2,
760 0x00007f7f);
761 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FTC2,
762 0x0002500c);
763 #else
764 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VMSC0,
765 0xffff417e);
766 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC0,
767 0x00007f7f);
768 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC2,
769 0x00007f3f);
770 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FTC2,
771 0x00d6500c);
772 #endif
773 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SWGC,
774 0x0008a301); /* hashing algorithm=XOR48 */
775 /* aging interval=300sec */
776 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SOCPC,
777 0x02404040);
778 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPORT,
779 0x3f502b28); /* Change polling Ext PHY Addr=0x0 */
780 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPA,
781 0x00000000);
782
783 /* do some mii magic TODO: define these registers/bits */
784 /* lower down PHY 10Mbps mode power */
785 /* select local register */
786 ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x8000);
787
788 for (i=0; i < 5; i++) {
789 /* set TX10 waveform coefficient */
790 ralink_eth_mii_write(sc->sc_dev, i, 26, 0x1601);
791
792 /* set TX100/TX10 AD/DA current bias */
793 ralink_eth_mii_write(sc->sc_dev, i, 29, 0x7058);
794
795 /* set TX100 slew rate control */
796 ralink_eth_mii_write(sc->sc_dev, i, 30, 0x0018);
797 }
798
799 /* PHY IOT */
800
801 /* select global register */
802 ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x0);
803
804 /* tune TP_IDL tail and head waveform */
805 ralink_eth_mii_write(sc->sc_dev, 0, 22, 0x052f);
806
807 /* set TX10 signal amplitude threshold to minimum */
808 ralink_eth_mii_write(sc->sc_dev, 0, 17, 0x0fe0);
809
810 /* set squelch amplitude to higher threshold */
811 ralink_eth_mii_write(sc->sc_dev, 0, 18, 0x40ba);
812
813 /* longer TP_IDL tail length */
814 ralink_eth_mii_write(sc->sc_dev, 0, 14, 0x65);
815
816 /* select local register */
817 ralink_eth_mii_write(sc->sc_dev, 0, 31, 0x8000);
818 #else
819 /* GE1 + GigSW */
820 fe_write(sc, RA_FE_MDIO_CFG1,
821 MDIO_CFG_PHY_ADDR(0x1f) |
822 MDIO_CFG_BP_EN |
823 MDIO_CFG_FORCE_CFG |
824 MDIO_CFG_SPEED(MDIO_CFG_SPEED_1000M) |
825 MDIO_CFG_FULL_DUPLEX |
826 MDIO_CFG_FC_TX |
827 MDIO_CFG_FC_RX |
828 MDIO_CFG_TX_CLK_MODE(MDIO_CFG_TX_CLK_MODE_3COM));
829 #endif
830
831 /*
832 * TODO: QOS - RT3052 has 4 TX queues for QOS,
833 * forgoing for 1 for simplicity
834 */
835
836 /*
837 * Allocate DMA accessible memory for TX/RX descriptor rings
838 */
839
840 /* Initialize the TX queues. */
841 SIMPLEQ_INIT(&sc->sc_txfreeq);
842 SIMPLEQ_INIT(&sc->sc_txdirtyq);
843
844 /* Initialize the TX descriptor ring. */
845 memset(sc->sc_txdesc, 0, sizeof(sc->sc_txdesc));
846 for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
847
848 sc->sc_txdesc[i].txd_info1 = TXD_LAST0 | TXD_DDONE;
849
850 /* setup the freeq as well */
851 txs = &sc->sc_txstate[i];
852 txs->txs_mbuf = NULL;
853 txs->txs_idx = i;
854 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
855 }
856
857 /*
858 * Flush the TX descriptors
859 * - TODO: can we just access descriptors via KSEG1
860 * to avoid the flush?
861 */
862 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
863 (int)&sc->sc_txdesc - (int)sc->sc_descs, sizeof(sc->sc_txdesc),
864 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
865
866 /* Initialize the RX descriptor ring */
867 memset(sc->sc_rxdesc, 0, sizeof(sc->sc_rxdesc));
868 for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
869 if (ralink_eth_add_rxbuf(sc, i)) {
870 panic("Can't allocate rx mbuf\n");
871 }
872 }
873
874 /*
875 * Flush the RX descriptors
876 * - TODO: can we just access descriptors via KSEG1
877 * to avoid the flush?
