sbmac.c revision 1.24 1 1.24 christos /* $NetBSD: sbmac.c,v 1.24 2007/03/07 17:24:38 christos Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.19 cgd * Copyright 2000, 2001, 2004
5 1.1 simonb * Broadcom Corporation. All rights reserved.
6 1.1 simonb *
7 1.1 simonb * This software is furnished under license and may be used and copied only
8 1.1 simonb * in accordance with the following terms and conditions. Subject to these
9 1.1 simonb * conditions, you may download, copy, install, use, modify and distribute
10 1.1 simonb * modified or unmodified copies of this software in source and/or binary
11 1.1 simonb * form. No title or ownership is transferred hereby.
12 1.1 simonb *
13 1.1 simonb * 1) Any source code used, modified or distributed must reproduce and
14 1.1 simonb * retain this copyright notice and list of conditions as they appear in
15 1.1 simonb * the source file.
16 1.1 simonb *
17 1.1 simonb * 2) No right is granted to use any trade name, trademark, or logo of
18 1.9 cgd * Broadcom Corporation. The "Broadcom Corporation" name may not be
19 1.9 cgd * used to endorse or promote products derived from this software
20 1.9 cgd * without the prior written permission of Broadcom Corporation.
21 1.1 simonb *
22 1.1 simonb * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23 1.1 simonb * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24 1.1 simonb * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25 1.1 simonb * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26 1.1 simonb * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27 1.1 simonb * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 1.1 simonb * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 1.1 simonb * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 simonb */
34 1.10 lukem
35 1.10 lukem #include <sys/cdefs.h>
36 1.24 christos __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.24 2007/03/07 17:24:38 christos Exp $");
37 1.1 simonb
38 1.1 simonb #include "bpfilter.h"
39 1.1 simonb #include "opt_inet.h"
40 1.1 simonb #include "opt_ns.h"
41 1.1 simonb
42 1.1 simonb #include <sys/param.h>
43 1.1 simonb #include <sys/systm.h>
44 1.1 simonb #include <sys/sockio.h>
45 1.1 simonb #include <sys/mbuf.h>
46 1.1 simonb #include <sys/malloc.h>
47 1.1 simonb #include <sys/kernel.h>
48 1.1 simonb #include <sys/socket.h>
49 1.1 simonb #include <sys/queue.h>
50 1.1 simonb #include <sys/device.h>
51 1.1 simonb
52 1.1 simonb #include <net/if.h>
53 1.1 simonb #include <net/if_arp.h>
54 1.1 simonb #include <net/if_ether.h>
55 1.1 simonb #include <net/if_dl.h>
56 1.1 simonb #include <net/if_media.h>
57 1.1 simonb
58 1.1 simonb #if NBPFILTER > 0
59 1.1 simonb #include <net/bpf.h>
60 1.1 simonb #endif
61 1.1 simonb
62 1.1 simonb #ifdef INET
63 1.1 simonb #include <netinet/in.h>
64 1.1 simonb #include <netinet/if_inarp.h>
65 1.1 simonb #endif
66 1.1 simonb
67 1.1 simonb #ifdef NS
68 1.1 simonb #include <netns/ns.h>
69 1.1 simonb #include <netns/ns_if.h>
70 1.1 simonb #endif
71 1.1 simonb
