1 1.66 andvar /* $NetBSD: sbmac.c,v 1.66 2024/02/09 17:57:03 andvar Exp $ */ 2 1.1 simonb 3 1.1 simonb /* 4 1.19 cgd * Copyright 2000, 2001, 2004 5 1.1 simonb * Broadcom Corporation. All rights reserved. 6 1.1 simonb * 7 1.1 simonb * This software is furnished under license and may be used and copied only 8 1.1 simonb * in accordance with the following terms and conditions. Subject to these 9 1.1 simonb * conditions, you may download, copy, install, use, modify and distribute 10 1.1 simonb * modified or unmodified copies of this software in source and/or binary 11 1.1 simonb * form. No title or ownership is transferred hereby. 12 1.1 simonb * 13 1.1 simonb * 1) Any source code used, modified or distributed must reproduce and 14 1.1 simonb * retain this copyright notice and list of conditions as they appear in 15 1.1 simonb * the source file. 16 1.1 simonb * 17 1.1 simonb * 2) No right is granted to use any trade name, trademark, or logo of 18 1.9 cgd * Broadcom Corporation. The "Broadcom Corporation" name may not be 19 1.9 cgd * used to endorse or promote products derived from this software 20 1.9 cgd * without the prior written permission of Broadcom Corporation. 21 1.1 simonb * 22 1.1 simonb * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED 23 1.1 simonb * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF 24 1.1 simonb * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR 25 1.1 simonb * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE 26 1.1 simonb * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE 27 1.1 simonb * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 28 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 29 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 30 1.1 simonb * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 31 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 32 1.1 simonb * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 1.1 simonb */ 34 1.10 lukem 35 1.10 lukem #include <sys/cdefs.h> 36 1.66 andvar __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.66 2024/02/09 17:57:03 andvar Exp $"); 37 1.1 simonb 38 1.1 simonb #include "opt_inet.h" 39 1.1 simonb #include "opt_ns.h" 40 1.1 simonb 41 1.1 simonb #include <sys/param.h> 42 1.1 simonb #include <sys/systm.h> 43 1.1 simonb #include <sys/sockio.h> 44 1.1 simonb #include <sys/mbuf.h> 45 1.56 simonb #include <sys/kmem.h> 46 1.1 simonb #include <sys/kernel.h> 47 1.1 simonb #include <sys/socket.h> 48 1.1 simonb #include <sys/queue.h> 49 1.1 simonb #include <sys/device.h> 50 1.1 simonb 51 1.1 simonb #include <net/if.h> 52 1.1 simonb #include <net/if_arp.h> 53 1.1 simonb #include <net/if_ether.h> 54 1.1 simonb #include <net/if_dl.h> 55 1.1 simonb #include <net/if_media.h> 56 1.1 simonb 57 1.1 simonb #include <net/bpf.h> 58 1.1 simonb 59 1.1 simonb #ifdef INET 60 1.1 simonb #include <netinet/in.h> 61 1.1 simonb #include <netinet/if_inarp.h> 62 1.1 simonb #endif 63 1.1 simonb 64 1.41 matt #include <mips/locore.h> 65 1.1 simonb 66 1.1 simonb #include "sbobiovar.h" 67 1.1 simonb 68 1.1 simonb #include <dev/mii/mii.h> 69 1.1 simonb #include <dev/mii/miivar.h> 70 1.1 simonb #include <dev/mii/mii_bitbang.h> 71 1.1 simonb 72 1.1 simonb #include <mips/sibyte/include/sb1250_defs.h> 73 1.1 simonb #include <mips/sibyte/include/sb1250_regs.h> 74 1.1 simonb #include <mips/sibyte/include/sb1250_mac.h> 75 1.1 simonb #include <mips/sibyte/include/sb1250_dma.h> 76 1.8 cgd #include <mips/sibyte/include/sb1250_scd.h> 77 1.1 simonb 78 1.49 mrg #include <evbmips/sbmips/systemsw.h> 79 1.49 mrg 80 1.3 simonb /* Simple types */ 81 1.1 simonb 82 1.1 simonb typedef u_long sbmac_port_t; 83 1.1 simonb typedef uint64_t sbmac_physaddr_t; 84 1.1 simonb typedef uint64_t sbmac_enetaddr_t; 85 1.1 simonb 86 1.1 simonb typedef enum { sbmac_speed_auto, sbmac_speed_10, 87 1.1 simonb sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t; 88 1.1 simonb 89 1.1 simonb typedef enum { sbmac_duplex_auto, sbmac_duplex_half, 90 1.1 simonb sbmac_duplex_full } sbmac_duplex_t; 91 1.1 simonb 92 1.1 simonb typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame, 93 1.1 simonb sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t; 94 1.1 simonb 95 1.1 simonb typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on, 96 1.1 simonb sbmac_state_broken } sbmac_state_t; 97 1.1 simonb 98 1.1 simonb 99 1.3 simonb /* Macros */ 100 1.1 simonb 101 1.15 simonb #define SBMAC_EVENT_COUNTERS /* Include counters for various events */ 102 1.15 simonb 103 1.19 cgd #define SBDMA_NEXTBUF(d, f) ((f + 1) & (d)->sbdma_dscr_mask) 104 1.1 simonb 105 1.56 simonb #define CACHELINESIZE 32 106 1.56 simonb #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE) 107 1.56 simonb #define KVTOPHYS(x) kvtophys((vaddr_t)(x)) 108 1.1 simonb 109 1.1 simonb #ifdef SBMACDEBUG 110 1.1 simonb #define dprintf(x) printf x 111 1.1 simonb #else 112 1.1 simonb #define dprintf(x) 113 1.1 simonb #endif 114 1.1 simonb 115 1.46 christos #define SBMAC_READCSR(t) mips3_ld((register_t)(t)) 116 1.46 christos #define SBMAC_WRITECSR(t, v) mips3_sd((register_t)(t), (v)) 117 1.1 simonb 118 1.1 simonb #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x)) 119 1.1 simonb 120 1.19 cgd /* These are limited to fit within one virtual page, and must be 2**N. */ 121 1.17 cgd #define SBMAC_MAX_TXDESCR 256 /* should be 1024 */ 122 1.17 cgd #define SBMAC_MAX_RXDESCR 256 /* should be 512 */ 123 1.1 simonb 124 1.3 simonb /* DMA Descriptor structure */ 125 1.1 simonb 126 1.1 simonb typedef struct sbdmadscr_s { 127 1.1 simonb uint64_t dscr_a; 128 1.1 simonb uint64_t dscr_b; 129 1.1 simonb } sbdmadscr_t; 130 1.1 simonb 131 1.3 simonb 132 1.3 simonb /* DMA Controller structure */ 133 1.1 simonb 134 1.1 simonb typedef struct sbmacdma_s { 135 1.1 simonb 136 1.1 simonb /* 137 1.1 simonb * This stuff is used to identify the channel and the registers 138 1.1 simonb * associated with it. 139 1.1 simonb */ 140 1.1 simonb 141 1.1 simonb struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */ 142 1.1 simonb int sbdma_channel; /* channel number */ 143 1.1 simonb int sbdma_txdir; /* direction (1=transmit) */ 144 1.1 simonb int sbdma_maxdescr; /* total # of descriptors in ring */ 145 1.1 simonb sbmac_port_t sbdma_config0; /* DMA config register 0 */ 146 1.1 simonb sbmac_port_t sbdma_config1; /* DMA config register 1 */ 147 1.1 simonb sbmac_port_t sbdma_dscrbase; /* Descriptor base address */ 148 1.59 msaitoh sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */ 149 1.1 simonb sbmac_port_t sbdma_curdscr; /* current descriptor address */ 150 1.1 simonb 151 1.1 simonb /* 152 1.1 simonb * This stuff is for maintenance of the ring 153 1.1 simonb */ 154 1.1 simonb sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */ 155 1.1 simonb struct mbuf **sbdma_ctxtable; /* context table, one per descr */ 156 1.19 cgd unsigned int sbdma_dscr_mask; /* sbdma_maxdescr - 1 */ 157 1.1 simonb paddr_t sbdma_dscrtable_phys; /* and also the phys addr */ 158 1.19 cgd unsigned int sbdma_add_index; /* next dscr for sw to add */ 159 1.19 cgd unsigned int sbdma_rem_index; /* next dscr for sw to remove */ 160 1.1 simonb } sbmacdma_t; 161 1.1 simonb 162 1.1 simonb 163 1.3 simonb /* Ethernet softc structure */ 164 1.1 simonb 165 1.1 simonb struct sbmac_softc { 166 1.1 simonb 167 1.1 simonb /* 168 1.1 simonb * NetBSD-specific things 169 1.1 simonb */ 170 1.1 simonb struct ethercom sc_ethercom; /* Ethernet common part */ 171 1.1 simonb struct mii_data sc_mii; 172 1.1 simonb struct callout sc_tick_ch; 173 1.1 simonb 174 1.38 matt device_t sc_dev; /* device */ 175 1.61 msaitoh u_short sbm_if_flags; 176 1.1 simonb void *sbm_intrhand; 177 1.1 simonb 178 1.1 simonb /* 179 1.1 simonb * Controller-specific things 180 1.1 simonb */ 181 1.1 simonb 182 1.1 simonb sbmac_port_t sbm_base; /* MAC's base address */ 183 1.1 simonb sbmac_state_t sbm_state; /* current state */ 184 1.1 simonb 185 1.1 simonb sbmac_port_t sbm_macenable; /* MAC Enable Register */ 186 1.1 simonb sbmac_port_t sbm_maccfg; /* MAC Configuration Register */ 187 1.1 simonb sbmac_port_t sbm_fifocfg; /* FIFO configuration register */ 188 1.1 simonb sbmac_port_t sbm_framecfg; /* Frame configuration register */ 189 1.1 simonb sbmac_port_t sbm_rxfilter; /* receive filter register */ 190 1.1 simonb sbmac_port_t sbm_isr; /* Interrupt status register */ 191 1.1 simonb sbmac_port_t sbm_imr; /* Interrupt mask register */ 192 1.1 simonb 193 1.1 simonb sbmac_speed_t sbm_speed; /* current speed */ 194 1.1 simonb sbmac_duplex_t sbm_duplex; /* current duplex */ 195 1.1 simonb sbmac_fc_t sbm_fc; /* current flow control setting */ 196 1.1 simonb int sbm_rxflags; /* received packet flags */ 197 1.1 simonb 198 1.1 simonb u_char sbm_hwaddr[ETHER_ADDR_LEN]; 199 1.1 simonb 200 1.1 simonb sbmacdma_t sbm_txdma; /* for now, only use channel 0 */ 201 1.1 simonb sbmacdma_t sbm_rxdma; 202 1.8 cgd 203 1.8 cgd int sbm_pass3_dma; /* chip has pass3 SOC DMA features */ 204 1.15 simonb 205 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS 206 1.15 simonb struct evcnt sbm_ev_rxintr; /* Rx interrupts */ 207 1.15 simonb struct evcnt sbm_ev_txintr; /* Tx interrupts */ 208 1.15 simonb struct evcnt sbm_ev_txdrop; /* Tx dropped due to no mbuf alloc failed */ 209 1.15 simonb struct evcnt sbm_ev_txstall; /* Tx stalled due to no descriptors free */ 210 1.15 simonb 211 1.15 simonb struct evcnt sbm_ev_txsplit; /* pass3 Tx split mbuf */ 212 1.15 simonb struct evcnt sbm_ev_txkeep; /* pass3 Tx didn't split mbuf */ 213 1.15 simonb #endif 214 1.1 simonb }; 215 1.1 simonb 216 1.1 simonb 217 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS 218 1.15 simonb #define SBMAC_EVCNT_INCR(ev) (ev).ev_count++ 219 1.15 simonb #else 220 1.15 simonb #define SBMAC_EVCNT_INCR(ev) do { /* nothing */ } while (0) 221 1.15 simonb #endif 222 1.15 simonb 223 1.3 simonb /* Externs */ 224 1.1 simonb 225 1.1 simonb extern paddr_t kvtophys(vaddr_t); 226 1.1 simonb 227 1.3 simonb /* Prototypes */ 228 1.1 simonb 229 1.39 matt static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int); 230 1.39 matt static void sbdma_channel_start(sbmacdma_t *); 231 1.39 matt static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *); 232 1.39 matt static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *); 233 1.39 matt static void sbdma_emptyring(sbmacdma_t *); 234 1.39 matt static void sbdma_fillring(sbmacdma_t *); 235 1.39 matt static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *); 236 1.39 matt static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *); 237 1.39 matt static void sbmac_initctx(struct sbmac_softc *); 238 1.39 matt static void sbmac_channel_start(struct sbmac_softc *); 239 1.39 matt static void sbmac_channel_stop(struct