878 */
879 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
880 (int)&sc->sc_rxdesc - (int)sc->sc_descs, sizeof(sc->sc_rxdesc),
881 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
882
883 /* Clear the PDMA state */
884 r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
885 r &= 0xff;
886 fe_write(sc, RA_FE_PDMA_GLOBAL_CFG, r);
887 (void) fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
888
889 #if !defined(MT7628)
890 /* Setup the PDMA VLAN ID's */
891 fe_write(sc, RA_FE_VLAN_ID_0001, 0x00010000);
892 fe_write(sc, RA_FE_VLAN_ID_0203, 0x00030002);
893 fe_write(sc, RA_FE_VLAN_ID_0405, 0x00050004);
894 fe_write(sc, RA_FE_VLAN_ID_0607, 0x00070006);
895 fe_write(sc, RA_FE_VLAN_ID_0809, 0x00090008);
896 fe_write(sc, RA_FE_VLAN_ID_1011, 0x000b000a);
897 fe_write(sc, RA_FE_VLAN_ID_1213, 0x000d000c);
898 fe_write(sc, RA_FE_VLAN_ID_1415, 0x000f000e);
899 #endif
900
901 /* Give the TX and TX rings to the chip. */
902 fe_write(sc, RA_FE_PDMA_TX0_PTR,
903 htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_txdesc)));
904 fe_write(sc, RA_FE_PDMA_TX0_COUNT, htole32(RALINK_ETH_NUM_TX_DESC));
905 fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, 0);
906 #if !defined(MT7628)
907 fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_TX0);
908 #endif
909
910 fe_write(sc, RA_FE_PDMA_RX0_PTR,
911 htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_rxdesc)));
912 fe_write(sc, RA_FE_PDMA_RX0_COUNT, htole32(RALINK_ETH_NUM_RX_DESC));
913 fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
914 htole32(RALINK_ETH_NUM_RX_DESC - 1));
915 #if !defined(MT7628)
916 fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_RX0);
917 #endif
918 fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
919 htole32(RALINK_ETH_NUM_RX_DESC - 1));
920
921 /* Start PDMA */
922 fe_write(sc, RA_FE_PDMA_GLOBAL_CFG,
923 FE_PDMA_GLOBAL_CFG_TX_WB_DDONE |
924 FE_PDMA_GLOBAL_CFG_RX_DMA_EN |
925 FE_PDMA_GLOBAL_CFG_TX_DMA_EN |
926 FE_PDMA_GLOBAL_CFG_BURST_SZ_4);
927
928 /* Setup the clock for the Frame Engine */
929 #if defined(MT7628)
930 fe_write(sc, RA_FE_SDM_CON, 0x8100);
931 #else
932 fe_write(sc, RA_FE_GLOBAL_CFG,
933 FE_GLOBAL_CFG_EXT_VLAN(0x8100) |
934 FE_GLOBAL_CFG_US_CLK(RA_BUS_FREQ / 1000000) |
935 FE_GLOBAL_CFG_L2_SPACE(0x8));
936 #endif
937
938 /* Turn on all interrupts */
939 #if defined(MT7628)
940 fe_write(sc, RA_FE_INT_MASK,
941 RA_FE_INT_RX_DONE_INT1 |
942 RA_FE_INT_RX_DONE_INT0 |
943 RA_FE_INT_TX_DONE_INT3 |
944 RA_FE_INT_TX_DONE_INT2 |
945 RA_FE_INT_TX_DONE_INT1 |
946 RA_FE_INT_TX_DONE_INT0);
947 #else
948 fe_write(sc, RA_FE_INT_ENABLE,
949 FE_INT_RX | FE_INT_TX3 | FE_INT_TX2 | FE_INT_TX1 | FE_INT_TX0);
950 #endif
951
952 /*
953 * Configure GDMA forwarding
954 * - default all packets to CPU
955 * - Turn on auto-CRC
956 */
957 #if 0
958 fe_write(sc, RA_FE_GDMA1_FWD_CFG,
959 (FE_GDMA_FWD_CFG_DIS_TX_CRC | FE_GDMA_FWD_CFG_DIS_TX_PAD));
960 #endif
961
962 #if !defined(MT7628)
963 fe_write(sc, RA_FE_GDMA1_FWD_CFG,
964 FE_GDMA_FWD_CFG_JUMBO_LEN(MCLBYTES/1024) |
965 FE_GDMA_FWD_CFG_STRIP_RX_CRC |
966 FE_GDMA_FWD_CFG_IP4_CRC_EN |
967 FE_GDMA_FWD_CFG_TCP_CRC_EN |
968 FE_GDMA_FWD_CFG_UDP_CRC_EN);
969 #endif
970