72 1.1 simonb #include <machine/locore.h>
73 1.1 simonb
74 1.1 simonb #include "sbobiovar.h"
75 1.1 simonb
76 1.1 simonb #include <dev/mii/mii.h>
77 1.1 simonb #include <dev/mii/miivar.h>
78 1.1 simonb #include <dev/mii/mii_bitbang.h>
79 1.1 simonb
80 1.1 simonb #include <mips/sibyte/include/sb1250_defs.h>
81 1.1 simonb #include <mips/sibyte/include/sb1250_regs.h>
82 1.1 simonb #include <mips/sibyte/include/sb1250_mac.h>
83 1.1 simonb #include <mips/sibyte/include/sb1250_dma.h>
84 1.8 cgd #include <mips/sibyte/include/sb1250_scd.h>
85 1.1 simonb
86 1.3 simonb /* Simple types */
87 1.1 simonb
88 1.1 simonb typedef u_long sbmac_port_t;
89 1.1 simonb typedef uint64_t sbmac_physaddr_t;
90 1.1 simonb typedef uint64_t sbmac_enetaddr_t;
91 1.1 simonb
92 1.1 simonb typedef enum { sbmac_speed_auto, sbmac_speed_10,
93 1.1 simonb sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
94 1.1 simonb
95 1.1 simonb typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
96 1.1 simonb sbmac_duplex_full } sbmac_duplex_t;
97 1.1 simonb
98 1.1 simonb typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
99 1.1 simonb sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
100 1.1 simonb
101 1.1 simonb typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
102 1.1 simonb sbmac_state_broken } sbmac_state_t;
103 1.1 simonb
104 1.1 simonb
105 1.3 simonb /* Macros */
106 1.1 simonb
107 1.15 simonb #define SBMAC_EVENT_COUNTERS /* Include counters for various events */
108 1.15 simonb
109 1.19 cgd #define SBDMA_NEXTBUF(d, f) ((f + 1) & (d)->sbdma_dscr_mask)
110 1.1 simonb
111 1.1 simonb #define CACHELINESIZE 32
112 1.1 simonb #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
113 1.1 simonb #define KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
114 1.1 simonb #define KVTOPHYS(x) kvtophys((vaddr_t)(x))
115 1.1 simonb
116 1.1 simonb #ifdef SBMACDEBUG
117 1.1 simonb #define dprintf(x) printf x
118 1.1 simonb #else
119 1.1 simonb #define dprintf(x)
120 1.1 simonb #endif
121 1.1 simonb
122 1.1 simonb #define SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
123 1.1 simonb #define SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
124 1.1 simonb
125 1.1 simonb #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
126 1.1 simonb
127 1.19 cgd /* These are limited to fit within one virtual page, and must be 2**N. */
128 1.17 cgd #define SBMAC_MAX_TXDESCR 256 /* should be 1024 */
129 1.17 cgd #define SBMAC_MAX_RXDESCR 256 /* should be 512 */
130 1.1 simonb
131 1.1 simonb #define ETHER_ALIGN 2
132 1.1 simonb
133 1.3 simonb /* DMA Descriptor structure */
134 1.1 simonb
135 1.1 simonb typedef struct sbdmadscr_s {
136 1.1 simonb uint64_t dscr_a;
137 1.1 simonb uint64_t dscr_b;
138 1.1 simonb } sbdmadscr_t;
139 1.1 simonb
140 1.3 simonb
141 1.3 simonb /* DMA Controller structure */
142 1.1 simonb
143 1.1 simonb typedef struct sbmacdma_s {
144 1.1 simonb
145 1.1 simonb /*
146 1.1 simonb * This stuff is used to identify the channel and the registers
147 1.1 simonb * associated with it.