sbmac_softc *); 240 1.1 simonb static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *, 241 1.1 simonb sbmac_state_t); 242 1.39 matt static void sbmac_promiscuous_mode(struct sbmac_softc *, bool); 243 1.39 matt static void sbmac_init_and_start(struct sbmac_softc *); 244 1.39 matt static uint64_t sbmac_addr2reg(u_char *); 245 1.39 matt static void sbmac_intr(void *, uint32_t, vaddr_t); 246 1.39 matt static void sbmac_start(struct ifnet *); 247 1.39 matt static void sbmac_setmulti(struct sbmac_softc *); 248 1.39 matt static int sbmac_ether_ioctl(struct ifnet *, u_long, void *); 249 1.30 dyoung static int sbmac_ioctl(struct ifnet *, u_long, void *); 250 1.39 matt static void sbmac_watchdog(struct ifnet *); 251 1.39 matt static int sbmac_match(device_t, cfdata_t, void *); 252 1.39 matt static void sbmac_attach(device_t, device_t, void *); 253 1.39 matt static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t); 254 1.39 matt static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t); 255 1.39 matt static void sbmac_tick(void *); 256 1.1 simonb 257 1.1 simonb 258 1.3 simonb /* Globals */ 259 1.1 simonb 260 1.38 matt CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc), 261 1.6 thorpej sbmac_match, sbmac_attach, NULL, NULL); 262 1.1 simonb 263 1.38 matt static uint32_t sbmac_mii_bitbang_read(device_t self); 264 1.38 matt static void sbmac_mii_bitbang_write(device_t self, uint32_t val); 265 1.1 simonb 266 1.1 simonb static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = { 267 1.1 simonb sbmac_mii_bitbang_read, 268 1.1 simonb sbmac_mii_bitbang_write, 269 1.1 simonb { 270 1.1 simonb (uint32_t)M_MAC_MDIO_OUT, /* MII_BIT_MDO */ 271 1.1 simonb (uint32_t)M_MAC_MDIO_IN, /* MII_BIT_MDI */ 272 1.1 simonb (uint32_t)M_MAC_MDC, /* MII_BIT_MDC */ 273 1.1 simonb 0, /* MII_BIT_DIR_HOST_PHY */ 274 1.1 simonb (uint32_t)M_MAC_MDIO_DIR /* MII_BIT_DIR_PHY_HOST */ 275 1.1 simonb } 276 1.1 simonb }; 277 1.1 simonb 278 1.3 simonb static uint32_t 279 1.38 matt sbmac_mii_bitbang_read(device_t self) 280 1.1 simonb { 281 1.38 matt struct sbmac_softc *sc = device_private(self); 282 1.1 simonb sbmac_port_t reg; 283 1.1 simonb 284 1.1 simonb reg = PKSEG1(sc->sbm_base + R_MAC_MDIO); 285 1.1 simonb return (uint32_t) SBMAC_READCSR(reg); 286 1.1 simonb } 287 1.1 simonb 288 1.3 simonb static void 289 1.38 matt sbmac_mii_bitbang_write(device_t self, uint32_t val) 290 1.1 simonb { 291 1.38 matt struct sbmac_softc *sc = device_private(self); 292 1.1 simonb sbmac_port_t reg; 293 1.1 simonb 294 1.1 simonb reg = PKSEG1(sc->sbm_base + R_MAC_MDIO); 295 1.1 simonb 296 1.1 simonb SBMAC_WRITECSR(reg, (val & 297 1.58 msaitoh (M_MAC_MDC | M_MAC_MDIO_DIR | M_MAC_MDIO_OUT | M_MAC_MDIO_IN))); 298 1.1 simonb } 299 1.1 simonb 300 1.1 simonb /* 301 1.1 simonb * Read an PHY register through the MII. 302 1.1 simonb */ 303 1.1 simonb static int 304 1.52 msaitoh sbmac_mii_readreg(device_t self, int phy, int reg, uint16_t *val) 305 1.1 simonb { 306 1.1 simonb 307 1.52 msaitoh return mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg, 308 1.52 msaitoh val); 309 1.1 simonb } 310 1.1 simonb 311 1.1 simonb /* 312 1.1 simonb * Write to a PHY register through the MII. 313 1.1 simonb */ 314 1.53 msaitoh static int 315 1.52 msaitoh sbmac_mii_writereg(device_t self, int phy, int reg, uint16_t val) 316 1.1 simonb { 317 1.1 simonb 318 1.52 msaitoh return mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, 319 1.52 msaitoh val); 320 1.1 simonb } 321 1.1 simonb 322 1.1 simonb static void 323 1.42 matt sbmac_mii_statchg(struct ifnet *ifp) 324 1.1 simonb { 325 1.42 matt struct sbmac_softc *sc = ifp->if_softc; 326 1.1 simonb sbmac_state_t oldstate; 327 1.1 simonb 328 1.1 simonb /* Stop the MAC in preparation for changing all of the parameters. */ 329 1.1 simonb oldstate = sbmac_set_channel_state(sc, sbmac_state_off); 330 1.1 simonb 331 1.1 simonb switch (sc->sc_ethercom.ec_if.if_baudrate) { 332 1.1 simonb default: /* if autonegotiation fails, assume 10Mbit */ 333 1.1 simonb case IF_Mbps(10): 334 1.1 simonb sbmac_set_speed(sc, sbmac_speed_10); 335 1.1 simonb break; 336 1.1 simonb 337 1.1 simonb case IF_Mbps(100): 338 1.1 simonb sbmac_set_speed(sc, sbmac_speed_100); 339 1.1 simonb break; 340 1.1 simonb 341 1.1 simonb case IF_Mbps(1000): 342 1.1 simonb sbmac_set_speed(sc, sbmac_speed_1000); 343 1.1 simonb break; 344 1.1 simonb } 345 1.1 simonb 346 1.1 simonb if (sc->sc_mii.mii_media_active & IFM_FDX) { 347 1.1 simonb /* Configure for full-duplex */ 348 1.1 simonb /* XXX: is flow control right for 10, 100? */ 349 1.1 simonb sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame); 350 1.1 simonb } else { 351 1.1 simonb /* Configure for half-duplex */ 352 1.1 simonb /* XXX: is flow control right? */ 353 1.1 simonb sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled); 354 1.1 simonb } 355 1.1 simonb 356 1.1 simonb /* And put it back into its former state. */ 357 1.1 simonb sbmac_set_channel_state(sc, oldstate); 358 1.1 simonb } 359 1.1 simonb 360 1.3 simonb /* 361 1.38 matt * SBDMA_INITCTX(d, sc, chan, txrx, maxdescr) 362 1.3 simonb * 363 1.3 simonb * Initialize a DMA channel context. Since there are potentially 364 1.3 simonb * eight DMA channels per MAC, it's nice to do this in a standard 365 1.3 simonb * way. 366 1.3 simonb * 367 1.3 simonb * Input parameters: 368 1.3 simonb * d - sbmacdma_t structure (DMA channel context) 369 1.39 matt * sc - sbmac_softc structure (pointer to a MAC) 370 1.3 simonb * chan - channel number (0..1 right now) 371 1.3 simonb * txrx - Identifies DMA_TX or DMA_RX for channel direction 372 1.3 simonb * maxdescr - number of descriptors 373 1.3 simonb * 374 1.3 simonb * Return value: 375 1.3 simonb * nothing 376 1.3 simonb */ 377 1.1 simonb 378 1.1 simonb static void 379 1.38 matt sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx, 380 1.1 simonb int maxdescr) 381 1.1 simonb { 382 1.56 simonb uintptr_t ptr; 383 1.56 simonb 384 1.1 simonb /* 385 1.1 simonb * Save away interesting stuff in the structure 386 1.1 simonb */ 387 1.1 simonb 388 1.38 matt d->sbdma_eth = sc; 389 1.3 simonb d->sbdma_channel = chan; 390 1.3 simonb d->sbdma_txdir = txrx; 391 1.1 simonb 392 1.1 simonb /* 393 1.1 simonb * initialize register pointers 394 1.1 simonb */ 395 1.1 simonb 396 1.38 matt d->sbdma_config0 = PKSEG1(sc->sbm_base + 397 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0)); 398 1.38 matt d->sbdma_config1 = PKSEG1(sc->sbm_base + 399 1.7 cgd R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1)); 400 1.38 matt d->sbdma_dscrbase = PKSEG1(sc->sbm_base + 401 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE)); 402 1.38 matt d->sbdma_dscrcnt = PKSEG1(sc->sbm_base + 403 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT)); 404 1.38 matt d->sbdma_curdscr = PKSEG1(sc->sbm_base + 405 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR)); 406 1.1 simonb 407 1.1 simonb /* 408 1.56 simonb * Allocate memory for the ring. This must be aligned to a 409 1.56 simonb * 32-byte cache line boundary on pass1 or pass2 silicon. 410 1.1 simonb */ 411 1.1 simonb 412 1.1 simonb d->sbdma_maxdescr = maxdescr; 413 1.19 cgd d->sbdma_dscr_mask = d->sbdma_maxdescr - 1; 414 1.56 simonb ptr = (uintptr_t)kmem_zalloc(d->sbdma_maxdescr * sizeof(sbdmadscr_t) + 415 1.56 simonb CACHELINESIZE - 1, KM_SLEEP); 416 1.56 simonb d->sbdma_dscrtable = (sbdmadscr_t *)roundup2(ptr, CACHELINESIZE); 417 1.1 simonb 418 1.1 simonb d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable); 419 1.1 simonb 420 1.1 simonb /* 421 1.1 simonb * And context table 422 1.1 simonb */ 423 1.1 simonb 424 1.1 simonb d->sbdma_ctxtable = (struct mbuf **) 425 1.56 simonb kmem_zalloc(d->sbdma_maxdescr * sizeof(struct mbuf *), KM_SLEEP); 426 1.1 simonb } 427 1.1 simonb 428 1.3 simonb /* 429 1.3 simonb * SBDMA_CHANNEL_START(d) 430 1.3 simonb * 431 1.3 simonb * Initialize the hardware registers for a DMA channel. 432 1.3 simonb * 433 1.3 simonb * Input parameters: 434 1.3 simonb * d - DMA channel to init (context must be previously init'd 435 1.3 simonb * 436 1.3 simonb * Return value: 437 1.3 simonb * nothing 438 1.3 simonb */ 439 1.1 simonb 440 1.1 simonb static void 441 1.1 simonb sbdma_channel_start(sbmacdma_t *d) 442 1.1 simonb { 443 1.1 simonb /* 444 1.1 simonb * Turn on the DMA channel 445 1.1 simonb */ 446 1.1 simonb 447 1.1 simonb SBMAC_WRITECSR(d->sbdma_config1, 0); 448 1.1 simonb 449 1.1 simonb SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys); 450 1.1 simonb 451 1.1 simonb SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0); 452 1.1 simonb 453 1.1 simonb /* 454 1.1 simonb * Initialize ring pointers 455 1.1 simonb */ 456 1.1 simonb 457 1.19 cgd d->sbdma_add_index = 0; 458 1.19 cgd d->sbdma_rem_index = 0; 459 1.1 simonb } 460 1.1 simonb 461 1.3 simonb /* 462 1.3 simonb * SBDMA_ADD_RCVBUFFER(d, m) 463 1.3 simonb * 464 1.3 simonb * Add a buffer to the specified DMA channel. For receive channels, 465 1.3 simonb * this queues a buffer for inbound packets. 466 1.3 simonb * 467 1.3 simonb * Input parameters: 468 1.3 simonb * d - DMA channel descriptor 469 1.3 simonb * m - mbuf to add, or NULL if we should allocate one. 470 1.3 simonb * 471 1.3 simonb * Return value: 472 1.3 simonb * 0 if buffer could not be added (ring is full) 473 1.3 simonb * 1 if buffer added successfully 474 1.3 simonb */ 475 1.1 simonb 476 1.1 simonb static int 477 1.1 simonb sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m) 478 1.1 simonb { 479 1.19 cgd unsigned int dsc, nextdsc; 480 1.1 simonb struct mbuf *m_new = NULL; 481 1.1 simonb 482 1.1 simonb /* get pointer to our current place in the ring */ 483 1.1 simonb 484 1.19 cgd dsc = d->sbdma_add_index; 485 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index); 486 1.1 simonb 487 1.1 simonb /* 488 1.1 simonb * figure out if the ring is full - if the next descriptor 489 1.1 simonb * is the same as the one that we're going to remove from 490 1.1 simonb * the ring, the ring is full 491 1.1 simonb */ 492 1.1 simonb 493 1.19 cgd if (nextdsc == d->sbdma_rem_index) 494 1.1 simonb return ENOSPC; 495 1.1 simonb 496 1.1 simonb /* 497 1.1 simonb * Allocate an mbuf if we don't already have one. 498 1.1 simonb * If we do have an mbuf, reset it so that it's empty. 499 1.1 simonb */ 500 1.1 simonb 501 1.1 simonb if (m == NULL) { 502 1.1 simonb MGETHDR(m_new, M_DONTWAIT, MT_DATA); 503 1.1 simonb if (m_new == NULL) { 504 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev, 505 1.38 matt "mbuf allocation failed\n"); 506 1.1 simonb return ENOBUFS; 507 1.1 simonb } 508 1.1 simonb 509 1.1 simonb MCLGET(m_new, M_DONTWAIT); 510 1.1 simonb if (!