971 /* CDMA also needs CRCs turned on */
972 #if !defined(MT7628)
973 r = fe_read(sc, RA_FE_CDMA_CSG_CFG);
974 r |= (FE_CDMA_CSG_CFG_IP4_CRC_EN | FE_CDMA_CSG_CFG_UDP_CRC_EN |
975 FE_CDMA_CSG_CFG_TCP_CRC_EN);
976 fe_write(sc, RA_FE_CDMA_CSG_CFG, r);
977 #endif
978
979 /* Configure Flow Control Thresholds */
980 #if defined(MT7628)
981 sw_write(sc, RA_ETH_SW_FCT0,
982 RA_ETH_SW_FCT0_FC_RLS_TH(0xc8) |
983 RA_ETH_SW_FCT0_FC_SET_TH(0xa0) |
984 RA_ETH_SW_FCT0_DROP_RLS_TH(0x78) |
985 RA_ETH_SW_FCT0_DROP_SET_TH(0x50));
986 sw_write(sc, RA_ETH_SW_FCT1,
987 RA_ETH_SW_FCT1_PORT_TH(0x14));
988 #elif defined(RT3883)
989 fe_write(sc, RA_FE_PSE_FQ_CFG,
990 FE_PSE_FQ_MAX_COUNT(0xff) |
991 FE_PSE_FQ_FC_RELEASE(0x90) |
992 FE_PSE_FQ_FC_ASSERT(0x80));
993 #else
994 fe_write(sc, RA_FE_PSE_FQ_CFG,
995 FE_PSE_FQ_MAX_COUNT(0x80) |
996 FE_PSE_FQ_FC_RELEASE(0x50) |
997 FE_PSE_FQ_FC_ASSERT(0x40));
998 #endif
999
1000 #ifdef RALINK_ETH_DEBUG
1001 #ifdef RA_FE_MDIO_CFG1
1002 printf("FE_MDIO_CFG1: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG1));
1003 #endif
1004 #ifdef RA_FE_MDIO_CFG2
1005 printf("FE_MDIO_CFG2: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG2));
1006 #endif
1007 printf("FE_PDMA_TX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_TX0_PTR));
1008 printf("FE_PDMA_TX0_COUNT: %08x\n",
1009 fe_read(sc, RA_FE_PDMA_TX0_COUNT));
1010 printf("FE_PDMA_TX0_CPU_IDX: %08x\n",
1011 fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX));
1012 printf("FE_PDMA_TX0_DMA_IDX: %08x\n",
1013 fe_read(sc, RA_FE_PDMA_TX0_DMA_IDX));
1014 printf("FE_PDMA_RX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_RX0_PTR));
1015 printf("FE_PDMA_RX0_COUNT: %08x\n",
1016 fe_read(sc, RA_FE_PDMA_RX0_COUNT));
1017 printf("FE_PDMA_RX0_CPU_IDX: %08x\n",
1018 fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX));
1019 printf("FE_PDMA_RX0_DMA_IDX: %08x\n",
1020 fe_read(sc, RA_FE_PDMA_RX0_DMA_IDX));
1021 printf("FE_PDMA_GLOBAL_CFG: %08x\n",
1022 fe_read(sc, RA_FE_PDMA_GLOBAL_CFG));
1023 #ifdef RA_FE_GLOBAL_CFG
1024 printf("FE_GLOBAL_CFG: %08x\n", fe_read(sc, RA_FE_GLOBAL_CFG));
1025 #endif
1026 #ifdef RA_FE_GDMA1_FWD_CFG
1027 printf("FE_GDMA1_FWD_CFG: %08x\n",
1028 fe_read(sc, RA_FE_GDMA1_FWD_CFG));
1029 #endif
1030 #ifdef RA_FE_CDMA_CSG_CFG
1031 printf("FE_CDMA_CSG_CFG: %08x\n", fe_read(sc, RA_FE_CDMA_CSG_CFG));
1032 #endif
1033 #ifdef RA_FE_PSE_FQ_CFG
1034 printf("FE_PSE_FQ_CFG: %08x\n", fe_read(sc, RA_FE_PSE_FQ_CFG));
1035 #endif
1036 #endif
1037
1038 /* Force PSE Reset to get everything finalized */
1039 #if defined(MT7628)
1040 #else
1041 fe_write(sc, RA_FE_GLOBAL_RESET, FE_GLOBAL_RESET_PSE);
1042 fe_write(sc, RA_FE_GLOBAL_RESET, 0);
1043 #endif
1044 }
1045
1046 /*
1047 * ralink_eth_init
1048 */
1049 static int
1050 ralink_eth_init(struct ifnet *ifp)
1051 {
1052 RALINK_DEBUG_FUNC_ENTRY();
1053 ralink_eth_softc_t * const sc = ifp->if_softc;
1054 int error;
1055
1056 error = ralink_eth_enable(sc);
1057 if (!error) {
1058 /* Note that the interface is now running. */
1059 ifp->if_flags |= IFF_RUNNING;
1060 ifp->if_flags &= ~IFF_OACTIVE;
1061 }
1062
1063 return error;
1064 }
1065
1066 /*
1067 * ralink_eth_rxdrain
1068 *
1069 * Drain the receive queue.
