ralink_eth.c revision 1.4 1 /* $NetBSD: ralink_eth.c,v 1.4 2011/08/03 17:34:27 matt Exp $ */
2 /*-
3 * Copyright (c) 2011 CradlePoint Technology, Inc.
4 * All rights reserved.
5 *
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY CRADLEPOINT TECHNOLOGY, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* ralink_eth.c -- Ralink Ethernet Driver */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: ralink_eth.c,v 1.4 2011/08/03 17:34:27 matt Exp $");
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/callout.h>
37 #include <sys/device.h>
38 #include <sys/endian.h>
39 #include <sys/errno.h>
40 #include <sys/ioctl.h>
41 #include <sys/intr.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/systm.h>
47
48 #include <uvm/uvm_extern.h>
49
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_ether.h>
54 #include <net/if_vlanvar.h>
55
56 #include <net/bpf.h>
57
58 #include <dev/mii/mii.h>
59 #include <dev/mii/miivar.h>
60 #include <dev/mii/mii_bitbang.h>
61
62 #include <mips/ralink/ralink_var.h>
63 #include <mips/ralink/ralink_reg.h>
64 #if 0
65 #define CPDEBUG /* XXX TMP DEBUG FIXME */
66 #define RALINK_ETH_DEBUG /* XXX TMP DEBUG FIXME */
67 #define ENABLE_RALINK_DEBUG_ERROR 1
68 #define ENABLE_RALINK_DEBUG_MISC 1
69 #define ENABLE_RALINK_DEBUG_INFO 1
70 #define ENABLE_RALINK_DEBUG_FORCE 1
71 #define ENABLE_RALINK_DEBUG_REG 1
72 #endif
73 #include <mips/ralink/ralink_debug.h>
74
75
76 /* PDMA RX Descriptor Format */
77 struct ralink_rx_desc {
78 uint32_t data_ptr;
79 uint32_t rxd_info1;
80 #define RXD_LEN1(x) (((x) >> 0) & 0x3fff)
81 #define RXD_LAST1 (1 << 14)
82 #define RXD_LEN0(x) (((x) >> 16) & 0x3fff)
83 #define RXD_LAST0 (1 << 30)
84 #define RXD_DDONE (1 << 31)
85 uint32_t unused;
86 uint32_t rxd_info2;
87 #define RXD_FOE(x) (((x) >> 0) & 0x3fff)
88 #define RXD_FVLD (1 << 14)
89 #define RXD_INFO(x) (((x) >> 16) & 0xff)
90 #define RXD_PORT(x) (((x) >> 24) & 0x7)
91 #define RXD_INFO_CPU (1 << 27)
92 #define RXD_L4_FAIL (1 << 28)
93 #define RXD_IP_FAIL (1 << 29)
94 #define RXD_L4_VLD (1 << 30)
95 #define RXD_IP_VLD (1 << 31)
96 };
97
98 /* PDMA RX Descriptor Format */
99 struct ralink_tx_desc {
100 uint32_t data_ptr0;
101 uint32_t txd_info1;
102 #define TXD_LEN1(x) (((x) & 0x3fff) << 0)
103 #define TXD_LAST1 (1 << 14)
104 #define TXD_BURST (1 << 15)
105 #define TXD_LEN0(x) (((x) & 0x3fff) << 16)
106 #define TXD_LAST0 (1 << 30)
107 #define TXD_DDONE (1 << 31)
108 uint32_t data_ptr1;
109 uint32_t txd_info2;
110 #define TXD_VIDX(x) (((x) & 0xf) << 0)
111 #define TXD_VPRI(x) (((x) & 0x7) << 4)
112 #define TXD_VEN (1 << 7)
113 #define TXD_SIDX(x) (((x) & 0xf) << 8)
114 #define TXD_SEN(x) (1 << 13)
115 #define TXD_QN(x) (((x) & 0x7) << 16)
116 #define TXD_PN(x) (((x) & 0x7) << 24)
117 #define TXD_PN_CPU 0
118 #define TXD_PN_GDMA1 1
119 #define TXD_PN_GDMA2 2
120 #define TXD_TCP_EN (1 << 29)
121 #define TXD_UDP_EN (1 << 30)
122 #define TXD_IP_EN (1 << 31)
123 };
124
125 /* TODO:
126 * try to scale number of descriptors swith size of memory
127 * these numbers may have a significant impact on performance/memory/mbuf usage
128 */
129 #if RTMEMSIZE >= 64
130 #define RALINK_ETH_NUM_RX_DESC 256
131 #define RALINK_ETH_NUM_TX_DESC 256
132 #else
133 #define RALINK_ETH_NUM_RX_DESC 64
134 #define RALINK_ETH_NUM_TX_DESC 64
135 #endif
136 /* maximum segments per packet */
137 #define RALINK_ETH_MAX_TX_SEGS 1
138
139 /* define a struct for ease of dma memory allocation */
140 struct ralink_descs {
141 struct ralink_rx_desc rxdesc[RALINK_ETH_NUM_RX_DESC];
142 struct ralink_tx_desc txdesc[RALINK_ETH_NUM_TX_DESC];
143 };
144
145 /* Software state for transmit jobs. */
146 struct ralink_eth_txstate {
147 struct mbuf *txs_mbuf; /* head of our mbuf chain */
148 bus_dmamap_t txs_dmamap; /* our DMA map */
149 int txs_idx; /* the index in txdesc ring that */
150 /* this state is tracking */
151 SIMPLEQ_ENTRY(ralink_eth_txstate) txs_q;
152 };
153
154 SIMPLEQ_HEAD(ralink_eth_txsq, ralink_eth_txstate);
155
156 /*
157 * Software state for receive jobs.
158 */
159 struct ralink_eth_rxstate {
160 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
161 bus_dmamap_t rxs_dmamap; /* our DMA map */
162 };
163
164 typedef struct ralink_eth_softc {
165 device_t sc_dev; /* generic device information */
166 bus_space_tag_t sc_memt; /* bus space tag */
167 bus_space_handle_t sc_sy_memh; /* handle at SYSCTL_BASE */
168 bus_space_handle_t sc_fe_memh; /* handle at FRAME_ENGINE_BASE */
169 bus_space_handle_t sc_sw_memh; /* handle at ETH_SW_BASE */
170 int sc_sy_size; /* size of Sysctl regs space */
171 int sc_fe_size; /* size of Frame Engine regs space */
172 int sc_sw_size; /* size of Ether Switch regs space */
173 bus_dma_tag_t sc_dmat; /* bus DMA tag */
174 void *sc_ih; /* interrupt handle */
175
176 /* tx/rx dma mapping */
177 bus_dma_segment_t sc_dseg;
178 int sc_ndseg;
179 bus_dmamap_t sc_pdmamap; /* PDMA DMA map */
180 #define sc_pdma sc_pdmamap->dm_segs[0].ds_addr
181
182 struct ralink_descs *sc_descs;
183 #define sc_rxdesc sc_descs->rxdesc
184 #define sc_txdesc sc_descs->txdesc
185
186 #define RALINK_MIN_BUF 64
187 char ralink_zero_buf[RALINK_MIN_BUF];
188
189 struct ralink_eth_txstate sc_txstate[RALINK_ETH_NUM_TX_DESC];
190 struct ralink_eth_rxstate sc_rxstate[RALINK_ETH_NUM_RX_DESC];
191
192 struct ralink_eth_txsq sc_txfreeq; /* free Tx descsofts */
193 struct ralink_eth_txsq sc_txdirtyq; /* dirty Tx descsofts */
194
195 struct ethercom sc_ethercom; /* ethernet common data */
196 u_int sc_pending_tx;
197
198 /* mii */
199 struct mii_data sc_mii;
200 struct callout sc_tick_callout;
201
202 struct evcnt sc_evcnt_spurious_intr;
203 struct evcnt sc_evcnt_rxintr;
204 struct evcnt sc_evcnt_rxintr_skip_len;
205 struct evcnt sc_evcnt_rxintr_skip_tag_none;
206 struct evcnt sc_evcnt_rxintr_skip_tag_inval;
207 struct evcnt sc_evcnt_rxintr_skip_inact;
208 struct evcnt sc_evcnt_txintr;