(m_new->m_flags & M_EXT)) { 511 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev, 512 1.38 matt "mbuf cluster allocation failed\n"); 513 1.1 simonb m_freem(m_new); 514 1.1 simonb return ENOBUFS; 515 1.1 simonb } 516 1.1 simonb 517 1.1 simonb m_new->m_len = m_new->m_pkthdr.len= MCLBYTES; 518 1.1 simonb m_adj(m_new, ETHER_ALIGN); 519 1.1 simonb } else { 520 1.1 simonb m_new = m; 521 1.1 simonb m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 522 1.1 simonb m_new->m_data = m_new->m_ext.ext_buf; 523 1.1 simonb m_adj(m_new, ETHER_ALIGN); 524 1.1 simonb } 525 1.1 simonb 526 1.1 simonb /* 527 1.1 simonb * fill in the descriptor 528 1.1 simonb */ 529 1.1 simonb 530 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) | 531 1.1 simonb V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) | 532 1.1 simonb M_DMA_DSCRA_INTERRUPT; 533 1.1 simonb 534 1.1 simonb /* receiving: no options */ 535 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = 0; 536 1.1 simonb 537 1.1 simonb /* 538 1.1 simonb * fill in the context 539 1.1 simonb */ 540 1.1 simonb 541 1.19 cgd d->sbdma_ctxtable[dsc] = m_new; 542 1.1 simonb 543 1.1 simonb /* 544 1.1 simonb * point at next packet 545 1.1 simonb */ 546 1.1 simonb 547 1.19 cgd d->sbdma_add_index = nextdsc; 548 1.1 simonb 549 1.1 simonb /* 550 1.1 simonb * Give the buffer to the DMA engine. 551 1.1 simonb */ 552 1.1 simonb 553 1.1 simonb SBMAC_WRITECSR(d->sbdma_dscrcnt, 1); 554 1.1 simonb 555 1.1 simonb return 0; /* we did it */ 556 1.1 simonb } 557 1.1 simonb 558 1.3 simonb /* 559 1.3 simonb * SBDMA_ADD_TXBUFFER(d, m) 560 1.3 simonb * 561 1.3 simonb * Add a transmit buffer to the specified DMA channel, causing a 562 1.3 simonb * transmit to start. 563 1.3 simonb * 564 1.3 simonb * Input parameters: 565 1.3 simonb * d - DMA channel descriptor 566 1.3 simonb * m - mbuf to add 567 1.3 simonb * 568 1.3 simonb * Return value: 569 1.3 simonb * 0 transmit queued successfully 570 1.3 simonb * otherwise error code 571 1.3 simonb */ 572 1.1 simonb 573 1.1 simonb static int 574 1.1 simonb sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m) 575 1.1 simonb { 576 1.59 msaitoh unsigned int dsc, nextdsc, prevdsc, origdesc; 577 1.1 simonb int length; 578 1.8 cgd int num_mbufs = 0; 579 1.8 cgd struct sbmac_softc *sc = d->sbdma_eth; 580 1.1 simonb 581 1.1 simonb /* get pointer to our current place in the ring */ 582 1.1 simonb 583 1.19 cgd dsc = d->sbdma_add_index; 584 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index); 585 1.1 simonb 586 1.1 simonb /* 587 1.1 simonb * figure out if the ring is full - if the next descriptor 588 1.1 simonb * is the same as the one that we're going to remove from 589 1.1 simonb * the ring, the ring is full 590 1.1 simonb */ 591 1.1 simonb 592 1.19 cgd if (nextdsc == d->sbdma_rem_index) { 593 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txstall); 594 1.1 simonb return ENOSPC; 595 1.15 simonb } 596 1.1 simonb 597 1.1 simonb /* 598 1.8 cgd * PASS3 parts do not have buffer alignment restriction. 599 1.8 cgd * No need to copy/coalesce to new mbuf. Also has different 600 1.8 cgd * descriptor format 601 1.1 simonb */ 602 1.8 cgd if (sc->sbm_pass3_dma) { 603 1.8 cgd struct mbuf *m_temp = NULL; 604 1.8 cgd 605 1.8 cgd /* 606 1.8 cgd * Loop thru this mbuf record. 607 1.8 cgd * The head mbuf will have SOP set. 608 1.8 cgd */ 609 1.58 msaitoh d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m, void *)) | 610 1.8 cgd M_DMA_ETHTX_SOP; 611 1.8 cgd 612 1.8 cgd /* 613 1.8 cgd * transmitting: set outbound options,buffer A size(+ low 5 614 1.8 cgd * bits of start addr),and packet length. 615 1.8 cgd */ 616 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = 617 1.8 cgd V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) | 618 1.15 simonb V_DMA_DSCRB_A_SIZE((m->m_len + 619 1.58 msaitoh (mtod(m, uintptr_t) & 0x0000001F))) | 620 1.16 cgd V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) | 621 1.16 cgd V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff); 622 1.8 cgd 623 1.19 cgd d->sbdma_add_index = nextdsc; 624 1.8 cgd origdesc = prevdsc = dsc; 625 1.19 cgd dsc = d->sbdma_add_index; 626 1.8 cgd num_mbufs++; 627 1.8 cgd 628 1.8 cgd /* Start with first non-head mbuf */ 629 1.8 cgd for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) { 630 1.15 simonb int len, next_len; 631 1.15 simonb uint64_t addr; 632 1.8 cgd 633 1.8 cgd if (m_temp->m_len == 0) 634 1.8 cgd continue; /* Skip 0-length mbufs */ 635 1.1 simonb 636 1.15 simonb len = m_temp->m_len; 637 1.22 christos addr = KVTOPHYS(mtod(m_temp, void *)); 638 1.15 simonb 639 1.15 simonb /* 640 1.15 simonb * Check to see if the mbuf spans a page boundary. If 641 1.15 simonb * it does, and the physical pages behind the virtual 642 1.15 simonb * pages are not contiguous, split it so that each 643 1.43 snj * virtual page uses its own Tx descriptor. 644 1.15 simonb */ 645 1.15 simonb if (trunc_page(addr) != trunc_page(addr + len - 1)) { 646 1.15 simonb next_len = (addr + len) - trunc_page(addr + len); 647 1.15 simonb 648 1.15 simonb len -= next_len; 649 1.15 simonb 650 1.15 simonb if (addr + len == 651 1.23 simonb KVTOPHYS(mtod(m_temp, char *) + len)) { 652 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep); 653 1.15 simonb len += next_len; 654 1.15 simonb next_len = 0; 655 1.15 simonb } else { 656 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit); 657 1.15 simonb } 658 1.15 simonb } else { 659 1.15 simonb next_len = 0; 660 1.15 simonb } 661 1.15 simonb 662 1.15 simonb again: 663 1.8 cgd /* 664 1.8 cgd * fill in the descriptor 665 1.8 cgd */ 666 1.19 cgd d->sbdma_dscrtable[dsc].dscr_a = addr; 667 1.8 cgd 668 1.13 simonb /* 669 1.13 simonb * transmitting: set outbound options,buffer A 670 1.13 simonb * size(+ low 5 bits of start addr) 671 1.13 simonb */ 672 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) | 673 1.15 simonb V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F))); 674 1.8 cgd 675 1.19 cgd d->sbdma_ctxtable[dsc] = NULL; 676 1.8 cgd 677 1.8 cgd /* 678 1.8 cgd * point at next descriptor 679 1.8 cgd */ 680 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index); 681 1.19 cgd if (nextdsc == d->sbdma_rem_index) { 682 1.19 cgd d->sbdma_add_index = origdesc; 683 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txstall); 684 1.8 cgd return ENOSPC; 685 1.8 cgd } 686 1.19 cgd d->sbdma_add_index = nextdsc; 687 1.8 cgd 688 1.8 cgd prevdsc = dsc; 689 1.19 cgd dsc = d->sbdma_add_index; 690 1.8 cgd num_mbufs++; 691 1.15 simonb 692 1.15 simonb if (next_len != 0) { 693 1.23 simonb addr = KVTOPHYS(mtod(m_temp, char *) + len); 694 1.15 simonb len = next_len; 695 1.15 simonb 696 1.15 simonb next_len = 0; 697 1.15 simonb goto again; 698 1.15 simonb } 699 1.15 simonb 700 1.8 cgd } 701 1.16 cgd /* Set head mbuf to last context index */ 702 1.19 cgd d->sbdma_ctxtable[prevdsc] = m; 703 1.16 cgd 704 1.16 cgd /* Interrupt on last dscr of packet. */ 705 1.59 msaitoh d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT; 706 1.8 cgd } else { 707 1.8 cgd struct mbuf *m_new = NULL; 708 1.8 cgd /* 709 1.8 cgd * [BEGIN XXX] 710 1.13 simonb * XXX Copy/coalesce the mbufs into a single mbuf cluster (we 711 1.13 simonb * assume it will fit). This is a temporary hack to get us 712 1.13 simonb * going. 713 1.8 cgd */ 714 1.1 simonb 715 1.58 msaitoh MGETHDR(m_new, M_DONTWAIT, MT_DATA); 716 1.8 cgd if (m_new == NULL) { 717 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev, 718 1.38 matt "mbuf allocation failed\n"); 719 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop); 720 1.8 cgd return ENOBUFS; 721 1.8 cgd } 722 1.1 simonb 723 1.58 msaitoh MCLGET(m_new, M_DONTWAIT); 724 1.8 cgd if (!(m_new->m_flags & M_EXT)) { 725 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev, 726 1.38 matt "mbuf cluster allocation failed\n"); 727 1.8 cgd m_freem(m_new); 728 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop); 729 1.8 cgd return ENOBUFS; 730 1.8 cgd } 731 1.1 simonb 732 1.8 cgd m_new->m_len = m_new->m_pkthdr.len= MCLBYTES; 733 1.58 msaitoh /*m_adj(m_new, ETHER_ALIGN);*/ 734 1.1 simonb 735 1.8 cgd /* 736 1.8 cgd * XXX Don't forget to include the offset portion in the 737 1.8 cgd * XXX cache block calculation when this code is rewritten! 738 1.8 cgd */ 739 1.1 simonb 740 1.8 cgd /* 741 1.8 cgd * Copy data 742 1.8 cgd */ 743 1.1 simonb 744 1.58 msaitoh m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *)); 745 1.8 cgd m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len; 746 1.1 simonb 747 1.8 cgd /* Free old mbuf 'm', actual mbuf is now 'm_new' */ 748 1.1 simonb 749 1.8 cgd // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this 750 1.8 cgd // XXX: function succeeds. 751 1.8 cgd // m_freem(m); 752 1.8 cgd length = m_new->m_len; 753 1.1 simonb 754 1.8 cgd /* [END XXX] */ 755 1.8 cgd /* 756 1.8 cgd * fill in the descriptor 757 1.8 cgd */ 758 1.1 simonb 759 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) | 760 1.8 cgd V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) | 761 1.8 cgd M_DMA_DSCRA_INTERRUPT | 762 1.8 cgd M_DMA_ETHTX_SOP; 763 1.8 cgd 764 1.8 cgd /* transmitting: set outbound options and length */ 765 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = 766 1.13 simonb V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) | 767 1.8 cgd V_DMA_DSCRB_PKT_SIZE(length); 768 1.1 simonb 769 1.8 cgd num_mbufs++; 770 1.1 simonb 771 1.8 cgd /* 772 1.8 cgd * fill in the context 773 1.8 cgd */ 774 1.1 simonb 775 1.19 cgd d->sbdma_ctxtable[dsc] = m_new; 776 1.1 simonb 777 1.8 cgd /* 778 1.8 cgd * point at next packet 779 1.8 cgd */ 780 1.19 cgd d->sbdma_add_index = nextdsc; 781 1.8 cgd } 782 1.1 simonb 783 1.1 simonb /* 784 1.1 simonb * Give the buffer to the DMA engine. 785 1.1 simonb */ 786 1.1 simonb 787 1.8 cgd SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs); 788 1.1 simonb 789 1.1 simonb return 0; /* we did it */ 790 1.1 simonb } 791 1.1 simonb 792 1.3 simonb /* 793 1.3 simonb * SBDMA_EMPTYRING(d) 794 1.3 simonb * 795 1.3 simonb * Free all allocated mbufs on the specified DMA channel; 796 1.3 simonb * 797 1.3 simonb * Input parameters: 798 1.3 simonb * d - DMA channel 799 1.3 simonb * 800 1.3 simonb * Return value: 801 1.3 simonb * nothing 802 1.3 simonb */ 803 1.1 simonb 804 1.1 simonb static void 805 1.1 simonb sbdma_emptyring(sbmacdma_t *d) 806 1.1 simonb { 807 1.1 simonb int idx; 808 1.1 simonb struct mbuf *m; 809 1.1 simonb 810 1.1 simonb for (idx = 0; idx < d->sbdma_maxdescr; idx++) { 811 1.1 simonb m = d->sbdma_ctxtable[idx]; 812 1.1 simonb if (m) { 813 1.1 simonb m_freem(m); 814 1.1 simonb d->sbdma_ctxtable[idx] = NULL; 815 1.1 simonb } 816 1.1 simonb } 817 1.1 simonb } 818 1.1 simonb 819 1.3 simonb /* 820 1.3 simonb * SBDMA_FILLRING(d) 821 1.3 simonb * 822 1.3 simonb * Fill the specified DMA channel (must be receive channel) 823 1.3 simonb * with mbufs 824 1.3 simonb * 825 1.3 simonb * Input parameters: 826 1.3 simonb * d - DMA channel 827 1.3 simonb * 828 1.3 simonb * Return value: 829 1.3 simonb * nothing 830 1.3 simonb */ 831 1.1 simonb 832 1.1 simonb static void 833 1.1 simonb sbdma_fillring(sbmacdma_t *d) 834 1.1 simonb { 835 1.1 simonb int idx; 836 1.1 simonb 837 1.1 simonb for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++) 838 1.1 simonb if (sbdma_add_rcvbuffer(d, NULL) != 0) 839 1.1 simonb break; 840 1.1 simonb } 841 1.1 simonb 842 1.3 simonb /* 843 1.3 simonb * SBDMA_RX_PROCESS(sc, d) 844 1.3 simonb * 845 1.3 simonb * Process "completed" receive buffers on the specified DMA channel. 