1070 */
1071 static void
1072 ralink_eth_rxdrain(ralink_eth_softc_t *sc)
1073 {
1074 RALINK_DEBUG_FUNC_ENTRY();
1075
1076 for (int i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
1077 struct ralink_eth_rxstate *rxs = &sc->sc_rxstate[i];
1078 if (rxs->rxs_mbuf != NULL) {
1079 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1080 m_freem(rxs->rxs_mbuf);
1081 rxs->rxs_mbuf = NULL;
1082 }
1083 }
1084 }
1085
1086 /*
1087 * ralink_eth_stop
1088 */
1089 static void
1090 ralink_eth_stop(struct ifnet *ifp, int disable)
1091 {
1092 RALINK_DEBUG_FUNC_ENTRY();
1093 ralink_eth_softc_t * const sc = ifp->if_softc;
1094
1095 ralink_eth_disable(sc);
1096
1097 /* Mark the interface down and cancel the watchdog timer. */
1098 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1099 ifp->if_timer = 0;
1100 }
1101
1102 /*
1103 * ralink_eth_add_rxbuf
1104 */
1105 static int
1106 ralink_eth_add_rxbuf(ralink_eth_softc_t *sc, int idx)
1107 {
1108 RALINK_DEBUG_FUNC_ENTRY();
1109 struct ralink_eth_rxstate * const rxs = &sc->sc_rxstate[idx];
1110 struct mbuf *m;
1111 int error;
1112
1113 MGETHDR(m, M_DONTWAIT, MT_DATA);
1114 if (m == NULL) {
1115 printf("MGETHDR failed\n");
1116 sc->sc_evcnt_add_rxbuf_hdr_fail.ev_count++;
1117 return ENOBUFS;
1118 }
1119
1120 MCLGET(m, M_DONTWAIT);
1121 if ((m->m_flags & M_EXT) == 0) {
1122 m_freem(m);
1123 printf("MCLGET failed\n");
1124 sc->sc_evcnt_add_rxbuf_mcl_fail.ev_count++;
1125 return ENOBUFS;
1126 }
1127
1128 m->m_data = m->m_ext.ext_buf;
1129 rxs->rxs_mbuf = m;
1130
1131 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
1132 m->m_ext.ext_size, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1133 if (error) {
1134 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, "
1135 "error=%d\n", idx, error);
1136 panic(__func__); /* XXX */
1137 }
1138
1139 sc->sc_rxdesc[idx].data_ptr = MIPS_KSEG0_TO_PHYS(
1140 rxs->rxs_dmamap->dm_segs[0].ds_addr + RALINK_ETHER_ALIGN);
1141 sc->sc_rxdesc[idx].rxd_info1 = RXD_LAST0;
1142
1143 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1144 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1145
1146 return 0;
1147 }
1148
1149
1150 /*
1151 * ralink_eth_start
1152 */
1153 static void
1154 ralink_eth_start(struct ifnet *ifp)
1155 {
1156 RALINK_DEBUG_FUNC_ENTRY();
1157 ralink_eth_softc_t * const sc = ifp->if_softc;
1158 struct mbuf *m0, *m = NULL;
1159 struct ralink_eth_txstate *txs;
1160 bus_dmamap_t dmamap;
1161 int tx_cpu_idx;
1162 int error;
1163 int s;
1164
1165 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1166 return;
1167
1168 s = splnet();
1169
1170 tx_cpu_idx = fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX);
1171
1172 /*
1173 * Loop through the send queue, setting up transmit descriptors
1174 * until we drain the queue, or use up all available
1175 * transmit descriptors.
1176 */
1177 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
1178 /* Grab a packet off the queue. */
1179 IFQ_POLL(&ifp->if_snd, m0);
1180 if (m0 == NULL)
1181 break;
1182
1183 dmamap = txs->txs_dmamap;
1184
1185 if (m0->m_pkthdr.len < RALINK_MIN_BUF) {
1186 int padlen = 64 - m0->m_pkthdr.len;
1187 m_copyback(m0, m0->m_pkthdr.len, padlen,
1188 sc->ralink_zero_buf);
1189 /* TODO : need some checking here */
1190 }
1191
1192 /*
1193 * Do we need to align the buffer
1194 * or does the DMA map load fail?