209 struct evcnt sc_evcnt_input;
210 struct evcnt sc_evcnt_output;
211 struct evcnt sc_evcnt_watchdog;
212 struct evcnt sc_evcnt_wd_reactivate;
213 struct evcnt sc_evcnt_wd_tx;
214 struct evcnt sc_evcnt_wd_spurious;
215 struct evcnt sc_evcnt_add_rxbuf_hdr_fail;
216 struct evcnt sc_evcnt_add_rxbuf_mcl_fail;
217 } ralink_eth_softc_t;
218
219 /* alignment so the IP header is aligned */
220 #define RALINK_ETHER_ALIGN 2
221
222 /* device functions */
223 static int ralink_eth_match(device_t, cfdata_t, void *);
224 static void ralink_eth_attach(device_t, device_t, void *);
225 static int ralink_eth_detach(device_t, int);
226 static int ralink_eth_activate(device_t, enum devact);
227
228 /* local driver functions */
229 static void ralink_eth_hw_init(ralink_eth_softc_t *);
230 static int ralink_eth_intr(void *);
231 static void ralink_eth_reset(ralink_eth_softc_t *);
232 static void ralink_eth_rxintr(ralink_eth_softc_t *);
233 static void ralink_eth_txintr(ralink_eth_softc_t *);
234
235 /* partition functions */
236 static int ralink_eth_enable(ralink_eth_softc_t *);
237 static void ralink_eth_disable(ralink_eth_softc_t *);
238
239 /* ifnet functions */
240 static int ralink_eth_init(struct ifnet *);
241 static void ralink_eth_rxdrain(ralink_eth_softc_t *);
242 static void ralink_eth_stop(struct ifnet *, int);
243 static int ralink_eth_add_rxbuf(ralink_eth_softc_t *, int);
244 static void ralink_eth_start(struct ifnet *);
245 static void ralink_eth_watchdog(struct ifnet *);
246 static int ralink_eth_ioctl(struct ifnet *, u_long, void *);
247
248 /* mii functions */
249 #if defined(RT3050) || defined(RT3052)
250 static void ralink_eth_mdio_enable(ralink_eth_softc_t *, bool);
251 #endif
252 static void ralink_eth_mii_statchg(device_t);
253 static void ralink_eth_mii_tick(void *);
254 static int ralink_eth_mii_read(device_t, int, int);
255 static void ralink_eth_mii_write(device_t, int, int, int);
256
257 CFATTACH_DECL_NEW(reth, sizeof(struct ralink_eth_softc),
258 ralink_eth_match, ralink_eth_attach, ralink_eth_detach, ralink_eth_activate);
259
260 static inline uint32_t
261 sy_read(const ralink_eth_softc_t *sc, const bus_size_t off)
262 {
263 return bus_space_read_4(sc->sc_memt, sc->sc_sy_memh, off);
264 }
265
266 static inline void
267 sy_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
268 {
269 bus_space_write_4(sc->sc_memt, sc->sc_sy_memh, off, val);
270 }
271
272 static inline uint32_t
273 fe_read(const ralink_eth_softc_t *sc, const bus_size_t off)
274 {
275 return bus_space_read_4(sc->sc_memt, sc->sc_fe_memh, off);
276 }
277
278 static inline void
279 fe_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
280 {
281 bus_space_write_4(sc->sc_memt, sc->sc_fe_memh, off, val);
282 }
283
284 static inline uint32_t
285 sw_read(const ralink_eth_softc_t *sc, const bus_size_t off)
286 {
287 return bus_space_read_4(sc->sc_memt, sc->sc_sw_memh, off);
288 }
289
290 static inline void
291 sw_write(const ralink_eth_softc_t *sc, const bus_size_t off, const uint32_t val)
292 {
293 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, off, val);
294 }
295
296 /*
297 * ralink_eth_match
298 */
299 int
300 ralink_eth_match(device_t parent, cfdata_t cf, void *aux)
301 {
302 return 1;
303 }
304
305 /*
306 * ralink_eth_attach
307 */
308 void
309 ralink_eth_attach(device_t parent, device_t self, void *aux)
310 {
311 ralink_eth_softc_t * const sc = device_private(self);
312 const struct mainbus_attach_args *ma = aux;
313 int error;
314 int i;
315
316 aprint_naive(": Ralink Ethernet\n");
317 aprint_normal(": Ralink Ethernet\n");
318
319 evcnt_attach_dynamic(&sc->sc_evcnt_spurious_intr, EVCNT_TYPE_INTR, NULL,
320 device_xname(self), "spurious intr");
321 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr, EVCNT_TYPE_INTR, NULL,
322 device_xname(self), "rxintr");
323 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_len,
324 EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
325 device_xname(self), "rxintr skip: no room for VLAN header");
326 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_none,
327 EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
328 device_xname(self), "rxintr skip: no VLAN tag");
329 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_tag_inval,
330 EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
331 device_xname(self), "rxintr skip: invalid VLAN tag");
332 evcnt_attach_dynamic(&sc->sc_evcnt_rxintr_skip_inact,
333 EVCNT_TYPE_INTR, &sc->sc_evcnt_rxintr,
334 device_xname(self), "rxintr skip: partition inactive");
335 evcnt_attach_dynamic(&sc->sc_evcnt_txintr, EVCNT_TYPE_INTR, NULL,
336 device_xname(self), "txintr");
337 evcnt_attach_dynamic(&sc->sc_evcnt_input, EVCNT_TYPE_INTR, NULL,
338 device_xname(self), "input");
339 evcnt_attach_dynamic(&sc->sc_evcnt_output, EVCNT_TYPE_INTR, NULL,
340 device_xname(self), "output");
341 evcnt_attach_dynamic(&sc->sc_evcnt_watchdog, EVCNT_TYPE_INTR, NULL,
342 device_xname(self), "watchdog");
343 evcnt_attach_dynamic(&sc->sc_evcnt_wd_tx,
344 EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
345 device_xname(self), "watchdog TX timeout");
346 evcnt_attach_dynamic(&sc->sc_evcnt_wd_spurious,
347 EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
348 device_xname(self), "watchdog spurious");
349 evcnt_attach_dynamic(&sc->sc_evcnt_wd_reactivate,
350 EVCNT_TYPE_INTR, &sc->sc_evcnt_watchdog,
351 device_xname(self), "watchdog reactivate");
352 evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_hdr_fail,
353 EVCNT_TYPE_INTR, NULL,
354 device_xname(self), "add rxbuf hdr fail");
355 evcnt_attach_dynamic(&sc->sc_evcnt_add_rxbuf_mcl_fail,
356 EVCNT_TYPE_INTR, NULL,
357 device_xname(self), "add rxbuf mcl fail");
358
359 /*
360 * In order to obtain unique initial Ethernet address on a host,
361 * do some randomisation using the current uptime. It's not meant
362 * for anything but avoiding hard-coding an address.