846 1.3 simonb * Note that this isn't really ideal for priority channels, since 847 1.3 simonb * it processes all of the packets on a given channel before 848 1.3 simonb * returning. 849 1.3 simonb * 850 1.3 simonb * Input parameters: 851 1.3 simonb * sc - softc structure 852 1.3 simonb * d - DMA channel context 853 1.3 simonb * 854 1.3 simonb * Return value: 855 1.3 simonb * nothing 856 1.3 simonb */ 857 1.1 simonb 858 1.1 simonb static void 859 1.1 simonb sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d) 860 1.1 simonb { 861 1.1 simonb int curidx; 862 1.1 simonb int hwidx; 863 1.19 cgd sbdmadscr_t *dscp; 864 1.1 simonb struct mbuf *m; 865 1.1 simonb int len; 866 1.1 simonb 867 1.1 simonb struct ifnet *ifp = &(sc->sc_ethercom.ec_if); 868 1.1 simonb 869 1.1 simonb for (;;) { 870 1.1 simonb /* 871 1.1 simonb * figure out where we are (as an index) and where 872 1.1 simonb * the hardware is (also as an index) 873 1.1 simonb * 874 1.1 simonb * This could be done faster if (for example) the 875 1.1 simonb * descriptor table was page-aligned and contiguous in 876 1.1 simonb * both virtual and physical memory -- you could then 877 1.1 simonb * just compare the low-order bits of the virtual address 878 1.19 cgd * (sbdma_rem_index) and the physical address 879 1.19 cgd * (sbdma_curdscr CSR). 880 1.1 simonb */ 881 1.1 simonb 882 1.19 cgd curidx = d->sbdma_rem_index; 883 1.1 simonb hwidx = (int) 884 1.1 simonb (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) - 885 1.1 simonb d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t)); 886 1.1 simonb 887 1.1 simonb /* 888 1.1 simonb * If they're the same, that means we've processed all 889 1.1 simonb * of the descriptors up to (but not including) the one that 890 1.1 simonb * the hardware is working on right now. 891 1.1 simonb */ 892 1.1 simonb 893 1.1 simonb if (curidx == hwidx) 894 1.1 simonb break; 895 1.1 simonb 896 1.1 simonb /* 897 1.1 simonb * Otherwise, get the packet's mbuf ptr back 898 1.1 simonb */ 899 1.1 simonb 900 1.19 cgd dscp = &(d->sbdma_dscrtable[curidx]); 901 1.1 simonb m = d->sbdma_ctxtable[curidx]; 902 1.1 simonb d->sbdma_ctxtable[curidx] = NULL; 903 1.1 simonb 904 1.19 cgd len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4; 905 1.1 simonb 906 1.1 simonb /* 907 1.1 simonb * Check packet status. If good, process it. 908 1.1 simonb * If not, silently drop it and put it back on the 909 1.1 simonb * receive ring. 910 1.1 simonb */ 911 1.1 simonb 912 1.19 cgd if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) { 913 1.1 simonb 914 1.1 simonb /* 915 1.1 simonb * Set length into the packet 916 1.1 simonb * XXX do we remove the CRC here? 917 1.1 simonb */ 918 1.1 simonb m->m_pkthdr.len = m->m_len = len; 919 1.1 simonb 920 1.45 ozaki m_set_rcvif(m, ifp); 921 1.1 simonb 922 1.1 simonb 923 1.1 simonb /* 924 1.1 simonb * Add a new buffer to replace the old one. 925 1.1 simonb */ 926 1.1 simonb sbdma_add_rcvbuffer(d, NULL); 927 1.1 simonb 928 1.1 simonb /* 929 1.1 simonb * Handle BPF listeners. Let the BPF user see the 930 1.1 simonb * packet, but don't pass it up to the ether_input() 931 1.1 simonb * layer unless it's a broadcast packet, multicast 932 1.1 simonb * packet, matches our ethernet address or the 933 1.1 simonb * interface is in promiscuous mode. 934 1.1 simonb */ 935 1.1 simonb 936 1.1 simonb /* 937 1.1 simonb * Pass the buffer to the kernel 938 1.1 simonb */ 939 1.44 ozaki if_percpuq_enqueue(ifp->if_percpuq, m); 940 1.1 simonb } else { 941 1.1 simonb /* 942 1.1 simonb * Packet was mangled somehow. Just drop it and 943 1.1 simonb * put it back on the receive ring. 944 1.1 simonb */ 945 1.1 simonb sbdma_add_rcvbuffer(d, m); 946 1.1 simonb } 947 1.1 simonb 948 1.1 simonb /* 949 1.1 simonb * .. and advance to the next buffer. 950 1.1 simonb */ 951 1.1 simonb 952 1.19 cgd d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index); 953 1.1 simonb } 954 1.1 simonb } 955 1.1 simonb 956 1.3 simonb /* 957 1.3 simonb * SBDMA_TX_PROCESS(sc, d) 958 1.3 simonb * 959 1.3 simonb * Process "completed" transmit buffers on the specified DMA channel. 960 1.3 simonb * This is normally called within the interrupt service routine. 961 1.3 simonb * Note that this isn't really ideal for priority channels, since 962 1.3 simonb * it processes all of the packets on a given channel before 963 1.3 simonb * returning. 964 1.3 simonb * 965 1.3 simonb * Input parameters: 966 1.3 simonb * sc - softc structure 967 1.3 simonb * d - DMA channel context 968 1.3 simonb * 969 1.3 simonb * Return value: 970 1.3 simonb * nothing 971 1.3 simonb */ 972 1.1 simonb 973 1.1 simonb static void 974 1.1 simonb sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d) 975 1.1 simonb { 976 1.1 simonb int curidx; 977 1.1 simonb int hwidx; 978 1.1 simonb struct mbuf *m; 979 1.1 simonb 980 1.1 simonb struct ifnet *ifp = &(sc->sc_ethercom.ec_if); 981 1.1 simonb 982 1.1 simonb for (;;) { 983 1.1 simonb /* 984 1.1 simonb * figure out where we are (as an index) and where 985 1.1 simonb * the hardware is (also as an index) 986 1.1 simonb * 987 1.1 simonb * This could be done faster if (for example) the 988 1.1 simonb * descriptor table was page-aligned and contiguous in 989 1.1 simonb * both virtual and physical memory -- you could then 990 1.1 simonb * just compare the low-order bits of the virtual address 991 1.19 cgd * (sbdma_rem_index) and the physical address 992 1.19 cgd * (sbdma_curdscr CSR). 993 1.1 simonb */ 994 1.1 simonb 995 1.19 cgd curidx = d->sbdma_rem_index; 996 1.1 simonb hwidx = (int) 997 1.1 simonb (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) - 998 1.1 simonb d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t)); 999 1.1 simonb 1000 1.1 simonb /* 1001 1.1 simonb * If they're the same, that means we've processed all 1002 1.1 simonb * of the descriptors up to (but not including) the one that 1003 1.1 simonb * the hardware is working on right now. 1004 1.1 simonb */ 1005 1.1 simonb 1006 1.1 simonb if (curidx == hwidx) 1007 1.1 simonb break; 1008 1.1 simonb 1009 1.1 simonb /* 1010 1.1 simonb * Otherwise, get the packet's mbuf ptr back 1011 1.1 simonb */ 1012 1.1 simonb 1013 1.1 simonb m = d->sbdma_ctxtable[curidx]; 1014 1.1 simonb d->sbdma_ctxtable[curidx] = NULL; 1015 1.1 simonb 1016 1.1 simonb /* 1017 1.24 christos * for transmits we just free buffers and count packets. 1018 1.1 simonb */ 1019 1.62 thorpej if_statinc(ifp, if_opackets); 1020 1.1 simonb m_freem(m); 1021 1.1 simonb 1022 1.1 simonb /* 1023 1.1 simonb * .. and advance to the next buffer. 1024 1.1 simonb */ 1025 1.1 simonb 1026 1.19 cgd d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index); 1027 1.1 simonb } 1028 1.1 simonb } 1029 1.1 simonb 1030 1.3 simonb /* 1031 1.3 simonb * SBMAC_INITCTX(s) 1032 1.3 simonb * 1033 1.3 simonb * Initialize an Ethernet context structure - this is called 1034 1.3 simonb * once per MAC on the 1250. Memory is allocated here, so don't 1035 1.3 simonb * call it again from inside the ioctl routines that bring the 1036 1.3 simonb * interface up/down 1037 1.3 simonb * 1038 1.3 simonb * Input parameters: 1039 1.39 matt * sc - sbmac context structure 1040 1.3 simonb * 1041 1.3 simonb * Return value: 1042 1.3 simonb * 0 1043 1.3 simonb */ 1044 1.1 simonb 1045 1.1 simonb static void 1046 1.38 matt sbmac_initctx(struct sbmac_softc *sc) 1047 1.1 simonb { 1048 1.8 cgd uint64_t sysrev; 1049 1.1 simonb 1050 1.1 simonb /* 1051 1.1 simonb * figure out the addresses of some ports 1052 1.1 simonb */ 1053 1.1 simonb 1054 1.38 matt sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE); 1055 1.59 msaitoh sc->sbm_maccfg = PKSEG1(sc->sbm_base + R_MAC_CFG); 1056 1.59 msaitoh sc->sbm_fifocfg = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG); 1057 1.38 matt sc->sbm_framecfg = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG); 1058 1.38 matt sc->sbm_rxfilter = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG); 1059 1.59 msaitoh sc->sbm_isr = PKSEG1(sc->sbm_base + R_MAC_STATUS); 1060 1.59 msaitoh sc->sbm_imr = PKSEG1(sc->sbm_base + R_MAC_INT_MASK); 1061 1.1 simonb 1062 1.1 simonb /* 1063 1.1 simonb * Initialize the DMA channels. Right now, only one per MAC is used 1064 1.1 simonb * Note: Only do this _once_, as it allocates memory from the kernel! 1065 1.1 simonb */ 1066 1.1 simonb 1067 1.38 matt sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR); 1068 1.38 matt sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR); 1069 1.1 simonb 1070 1.1 simonb /* 1071 1.1 simonb * initial state is OFF 1072 1.1 simonb */ 1073 1.1 simonb 1074 1.38 matt sc->sbm_state = sbmac_state_off; 1075 1.1 simonb 1076 1.1 simonb /* 1077 1.1 simonb * Initial speed is (XXX TEMP) 10MBit/s HDX no FC 1078 1.1 simonb */ 1079 1.1 simonb 1080 1.38 matt sc->sbm_speed = sbmac_speed_10; 1081 1.38 matt sc->sbm_duplex = sbmac_duplex_half; 1082 1.38 matt sc->sbm_fc = sbmac_fc_disabled; 1083 1.8 cgd 1084 1.58 msaitoh /* 1085 1.8 cgd * Determine SOC type. 112x has Pass3 SOC features. 