1195 */
1196 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1197 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
1198
1199 /* Allocate a new mbuf for re-alignment */
1200 MGETHDR(m, M_DONTWAIT, MT_DATA);
1201 if (m == NULL) {
1202 aprint_error_dev(sc->sc_dev,
1203 "unable to allocate aligned Tx mbuf\n");
1204 break;
1205 }
1206 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1207 if (m0->m_pkthdr.len > MHLEN) {
1208 MCLGET(m, M_DONTWAIT);
1209 if ((m->m_flags & M_EXT) == 0) {
1210 aprint_error_dev(sc->sc_dev,
1211 "unable to allocate Tx cluster\n");
1212 m_freem(m);
1213 break;
1214 }
1215 }
1216 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1217 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1218 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m,
1219 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1220 if (error) {
1221 aprint_error_dev(sc->sc_dev,
1222 "unable to load Tx buffer error=%d\n",
1223 error);
1224 m_freem(m);
1225 break;
1226 }
1227 }
1228
1229 IFQ_DEQUEUE(&ifp->if_snd, m0);
1230 /* did we copy the buffer out already? */
1231 if (m != NULL) {
1232 m_freem(m0);
1233 m0 = m;
1234 }
1235
1236 /* Sync the DMA map. */
1237 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1238 BUS_DMASYNC_PREWRITE);
1239
1240 /* Initialize the transmit descriptor */
1241 sc->sc_txdesc[tx_cpu_idx].data_ptr0 =
1242 MIPS_KSEG0_TO_PHYS(dmamap->dm_segs[0].ds_addr);
1243 sc->sc_txdesc[tx_cpu_idx].txd_info1 =
1244 TXD_LEN0(dmamap->dm_segs[0].ds_len) | TXD_LAST0;
1245 sc->sc_txdesc[tx_cpu_idx].txd_info2 =
1246 TXD_QN(3) | TXD_PN(TXD_PN_GDMA1);
1247 sc->sc_txdesc[tx_cpu_idx].txd_info2 = TXD_QN(3) |
1248 TXD_PN(TXD_PN_GDMA1) | TXD_VEN |
1249 // TXD_VIDX(pt->vlan_id) |
1250 TXD_TCP_EN | TXD_UDP_EN | TXD_IP_EN;
1251
1252 RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1253 tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr0,
1254 sc->sc_txdesc[tx_cpu_idx].data_ptr0);
1255 RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1256 tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].txd_info1,
1257 sc->sc_txdesc[tx_cpu_idx].txd_info1);
1258 RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1259 tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr1,
1260 sc->sc_txdesc[tx_cpu_idx].data_ptr1);
1261 RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1262 tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].txd_info2,
1263 sc->sc_txdesc[tx_cpu_idx].txd_info2);
1264
1265 /* sync the descriptor we're using. */
1266 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1267 (int)&sc->sc_txdesc[tx_cpu_idx] - (int)sc->sc_descs,
1268 sizeof(struct ralink_tx_desc),
1269 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1270
1271 /*
1272 * Store a pointer to the packet so we can free it later,
1273 * and remember what txdirty will be once the packet is
1274 * done.
1275 */
1276 txs->txs_mbuf = m0;
1277 sc->sc_pending_tx++;
1278 if (txs->txs_idx != tx_cpu_idx) {
1279 panic("txs_idx doesn't match %d != %d\n",
1280 txs->txs_idx, tx_cpu_idx);
1281 }
1282
1283 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1284 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1285
1286 /* Pass the packet to any BPF listeners. */
1287 bpf_mtap(ifp, m0, BPF_D_OUT);
1288
1289 /* Set a watchdog timer in case the chip flakes out. */
1290 ifp->if_timer = 5;
1291
1292 tx_cpu_idx = (tx_cpu_idx + 1) % RALINK_ETH_NUM_TX_DESC;
1293
1294 /* Write back the tx_cpu_idx */
1295 fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, tx_cpu_idx);
1296 }
1297
1298 if (txs == NULL) {
1299 /* No more slots left; notify upper layer. */
1300 ifp->if_flags |= IFF_OACTIVE;
1301 }
1302
1303 splx(s);
1304 }
1305
1306 /*
1307 * ralink_eth_watchdog
1308 *
1309 * Watchdog timer handler.
1310 */
1311 static void
1312 ralink_eth_watchdog(struct ifnet *ifp)
1313 {
1314 RALINK_DEBUG_FUNC_ENTRY();
1315 ralink_eth_softc_t * const sc = ifp->if_softc;
1316 bool doing_transmit;
1317
1318 sc->sc_evcnt_watchdog.ev_count++;
1319 doing_transmit = !SIMPLEQ_EMPTY(&sc->sc_txdirtyq);
1320
1321 if (doing_transmit) {
1322 RALINK_DEBUG(RALINK_DEBUG_ERROR, "%s: transmit timeout\n",
1323 ifp->if_xname);
1324 ifp->if_oerrors++;
1325 sc->sc_evcnt_wd_tx.ev_count++;
1326 } else {
1327 RALINK_DEBUG(RALINK_DEBUG_ERROR,
1328 "%s: spurious watchog timeout\n", ifp->if_xname);
1329 sc->sc_evcnt_wd_spurious.ev_count++;
1330 return;
1331 }
1332
1333 sc->sc_evcnt_wd_reactivate.ev_count++;
1334 const int s = splnet();
1335 /* deactive the active partitions, retaining the active information */
1336 ralink_eth_disable(sc);
1337 ralink_eth_enable(sc);
1338 splx(s);
1339
1340 /* Try to get more packets going. */
1341 ralink_eth_start(ifp);
1342 }
1343
1344 /*
1345 * ralink_eth_ioctl
1346 *
1347 * Handle control requests from the operator.
1348 */
1349 static int
1350 ralink_eth_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1351 {
1352 RALINK_DEBUG_FUNC_ENTRY();
1353 struct ifdrv * const ifd = (struct ifdrv *) data;
1354 ralink_eth_softc_t * const sc = ifp->if_softc;
1355 int s, error = 0;
1356
1357 RALINK_DEBUG(RALINK_DEBUG_INFO, "ifp: %p cmd: %lu data: %p\n",
1358 ifp, cmd, data);
1359
1360 s = splnet();
1361
1362 switch (cmd) {
1363 case SIOCSDRVSPEC:
1364 switch (ifd->ifd_cmd) {
1365 #if 0
1366 case ETH_SWITCH_CMD_PORT_MODE:
1367 /* len parameter is the mode */
1368 pt->mode = (int) ifd->ifd_len;
1369 ralink_eth_configure_switch(pt->sc_reth);
1370 break;
1371 #endif
1372 default:
1373 error = EINVAL;
1374 }
1375 break;
1376 default:
1377 error = ether_ioctl(ifp, cmd, data);
1378 if (error == ENETRESET) {
1379 if (ifp->if_flags & IFF_RUNNING) {
1380 /*
1381 * Multicast list has changed. Set the
1382 * hardware filter accordingly.