363 */
364 uint8_t enaddr[ETHER_ADDR_LEN] = { 0x00, 0x30, 0x44, 0x00, 0x00, 0x00 };
365
366 sc->sc_dev = self;
367 sc->sc_dmat = ma->ma_dmat;
368 sc->sc_memt = ma->ma_memt;
369 sc->sc_sy_size = 0x10000;
370 sc->sc_fe_size = 0x10000;
371 sc->sc_sw_size = 0x08000;
372
373 /*
374 * map the registers
375 *
376 * we map the Sysctl, Frame Engine and Ether Switch registers
377 * seperately so we can use the defined register offsets sanely
378 */
379 if ((error = bus_space_map(sc->sc_memt, RA_SYSCTL_BASE,
380 sc->sc_sy_size, 0, &sc->sc_sy_memh)) != 0) {
381 aprint_error_dev(self, "unable to map Sysctl registers, "
382 "error=%d\n", error);
383 goto fail_0a;
384 }
385 if ((error = bus_space_map(sc->sc_memt, RA_FRAME_ENGINE_BASE,
386 sc->sc_fe_size, 0, &sc->sc_fe_memh)) != 0) {
387 aprint_error_dev(self, "unable to map Frame Engine registers, "
388 "error=%d\n", error);
389 goto fail_0b;
390 }
391 if ((error = bus_space_map(sc->sc_memt, RA_ETH_SW_BASE,
392 sc->sc_sw_size, 0, &sc->sc_sw_memh)) != 0) {
393 aprint_error_dev(self, "unable to map Ether Switch registers, "
394 "error=%d\n", error);
395 goto fail_0c;
396 }
397
398 /* Allocate desc structures, and create & load the DMA map for them */
399 if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct ralink_descs),
400 PAGE_SIZE, 0, &sc->sc_dseg, 1, &sc->sc_ndseg, 0)) != 0) {
401 aprint_error_dev(self, "unable to allocate transmit descs, "
402 "error=%d\n", error);
403 goto fail_1;
404 }
405
406 if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg,
407 sizeof(struct ralink_descs), (void **)&sc->sc_descs, BUS_DMA_COHERENT))
408 != 0) {
409 aprint_error_dev(self, "unable to map control data, "
410 "error=%d\n", error);
411 goto fail_2;
412 }
413
414 if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct ralink_descs), 1,
415 sizeof(struct ralink_descs), 0, 0, &sc->sc_pdmamap)) != 0) {
416 aprint_error_dev(self, "unable to create control data DMA map, "
417 "error=%d\n", error);
418 goto fail_3;
419 }
420
421 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_pdmamap, sc->sc_descs,
422 sizeof(struct ralink_descs), NULL, 0)) != 0) {
423 aprint_error_dev(self, "unable to load control data DMA map, "
424 "error=%d\n", error);
425 goto fail_4;
426 }
427
428 /* Create the transmit buffer DMA maps. */
429 for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
430 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
431 RALINK_ETH_MAX_TX_SEGS, MCLBYTES, 0, 0,
432 &sc->sc_txstate[i].txs_dmamap)) != 0) {
433 aprint_error_dev(self, "unable to create tx DMA map %d, "
434 "error=%d\n", i, error);
435 goto fail_5;
436 }
437 }
438
439 /* Create the receive buffer DMA maps. */
440 for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
441 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
442 MCLBYTES, 0, 0, &sc->sc_rxstate[i].rxs_dmamap)) != 0) {
443 aprint_error_dev(self, "unable to create rx DMA map %d, "
444 "error=%d\n", i, error);
445 goto fail_6;
446 }
447 sc->sc_rxstate[i].rxs_mbuf = NULL;
448 }
449
450 /* this is a zero buffer used for zero'ing out short packets */
451 memset(sc->ralink_zero_buf, 0, RALINK_MIN_BUF);
452
453 /* setup some address in hardware */
454 fe_write(sc, RA_FE_GDMA1_MAC_LSB,
455 (enaddr[5] | (enaddr[4] << 8) |
456 (enaddr[3] << 16) | (enaddr[2] << 24)));
457 fe_write(sc, RA_FE_GDMA1_MAC_MSB,
458 (enaddr[1] | (enaddr[0] << 8)));
459
460 /*
461 * iterate through ports
462 * slickrock must use specific non-linear sequence
463 * others are linear
464 */
465 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
466
467 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
468
469 /*
470 * Initialize our media structures.
471 * This may probe the PHY, if present.
472 */
473 sc->sc_mii.mii_ifp = ifp;
474 sc->sc_mii.mii_readreg = ralink_eth_mii_read;
475 sc->sc_mii.mii_writereg = ralink_eth_mii_write;
476 sc->sc_mii.mii_statchg = ralink_eth_mii_statchg;
477 sc->sc_ethercom.ec_mii = &sc->sc_mii;
478 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
479 ether_mediastatus);
480 mii_attach(sc->sc_dev, &sc->sc_mii, ~0, i, MII_OFFSET_ANY,
481 MIIF_FORCEANEG|MIIF_DOPAUSE|MIIF_NOISOLATE);
482
483 if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
484 #if 1
485 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|
486 IFM_FDX|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE, 0, NULL);
487 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_1000_T|
488 IFM_FDX|IFM_ETH_RXPAUSE|IFM_ETH_TXPAUSE);
489 #else
490 ifmedia_add(&sc->sc_mii.mii_media,
491 IFM_ETHER|IFM_MANUAL, 0, NULL);
492 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
493 #endif
494 } else {
495 /* Ensure we mask ok for the switch multiple phy's */
496 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497 }
498
499 ifp->if_softc = sc;
500 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
501 ifp->if_init = ralink_eth_init;
502 ifp->if_start = ralink_eth_start;
503 ifp->if_ioctl = ralink_eth_ioctl;
504 ifp->if_stop = ralink_eth_stop;
505 ifp->if_watchdog = ralink_eth_watchdog;
506 IFQ_SET_READY(&ifp->if_snd);
507
508 /* We can support 802.1Q VLAN-sized frames. */
509 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
510
511 /* We support IPV4 CRC Offload */
512 ifp->if_capabilities |=
513 (IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
514 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
515 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx);
516
517 /* Attach the interface. */
518 if_attach(ifp);
519 ether_ifattach(ifp, enaddr);
520
521 /* init our mii ticker */
522 callout_init(&sc->sc_tick_callout, 0);
523 callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
524
525 return;
526
527 /*
528 * Free any resources we've allocated during the failed attach
529 * attempt. Do this in reverse order and fall through.
530 */
531 fail_6:
532 for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
533 if (sc->sc_rxstate[i].rxs_dmamap != NULL)
534 bus_dmamap_destroy(sc->sc_dmat,
535 sc->sc_rxstate[i].rxs_dmamap);
536 }
537 fail_5:
538 for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
539 if (sc->sc_txstate[i].txs_dmamap != NULL)
540 bus_dmamap_destroy(sc->sc_dmat,
541 sc->sc_txstate[i].txs_dmamap);
542 }
543 bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
544 fail_4:
545 bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
546 fail_3:
547 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
548 sizeof(struct ralink_descs));
549 fail_2:
550 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
551 fail_1:
552 bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
553 fail_0c:
554 bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
555 fail_0b:
556 bus_space_unmap(sc->sc_memt, sc->sc_sy_memh, sc->sc_fe_size);
557 fail_0a:
558 return;
559 }
560
561 /*
562 * ralink_eth_activate:
563 *
564 * Handle device activation/deactivation requests.
565 */
566 int
567 ralink_eth_activate(device_t self, enum devact act)
568 {
569 ralink_eth_softc_t * const sc = device_private(self);
570 int error = 0;
571 int s;
572
573 s = splnet();
574 switch (act) {
575 case DVACT_DEACTIVATE:
576 if_deactivate(&sc->sc_ethercom.ec_if);
577 break;
578 }
579 splx(s);
580
581 return error;
582 }
583
584 /*
585 * ralink_eth_partition_enable
586 */
587 static int
588 ralink_eth_enable(ralink_eth_softc_t *sc)
589 {
590 RALINK_DEBUG_FUNC_ENTRY();
591
592 if (sc->sc_ih != NULL) {
593 RALINK_DEBUG(RALINK_DEBUG_MISC, "%s() already active",
594 __func__);
595 return EALREADY;
596 }
597
598 sc->sc_pending_tx = 0;
599
600 int s = splnet();