148 1.1 simonb */
149 1.1 simonb
150 1.1 simonb struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
151 1.1 simonb int sbdma_channel; /* channel number */
152 1.1 simonb int sbdma_txdir; /* direction (1=transmit) */
153 1.1 simonb int sbdma_maxdescr; /* total # of descriptors in ring */
154 1.1 simonb sbmac_port_t sbdma_config0; /* DMA config register 0 */
155 1.1 simonb sbmac_port_t sbdma_config1; /* DMA config register 1 */
156 1.1 simonb sbmac_port_t sbdma_dscrbase; /* Descriptor base address */
157 1.1 simonb sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */
158 1.1 simonb sbmac_port_t sbdma_curdscr; /* current descriptor address */
159 1.1 simonb
160 1.1 simonb /*
161 1.1 simonb * This stuff is for maintenance of the ring
162 1.1 simonb */
163 1.1 simonb sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
164 1.1 simonb struct mbuf **sbdma_ctxtable; /* context table, one per descr */
165 1.19 cgd unsigned int sbdma_dscr_mask; /* sbdma_maxdescr - 1 */
166 1.1 simonb paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
167 1.19 cgd unsigned int sbdma_add_index; /* next dscr for sw to add */
168 1.19 cgd unsigned int sbdma_rem_index; /* next dscr for sw to remove */
169 1.1 simonb } sbmacdma_t;
170 1.1 simonb
171 1.1 simonb
172 1.3 simonb /* Ethernet softc structure */
173 1.1 simonb
174 1.1 simonb struct sbmac_softc {
175 1.1 simonb
176 1.1 simonb /*
177 1.1 simonb * NetBSD-specific things
178 1.1 simonb */
179 1.1 simonb struct device sc_dev; /* base device (must be first) */
180 1.1 simonb struct ethercom sc_ethercom; /* Ethernet common part */
181 1.1 simonb struct mii_data sc_mii;
182 1.1 simonb struct callout sc_tick_ch;
183 1.1 simonb
184 1.1 simonb int sbm_if_flags;
185 1.1 simonb void *sbm_intrhand;
186 1.1 simonb
187 1.1 simonb /*
188 1.1 simonb * Controller-specific things
189 1.1 simonb */
190 1.1 simonb
191 1.1 simonb sbmac_port_t sbm_base; /* MAC's base address */
192 1.1 simonb sbmac_state_t sbm_state; /* current state */
193 1.1 simonb
194 1.1 simonb sbmac_port_t sbm_macenable; /* MAC Enable Register */
195 1.1 simonb sbmac_port_t sbm_maccfg; /* MAC Configuration Register */
196 1.1 simonb sbmac_port_t sbm_fifocfg; /* FIFO configuration register */
197 1.1 simonb sbmac_port_t sbm_framecfg; /* Frame configuration register */
198 1.1 simonb sbmac_port_t sbm_rxfilter; /* receive filter register */
199 1.1 simonb sbmac_port_t sbm_isr; /* Interrupt status register */
200 1.1 simonb sbmac_port_t sbm_imr; /* Interrupt mask register */
201 1.1 simonb
202 1.1 simonb sbmac_speed_t sbm_speed; /* current speed */
203 1.1 simonb sbmac_duplex_t sbm_duplex; /* current duplex */
204 1.1 simonb sbmac_fc_t sbm_fc; /* current flow control setting */
205 1.1 simonb int sbm_rxflags; /* received packet flags */
206 1.1 simonb
207 1.1 simonb u_char sbm_hwaddr[ETHER_ADDR_LEN];
208 1.1 simonb
209 1.1 simonb sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
210 1.1 simonb sbmacdma_t sbm_rxdma;
211 1.8 cgd
212 1.8 cgd int sbm_pass3_dma; /* chip has pass3 SOC DMA features */
213 1.15 simonb
214 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
215 1.15 simonb struct evcnt sbm_ev_rxintr; /* Rx interrupts */
216 1.15 simonb struct evcnt sbm_ev_txintr; /* Tx interrupts */
217 1.15 simonb struct evcnt sbm_ev_txdrop; /* Tx dropped due to no mbuf alloc failed */
218 1.15 simonb struct evcnt sbm_ev_txstall; /* Tx stalled due to no descriptors free */
219 1.15 simonb
220 1.15 simonb struct evcnt sbm_ev_txsplit; /* pass3 Tx split mbuf */
221 1.15 simonb struct evcnt sbm_ev_txkeep; /* pass3 Tx didn't split mbuf */
222 1.15 simonb #endif
223 1.1 simonb };
224 1.1 simonb
225 1.1 simonb
226 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