1383 */
1384 RALINK_DEBUG(RALINK_DEBUG_INFO, "TODO!!!");
1385 #if 0
1386 ralink_eth_filter_setup(sc);
1387 #endif
1388 }
1389 error = 0;
1390 }
1391 break;
1392 }
1393
1394 splx(s);
1395
1396 /* Try to get more packets going. */
1397 if (sc->sc_ih != NULL)
1398 ralink_eth_start(ifp);
1399
1400 return error;
1401 }
1402
1403 /*
1404 * ralink_eth_intr
1405 *
1406 */
1407 static int
1408 ralink_eth_intr(void *arg)
1409 {
1410 RALINK_DEBUG_FUNC_ENTRY();
1411 ralink_eth_softc_t * const sc = arg;
1412
1413 for (u_int n = 0;; n = 1) {
1414 u_int32_t status = fe_read(sc, RA_FE_INT_STATUS);
1415 fe_write(sc, RA_FE_INT_STATUS, ~0);
1416 RALINK_DEBUG(RALINK_DEBUG_REG,"%s() status: 0x%08x\n",
1417 __func__, status);
1418 #if defined(MT7628)
1419 if ((status & (RA_FE_INT_RX_DONE_INT1 | RA_FE_INT_RX_DONE_INT0 |
1420 RA_FE_INT_TX_DONE_INT3 | RA_FE_INT_TX_DONE_INT2 |
1421 RA_FE_INT_TX_DONE_INT1 | RA_FE_INT_TX_DONE_INT0)) == 0) {
1422 if (n == 0)
1423 sc->sc_evcnt_spurious_intr.ev_count++;
1424 return (n != 0);
1425 }
1426
1427 if (status & (RA_FE_INT_RX_DONE_INT1 | RA_FE_INT_RX_DONE_INT0))
1428 ralink_eth_rxintr(sc);
1429
1430 if (status & (RA_FE_INT_TX_DONE_INT3 | RA_FE_INT_TX_DONE_INT2 |
1431 RA_FE_INT_TX_DONE_INT1 | RA_FE_INT_TX_DONE_INT0))
1432 ralink_eth_txintr(sc);
1433 #else
1434 if ((status & (FE_INT_RX | FE_INT_TX0)) == 0) {
1435 if (n == 0)
1436 sc->sc_evcnt_spurious_intr.ev_count++;
1437 return (n != 0);
1438 }
1439
1440 if (status & FE_INT_RX)
1441 ralink_eth_rxintr(sc);
1442
1443 if (status & FE_INT_TX0)
1444 ralink_eth_txintr(sc);
1445 #endif
1446 }
1447
1448 /* Try to get more packets going. */
1449 if_schedule_deferred_start(&sc->sc_ethercom.ec_if);
1450
1451 return 1;
1452 }
1453
1454 /*
1455 * ralink_eth_rxintr
1456 */
1457 static void
1458 ralink_eth_rxintr(ralink_eth_softc_t *sc)
1459 {
1460 RALINK_DEBUG_FUNC_ENTRY();
1461 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1462 struct ralink_eth_rxstate *rxs;
1463 struct mbuf *m;
1464 int len;
1465 int rx_cpu_idx;
1466
1467 KASSERT(curcpu()->ci_cpl >= IPL_NET);
1468 sc->sc_evcnt_rxintr.ev_count++;
1469 rx_cpu_idx = fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX);
1470
1471 for (;;) {
1472 rx_cpu_idx = (rx_cpu_idx + 1) % RALINK_ETH_NUM_RX_DESC;
1473
1474 rxs = &sc->sc_rxstate[rx_cpu_idx];
1475
1476 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1477 (int)&sc->sc_rxdesc[rx_cpu_idx] - (int)sc->sc_descs,
1478 sizeof(struct ralink_rx_desc),
1479 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1480
1481 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1482 rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].data_ptr,
1483 sc->sc_rxdesc[rx_cpu_idx].data_ptr);
1484 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1485 rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info1,
1486 sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
1487 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1488 rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].unused,
1489 sc->sc_rxdesc[rx_cpu_idx].unused);
1490 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1491 rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info2,
1492 sc->sc_rxdesc[rx_cpu_idx].rxd_info2);
1493
1494 if (!(sc->sc_rxdesc[rx_cpu_idx].rxd_info1 & RXD_DDONE))
1495 break;
1496
1497 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1498 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1499
1500 /*
1501 * No errors; receive the packet.