601 ralink_eth_hw_init(sc);
602 sc->sc_ih = ra_intr_establish(RA_IRQ_FENGINE,
603 ralink_eth_intr, sc, 1);
604 splx(s);
605 if (sc->sc_ih == NULL) {
606 RALINK_DEBUG(RALINK_DEBUG_ERROR,
607 "%s: unable to establish interrupt\n",
608 device_xname(sc->sc_dev));
609 return EIO;
610 }
611
612 return 0;
613 }
614
615 /*
616 * ralink_eth_partition_disable
617 */
618 static void
619 ralink_eth_disable(ralink_eth_softc_t *sc)
620 {
621 RALINK_DEBUG_FUNC_ENTRY();
622
623 int s = splnet();
624 ralink_eth_rxdrain(sc);
625 ra_intr_disestablish(sc->sc_ih);
626 sc->sc_ih = NULL;
627
628 /* stop the mii ticker */
629 callout_stop(&sc->sc_tick_callout);
630
631 /* quiesce the block */
632 ralink_eth_reset(sc);
633 splx(s);
634 }
635
636 /*
637 * ralink_eth_detach
638 */
639 static int
640 ralink_eth_detach(device_t self, int flags)
641 {
642 RALINK_DEBUG_FUNC_ENTRY();
643 ralink_eth_softc_t * const sc = device_private(self);
644 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
645 struct ralink_eth_rxstate *rxs;
646 struct ralink_eth_txstate *txs;
647 int i;
648
649 ralink_eth_disable(sc);
650 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
651 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
652 ether_ifdetach(ifp);
653 if_detach(ifp);
654
655 for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
656 rxs = &sc->sc_rxstate[i];
657 if (rxs->rxs_mbuf != NULL) {
658 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
659 m_freem(rxs->rxs_mbuf);
660 rxs->rxs_mbuf = NULL;
661 }
662 bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
663 }
664
665 for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
666 txs = &sc->sc_txstate[i];
667 if (txs->txs_mbuf != NULL) {
668 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
669 m_freem(txs->txs_mbuf);
670 txs->txs_mbuf = NULL;
671 }
672 bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
673 }
674
675 bus_dmamap_unload(sc->sc_dmat, sc->sc_pdmamap);
676 bus_dmamap_destroy(sc->sc_dmat, sc->sc_pdmamap);
677 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
678 sizeof(struct ralink_descs));
679 bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_ndseg);
680
681 bus_space_unmap(sc->sc_memt, sc->sc_sw_memh, sc->sc_sw_size);
682 bus_space_unmap(sc->sc_memt, sc->sc_fe_memh, sc->sc_fe_size);
683
684 return 0;
685 }
686
687 /*
688 * ralink_eth_reset
689 */
690 static void
691 ralink_eth_reset(ralink_eth_softc_t *sc)
692 {
693 RALINK_DEBUG_FUNC_ENTRY();
694 uint32_t r;
695
696 /* Reset the frame engine */
697 r = sy_read(sc, RA_SYSCTL_RST);
698 r |= RST_FE;
699 sy_write(sc, RA_SYSCTL_RST, r);
700 r ^= RST_FE;
701 sy_write(sc, RA_SYSCTL_RST, r);
702
703 /* Wait until the PDMA is quiscent */
704 for (;;) {
705 r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
706 if (r & FE_PDMA_GLOBAL_CFG_RX_DMA_BUSY) {
707 aprint_normal_dev(sc->sc_dev, "RX DMA BUSY\n");
708 continue;
709 }
710 if (r & FE_PDMA_GLOBAL_CFG_TX_DMA_BUSY) {
711 aprint_normal_dev(sc->sc_dev, "TX DMA BUSY\n");
712 continue;
713 }
714 break;
715 }
716 }
717
718 /*
719 * ralink_eth_hw_init
720 */
721 static void
722 ralink_eth_hw_init(ralink_eth_softc_t *sc)
723 {
724 RALINK_DEBUG_FUNC_ENTRY();
725 struct ralink_eth_txstate *txs;
726 uint32_t r;
727 int i;
728
729 /* reset to a known good state */
730 ralink_eth_reset(sc);
731
732 #if defined(RT3050) || defined(RT3052)
733 /* Bring the switch to a sane default state (from linux driver) */
734 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SGC2,
735 0x00000000);
736 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PFC1,
737 0x00405555); /* check VLAN tag on port forward */);
738 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VLANI0,
739 0x00002001);
740 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC0,
741 0x00001002);
742 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC1,
743 0x00001001);
744 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_PVIDC2,
745 0x00001001);
746 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_VMSC0,
747 0xffff417e);
748 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC0,
749 0x00007f7f);
750 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_POC2,
751 0x00007f3f);
752 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FTC2,
753 0x00d6500c);
754 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SWGC,
755 0x0008a301); /* hashing algorithm=XOR48 */
756 /* aging interval=300sec */
757 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_SOCPC,
758 0x02404040);
759 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPORT,
760 0x3f502b28); /* Change polling Ext PHY Addr=0x0 */
761 bus_space_write_4(sc->sc_memt, sc->sc_sw_memh, RA_ETH_SW_FPA,
762 0x00000000);
763
764 /* do some mii magic TODO: define these registers/bits */
765 /* lower down PHY 10Mbps mode power */
766 /* select local register */
767 ralink_eth_mii_write(&sc->sc_dev, 0, 31, 0x8000);
768
769 for (i=0;i<5;i++){
770 /* set TX10 waveform coefficient */
771 ralink_eth_mii_write(&sc->sc_dev, i, 26, 0x1601);
772
773 /* set TX100/TX10 AD/DA current bias */
774 ralink_eth_mii_write(&sc->sc_dev, i, 29, 0x7058);
775
776 /* set TX100 slew rate control */
777 ralink_eth_mii_write(&sc->sc_dev, i, 30, 0x0018);
778 }
779
780 /* PHY IOT */
781
782 /* select global register */
783 ralink_eth_mii_write(&sc->sc_dev, 0, 31, 0x0);
784
785 /* tune TP_IDL tail and head waveform */
786 ralink_eth_mii_write(&sc->sc_dev, 0, 22, 0x052f);
787
788 /* set TX10 signal amplitude threshold to minimum */
789 ralink_eth_mii_write(&sc->sc_dev, 0, 17, 0x0fe0);
790
791 /* set squelch amplitude to higher threshold */
792 ralink_eth_mii_write(&sc->sc_dev, 0, 18, 0x40ba);
793
794 /* longer TP_IDL tail length */
795 ralink_eth_mii_write(&sc->sc_dev, 0, 14, 0x65);
796
797 /* select local register */
798 ralink_eth_mii_write(&sc->sc_dev, 0, 31, 0x8000);
799 #else
800 /* GE1 + GigSW */
801 fe_write(sc, RA_FE_MDIO_CFG1,
802 MDIO_CFG_PHY_ADDR(0x1f) |
803 MDIO_CFG_BP_EN |
804 MDIO_CFG_FORCE_CFG |
805 MDIO_CFG_SPEED(MDIO_CFG_SPEED_1000M) |
806 MDIO_CFG_FULL_DUPLEX |
807 MDIO_CFG_FC_TX |
808 MDIO_CFG_FC_RX |
809 MDIO_CFG_TX_CLK_MODE(MDIO_CFG_TX_CLK_MODE_3COM));
810 #endif
811
812 /*
813 * TODO: QOS - RT3052 has 4 TX queues for QOS,
814 * forgoing for 1 for simplicity
815 */
816
817 /*
818 * Allocate DMA accessible memory for TX/RX descriptor rings
819 */
820
821 /* Initialize the TX queues. */
822 SIMPLEQ_INIT(&sc->sc_txfreeq);
823 SIMPLEQ_INIT(&sc->sc_txdirtyq);
824
825 /* Initialize the TX descriptor ring. */
826 memset(sc->sc_txdesc, 0, sizeof(sc->sc_txdesc));
827 for (i = 0; i < RALINK_ETH_NUM_TX_DESC; i++) {
828
829 sc->sc_txdesc[i].txd_info1 = TXD_LAST0 | TXD_DDONE;
830
831 /* setup the freeq as well */
832 txs = &sc->sc_txstate[i];
833 txs->txs_mbuf = NULL;
834 txs->txs_idx = i;
835 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
836 }
837
838 /*
839 * Flush the TX descriptors
840 * - TODO: can we just access descriptors via KSEG1
841 * to avoid the flush?
842 */
843 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
844 (int)&sc->sc_txdesc - (int)sc->sc_descs, sizeof(sc->sc_txdesc),
845 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
846
847 /* Initialize the RX descriptor ring */
848 memset(sc->sc_rxdesc, 0, sizeof(sc->sc_rxdesc));
849 for (i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
850 if (ralink_eth_add_rxbuf(sc, i)) {
851 panic("Can't allocate rx mbuf\n");
852 }
853 }
854
855 /*
856 * Flush the RX descriptors
857 * - TODO: can we just access descriptors via KSEG1
858 * to avoid the flush?