1086 1.8 cgd */ 1087 1.8 cgd sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) ); 1088 1.38 matt sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 || 1089 1.8 cgd SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 || 1090 1.8 cgd SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H || 1091 1.8 cgd (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 && 1092 1.18 cgd G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3)); 1093 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS 1094 1.39 matt const char * const xname = device_xname(sc->sc_dev); 1095 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR, 1096 1.38 matt NULL, xname, "rxintr"); 1097 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR, 1098 1.38 matt NULL, xname, "txintr"); 1099 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC, 1100 1.38 matt NULL, xname, "txdrop"); 1101 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC, 1102 1.38 matt NULL, xname, "txstall"); 1103 1.38 matt if (sc->sbm_pass3_dma) { 1104 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC, 1105 1.38 matt NULL, xname, "pass3tx-split"); 1106 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC, 1107 1.38 matt NULL, xname, "pass3tx-keep"); 1108 1.11 simonb } 1109 1.15 simonb #endif 1110 1.1 simonb } 1111 1.1 simonb 1112 1.3 simonb /* 1113 1.3 simonb * SBMAC_CHANNEL_START(s) 1114 1.3 simonb * 1115 1.3 simonb * Start packet processing on this MAC. 1116 1.3 simonb * 1117 1.3 simonb * Input parameters: 1118 1.39 matt * sc - sbmac structure 1119 1.3 simonb * 1120 1.3 simonb * Return value: 1121 1.3 simonb * nothing 1122 1.3 simonb */ 1123 1.1 simonb 1124 1.1 simonb static void 1125 1.38 matt sbmac_channel_start(struct sbmac_softc *sc) 1126 1.1 simonb { 1127 1.1 simonb uint64_t reg; 1128 1.1 simonb sbmac_port_t port; 1129 1.1 simonb uint64_t cfg, fifo, framecfg; 1130 1.1 simonb int idx; 1131 1.8 cgd uint64_t dma_cfg0, fifo_cfg; 1132 1.8 cgd sbmacdma_t *txdma; 1133 1.1 simonb 1134 1.1 simonb /* 1135 1.1 simonb * Don't do this if running 1136 1.1 simonb */ 1137 1.1 simonb 1138 1.38 matt if (sc->sbm_state == sbmac_state_on) 1139 1.1 simonb return; 1140 1.1 simonb 1141 1.1 simonb /* 1142 1.1 simonb * Bring the controller out of reset, but leave it off. 1143 1.1 simonb */ 1144 1.1 simonb 1145 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, 0); 1146 1.1 simonb 1147 1.1 simonb /* 1148 1.1 simonb * Ignore all received packets 1149 1.1 simonb */ 1150 1.1 simonb 1151 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0); 1152 1.1 simonb 1153 1.1 simonb /* 1154 1.1 simonb * Calculate values for various control registers. 1155 1.1 simonb */ 1156 1.1 simonb 1157 1.1 simonb cfg = M_MAC_RETRY_EN | 1158 1.1 simonb M_MAC_TX_HOLD_SOP_EN | 1159 1.1 simonb V_MAC_TX_PAUSE_CNT_16K | 1160 1.1 simonb M_MAC_AP_STAT_EN | 1161 1.1 simonb M_MAC_SS_EN | 1162 1.1 simonb 0; 1163 1.1 simonb 1164 1.1 simonb fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */ 1165 1.1 simonb V_MAC_TX_RD_THRSH(4) | 1166 1.1 simonb V_MAC_TX_RL_THRSH(4) | 1167 1.1 simonb V_MAC_RX_PL_THRSH(4) | 1168 1.1 simonb V_MAC_RX_RD_THRSH(4) | /* Must be '4' */ 1169 1.1 simonb V_MAC_RX_PL_THRSH(4) | 1170 1.1 simonb V_MAC_RX_RL_THRSH(8) | 1171 1.1 simonb 0; 1172 1.1 simonb 1173 1.1 simonb framecfg = V_MAC_MIN_FRAMESZ_DEFAULT | 1174 1.1 simonb V_MAC_MAX_FRAMESZ_DEFAULT | 1175 1.1 simonb V_MAC_BACKOFF_SEL(1); 1176 1.1 simonb 1177 1.1 simonb /* 1178 1.1 simonb * Clear out the hash address map 1179 1.1 simonb */ 1180 1.1 simonb 1181 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE); 1182 1.1 simonb for (idx = 0; idx < MAC_HASH_COUNT; idx++) { 1183 1.1 simonb SBMAC_WRITECSR(port, 0); 1184 1.1 simonb port += sizeof(uint64_t); 1185 1.1 simonb } 1186 1.1 simonb 1187 1.1 simonb /* 1188 1.1 simonb * Clear out the exact-match table 1189 1.1 simonb */ 1190 1.1 simonb 1191 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE); 1192 1.1 simonb for (idx = 0; idx < MAC_ADDR_COUNT; idx++) { 1193 1.1 simonb SBMAC_WRITECSR(port, 0); 1194 1.1 simonb port += sizeof(uint64_t); 1195 1.1 simonb } 1196 1.1 simonb 1197 1.1 simonb /* 1198 1.1 simonb * Clear out the DMA Channel mapping table registers 1199 1.1 simonb */ 1200 1.1 simonb 1201 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE); 1202 1.1 simonb for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) { 1203 1.1 simonb SBMAC_WRITECSR(port, 0); 1204 1.1 simonb port += sizeof(uint64_t); 1205 1.1 simonb } 1206 1.1 simonb 1207 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE); 1208 1.1 simonb for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) { 1209 1.1 simonb SBMAC_WRITECSR(port, 0); 1210 1.1 simonb port += sizeof(uint64_t); 1211 1.1 simonb } 1212 1.1 simonb 1213 1.1 simonb /* 1214 1.1 simonb * Program the hardware address. It goes into the hardware-address 1215 1.1 simonb * register as well as the first filter register. 1216 1.1 simonb */ 1217 1.1 simonb 1218 1.38 matt reg = sbmac_addr2reg(sc->sbm_hwaddr); 1219 1.1 simonb 1220 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE); 1221 1.1 simonb SBMAC_WRITECSR(port, reg); 1222 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR); 1223 1.1 simonb SBMAC_WRITECSR(port, 0); // pass1 workaround 1224 1.1 simonb 1225 1.1 simonb /* 1226 1.1 simonb * Set the receive filter for no packets, and write values 1227 1.1 simonb * to the various config registers 1228 1.1 simonb */ 1229 1.1 simonb 1230 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0); 1231 1.38 matt SBMAC_WRITECSR(sc->sbm_imr, 0); 1232 1.38 matt SBMAC_WRITECSR(sc->sbm_framecfg, framecfg); 1233 1.38 matt SBMAC_WRITECSR(sc->sbm_fifocfg, fifo); 1234 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg); 1235 1.1 simonb 1236 1.1 simonb /* 1237 1.1 simonb * Initialize DMA channels (rings should be ok now) 1238 1.1 simonb */ 1239 1.1 simonb 1240 1.38 matt sbdma_channel_start(&(sc->sbm_rxdma)); 1241 1.38 matt sbdma_channel_start(&(sc->sbm_txdma)); 1242 1.1 simonb 1243 1.1 simonb /* 1244 1.1 simonb * Configure the speed, duplex, and flow control 1245 1.1 simonb */ 1246 1.1 simonb 1247 1.38 matt sbmac_set_speed(sc, sc->sbm_speed); 1248 1.38 matt sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc); 1249 1.1 simonb 1250 1.1 simonb /* 1251 1.1 simonb * Fill the receive ring 1252 1.1 simonb */ 1253 1.1 simonb 1254 1.38 matt sbdma_fillring(&(sc->sbm_rxdma)); 1255 1.1 simonb 1256 1.1 simonb /* 1257 1.1 simonb * Turn on the rest of the bits in the enable register 1258 1.1 simonb */ 1259 1.1 simonb 1260 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 | 1261 1.1 simonb M_MAC_RX_ENABLE | M_MAC_TX_ENABLE); 1262 1.1 simonb 1263 1.1 simonb 1264 1.1 simonb /* 1265 1.1 simonb * Accept any kind of interrupt on TX and RX DMA channel 0 1266 1.1 simonb */ 1267 1.38 matt SBMAC_WRITECSR(sc->sbm_imr, 1268 1.1 simonb (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) | 1269 1.1 simonb (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)); 1270 1.1 simonb 1271 1.1 simonb /* 1272 1.1 simonb * Enable receiving unicasts and broadcasts 1273 1.1 simonb */ 1274 1.1 simonb 1275 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN); 1276 1.1 simonb 1277 1.1 simonb /* 1278 1.8 cgd * On chips which support unaligned DMA features, set the descriptor 1279 1.8 cgd * ring for transmit channels to use the unaligned buffer format. 1280 1.8 cgd */ 1281 1.58 msaitoh txdma = &(sc->sbm_txdma); 1282 1.8 cgd 1283 1.38 matt if (sc->sbm_pass3_dma) { 1284 1.8 cgd dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0); 1285 1.8 cgd dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) | 1286 1.8 cgd M_DMA_TBX_EN | M_DMA_TDX_EN; 1287 1.58 msaitoh SBMAC_WRITECSR(txdma->sbdma_config0, dma_cfg0); 1288 1.8 cgd 1289 1.38 matt fifo_cfg = SBMAC_READCSR(sc->sbm_fifocfg); 1290 1.8 cgd fifo_cfg |= V_MAC_TX_WR_THRSH(8) | 1291 1.8 cgd V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8); 1292 1.58 msaitoh SBMAC_WRITECSR(sc->sbm_fifocfg, fifo_cfg); 1293 1.8 cgd } 1294 1.8 cgd 1295 1.8 cgd /* 1296 1.1 simonb * we're running now. 1297 1.1 simonb */ 1298 1.1 simonb 1299 1.38 matt sc->sbm_state = sbmac_state_on; 1300 1.38 matt sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING; 1301 1.1 simonb 1302 1.1 simonb /* 1303 1.1 simonb * Program multicast addresses 1304 1.1 simonb */ 1305 1.1 simonb 1306 1.38 matt sbmac_setmulti(sc); 1307 1.1 simonb 1308 1.1 simonb /* 1309 1.1 simonb * If channel was in promiscuous mode before, turn that on 1310 1.1 simonb */ 1311 1.1 simonb 1312 1.38 matt if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC) 1313 1.39 matt sbmac_promiscuous_mode(sc, true); 1314 1.1 simonb 1315 1.1 simonb /* 1316 1.1 simonb * Turn on the once-per-second timer 1317 1.1 simonb */ 1318 1.1 simonb 1319 1.38 matt callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc); 1320 1.1 simonb } 1321 1.1 simonb 1322 1.3 simonb /* 1323 1.3 simonb * SBMAC_CHANNEL_STOP(s) 1324 1.3 simonb * 1325 1.3 simonb * Stop packet processing on this MAC. 1326 1.3 simonb * 1327 1.3 simonb * Input parameters: 1328 1.39 matt * sc - sbmac structure 1329 1.3 simonb * 1330 1.3 simonb * Return value: 1331 1.3 simonb * nothing 1332 1.3 simonb */ 1333 1.1 simonb 1334 1.3 simonb static void 1335 1.38 matt sbmac_channel_stop(struct sbmac_softc *sc) 1336 1.1 simonb { 1337 1.3 simonb uint64_t ctl; 1338 1.1 simonb 1339 1.3 simonb /* don't do this if already stopped */ 1340 1.1 simonb 1341 1.38 matt if (sc->sbm_state == sbmac_state_off) 1342 1.3 simonb return; 1343 1.1 simonb 1344 1.3 simonb /* don't accept any packets, disable all interrupts */ 1345 1.1 simonb 1346 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0); 1347 1.38 matt SBMAC_WRITECSR(sc->sbm_imr, 0); 1348 1.1 simonb 1349 1.3 simonb /* Turn off ticker */ 1350 1.1 simonb 1351 1.38 matt callout_stop(&(sc->sc_tick_ch)); 1352 1.1 simonb 1353 1.3 simonb /* turn off receiver and transmitter */ 1354 1.1 simonb 1355 1.38 matt ctl = SBMAC_READCSR(sc->sbm_macenable); 1356 1.3 simonb ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0); 1357 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, ctl); 1358 1.1 simonb 1359 1.3 simonb /* We're stopped now. */ 1360 1.1 simonb 1361 1.38 matt sc->sbm_state = sbmac_state_off; 1362 1.38 matt sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING; 1363 1.1 simonb 1364 1.3 simonb /* Empty the receive and transmit rings */ 1365 1.1 simonb 1366 1.38 matt sbdma_emptyring(&(sc->sbm_rxdma)); 1367 1.38 matt sbdma_emptyring(&(sc->sbm_txdma)); 1368 1.3 simonb } 1369 1.3 simonb 1370 1.3 simonb /* 1371 1.3 simonb * SBMAC_SET_CHANNEL_STATE(state) 1372 1.3 simonb * 1373 1.3 simonb * Set the channel's state ON or OFF 1374 1.3 simonb * 1375 1.3 simonb * Input parameters: 1376 1.3 simonb * state - new state 1377 1.3 simonb * 1378 1.3 simonb * Return value: 1379 1.3 simonb * old state 1380 1.3 simonb */ 1381 1.1 simonb 1382 1.3 simonb static sbmac_state_t 1383 1.3 simonb sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state) 1384 1.3 simonb { 1385 1.3 simonb sbmac_state_t oldstate = sc->sbm_state; 1386 1.3 simonb 1387 1.3 simonb /* 1388 1.3 simonb * If same as previous state, return 1389 1.3 simonb */ 1390 1.3 simonb 1391 1.3 simonb if (state == oldstate) 1392 1.3 simonb return oldstate; 1393 1.3 simonb 1394 1.3 simonb /* 1395 1.3 simonb * If new state is ON, turn channel on 1396 1.3 simonb */ 1397 1.3 simonb 1398 1.3 simonb if (state == sbmac_state_on) 1399 1.3 simonb sbmac_channel_start(sc); 1400 1.3 simonb else 1401 1.3 simonb sbmac_channel_stop(sc); 1402 1.3 simonb 1403 1.3 simonb /* 1404 1.3 simonb * Return previous state 1405 1.3 simonb */ 1406 1.3 simonb 1407 1.3 simonb return oldstate; 1408 1.1 simonb } 1409 1.1 simonb 1410 1.3 simonb /* 1411 1.39 matt * SBMAC_PROMISCUOUS_MODE(sc, enabled) 1412 1.3 simonb * 1413 1.3 