1502 * Note the chip includes the CRC with every packet.
1503 */
1504 len = RXD_LEN0(sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
1505
1506 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) packet rx %d bytes\n",
1507 rx_cpu_idx, len);
1508
1509 /*
1510 * Allocate a new mbuf cluster. If that fails, we are
1511 * out of memory, and must drop the packet and recycle
1512 * the buffer that's already attached to this descriptor.
1513 */
1514 m = rxs->rxs_mbuf;
1515 if (ralink_eth_add_rxbuf(sc, rx_cpu_idx) != 0)
1516 break;
1517 m->m_data += RALINK_ETHER_ALIGN;
1518 m->m_pkthdr.len = m->m_len = len;
1519
1520 #ifdef RALINK_ETH_DEBUG
1521 {
1522 struct ether_header *eh = mtod(m, struct ether_header *);
1523 printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
1524 printf("rx: eth_src: %s type: 0x%04x \n",
1525 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
1526 printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
1527 printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
1528
1529 unsigned char * s = mtod(m, unsigned char *);
1530 for (int j = 0; j < 32; j++)
1531 printf("%02x%c", *(s + j),
1532 (j == 15 || j == 31) ? '\n' : ' ');
1533 }
1534 #endif
1535
1536 /*
1537 * claim the buffer here since we can't do it at
1538 * allocation time due to the SW partitions
1539 */
1540 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1541
1542 /* push it up the inteface */
1543 m_set_rcvif(m, ifp);
1544
1545 #ifdef RALINK_ETH_DEBUG
1546 {
1547 struct ether_header *eh = mtod(m, struct ether_header *);
1548 printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
1549 printf("rx: eth_src: %s type: 0x%04x\n",
1550 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
1551 printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
1552 printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
1553
1554 unsigned char * s = mtod(m, unsigned char *);
1555 for (int j = 0; j < 32; j++)
1556 printf("%02x%c", *(s + j),
1557 (j == 15 || j == 31) ? '\n' : ' ');
1558 }
1559 #endif
1560
1561 /*
1562 * XXX: M_CSUM_TCPv4 and M_CSUM_UDPv4 do not currently work when
1563 * using PF's ROUTETO option for load balancing.
1564 */
1565 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1566
1567 /* Pass it on. */
1568 sc->sc_evcnt_input.ev_count++;
1569 if_percpuq_enqueue(ifp->if_percpuq, m);
1570
1571 fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX, rx_cpu_idx);
1572 }
1573 }
1574
1575 /*
1576 * ralink_eth_txintr
1577 */
1578 static void
1579 ralink_eth_txintr(ralink_eth_softc_t *sc)
1580 {
1581 RALINK_DEBUG_FUNC_ENTRY();
1582 struct ralink_eth_txstate *txs;
1583
1584 KASSERT(curcpu()->ci_cpl >= IPL_NET);
1585 sc->sc_evcnt_txintr.ev_count++;
1586
1587 /*
1588 * Go through our Tx list and free mbufs for those
1589 * frames that have been transmitted.
1590 */
1591 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1592 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1593 (int)&sc->sc_txdesc[txs->txs_idx] - (int)sc->sc_descs,
1594 sizeof(struct ralink_tx_desc),
1595 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1596
1597 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
1598 txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].data_ptr0,
1599 sc->sc_txdesc[txs->txs_idx].data_ptr0);
1600 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
1601 txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].txd_info1,
1602 sc->sc_txdesc[txs->txs_idx].txd_info1);
1603 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
1604 txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].data_ptr1,
1605 sc->sc_txdesc[txs->txs_idx].data_ptr1);
1606 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n",
1607 txs->txs_idx, (int)&sc->sc_txdesc[txs->txs_idx].txd_info2,
1608 sc->sc_txdesc[txs->txs_idx].txd_info2);
1609
1610 /* we're finished if the current tx isn't done */
1611 if (!(sc->sc_txdesc[txs->txs_idx].txd_info1 & TXD_DDONE))
1612 break;
1613
1614 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) transmitted\n",
1615 txs->txs_idx);
1616
1617 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1618
1619 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1620 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1621 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1622 m_freem(txs->txs_mbuf);
1623 txs->txs_mbuf = NULL;
1624
1625 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1626
1627 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1628 ifp->if_flags &= ~IFF_OACTIVE;
1629 ifp->if_opackets++;
1630 sc->sc_evcnt_output.ev_count++;
1631
1632 if (--sc->sc_pending_tx == 0)
1633 ifp->if_timer = 0;
1634 }
1635 }
1636
1637 /*
1638 * ralink_eth_mdio_enable
1639 */
1640 #if defined(RT3050) || defined(RT3052)
1641 static void
1642 ralink_eth_mdio_enable(ralink_eth_softc_t *sc, bool enable)
1643 {
1644 uint32_t data = sy_read(sc, RA_SYSCTL_GPIOMODE);
1645
1646 if (enable)
1647 data &= ~GPIOMODE_MDIO;
1648 else
1649 data |= GPIOMODE_MDIO;
1650
1651 sy_write(sc, RA_SYSCTL_GPIOMODE, data);
1652 }
1653 #else
1654 #define ralink_eth_mdio_enable(sc, enable)
1655 #endif
1656
1657 /*
1658 * ralink_eth_mii_statchg
1659 */
1660 static void
1661 ralink_eth_mii_statchg(struct ifnet *ifp)
1662 {
1663 #if 0
1664 ralink_eth_softc_t * const sc = ifp->if_softc;
1665
1666 #endif
1667 }
1668
1669 /*
1670 * ralink_eth_mii_tick
1671 *
1672 * One second timer, used to tick the MIIs.