859 */
860 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
861 (int)&sc->sc_rxdesc - (int)sc->sc_descs, sizeof(sc->sc_rxdesc),
862 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
863
864 /* Clear the PDMA state */
865 r = fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
866 r &= 0xff;
867 fe_write(sc, RA_FE_PDMA_GLOBAL_CFG, r);
868 (void) fe_read(sc, RA_FE_PDMA_GLOBAL_CFG);
869
870 /* Setup the PDMA VLAN ID's */
871 fe_write(sc, RA_FE_VLAN_ID_0001, 0x00010000);
872 fe_write(sc, RA_FE_VLAN_ID_0203, 0x00030002);
873 fe_write(sc, RA_FE_VLAN_ID_0405, 0x00050004);
874 fe_write(sc, RA_FE_VLAN_ID_0607, 0x00070006);
875 fe_write(sc, RA_FE_VLAN_ID_0809, 0x00090008);
876 fe_write(sc, RA_FE_VLAN_ID_1011, 0x000b000a);
877 fe_write(sc, RA_FE_VLAN_ID_1213, 0x000d000c);
878 fe_write(sc, RA_FE_VLAN_ID_1415, 0x000f000e);
879
880 /* Give the TX and TX rings to the chip. */
881 fe_write(sc, RA_FE_PDMA_TX0_PTR,
882 htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_txdesc)));
883 fe_write(sc, RA_FE_PDMA_TX0_COUNT, htole32(RALINK_ETH_NUM_TX_DESC));
884 fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, 0);
885 fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_TX0);
886
887 fe_write(sc, RA_FE_PDMA_RX0_PTR,
888 htole32(MIPS_KSEG0_TO_PHYS(&sc->sc_rxdesc)));
889 fe_write(sc, RA_FE_PDMA_RX0_COUNT, htole32(RALINK_ETH_NUM_RX_DESC));
890 fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
891 htole32(RALINK_ETH_NUM_RX_DESC - 1));
892 fe_write(sc, RA_FE_PDMA_RESET_IDX, PDMA_RST_RX0);
893 fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX,
894 htole32(RALINK_ETH_NUM_RX_DESC - 1));
895
896 /* Start PDMA */
897 fe_write(sc, RA_FE_PDMA_GLOBAL_CFG,
898 FE_PDMA_GLOBAL_CFG_TX_WB_DDONE |
899 FE_PDMA_GLOBAL_CFG_RX_DMA_EN |
900 FE_PDMA_GLOBAL_CFG_TX_DMA_EN |
901 FE_PDMA_GLOBAL_CFG_BURST_SZ_4);
902
903 /* Setup the clock for the Frame Engine */
904 fe_write(sc, RA_FE_GLOBAL_CFG,
905 FE_GLOBAL_CFG_EXT_VLAN(0x8100) |
906 FE_GLOBAL_CFG_US_CLK(RA_BUS_FREQ / 1000000) |
907 FE_GLOBAL_CFG_L2_SPACE(0x8));
908
909 /* Turn on all interrupts */
910 fe_write(sc, RA_FE_INT_ENABLE,
911 FE_INT_RX | FE_INT_TX3 | FE_INT_TX2 | FE_INT_TX1 | FE_INT_TX0);
912
913 /*
914 * Configure GDMA forwarding
915 * - default all packets to CPU
916 * - Turn on auto-CRC
917 */
918 #if 0
919 fe_write(sc, RA_FE_GDMA1_FWD_CFG,
920 (FE_GDMA_FWD_CFG_DIS_TX_CRC | FE_GDMA_FWD_CFG_DIS_TX_PAD));
921 #endif
922 fe_write(sc, RA_FE_GDMA1_FWD_CFG,
923 FE_GDMA_FWD_CFG_JUMBO_LEN(MCLBYTES/1024) |
924 FE_GDMA_FWD_CFG_STRIP_RX_CRC |
925 FE_GDMA_FWD_CFG_IP4_CRC_EN |
926 FE_GDMA_FWD_CFG_TCP_CRC_EN |
927 FE_GDMA_FWD_CFG_UDP_CRC_EN);
928
929 /* CDMA also needs CRCs turned on */
930 r = fe_read(sc, RA_FE_CDMA_CSG_CFG);
931 r |= (FE_CDMA_CSG_CFG_IP4_CRC_EN | FE_CDMA_CSG_CFG_UDP_CRC_EN |
932 FE_CDMA_CSG_CFG_TCP_CRC_EN);
933 fe_write(sc, RA_FE_CDMA_CSG_CFG, r);
934
935 /* Configure Flow Control Thresholds */
936 #ifdef RT3883
937 fe_write(sc, RA_FE_PSE_FQ_CFG,
938 FE_PSE_FQ_MAX_COUNT(0xff) |
939 FE_PSE_FQ_FC_RELEASE(0x90) |
940 FE_PSE_FQ_FC_ASSERT(0x80));
941 #else
942 fe_write(sc, RA_FE_PSE_FQ_CFG,
943 FE_PSE_FQ_MAX_COUNT(0x80) |
944 FE_PSE_FQ_FC_RELEASE(0x50) |
945 FE_PSE_FQ_FC_ASSERT(0x40));
946 #endif
947
948 #ifdef RALINK_ETH_DEBUG
949 printf("FE_MDIO_CFG1: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG1));
950 printf("FE_MDIO_CFG2: 0x%08x\n", fe_read(sc, RA_FE_MDIO_CFG2));
951 printf("FE_PDMA_TX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_TX0_PTR));
952 printf("FE_PDMA_TX0_COUNT: %08x\n",
953 fe_read(sc, RA_FE_PDMA_TX0_COUNT));
954 printf("FE_PDMA_TX0_CPU_IDX: %08x\n",
955 fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX));
956 printf("FE_PDMA_TX0_DMA_IDX: %08x\n",
957 fe_read(sc, RA_FE_PDMA_TX0_DMA_IDX));
958 printf("FE_PDMA_RX0_PTR: %08x\n", fe_read(sc, RA_FE_PDMA_RX0_PTR));
959 printf("FE_PDMA_RX0_COUNT: %08x\n",
960 fe_read(sc, RA_FE_PDMA_RX0_COUNT));
961 printf("FE_PDMA_RX0_CPU_IDX: %08x\n",
962 fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX));
963 printf("FE_PDMA_RX0_DMA_IDX: %08x\n",
964 fe_read(sc, RA_FE_PDMA_RX0_DMA_IDX));
965 printf("FE_PDMA_GLOBAL_CFG: %08x\n",
966 fe_read(sc, RA_FE_PDMA_GLOBAL_CFG));
967 printf("FE_GLOBAL_CFG: %08x\n", fe_read(sc, RA_FE_GLOBAL_CFG));
968 printf("FE_GDMA1_FWD_CFG: %08x\n",
969 fe_read(sc, RA_FE_GDMA1_FWD_CFG));
970 printf("FE_CDMA_CSG_CFG: %08x\n", fe_read(sc, RA_FE_CDMA_CSG_CFG));
971 printf("FE_PSE_FQ_CFG: %08x\n", fe_read(sc, RA_FE_PSE_FQ_CFG));
972 #endif
973
974 /* Force PSE Reset to get everything finalized */
975 fe_write(sc, RA_FE_GLOBAL_RESET, FE_GLOBAL_RESET_PSE);
976 fe_write(sc, RA_FE_GLOBAL_RESET, 0);
977 }
978
979 /*
980 * ralink_eth_init
981 */
982 static int
983 ralink_eth_init(struct ifnet *ifp)
984 {
985 RALINK_DEBUG_FUNC_ENTRY();
986 ralink_eth_softc_t * const sc = ifp->if_softc;
987 int error;
988
989 error = ralink_eth_enable(sc);
990 if (!error) {
991 /* Note that the interface is now running. */
992 ifp->if_flags |= IFF_RUNNING;
993 ifp->if_flags &= ~IFF_OACTIVE;
994 }
995
996 return error;
997 }
998
999 /*
1000 * ralink_eth_rxdrain
1001 *
1002 * Drain the receive queue.