simonb * Turn on or off promiscuous mode 1414 1.3 simonb * 1415 1.3 simonb * Input parameters: 1416 1.3 simonb * sc - softc 1417 1.39 matt * enabled - true to turn on, false to turn off 1418 1.3 simonb * 1419 1.3 simonb * Return value: 1420 1.3 simonb * nothing 1421 1.3 simonb */ 1422 1.3 simonb 1423 1.3 simonb static void 1424 1.39 matt sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled) 1425 1.1 simonb { 1426 1.3 simonb uint64_t reg; 1427 1.1 simonb 1428 1.3 simonb if (sc->sbm_state != sbmac_state_on) 1429 1.3 simonb return; 1430 1.1 simonb 1431 1.39 matt if (enabled) { 1432 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter); 1433 1.3 simonb reg |= M_MAC_ALLPKT_EN; 1434 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg); 1435 1.3 simonb } else { 1436 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter); 1437 1.3 simonb reg &= ~M_MAC_ALLPKT_EN; 1438 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg); 1439 1.1 simonb } 1440 1.3 simonb } 1441 1.1 simonb 1442 1.3 simonb /* 1443 1.3 simonb * SBMAC_INIT_AND_START(sc) 1444 1.3 simonb * 1445 1.3 simonb * Stop the channel and restart it. This is generally used 1446 1.3 simonb * when we have to do something to the channel that requires 1447 1.3 simonb * a swift kick. 1448 1.3 simonb * 1449 1.3 simonb * Input parameters: 1450 1.3 simonb * sc - softc 1451 1.3 simonb */ 1452 1.1 simonb 1453 1.3 simonb static void 1454 1.3 simonb sbmac_init_and_start(struct sbmac_softc *sc) 1455 1.3 simonb { 1456 1.3 simonb int s; 1457 1.3 simonb 1458 1.3 simonb s = splnet(); 1459 1.1 simonb 1460 1.13 simonb mii_pollstat(&sc->sc_mii); /* poll phy for current speed */ 1461 1.42 matt sbmac_mii_statchg(&sc->sc_ethercom.ec_if); /* set state to new speed */ 1462 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_on); 1463 1.1 simonb 1464 1.3 simonb splx(s); 1465 1.1 simonb } 1466 1.1 simonb 1467 1.3 simonb /* 1468 1.3 simonb * SBMAC_ADDR2REG(ptr) 1469 1.3 simonb * 1470 1.3 simonb * Convert six bytes into the 64-bit register value that 1471 1.3 simonb * we typically write into the SBMAC's address/mcast registers 1472 1.3 simonb * 1473 1.3 simonb * Input parameters: 1474 1.3 simonb * ptr - pointer to 6 bytes 1475 1.3 simonb * 1476 1.3 simonb * Return value: 1477 1.3 simonb * register value 1478 1.3 simonb */ 1479 1.3 simonb 1480 1.3 simonb static uint64_t 1481 1.3 simonb sbmac_addr2reg(u_char *ptr) 1482 1.3 simonb { 1483 1.3 simonb uint64_t reg = 0; 1484 1.1 simonb 1485 1.3 simonb ptr += 6; 1486 1.3 simonb 1487 1.3 simonb reg |= (uint64_t) *(--ptr); 1488 1.3 simonb reg <<= 8; 1489 1.3 simonb reg |= (uint64_t) *(--ptr); 1490 1.3 simonb reg <<= 8; 1491 1.3 simonb reg |= (uint64_t) *(--ptr); 1492 1.3 simonb reg <<= 8; 1493 1.3 simonb reg |= (uint64_t) *(--ptr); 1494 1.3 simonb reg <<= 8; 1495 1.3 simonb reg |= (uint64_t) *(--ptr); 1496 1.3 simonb reg <<= 8; 1497 1.3 simonb reg |= (uint64_t) *(--ptr); 1498 1.3 simonb 1499 1.3 simonb return reg; 1500 1.3 simonb } 1501 1.3 simonb 1502 1.3 simonb /* 1503 1.39 matt * SBMAC_SET_SPEED(sc, speed) 1504 1.3 simonb * 1505 1.3 simonb * Configure LAN speed for the specified MAC. 1506 1.3 simonb * Warning: must be called when MAC is off! 1507 1.3 simonb * 1508 1.3 simonb * Input parameters: 1509 1.39 matt * sc - sbmac structure 1510 1.3 simonb * speed - speed to set MAC to (see sbmac_speed_t enum) 1511 1.3 simonb * 1512 1.3 simonb * Return value: 1513 1.39 matt * true if successful 1514 1.39 matt * false indicates invalid parameters 1515 1.3 simonb */ 1516 1.1 simonb 1517 1.39 matt static bool 1518 1.38 matt sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed) 1519 1.1 simonb { 1520 1.3 simonb uint64_t cfg; 1521 1.3 simonb uint64_t framecfg; 1522 1.3 simonb 1523 1.3 simonb /* 1524 1.3 simonb * Save new current values 1525 1.3 simonb */ 1526 1.1 simonb 1527 1.38 matt sc->sbm_speed = speed; 1528 1.1 simonb 1529 1.38 matt if (sc->sbm_state != sbmac_state_off) 1530 1.3 simonb panic("sbmac_set_speed while MAC not off"); 1531 1.3 simonb 1532 1.3 simonb /* 1533 1.3 simonb * Read current register values 1534 1.3 simonb */ 1535 1.3 simonb 1536 1.38 matt cfg = SBMAC_READCSR(sc->sbm_maccfg); 1537 1.38 matt framecfg = SBMAC_READCSR(sc->sbm_framecfg); 1538 1.1 simonb 1539 1.3 simonb /* 1540 1.3 simonb * Mask out the stuff we want to change 1541 1.3 simonb */ 1542 1.1 simonb 1543 1.3 simonb cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL); 1544 1.3 simonb framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH | 1545 1.3 simonb M_MAC_SLOT_SIZE); 1546 1.1 simonb 1547 1.3 simonb /* 1548 1.3 simonb * Now add in the new bits 1549 1.3 simonb */ 1550 1.1 simonb 1551 1.3 simonb switch (speed) { 1552 1.1 simonb case sbmac_speed_10: 1553 1.3 simonb framecfg |= V_MAC_IFG_RX_10 | 1554 1.3 simonb V_MAC_IFG_TX_10 | 1555 1.3 simonb K_MAC_IFG_THRSH_10 | 1556 1.3 simonb V_MAC_SLOT_SIZE_10; 1557 1.3 simonb cfg |= V_MAC_SPEED_SEL_10MBPS; 1558 1.3 simonb break; 1559 1.1 simonb 1560 1.1 simonb case sbmac_speed_100: 1561 1.3 simonb framecfg |= V_MAC_IFG_RX_100 | 1562 1.3 simonb V_MAC_IFG_TX_100 | 1563 1.3 simonb V_MAC_IFG_THRSH_100 | 1564 1.3 simonb V_MAC_SLOT_SIZE_100; 1565 1.3 simonb cfg |= V_MAC_SPEED_SEL_100MBPS ; 1566 1.3 simonb break; 1567 1.1 simonb 1568 1.1 simonb case sbmac_speed_1000: 1569 1.3 simonb framecfg |= V_MAC_IFG_RX_1000 | 1570 1.3 simonb V_MAC_IFG_TX_1000 | 1571 1.3 simonb V_MAC_IFG_THRSH_1000 | 1572 1.3 simonb V_MAC_SLOT_SIZE_1000; 1573 1.3 simonb cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN; 1574 1.3 simonb break; 1575 1.1 simonb 1576 1.1 simonb case sbmac_speed_auto: /* XXX not implemented */ 1577 1.3 simonb /* fall through */ 1578 1.1 simonb default: 1579 1.39 matt return false; 1580 1.1 simonb } 1581 1.1 simonb 1582 1.3 simonb /* 1583 1.3 simonb * Send the bits back to the hardware 1584 1.3 simonb */ 1585 1.1 simonb 1586 1.38 matt SBMAC_WRITECSR(sc->sbm_framecfg, framecfg); 1587 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg); 1588 1.1 simonb 1589 1.39 matt return true; 1590 1.1 simonb } 1591 1.1 simonb 1592 1.3 simonb /* 1593 1.38 matt * SBMAC_SET_DUPLEX(sc, duplex, fc) 1594 1.3 simonb * 1595 1.3 simonb * Set Ethernet duplex and flow control options for this MAC 1596 1.3 simonb * Warning: must be called when MAC is off! 1597 1.3 simonb * 1598 1.3 simonb * Input parameters: 1599 1.39 matt * sc - sbmac structure 1600 1.3 simonb * duplex - duplex setting (see sbmac_duplex_t) 1601 1.3 simonb * fc - flow control setting (see sbmac_fc_t) 1602 1.3 simonb * 1603 1.3 simonb * Return value: 1604 1.39 matt * true if ok 1605 1.39 matt * false if an invalid parameter combination was specified 1606 1.3 simonb */ 1607 1.1 simonb 1608 1.39 matt static bool 1609 1.38 matt sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc) 1610 1.1 simonb { 1611 1.3 simonb uint64_t cfg; 1612 1.1 simonb 1613 1.3 simonb /* 1614 1.3 simonb * Save new current values 1615 1.3 simonb */ 1616 1.1 simonb 1617 1.38 matt sc->sbm_duplex = duplex; 1618 1.38 matt sc->sbm_fc = fc; 1619 1.1 simonb 1620 1.38 matt if (sc->sbm_state != sbmac_state_off) 1621 1.3 simonb panic("sbmac_set_duplex while MAC not off"); 1622 1.1 simonb 1623 1.3 simonb /* 1624 1.3 simonb * Read current register values 1625 1.3 simonb */ 1626 1.1 simonb 1627 1.38 matt cfg = SBMAC_READCSR(sc->sbm_maccfg); 1628 1.1 simonb 1629 1.3 simonb /* 1630 1.3 simonb * Mask off the stuff we're about to change 1631 1.3 simonb */ 1632 1.1 simonb 1633 1.3 simonb cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN); 1634 1.1 simonb 1635 1.3 simonb switch (duplex) { 1636 1.1 simonb case sbmac_duplex_half: 1637 1.3 simonb switch (fc) { 1638 1.1 simonb case sbmac_fc_disabled: 1639 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED; 1640 1.3 simonb break; 1641 1.1 simonb 1642 1.1 simonb case sbmac_fc_collision: 1643 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED; 1644 1.3 simonb break; 1645 1.1 simonb 1646 1.1 simonb case sbmac_fc_carrier: 1647 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR; 1648 1.3 simonb break; 1649 1.1 simonb 1650 1.1 simonb case sbmac_fc_auto: /* XXX not implemented */ 1651 1.3 simonb /* fall through */ 1652 1.1 simonb case sbmac_fc_frame: /* not valid in half duplex */ 1653 1.1 simonb default: /* invalid selection */ 1654 1.4 provos panic("%s: invalid half duplex fc selection %d", 1655 1.38 matt device_xname(sc->sc_dev), fc); 1656 1.39 matt return false; 1657 1.1 simonb } 1658 1.3 simonb break; 1659 1.1 simonb 1660 1.1 simonb case sbmac_duplex_full: 1661 1.3 simonb switch (fc) { 1662 1.1 simonb case sbmac_fc_disabled: 1663 1.3 simonb cfg |= V_MAC_FC_CMD_DISABLED; 1664 1.3 simonb break; 1665 1.1 simonb 1666 1.1 simonb case sbmac_fc_frame: 1667 1.3 simonb cfg |= V_MAC_FC_CMD_ENABLED; 1668 1.3 simonb break; 1669 1.1 simonb 1670 1.1 simonb case sbmac_fc_collision: /* not valid in full duplex */ 1671 1.1 simonb case sbmac_fc_carrier: /* not valid in full duplex */ 1672 1.1 simonb case sbmac_fc_auto: /* XXX not implemented */ 1673 1.3 simonb /* fall through */ 1674 1.1 simonb default: 1675 1.4 provos panic("%s: invalid full duplex fc selection %d", 1676 1.38 matt device_xname(sc->sc_dev), fc); 1677 1.39 matt return false; 1678 1.1 simonb } 1679 1.3 simonb break; 1680 1.1 simonb 1681 1.1 simonb default: 1682 1.3 simonb /* fall through */ 1683 1.1 simonb case sbmac_duplex_auto: 1684 1.38 matt panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex); 1685 1.3 simonb /* XXX not implemented */ 1686 1.3 simonb break; 1687 1.1 simonb } 1688 1.1 simonb 1689 1.3 simonb /* 1690 1.3 simonb * Send the bits back to the hardware 1691 1.3 simonb */ 1692 1.1 simonb 1693 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg); 1694 1.1 simonb 1695 1.39 matt return true; 1696 1.1 simonb } 1697 1.1 simonb 1698 1.3 simonb /* 1699 1.3 simonb * SBMAC_INTR() 1700 1.3 simonb * 1701 1.3 simonb * Interrupt handler for MAC interrupts 1702 1.3 simonb * 1703 1.3 simonb * Input parameters: 1704 1.3 simonb * MAC structure 1705 1.3 simonb * 1706 1.3 simonb * Return value: 1707 1.3 simonb * nothing 1708 1.3 simonb */ 1709 1.1 simonb 1710 1.1 simonb /* ARGSUSED */ 1711 1.1 simonb static void 1712 1.35 matt sbmac_intr(void *xsc, uint32_t status, vaddr_t pc) 1713 1.1 simonb { 1714 1.38 matt struct sbmac_softc *sc = xsc; 1715 1.14 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1716 1.1 simonb uint64_t isr; 1717 1.1 simonb 1718 1.1 simonb for (;;) { 1719 1.1 simonb 1720 1.1 simonb /* 1721 1.1 simonb * Read the ISR (this clears the bits in the real register) 1722 1.1 simonb */ 1723 1.1 simonb 1724 1.1 simonb isr = SBMAC_READCSR(sc->sbm_isr); 1725 1.1 simonb 1726 1.1 simonb if (isr == 0) 1727 1.1 simonb break; 1728 1.1 simonb 1729 1.1 simonb /* 1730 1.1 simonb * Transmits on channel 0 1731 1.1 simonb */ 1732 1.1 simonb 1733 1.15 simonb if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) { 1734 1.1 simonb sbdma_tx_process(sc, &(sc->sbm_txdma)); 1735 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txintr); 1736 1.15 simonb } 1737 1.1 simonb 1738 1.1 simonb /* 1739 1.1 simonb * Receives on channel 0 1740 1.1 simonb */ 1741 1.1 simonb 1742 1.15 simonb if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) { 1743 1.1 simonb sbdma_rx_process(sc, &(sc->sbm_rxdma)); 1744 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr); 1745 1.15 simonb } 1746 1.1 simonb } 1747 1.14 simonb 1748 1.14 simonb /* try to get more packets going */ 1749 1.48 ozaki if_schedule_deferred_start(ifp); 1750 1.1 simonb } 1751 1.1 simonb 1752 1.1 simonb 1753 1.3 simonb /* 1754 1.3 simonb * SBMAC_START(ifp) 1755 1.3 simonb * 1756 1.3 simonb * Start output on the specified interface. Basically, we 1757 1.3 simonb * queue as many buffers as we can until the ring fills up, or 1758 1.3 simonb * we run off the end of the queue, whichever comes first. 