1673 */
1674 static void
1675 ralink_eth_mii_tick(void *arg)
1676 {
1677 ralink_eth_softc_t * const sc = arg;
1678
1679 const int s = splnet();
1680 mii_tick(&sc->sc_mii);
1681 splx(s);
1682
1683 callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
1684 }
1685
1686 /*
1687 * ralink_eth_mii_read
1688 */
1689 static int
1690 ralink_eth_mii_read(device_t self, int phy_addr, int phy_reg, uint16_t *val)
1691 {
1692 ralink_eth_softc_t *sc = device_private(self);
1693 KASSERT(sc != NULL);
1694 #if 0
1695 printf("%s() phy_addr: %d phy_reg: %d\n", __func__, phy_addr, phy_reg);
1696 #endif
1697 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1698 if (phy_addr > 5)
1699 return -1;
1700 #endif
1701
1702 /* We enable mdio gpio purpose register, and disable it when exit. */
1703 ralink_eth_mdio_enable(sc, true);
1704
1705 /*
1706 * make sure previous read operation is complete
1707 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1708 */
1709 for (;;) {
1710 /* rd_rdy: read operation is complete */
1711 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1712 if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
1713 break;
1714 #else
1715 if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
1716 break;
1717 #endif
1718 }
1719
1720 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1721 sw_write(sc, RA_ETH_SW_PCTL0,
1722 PCTL0_RD_CMD | PCTL0_REG(phy_reg) | PCTL0_ADDR(phy_addr));
1723 #else
1724 fe_write(sc, RA_FE_MDIO_ACCESS,
1725 MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg));
1726 fe_write(sc, RA_FE_MDIO_ACCESS,
1727 MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg) |
1728 MDIO_ACCESS_TRG);
1729 #endif
1730
1731 /*
1732 * make sure read operation is complete
1733 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1734 */
1735 for (;;) {
1736 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1737 if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) != 0) {
1738 *val = PCTL1_RD_VAL(
1739 sw_read(sc, RA_ETH_SW_PCTL1));
1740 ralink_eth_mdio_enable(sc, false);
1741 return 0;
1742 }
1743 #else
1744 if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0) {
1745 *val = MDIO_ACCESS_DATA(
1746 fe_read(sc, RA_FE_MDIO_ACCESS));
1747 ralink_eth_mdio_enable(sc, false);
1748 return 0;
1749 }
1750 #endif
1751 }
1752 }
1753
1754 /*
1755 * ralink_eth_mii_write
1756 */
1757 static int
1758 ralink_eth_mii_write(device_t self, int phy_addr, int phy_reg, uint16_t val)
1759 {
1760 ralink_eth_softc_t *sc = device_private(self);
1761 KASSERT(sc != NULL);
1762 #if 0
1763 printf("%s() phy_addr: %d phy_reg: %d val: 0x%04x\n",
1764 __func__, phy_addr, phy_reg, val);
1765 #endif
1766 ralink_eth_mdio_enable(sc, true);
1767
1768 /*
1769 * make sure previous write operation is complete
1770 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1771 */
1772 for (;;) {
1773 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1774 if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
1775 break;
1776 #else
1777 if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
1778 break;
1779 #endif
1780 }
1781
1782 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1783 sw_write(sc, RA_ETH_SW_PCTL0,
1784 PCTL0_WR_CMD | PCTL0_WR_VAL(val) | PCTL0_REG(phy_reg) |
1785 PCTL0_ADDR(phy_addr));
1786 #else
1787 fe_write(sc, RA_FE_MDIO_ACCESS,
1788 MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
1789 MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val));
1790 fe_write(sc, RA_FE_MDIO_ACCESS,
1791 MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
1792 MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val) |
1793 MDIO_ACCESS_TRG);
1794 #endif
1795
1796
1797 /* make sure write operation is complete */
1798 for (;;) {
1799 #if defined(RT3050) || defined(RT3052) || defined(MT7628)
1800 if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_WR_DONE) != 0) {
1801 ralink_eth_mdio_enable(sc, false);
1802 return 0;
1803 }
1804 #else
1805 if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0) {
1806 ralink_eth_mdio_enable(sc, false);
1807 return 0;
1808 }
1809 #endif
1810 }
1811 }
1812