1003 */
1004 static void
1005 ralink_eth_rxdrain(ralink_eth_softc_t *sc)
1006 {
1007 RALINK_DEBUG_FUNC_ENTRY();
1008
1009 for (int i = 0; i < RALINK_ETH_NUM_RX_DESC; i++) {
1010 struct ralink_eth_rxstate *rxs = &sc->sc_rxstate[i];
1011 if (rxs->rxs_mbuf != NULL) {
1012 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1013 m_freem(rxs->rxs_mbuf);
1014 rxs->rxs_mbuf = NULL;
1015 }
1016 }
1017 }
1018
1019 /*
1020 * ralink_eth_stop
1021 */
1022 static void
1023 ralink_eth_stop(struct ifnet *ifp, int disable)
1024 {
1025 RALINK_DEBUG_FUNC_ENTRY();
1026 ralink_eth_softc_t * const sc = ifp->if_softc;
1027
1028 ralink_eth_disable(sc);
1029
1030 /* Mark the interface down and cancel the watchdog timer. */
1031 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1032 ifp->if_timer = 0;
1033 }
1034
1035 /*
1036 * ralink_eth_add_rxbuf
1037 */
1038 static int
1039 ralink_eth_add_rxbuf(ralink_eth_softc_t *sc, int idx)
1040 {
1041 RALINK_DEBUG_FUNC_ENTRY();
1042 struct ralink_eth_rxstate * const rxs = &sc->sc_rxstate[idx];
1043 struct mbuf *m;
1044 int error;
1045
1046 MGETHDR(m, M_DONTWAIT, MT_DATA);
1047 if (m == NULL) {
1048 printf("MGETHDR failed\n");
1049 sc->sc_evcnt_add_rxbuf_hdr_fail.ev_count++;
1050 return ENOBUFS;
1051 }
1052
1053 MCLGET(m, M_DONTWAIT);
1054 if ((m->m_flags & M_EXT) == 0) {
1055 m_freem(m);
1056 printf("MCLGET failed\n");
1057 sc->sc_evcnt_add_rxbuf_mcl_fail.ev_count++;
1058 return ENOBUFS;
1059 }
1060
1061 m->m_data = m->m_ext.ext_buf;
1062 rxs->rxs_mbuf = m;
1063
1064 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, m->m_ext.ext_buf,
1065 m->m_ext.ext_size, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
1066 if (error) {
1067 aprint_error_dev(sc->sc_dev, "can't load rx DMA map %d, "
1068 "error=%d\n", idx, error);
1069 panic(__func__); /* XXX */
1070 }
1071
1072 sc->sc_rxdesc[idx].data_ptr = MIPS_KSEG0_TO_PHYS(
1073 rxs->rxs_dmamap->dm_segs[0].ds_addr + RALINK_ETHER_ALIGN);
1074 sc->sc_rxdesc[idx].rxd_info1 = RXD_LAST0;
1075
1076 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1077 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1078
1079 return 0;
1080 }
1081
1082
1083 /*
1084 * ralink_eth_start
1085 */
1086 static void
1087 ralink_eth_start(struct ifnet *ifp)
1088 {
1089 RALINK_DEBUG_FUNC_ENTRY();
1090 ralink_eth_softc_t * const sc = ifp->if_softc;
1091 struct mbuf *m0, *m = NULL;
1092 struct ralink_eth_txstate *txs;
1093 bus_dmamap_t dmamap;
1094 int tx_cpu_idx;
1095 int error;
1096 int s;
1097
1098 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1099 return;
1100
1101 s = splnet();
1102
1103 tx_cpu_idx = fe_read(sc, RA_FE_PDMA_TX0_CPU_IDX);
1104
1105 /*
1106 * Loop through the send queue, setting up transmit descriptors
1107 * until we drain the queue, or use up all available
1108 * transmit descriptors.
1109 */
1110 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL) {
1111 /* Grab a packet off the queue. */
1112 IFQ_POLL(&ifp->if_snd, m0);
1113 if (m0 == NULL)
1114 break;
1115
1116 dmamap = txs->txs_dmamap;
1117
1118 if (m0->m_pkthdr.len < RALINK_MIN_BUF) {
1119 int padlen = 64 - m0->m_pkthdr.len;
1120 m_copyback(m0, m0->m_pkthdr.len, padlen,
1121 sc->ralink_zero_buf);
1122 /* TODO : need some checking here */
1123 }
1124
1125 /*
1126 * Do we need to align the buffer
1127 * or does the DMA map load fail?
1128 */
1129 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1130 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
1131
1132 /* Allocate a new mbuf for re-alignment */
1133 MGETHDR(m, M_DONTWAIT, MT_DATA);
1134 if (m == NULL) {
1135 aprint_error_dev(sc->sc_dev,
1136 "unable to allocate aligned Tx mbuf\n");
1137 break;
1138 }
1139 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1140 if (m0->m_pkthdr.len > MHLEN) {
1141 MCLGET(m, M_DONTWAIT);
1142 if ((m->m_flags & M_EXT) == 0) {
1143 aprint_error_dev(sc->sc_dev,
1144 "unable to allocate Tx cluster\n");
1145 m_freem(m);
1146 break;
1147 }
1148 }
1149 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1150 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1151 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m,
1152 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1153 if (error) {
1154 aprint_error_dev(sc->sc_dev,
1155 "unable to load Tx buffer error=%d\n",
1156 error);
1157 m_freem(m);
1158 break;
1159 }
1160 }
1161
1162 IFQ_DEQUEUE(&ifp->if_snd, m0);
1163 /* did we copy the buffer out already? */
1164 if (m != NULL) {
1165 m_freem(m0);
1166 m0 = m;
1167 }
1168
1169 /* Sync the DMA map. */
1170 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1171 BUS_DMASYNC_PREWRITE);
1172
1173 /* Initialize the transmit descriptor */
1174 sc->sc_txdesc[tx_cpu_idx].data_ptr0 =
1175 MIPS_KSEG0_TO_PHYS(dmamap->dm_segs[0].ds_addr);
1176 sc->sc_txdesc[tx_cpu_idx].txd_info1 =
1177 TXD_LEN0(dmamap->dm_segs[0].ds_len) | TXD_LAST0;
1178 sc->sc_txdesc[tx_cpu_idx].txd_info2 =
1179 TXD_QN(3) | TXD_PN(TXD_PN_GDMA1);
1180 sc->sc_txdesc[tx_cpu_idx].txd_info2 = TXD_QN(3) |
1181 TXD_PN(TXD_PN_GDMA1) | TXD_VEN |
1182 // TXD_VIDX(pt->vlan_id) |
1183 TXD_TCP_EN | TXD_UDP_EN | TXD_IP_EN;
1184
1185 RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1186 tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr0,
1187 sc->sc_txdesc[tx_cpu_idx].data_ptr0);
1188 RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1189 tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].txd_info1,
1190 sc->sc_txdesc[tx_cpu_idx].txd_info1);
1191 RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n",
1192 tx_cpu_idx, (int)&sc->sc_txdesc[tx_cpu_idx].data_ptr1,
1193 sc->sc_txdesc[tx_cpu_idx].data_ptr1);
1194 RALINK_DEBUG(RALINK_DEBUG_REG,"+tx(%d) 0x%08x: 0x%08x\n", tx_cpu_idx,
1195 (int)&sc->sc_txdesc[tx_cpu_idx].txd_info2,
1196 sc->sc_txdesc[tx_cpu_idx].txd_info2);
1197
1198 /* sync the descriptor we're using. */
1199 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1200 (int)&sc->sc_txdesc[tx_cpu_idx] - (int)sc->sc_descs,
1201 sizeof(struct ralink_tx_desc),
1202 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1203
1204 /*
1205 * Store a pointer to the packet so we can free it later,
1206 * and remember what txdirty will be once the packet is
1207 * done.
1208 */
1209 txs->txs_mbuf = m0;
1210 sc->sc_pending_tx++;
1211 if (txs->txs_idx != tx_cpu_idx) {
1212 panic("txs_idx doesn't match %d != %d\n",
1213 txs->txs_idx, tx_cpu_idx);
1214 }
1215
1216 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1217 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1218
1219 /* Pass the packet to any BPF listeners. */
1220 bpf_mtap(ifp, m0);
1221
1222 /* Set a watchdog timer in case the chip flakes out. */
1223 ifp->if_timer = 5;
1224
1225 tx_cpu_idx = (tx_cpu_idx + 1) % RALINK_ETH_NUM_TX_DESC;
1226
1227 /* Write back the tx_cpu_idx */
1228 fe_write(sc, RA_FE_PDMA_TX0_CPU_IDX, tx_cpu_idx);
1229 }
1230
1231 if (txs == NULL) {
1232 /* No more slots left; notify upper layer. */
1233 ifp->if_flags |= IFF_OACTIVE;
1234 }
1235
1236 splx(s);
1237 }
1238
1239 /*
1240 * ralink_eth_watchdog
1241 *
1242 * Watchdog timer handler.
1243 */
1244 static void
1245 ralink_eth_watchdog(struct ifnet *ifp)
1246 {
1247 RALINK_DEBUG_FUNC_ENTRY();
1248 ralink_eth_softc_t * const sc = ifp->if_softc;
1249 bool doing_transmit;
1250
1251 sc->sc_evcnt_watchdog.ev_count++;
1252 doing_transmit = !SIMPLEQ_EMPTY(&sc->sc_txdirtyq);
1253
1254 if (doing_transmit) {
1255 RALINK_DEBUG(RALINK_DEBUG_ERROR, "%s: transmit timeout\n",
1256 ifp->if_xname);
1257 ifp->if_oerrors++;
1258 sc->sc_evcnt_wd_tx.ev_count++;
1259 } else {
1260 RALINK_DEBUG(RALINK_DEBUG_ERROR, "%s: spurious watchog timeout\n",
1261 ifp->if_xname);
1262 sc->sc_evcnt_wd_spurious.ev_count++;
1263 return;
1264 }
1265
1266 sc->sc_evcnt_wd_reactivate.ev_count++;
1267 const int s = splnet();
1268 /* deactive the active partitions, retaining the active information */
1269 ralink_eth_disable(sc);
1270 ralink_eth_enable(sc);
1271 splx(s);
1272
1273 /* Try to get more packets going. */
1274 ralink_eth_start(ifp);
1275 }
1276
1277 /*
1278 * ralink_eth_ioctl
1279 *
1280 * Handle control requests from the operator.