1759 1.3 simonb * 1760 1.3 simonb * Input parameters: 1761 1.3 simonb * ifp - interface 1762 1.3 simonb * 1763 1.3 simonb * Return value: 1764 1.3 simonb * nothing 1765 1.3 simonb */ 1766 1.3 simonb 1767 1.3 simonb static void 1768 1.3 simonb sbmac_start(struct ifnet *ifp) 1769 1.1 simonb { 1770 1.3 simonb struct sbmac_softc *sc; 1771 1.3 simonb struct mbuf *m_head = NULL; 1772 1.3 simonb int rv; 1773 1.1 simonb 1774 1.65 thorpej if ((ifp->if_flags & IFF_RUNNING) == 0) 1775 1.3 simonb return; 1776 1.3 simonb 1777 1.3 simonb sc = ifp->if_softc; 1778 1.1 simonb 1779 1.3 simonb for (;;) { 1780 1.1 simonb 1781 1.64 thorpej IF_POLL(&ifp->if_snd, m_head); 1782 1.3 simonb if (m_head == NULL) 1783 1.3 simonb break; 1784 1.1 simonb 1785 1.3 simonb /* 1786 1.3 simonb * Put the buffer on the transmit ring. If we 1787 1.65 thorpej * don't have room, we'll try to get things going 1788 1.65 thorpej * again after a transmit interrupt. 1789 1.3 simonb */ 1790 1.3 simonb 1791 1.3 simonb rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head); 1792 1.3 simonb 1793 1.3 simonb if (rv == 0) { 1794 1.3 simonb /* 1795 1.13 simonb * If there's a BPF listener, bounce a copy of this 1796 1.13 simonb * frame to it. 1797 1.3 simonb */ 1798 1.64 thorpej IF_DEQUEUE(&ifp->if_snd, m_head); 1799 1.50 msaitoh bpf_mtap(ifp, m_head, BPF_D_OUT); 1800 1.8 cgd if (!sc->sbm_pass3_dma) { 1801 1.8 cgd /* 1802 1.13 simonb * Don't free mbuf if we're not copying to new 1803 1.13 simonb * mbuf in sbdma_add_txbuffer. It will be 1804 1.13 simonb * freed in sbdma_tx_process. 1805 1.8 cgd */ 1806 1.8 cgd m_freem(m_head); 1807 1.8 cgd } 1808 1.3 simonb } 1809 1.3 simonb } 1810 1.3 simonb } 1811 1.3 simonb 1812 1.3 simonb /* 1813 1.3 simonb * SBMAC_SETMULTI(sc) 1814 1.3 simonb * 1815 1.3 simonb * Reprogram the multicast table into the hardware, given 1816 1.3 simonb * the list of multicasts associated with the interface 1817 1.3 simonb * structure. 1818 1.3 simonb * 1819 1.3 simonb * Input parameters: 1820 1.3 simonb * sc - softc 1821 1.3 simonb * 1822 1.3 simonb * Return value: 1823 1.3 simonb * nothing 1824 1.3 simonb */ 1825 1.3 simonb 1826 1.3 simonb static void 1827 1.3 simonb sbmac_setmulti(struct sbmac_softc *sc) 1828 1.3 simonb { 1829 1.58 msaitoh struct ethercom *ec = &sc->sc_ethercom; 1830 1.58 msaitoh struct ifnet *ifp = &ec->ec_if; 1831 1.3 simonb uint64_t reg; 1832 1.3 simonb sbmac_port_t port; 1833 1.3 simonb int idx; 1834 1.3 simonb struct ether_multi *enm; 1835 1.3 simonb struct ether_multistep step; 1836 1.3 simonb 1837 1.1 simonb /* 1838 1.3 simonb * Clear out entire multicast table. We do this by nuking 1839 1.3 simonb * the entire hash table and all the direct matches except 1840 1.3 simonb * the first one, which is used for our station address 1841 1.1 simonb */ 1842 1.1 simonb 1843 1.3 simonb for (idx = 1; idx < MAC_ADDR_COUNT; idx++) { 1844 1.13 simonb port = PKSEG1(sc->sbm_base + 1845 1.13 simonb R_MAC_ADDR_BASE+(idx*sizeof(uint64_t))); 1846 1.3 simonb SBMAC_WRITECSR(port, 0); 1847 1.3 simonb } 1848 1.1 simonb 1849 1.3 simonb for (idx = 0; idx < MAC_HASH_COUNT; idx++) { 1850 1.13 simonb port = PKSEG1(sc->sbm_base + 1851 1.13 simonb R_MAC_HASH_BASE+(idx*sizeof(uint64_t))); 1852 1.3 simonb SBMAC_WRITECSR(port, 0); 1853 1.3 simonb } 1854 1.1 simonb 1855 1.1 simonb /* 1856 1.3 simonb * Clear the filter to say we don't want any multicasts. 1857 1.1 simonb */ 1858 1.3 simonb 1859 1.1 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter); 1860 1.3 simonb reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN); 1861 1.1 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg); 1862 1.3 simonb 1863 1.3 simonb if (ifp->if_flags & IFF_ALLMULTI) { 1864 1.3 simonb /* 1865 1.3 simonb * Enable ALL multicasts. Do this by inverting the 1866 1.3 simonb * multicast enable bit. 1867 1.3 simonb */ 1868 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter); 1869 1.3 simonb reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN); 1870 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg); 1871 1.3 simonb return; 1872 1.1 simonb } 1873 1.1 simonb 1874 1.3 simonb /* 1875 1.63 msaitoh * Program new multicast entries. For now, only use the 1876 1.3 simonb * perfect filter. In the future we'll need to use the 1877 1.3 simonb * hash filter if the perfect filter overflows 1878 1.3 simonb */ 1879 1.3 simonb 1880 1.3 simonb /* 1881 1.3 simonb * XXX only using perfect filter for now, need to use hash 1882 1.3 simonb * XXX if the table overflows 1883 1.3 simonb */ 1884 1.3 simonb 1885 1.3 simonb idx = 1; /* skip station address */ 1886 1.60 msaitoh ETHER_LOCK(ec); 1887 1.58 msaitoh ETHER_FIRST_MULTI(step, ec, enm); 1888 1.3 simonb while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) { 1889 1.3 simonb reg = sbmac_addr2reg(enm->enm_addrlo); 1890 1.3 simonb port = PKSEG1(sc->sbm_base + 1891 1.3 simonb R_MAC_ADDR_BASE+(idx*sizeof(uint64_t))); 1892 1.3 simonb SBMAC_WRITECSR(port, reg); 1893 1.3 simonb idx++; 1894 1.3 simonb ETHER_NEXT_MULTI(step, enm); 1895 1.1 simonb } 1896 1.60 msaitoh ETHER_UNLOCK(ec); 1897 1.1 simonb 1898 1.3 simonb /* 1899 1.3 simonb * Enable the "accept multicast bits" if we programmed at least one 1900 1.3 simonb * multicast. 1901 1.3 simonb */ 1902 1.1 simonb 1903 1.3 simonb if (idx > 1) { 1904 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter); 1905 1.3 simonb reg |= M_MAC_MCAST_EN; 1906 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg); 1907 1.1 simonb } 1908 1.1 simonb } 1909 1.1 simonb 1910 1.3 simonb /* 1911 1.3 simonb * SBMAC_ETHER_IOCTL(ifp, cmd, data) 1912 1.3 simonb * 1913 1.3 simonb * Generic IOCTL requests for this interface. The basic 1914 1.3 simonb * stuff is handled here for bringing the interface up, 1915 1.3 simonb * handling multicasts, etc. 1916 1.3 simonb * 1917 1.3 simonb * Input parameters: 1918 1.3 simonb * ifp - interface structure 1919 1.3 simonb * cmd - command code 1920 1.3 simonb * data - pointer to data 1921 1.3 simonb * 1922 1.3 simonb * Return value: 1923 1.3 simonb * return value (0 is success) 1924 1.3 simonb */ 1925 1.1 simonb 1926 1.3 simonb static int 1927 1.22 christos sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1928 1.1 simonb { 1929 1.3 simonb struct ifaddr *ifa = (struct ifaddr *) data; 1930 1.3 simonb struct sbmac_softc *sc = ifp->if_softc; 1931 1.1 simonb 1932 1.3 simonb switch (cmd) { 1933 1.29 dyoung case SIOCINITIFADDR: 1934 1.3 simonb ifp->if_flags |= IFF_UP; 1935 1.1 simonb 1936 1.3 simonb switch (ifa->ifa_addr->sa_family) { 1937 1.1 simonb #ifdef INET 1938 1.1 simonb case AF_INET: 1939 1.3 simonb sbmac_init_and_start(sc); 1940 1.3 simonb arp_ifinit(ifp, ifa); 1941 1.3 simonb break; 1942 1.1 simonb #endif 1943 1.1 simonb default: 1944 1.3 simonb sbmac_init_and_start(sc); 1945 1.3 simonb break; 1946 1.1 simonb } 1947 1.3 simonb break; 1948 1.1 simonb 1949 1.1 simonb default: 1950 1.29 dyoung return ENOTTY; 1951 1.1 simonb } 1952 1.1 simonb 1953 1.58 msaitoh return 0; 1954 1.1 simonb } 1955 1.1 simonb 1956 1.3 simonb /* 1957 1.30 dyoung * SBMAC_IOCTL(ifp, cmd, data) 1958 1.3 simonb * 1959 1.3 simonb * Main IOCTL handler - dispatches to other IOCTLs for various 1960 1.3 simonb * types of requests. 1961 1.3 simonb * 1962 1.3 simonb * Input parameters: 1963 1.3 simonb * ifp - interface pointer 1964 1.30 dyoung * cmd - command code 1965 1.3 simonb * data - pointer to argument data 1966 1.3 simonb * 1967 1.3 simonb * Return value: 1968 1.3 simonb * 0 if ok 1969 1.3 simonb * else error code 1970 1.3 simonb */ 1971 1.1 simonb 1972 1.3 simonb static int 1973 1.30 dyoung sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1974 1.1 simonb { 1975 1.3 simonb struct sbmac_softc *sc = ifp->if_softc; 1976 1.3 simonb struct ifreq *ifr = (struct ifreq *) data; 1977 1.3 simonb int s, error = 0; 1978 1.1 simonb 1979 1.3 simonb s = splnet(); 1980 1.1 simonb 1981 1.30 dyoung switch (cmd) { 1982 1.29 dyoung case SIOCINITIFADDR: 1983 1.30 dyoung error = sbmac_ether_ioctl(ifp, cmd, data); 1984 1.3 simonb break; 1985 1.1 simonb case SIOCSIFMTU: 1986 1.28 dyoung if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) 1987 1.3 simonb error = EINVAL; 1988 1.30 dyoung else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET) 1989 1.3 simonb /* XXX Program new MTU here */ 1990 1.28 dyoung error = 0; 1991 1.3 simonb break; 1992 1.1 simonb case SIOCSIFFLAGS: 1993 1.29 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1994 1.29 dyoung break; 1995 1.3 simonb if (ifp->if_flags & IFF_UP) { 1996 1.3 simonb /* 1997 1.3 simonb * If only the state of the PROMISC flag changed, 1998 1.3 simonb * just tweak the hardware registers. 1999 1.3 simonb */ 2000 1.3 simonb if ((ifp->if_flags & IFF_RUNNING) && 2001 1.3 simonb (ifp->if_flags & IFF_PROMISC)) { 2002 1.3 simonb /* turn on promiscuous mode */ 2003 1.39 matt sbmac_promiscuous_mode(sc, true); 2004 1.3 simonb } else if (ifp->if_flags & IFF_RUNNING && 2005 1.3 simonb !