1281 */
1282 static int
1283 ralink_eth_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1284 {
1285 RALINK_DEBUG_FUNC_ENTRY();
1286 struct ifdrv * const ifd = (struct ifdrv *) data;
1287 ralink_eth_softc_t * const sc = ifp->if_softc;
1288 int s, error = 0;
1289
1290 RALINK_DEBUG(RALINK_DEBUG_INFO, "ifp: %p cmd: %lu data: %p\n",
1291 ifp, cmd, data);
1292
1293 s = splnet();
1294
1295 switch (cmd) {
1296 case SIOCSDRVSPEC:
1297 switch (ifd->ifd_cmd) {
1298 #if 0
1299 case ETH_SWITCH_CMD_PORT_MODE:
1300 /* len parameter is the mode */
1301 pt->mode = (int) ifd->ifd_len;
1302 ralink_eth_configure_switch(pt->sc_reth);
1303 break;
1304 #endif
1305 default:
1306 error = EINVAL;
1307 }
1308 break;
1309 default:
1310 error = ether_ioctl(ifp, cmd, data);
1311 if (error == ENETRESET) {
1312 if (ifp->if_flags & IFF_RUNNING) {
1313 /*
1314 * Multicast list has changed. Set the
1315 * hardware filter accordingly.
1316 */
1317 RALINK_DEBUG(RALINK_DEBUG_INFO, "TODO!!!");
1318 #if 0
1319 ralink_eth_filter_setup(sc);
1320 #endif
1321 }
1322 error = 0;
1323 }
1324 break;
1325 }
1326
1327 splx(s);
1328
1329 /* Try to get more packets going. */
1330 if (sc->sc_ih != NULL)
1331 ralink_eth_start(ifp);
1332
1333 return error;
1334 }
1335
1336 /*
1337 * ralink_eth_intr
1338 *
1339 */
1340 static int
1341 ralink_eth_intr(void *arg)
1342 {
1343 RALINK_DEBUG_FUNC_ENTRY();
1344 ralink_eth_softc_t * const sc = arg;
1345
1346 for (u_int n=0;; n = 1) {
1347 u_int32_t status = fe_read(sc, RA_FE_INT_STATUS);
1348 fe_write(sc, RA_FE_INT_STATUS, ~0);
1349 RALINK_DEBUG(RALINK_DEBUG_REG,"%s() status: 0x%08x\n",
1350 __func__, status);
1351
1352 if ((status & (FE_INT_RX | FE_INT_TX0)) == 0) {
1353 if (n == 0)
1354 sc->sc_evcnt_spurious_intr.ev_count++;
1355 return (n != 0);
1356 }
1357
1358 if (status & FE_INT_RX)
1359 ralink_eth_rxintr(sc);
1360
1361 if (status & FE_INT_TX0)
1362 ralink_eth_txintr(sc);
1363 }
1364
1365 /* Try to get more packets going. */
1366 ralink_eth_start(&sc->sc_ethercom.ec_if);
1367
1368 return 1;
1369 }
1370
1371 /*
1372 * ralink_eth_rxintr
1373 */
1374 static void
1375 ralink_eth_rxintr(ralink_eth_softc_t *sc)
1376 {
1377 RALINK_DEBUG_FUNC_ENTRY();
1378 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
1379 struct ralink_eth_rxstate *rxs;
1380 struct mbuf *m;
1381 int len;
1382 int rx_cpu_idx;
1383
1384 KASSERT(curcpu()->ci_cpl >= IPL_NET);
1385 sc->sc_evcnt_rxintr.ev_count++;
1386 rx_cpu_idx = fe_read(sc, RA_FE_PDMA_RX0_CPU_IDX);
1387
1388 for (;;) {
1389 rx_cpu_idx = (rx_cpu_idx + 1) % RALINK_ETH_NUM_RX_DESC;
1390
1391 rxs = &sc->sc_rxstate[rx_cpu_idx];
1392
1393 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1394 (int)&sc->sc_rxdesc[rx_cpu_idx] - (int)sc->sc_descs,
1395 sizeof(struct ralink_rx_desc),
1396 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1397
1398 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1399 rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].data_ptr,
1400 sc->sc_rxdesc[rx_cpu_idx].data_ptr);
1401 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1402 rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info1,
1403 sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
1404 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n", rx_cpu_idx,
1405 (int)&sc->sc_rxdesc[rx_cpu_idx].unused,
1406 sc->sc_rxdesc[rx_cpu_idx].unused);
1407 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) 0x%08x: 0x%08x\n",
1408 rx_cpu_idx, (int)&sc->sc_rxdesc[rx_cpu_idx].rxd_info2,
1409 sc->sc_rxdesc[rx_cpu_idx].rxd_info2);
1410
1411 if (!(sc->sc_rxdesc[rx_cpu_idx].rxd_info1 & RXD_DDONE))
1412 break;
1413
1414 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1415 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1416
1417 /*
1418 * No errors; receive the packet.
1419 * Note the chip includes the CRC with every packet.
1420 */
1421 len = RXD_LEN0(sc->sc_rxdesc[rx_cpu_idx].rxd_info1);
1422
1423 RALINK_DEBUG(RALINK_DEBUG_REG,"rx(%d) packet rx %d bytes\n",
1424 rx_cpu_idx, len);
1425
1426 /*
1427 * Allocate a new mbuf cluster. If that fails, we are
1428 * out of memory, and must drop the packet and recycle
1429 * the buffer that's already attached to this descriptor.
1430 */
1431 m = rxs->rxs_mbuf;
1432 if (ralink_eth_add_rxbuf(sc, rx_cpu_idx) != 0)
1433 break;
1434 m->m_data += RALINK_ETHER_ALIGN;
1435 m->m_pkthdr.len = m->m_len = len;
1436
1437 #ifdef RALINK_ETH_DEBUG
1438 {
1439 struct ether_header *eh = mtod(m, struct ether_header *);
1440 printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
1441 printf("rx: eth_src: %s type: 0x%04x \n",
1442 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
1443 printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
1444 printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
1445
1446 unsigned char * s = mtod(m, unsigned char *);
1447 for (int j = 0; j < 32; j++)
1448 printf("%02x%c", *(s + j),
1449 (j == 15 || j == 31) ? '\n' : ' ');
1450 }
1451 #endif
1452
1453 /*
1454 * claim the buffer here since we can't do it at
1455 * allocation time due to the SW partitions
1456 */
1457 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1458
1459 /* push it up the inteface */
1460 ifp->if_ipackets++;
1461 m->m_pkthdr.rcvif = ifp;
1462
1463 #ifdef RALINK_ETH_DEBUG
1464 {
1465 struct ether_header *eh = mtod(m, struct ether_header *);
1466 printf("rx: eth_dst: %s ", ether_sprintf(eh->ether_dhost));
1467 printf("rx: eth_src: %s type: 0x%04x\n",
1468 ether_sprintf(eh->ether_shost), ntohs(eh->ether_type));
1469 printf("0x14: %08x\n", *(volatile unsigned int *)(0xb0110014));
1470 printf("0x98: %08x\n", *(volatile unsigned int *)(0xb0110098));
1471
1472 unsigned char * s = mtod(m, unsigned char *);
1473 for (int j = 0; j < 32; j++)
1474 printf("%02x%c", *(s + j),
1475 (j == 15 || j == 31) ? '\n' : ' ');
1476 }
1477 #endif
1478
1479 /*
1480 * XXX: M_CSUM_TCPv4 and M_CSUM_UDPv4 do not currently work when
1481 * using PF's ROUTETO option for load balancing.
1482 */
1483 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1484
1485 /*
1486 * Pass this up to any BPF listeners, but only
1487 * pass it up the stack if its for us.
1488 */
1489 bpf_mtap(ifp, m);
1490
1491 /* Pass it on. */
1492 sc->sc_evcnt_input.ev_count++;
1493 (*ifp->if_input)(ifp, m);
1494
1495 fe_write(sc, RA_FE_PDMA_RX0_CPU_IDX, rx_cpu_idx);
1496 }
1497 }
1498
1499 /*
1500 * ralink_eth_txintr
1501 */
1502 static void
1503 ralink_eth_txintr(ralink_eth_softc_t *sc)
1504 {
1505 RALINK_DEBUG_FUNC_ENTRY();
1506 struct ralink_eth_txstate *txs;
1507
1508 KASSERT(curcpu()->ci_cpl >= IPL_NET);
1509 sc->sc_evcnt_txintr.ev_count++;
1510
1511 /*
1512 * Go through our Tx list and free mbufs for those
1513 * frames that have been transmitted.
1514 */
1515 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1516 bus_dmamap_sync(sc->sc_dmat, sc->sc_pdmamap,
1517 (int)&sc->sc_txdesc[txs->txs_idx] - (int)sc->sc_descs,
1518 sizeof(struct ralink_tx_desc),
1519 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1520
1521 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n", txs->txs_idx,
1522 (int)&sc->sc_txdesc[txs->txs_idx].data_ptr0,
1523 sc->sc_txdesc[txs->txs_idx].data_ptr0);
1524 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n", txs->txs_idx,
1525 (int)&sc->sc_txdesc[txs->txs_idx].txd_info1,
1526 sc->sc_txdesc[txs->txs_idx].txd_info1);
1527 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n", txs->txs_idx,
1528 (int)&sc->sc_txdesc[txs->txs_idx].data_ptr1,
1529 sc->sc_txdesc[txs->txs_idx].data_ptr1);
1530 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) 0x%08x: 0x%08x\n", txs->txs_idx,
1531 (int)&sc->sc_txdesc[txs->txs_idx].txd_info2,
1532 sc->sc_txdesc[txs->txs_idx].txd_info2);
1533
1534 /* we're finished if the current tx isn't done */
1535 if (!(sc->sc_txdesc[txs->txs_idx].txd_info1 & TXD_DDONE))
1536 break;
1537
1538 RALINK_DEBUG(RALINK_DEBUG_REG,"-tx(%d) transmitted\n", txs->txs_idx);
1539
1540 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1541
1542 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 0,
1543 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1544 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1545 m_freem(txs->txs_mbuf);
1546 txs->txs_mbuf = NULL;
1547
1548 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1549
1550 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1551 ifp->if_flags &= ~IFF_OACTIVE;
1552 ifp->if_opackets++;
1553 sc->sc_evcnt_output.ev_count++;
1554
1555 if (--sc->sc_pending_tx == 0)
1556 ifp->if_timer = 0;
1557 }
1558 }
1559
1560 /*
1561 * ralink_eth_mdio_enable
1562 */
1563 #if defined (RT3050) || defined(RT3052)
1564 static void
1565 ralink_eth_mdio_enable(ralink_eth_softc_t *sc, bool enable)
1566 {
1567 uint32_t data = sy_read(sc, RA_SYSCTL_GPIOMODE);
1568
1569 if (enable)
1570 data &= ~GPIOMODE_MDIO;
1571 else
1572 data |= GPIOMODE_MDIO;
1573
1574 sy_write(sc, RA__GPIOMODE, data);
1575 }
1576 #else
1577 #define ralink_eth_mdio_enable(sc, enable)
1578 #endif
1579
1580 /*
1581 * ralink_eth_mii_statchg
1582 */
1583 static void
1584 ralink_eth_mii_statchg(device_t self)
1585 {
1586 #if 0
1587 ralink_eth_softc_t * const sc = device_private(self);
1588
1589 #endif
1590 }
1591
1592 /*
1593 * ralink_eth_mii_tick
1594 *
1595 * One second timer, used to tick the MIIs.
1596 */
1597 static void
1598 ralink_eth_mii_tick(void *arg)
1599 {
1600 ralink_eth_softc_t * const sc = arg;
1601
1602 const int s = splnet();
1603 mii_tick(&sc->sc_mii);
1604 splx(s);
1605
1606 callout_reset(&sc->sc_tick_callout, hz, ralink_eth_mii_tick, sc);
1607 }
1608
1609 /*
1610 * ralink_eth_mii_read
1611 */
1612 static int
1613 ralink_eth_mii_read(device_t self, int phy_addr, int phy_reg)
1614 {
1615 const ralink_eth_softc_t *sc = device_private(self);
1616 KASSERT(sc != NULL);
1617 #if 0
1618 printf("%s() phy_addr: %d phy_reg: %d\n", __func__, phy_addr, phy_reg);
1619 #endif
1620 #if defined(RT3050) || defined(RT3052)
1621 if (phy_addr > 5)
1622 return 0;
1623 #endif
1624
1625 /* We enable mdio gpio purpose register, and disable it when exit. */
1626 ralink_eth_mdio_enable(sc, true);
1627
1628 /*
1629 * make sure previous read operation is complete
1630 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1631 */
1632 for (;;) {
1633 /* rd_rdy: read operation is complete */
1634 #if defined(RT3050) || defined(RT3052)
1635 if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
1636 break;
1637 #else
1638 if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
1639 break;
1640 #endif
1641 }
1642
1643 #if defined(RT3050) || defined(RT3052)
1644 sw_write(sc, RA_ETH_SW_PCTL0,
1645 PCTL0_RD_CMD | PCTL0_REG(phy_reg) | PCTL0_ADDR(phy_addr);
1646 #else
1647 fe_write(sc, RA_FE_MDIO_ACCESS,
1648 MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg));
1649 fe_write(sc, RA_FE_MDIO_ACCESS,
1650 MDIO_ACCESS_PHY_ADDR(phy_addr) | MDIO_ACCESS_REG(phy_reg) |
1651 MDIO_ACCESS_TRG);
1652 #endif
1653
1654 /*
1655 * make sure read operation is complete
1656 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1657 */
1658 for (;;) {
1659 #if defined(RT3050) || defined(RT3052)
1660 if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) != 0) {
1661 int data = PCTL1_RD_VAL(
1662 sw_read(sc, RA_ETH_SW_PCTL1));
1663 ralink_eth_mdio_enable(sc, false);
1664 return data;
1665 }
1666 #else
1667 if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0) {
1668 int data = MDIO_ACCESS_DATA(
1669 fe_read(sc, RA_FE_MDIO_ACCESS));
1670 ralink_eth_mdio_enable(sc, false);
1671 return data;
1672 }
1673 #endif
1674 }
1675 }
1676
1677 /*
1678 * ralink_eth_mii_write
1679 */
1680 static void
1681 ralink_eth_mii_write(device_t self, int phy_addr, int phy_reg, int val)
1682 {
1683 const ralink_eth_softc_t *sc = device_private(self);
1684 KASSERT(sc != NULL);
1685 #if 0
1686 printf("%s() phy_addr: %d phy_reg: %d val: 0x%04x\n",
1687 __func__, phy_addr, phy_reg, val);
1688 #endif
1689 ralink_eth_mdio_enable(sc, true);
1690
1691 /*
1692 * make sure previous write operation is complete
1693 * TODO: timeout (linux uses jiffies to measure 5 seconds)
1694 */
1695 for (;;) {
1696 #if defined(RT3050) || defined(RT3052)
1697 if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_RD_DONE) == 0)
1698 break;
1699 #else
1700 if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0)
1701 break;
1702 #endif
1703 }
1704
1705 #if defined(RT3050) || defined(RT3052)
1706 sw_write(sc, RA_ETH_SW_PCTL0,
1707 PCTL0_WR_CMD | PCTL0_WR_VAL(val) | PCTL0_REG(phy_reg) |
1708 PCTL0_ADDR(phy_addr));
1709 #else
1710 fe_write(sc, RA_FE_MDIO_ACCESS,
1711 MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
1712 MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val));
1713 fe_write(sc, RA_FE_MDIO_ACCESS,
1714 MDIO_ACCESS_WR | MDIO_ACCESS_PHY_ADDR(phy_addr) |
1715 MDIO_ACCESS_REG(phy_reg) | MDIO_ACCESS_DATA(val) |
1716 MDIO_ACCESS_TRG);
1717 #endif
1718
1719
1720 /* make sure write operation is complete */
1721 for (;;) {
1722 #if defined(RT3050) || defined(RT3052)
1723 if ((sw_read(sc, RA_ETH_SW_PCTL1) & PCTL1_WR_DONE) != 0) {
1724 ralink_eth_mdio_enable(sc, false);
1725 return;
1726 }
1727 #else
1728 if ((fe_read(sc, RA_FE_MDIO_ACCESS) & MDIO_ACCESS_TRG) == 0){
1729 ralink_eth_mdio_enable(sc, false);
1730 return;
1731 }
1732 #endif
1733 }
1734 }
1735