(ifp->if_flags & IFF_PROMISC)) { 2006 1.3 simonb /* turn off promiscuous mode */ 2007 1.39 matt sbmac_promiscuous_mode(sc, false); 2008 1.3 simonb } else 2009 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_on); 2010 1.3 simonb } else { 2011 1.3 simonb if (ifp->if_flags & IFF_RUNNING) 2012 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_off); 2013 1.1 simonb } 2014 1.1 simonb 2015 1.3 simonb sc->sbm_if_flags = ifp->if_flags; 2016 1.3 simonb error = 0; 2017 1.3 simonb break; 2018 1.1 simonb 2019 1.57 msaitoh default: 2020 1.30 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2021 1.3 simonb error = 0; 2022 1.27 dyoung if (ifp->if_flags & IFF_RUNNING) 2023 1.27 dyoung sbmac_setmulti(sc); 2024 1.1 simonb } 2025 1.3 simonb break; 2026 1.1 simonb } 2027 1.1 simonb 2028 1.3 simonb (void)splx(s); 2029 1.1 simonb 2030 1.58 msaitoh return error; 2031 1.1 simonb } 2032 1.1 simonb 2033 1.3 simonb /* 2034 1.3 simonb * SBMAC_IFMEDIA_UPD(ifp) 2035 1.3 simonb * 2036 1.3 simonb * Configure an appropriate media type for this interface, 2037 1.3 simonb * given the data in the interface structure 2038 1.3 simonb * 2039 1.3 simonb * Input parameters: 2040 1.3 simonb * ifp - interface 2041 1.3 simonb * 2042 1.3 simonb * Return value: 2043 1.3 simonb * 0 if ok 2044 1.3 simonb * else error code 2045 1.3 simonb */ 2046 1.1 simonb 2047 1.3 simonb /* 2048 1.3 simonb * SBMAC_IFMEDIA_STS(ifp, ifmr) 2049 1.3 simonb * 2050 1.3 simonb * Report current media status (used by ifconfig, for example) 2051 1.3 simonb * 2052 1.3 simonb * Input parameters: 2053 1.3 simonb * ifp - interface structure 2054 1.3 simonb * ifmr - media request structure 2055 1.3 simonb * 2056 1.3 simonb * Return value: 2057 1.3 simonb * nothing 2058 1.3 simonb */ 2059 1.1 simonb 2060 1.3 simonb /* 2061 1.3 simonb * SBMAC_WATCHDOG(ifp) 2062 1.3 simonb * 2063 1.3 simonb * Called periodically to make sure we're still happy. 2064 1.3 simonb * 2065 1.3 simonb * Input parameters: 2066 1.3 simonb * ifp - interface structure 2067 1.3 simonb * 2068 1.3 simonb * Return value: 2069 1.3 simonb * nothing 2070 1.3 simonb */ 2071 1.1 simonb 2072 1.3 simonb static void 2073 1.3 simonb sbmac_watchdog(struct ifnet *ifp) 2074 1.3 simonb { 2075 1.1 simonb 2076 1.3 simonb /* XXX do something */ 2077 1.1 simonb } 2078 1.1 simonb 2079 1.1 simonb /* 2080 1.1 simonb * One second timer, used to tick MII. 2081 1.1 simonb */ 2082 1.3 simonb static void 2083 1.3 simonb sbmac_tick(void *arg) 2084 1.1 simonb { 2085 1.3 simonb struct sbmac_softc *sc = arg; 2086 1.3 simonb int s; 2087 1.1 simonb 2088 1.3 simonb s = splnet(); 2089 1.3 simonb mii_tick(&sc->sc_mii); 2090 1.3 simonb splx(s); 2091 1.1 simonb 2092 1.3 simonb callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc); 2093 1.1 simonb } 2094 1.1 simonb 2095 1.1 simonb 2096 1.3 simonb /* 2097 1.3 simonb * SBMAC_MATCH(parent, match, aux) 2098 1.3 simonb * 2099 1.3 simonb * Part of the config process - see if this device matches the 2100 1.3 simonb * info about what we expect to find on the bus. 2101 1.3 simonb * 2102 1.3 simonb * Input parameters: 2103 1.3 simonb * parent - parent bus structure 2104 1.3 simonb * match - 2105 1.3 simonb * aux - bus-specific args 2106 1.3 simonb * 2107 1.3 simonb * Return value: 2108 1.3 simonb * 1 if we match 2109 1.3 simonb * 0 if we don't match 2110 1.3 simonb */ 2111 1.1 simonb 2112 1.3 simonb static int 2113 1.38 matt sbmac_match(device_t parent, cfdata_t match, void *aux) 2114 1.1 simonb { 2115 1.39 matt struct sbobio_attach_args *sa = aux; 2116 1.3 simonb 2117 1.3 simonb /* 2118 1.3 simonb * Make sure it's a MAC 2119 1.3 simonb */ 2120 1.39 matt if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC) 2121 1.3 simonb return 0; 2122 1.1 simonb 2123 1.3 simonb /* 2124 1.3 simonb * Yup, it is. 2125 1.3 simonb */ 2126 1.3 simonb 2127 1.3 simonb return 1; 2128 1.3 simonb } 2129 1.3 simonb 2130 1.3 simonb /* 2131 1.3 simonb * SBMAC_PARSE_XDIGIT(str) 2132 1.3 simonb * 2133 1.3 simonb * Parse a hex digit, returning its value 2134 1.3 simonb * 2135 1.3 simonb * Input parameters: 2136 1.3 simonb * str - character 2137 1.3 simonb * 2138 1.3 simonb * Return value: 2139 1.3 simonb * hex value, or -1 if invalid 2140 1.3 simonb */ 2141 1.3 simonb 2142 1.3 simonb static int 2143 1.3 simonb sbmac_parse_xdigit(char str) 2144 1.3 simonb { 2145 1.3 simonb int digit; 2146 1.3 simonb 2147 1.3 simonb if ((str >= '0') && (str <= '9')) 2148 1.3 simonb digit = str - '0'; 2149 1.3 simonb else if ((str >= 'a') && (str <= 'f')) 2150 1.3 simonb digit = str - 'a' + 10; 2151 1.3 simonb else if ((str >= 'A') && (str <= 'F')) 2152 1.3 simonb digit = str - 'A' + 10; 2153 1.3 simonb else 2154 1.3 simonb digit = -1; 2155 1.3 simonb 2156 1.3 simonb return digit; 2157 1.3 simonb } 2158 1.3 simonb 2159 1.3 simonb /* 2160 1.3 simonb * SBMAC_PARSE_HWADDR(str, hwaddr) 2161 1.3 simonb * 2162 1.3 simonb * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte 2163 1.3 simonb * Ethernet address. 2164 1.3 simonb * 2165 1.3 simonb * Input parameters: 2166 1.3 simonb * str - string 2167 1.3 simonb * hwaddr - pointer to hardware address 2168 1.3 simonb * 2169 1.3 simonb * Return value: 2170 1.3 simonb * 0 if ok, else -1 2171 1.3 simonb */ 2172 1.3 simonb 2173 1.3 simonb static int 2174 1.20 jmc sbmac_parse_hwaddr(const char *str, u_char *hwaddr) 2175 1.3 simonb { 2176 1.3 simonb int digit1, digit2; 2177 1.3 simonb int idx = 6; 2178 1.1 simonb 2179 1.3 simonb while (*str && (idx > 0)) { 2180 1.3 simonb digit1 = sbmac_parse_xdigit(*str); 2181 1.3 simonb if (digit1 < 0) 2182 1.3 simonb return -1; 2183 1.3 simonb str++; 2184 1.3 simonb if (!*str) 2185 1.3 simonb return -1; 2186 1.3 simonb 2187 1.3 simonb if ((*str == ':') || (*str == '-')) { 2188 1.3 simonb digit2 = digit1; 2189 1.3 simonb digit1 = 0; 2190 1.3 simonb } else { 2191 1.3 simonb digit2 = sbmac_parse_xdigit(*str); 2192 1.3 simonb if (digit2 < 0) 2193 1.3 simonb return -1; 2194 1.3 simonb str++; 2195 1.3 simonb } 2196 1.3 simonb 2197 1.3 simonb *hwaddr++ = (digit1 << 4) | digit2; 2198 1.3 simonb idx--; 2199 1.3 simonb 2200 1.3 simonb if (*str == '-') 2201 1.3 simonb str++; 2202 1.3 simonb if (*str == ':') 2203 1.3 simonb str++; 2204 1.3 simonb } 2205 1.1 simonb return 0; 2206 1.3 simonb } 2207 1.3 simonb 2208 1.3 simonb /* 2209 1.3 simonb * SBMAC_ATTACH(parent, self, aux) 2210 1.3 simonb * 2211 1.3 simonb * Attach routine - init hardware and hook ourselves into NetBSD. 2212 1.3 simonb * 2213 1.3 simonb * Input parameters: 2214 1.3 simonb * parent - parent bus device 2215 1.3 simonb * self - our softc 2216 1.3 simonb * aux - attach data 2217 1.3 simonb * 2218 1.3 simonb * Return value: 2219 1.3 simonb * nothing 2220 1.3 simonb */ 2221 1.3 simonb 2222 1.3 simonb static void 2223 1.38 matt sbmac_attach(device_t parent, device_t self, void *aux) 2224 1.3 simonb { 2225 1.39 matt struct sbmac_softc * const sc = device_private(self); 2226 1.39 matt struct ifnet * const ifp = &sc->sc_ethercom.ec_if; 2227 1.58 msaitoh struct mii_data * const mii = &sc->sc_mii; 2228 1.39 matt struct sbobio_attach_args * const sa = aux; 2229 1.3 simonb u_char *eaddr; 2230 1.3 simonb static int unit = 0; /* XXX */ 2231 1.3 simonb uint64_t ea_reg; 2232 1.3 simonb int idx; 2233 1.3 simonb 2234 1.38 matt sc->sc_dev = self; 2235 1.3 simonb 2236 1.3 simonb /* Determine controller base address */ 2237 1.3 simonb 2238 1.40 matt sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset; 2239 1.3 simonb 2240 1.3 simonb eaddr = sc->sbm_hwaddr; 2241 1.3 simonb 2242 1.3 simonb /* 2243 1.3 simonb * Initialize context (get pointers to registers and stuff), then 2244 1.3 simonb * allocate the memory for the descriptor tables. 2245 1.3 simonb */ 2246 1.3 simonb 2247 1.3 simonb sbmac_initctx(sc); 2248 1.3 simonb 2249 1.25 ad callout_init(&(sc->sc_tick_ch), 0); 2250 1.3 simonb 2251 1.3 simonb /* 2252 1.66 andvar * Read the ethernet address. The firmware left this programmed 2253 1.3 simonb * for us in the ethernet address register for each mac. 2254 1.3 simonb */ 2255 1.1 simonb 2256 1.3 simonb ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR)); 2257 1.3 simonb for (idx = 0; idx < 6; idx++) { 2258 1.3 simonb eaddr[idx] = (uint8_t) (ea_reg & 0xFF); 2259 1.3 simonb ea_reg >>= 8; 2260 1.1 simonb } 2261 1.1 simonb 2262 1.1 simonb #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00" 2263 1.3 simonb if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 && 2264 1.3 simonb eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) { 2265 1.3 simonb sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr); 2266 1.3 simonb eaddr[5] = unit; 2267 1.1 simonb } 2268 1.1 simonb 2269 1.1 simonb #ifdef SBMAC_ETH0_HWADDR 2270 1.3 simonb if (unit == 0) 2271 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr); 2272 1.1 simonb #endif 2273 1.1 simonb #ifdef SBMAC_ETH1_HWADDR 2274 1.3 simonb if (unit == 1) 2275 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr); 2276 1.1 simonb #endif 2277 1.1 simonb #ifdef SBMAC_ETH2_HWADDR 2278 1.3 simonb if (unit == 2) 2279 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr); 2280 1.1 simonb #endif 2281 1.3 simonb unit++; 2282 1.3 simonb 2283 1.3 simonb /* 2284 1.3 simonb * Display Ethernet address (this is called during the config process 2285 1.3 simonb * so we need to finish off the config message that was being displayed) 2286 1.3 simonb */ 2287 1.38 matt aprint_normal(": Ethernet%s\n", 2288 1.8 cgd sc->sbm_pass3_dma ? ", using unaligned tx DMA" : ""); 2289 1.51 sevan aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr)); 2290 1.1 simonb 2291 1.3 simonb 2292 1.3 simonb /* 2293 1.3 simonb * Set up ifnet structure 2294 1.3 simonb */ 2295 1.3 simonb 2296 1.3 simonb ifp->if_softc = sc; 2297 1.39 matt memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 2298 1.54 msaitoh ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 2299 1.3 simonb ifp->if_ioctl = sbmac_ioctl; 2300 1.3 simonb ifp->if_start = sbmac_start; 2301 1.3 simonb ifp->if_watchdog = sbmac_watchdog; 2302 1.3 simonb ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1; 2303 1.3 simonb 2304 1.3 simonb /* 2305 1.3 simonb * Set up ifmedia support. 2306 1.3 simonb */ 2307 1.3 simonb 2308 1.3 simonb /* 2309 1.3 simonb * Initialize MII/media info. 2310 1.3 simonb */ 2311 1.59 msaitoh mii->mii_ifp = ifp; 2312 1.58 msaitoh mii->mii_readreg = sbmac_mii_readreg; 2313 1.58 msaitoh mii->mii_writereg = sbmac_mii_writereg; 2314 1.58 msaitoh mii->mii_statchg = sbmac_mii_statchg; 2315 1.58 msaitoh sc->sc_ethercom.ec_mii = mii; 2316 1.58 msaitoh ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); 2317 1.58 msaitoh mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 2318 1.3 simonb MII_OFFSET_ANY, 0); 2319 1.3 simonb 2320 1.58 msaitoh if (LIST_FIRST(&mii->mii_phys) == NULL) { 2321 1.58 msaitoh ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 2322 1.58 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 2323 1.58 msaitoh } else 2324 1.58 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 2325 1.1 simonb 2326 1.3 simonb /* 2327 1.3 simonb * map/route interrupt 2328 1.3 simonb */ 2329 1.3 simonb 2330 1.39 matt sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET, 2331 1.3 simonb sbmac_intr, sc); 2332 1.3 simonb 2333 1.3 simonb /* 2334 1.3 simonb * Call MI attach routines. 2335 1.3 simonb */ 2336 1.3 simonb if_attach(ifp); 2337 1.48 ozaki if_deferred_start_init(ifp, NULL); 2338 1.3 simonb ether_ifattach(ifp, eaddr); 2339 1.1 simonb } 2340