227 1.15 simonb #define SBMAC_EVCNT_INCR(ev) (ev).ev_count++
228 1.15 simonb #else
229 1.15 simonb #define SBMAC_EVCNT_INCR(ev) do { /* nothing */ } while (0)
230 1.15 simonb #endif
231 1.15 simonb
232 1.3 simonb /* Externs */
233 1.1 simonb
234 1.1 simonb extern paddr_t kvtophys(vaddr_t);
235 1.1 simonb
236 1.3 simonb /* Prototypes */
237 1.1 simonb
238 1.1 simonb static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
239 1.1 simonb int txrx, int maxdescr);
240 1.1 simonb static void sbdma_channel_start(sbmacdma_t *d);
241 1.1 simonb static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
242 1.1 simonb static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
243 1.1 simonb static void sbdma_emptyring(sbmacdma_t *d);
244 1.1 simonb static void sbdma_fillring(sbmacdma_t *d);
245 1.1 simonb static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
246 1.1 simonb static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
247 1.1 simonb static void sbmac_initctx(struct sbmac_softc *s);
248 1.1 simonb static void sbmac_channel_start(struct sbmac_softc *s);
249 1.1 simonb static void sbmac_channel_stop(struct sbmac_softc *s);
250 1.1 simonb static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
251 1.1 simonb sbmac_state_t);
252 1.1 simonb static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
253 1.1 simonb static void sbmac_init_and_start(struct sbmac_softc *sc);
254 1.1 simonb static uint64_t sbmac_addr2reg(u_char *ptr);
255 1.1 simonb static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
256 1.1 simonb static void sbmac_start(struct ifnet *ifp);
257 1.1 simonb static void sbmac_setmulti(struct sbmac_softc *sc);
258 1.22 christos static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data);
259 1.22 christos static int sbmac_ioctl(struct ifnet *ifp, u_long command, void *data);
260 1.1 simonb static int sbmac_mediachange(struct ifnet *ifp);
261 1.1 simonb static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
262 1.1 simonb static void sbmac_watchdog(struct ifnet *ifp);
263 1.1 simonb static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
264 1.1 simonb static void sbmac_attach(struct device *parent, struct device *self, void *aux);
265 1.1 simonb static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
266 1.1 simonb static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
267 1.1 simonb sbmac_fc_t fc);
268 1.1 simonb static void sbmac_tick(void *arg);
269 1.1 simonb
270 1.1 simonb
271 1.3 simonb /* Globals */
272 1.1 simonb
273 1.5 thorpej CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
274 1.6 thorpej sbmac_match, sbmac_attach, NULL, NULL);
275 1.1 simonb
276 1.3 simonb static uint32_t sbmac_mii_bitbang_read(struct device *self);
277 1.3 simonb static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
278 1.1 simonb
279 1.1 simonb static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
280 1.1 simonb sbmac_mii_bitbang_read,
281 1.1 simonb sbmac_mii_bitbang_write,
282 1.1 simonb {
283 1.1 simonb (uint32_t)M_MAC_MDIO_OUT, /* MII_BIT_MDO */
284 1.1 simonb (uint32_t)M_MAC_MDIO_IN, /* MII_BIT_MDI */
285 1.1 simonb (uint32_t)M_MAC_MDC, /* MII_BIT_MDC */
286 1.1 simonb 0, /* MII_BIT_DIR_HOST_PHY */
287 1.1 simonb (uint32_t)M_MAC_MDIO_DIR /* MII_BIT_DIR_PHY_HOST */
288 1.1 simonb }
289 1.1 simonb };
290 1.1 simonb
291 1.3 simonb static uint32_t
292 1.1 simonb sbmac_mii_bitbang_read(struct device *self)
293 1.1 simonb {
294 1.1 simonb struct sbmac_softc *sc = (void *) self;
295 1.1 simonb sbmac_port_t reg;
296 1.1 simonb
297 1.1 simonb reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
298 1.1 simonb return (uint32_t) SBMAC_READCSR(reg);
299 1.1 simonb }
300 1.1 simonb
301 1.3 simonb static void
302 1.1 simonb sbmac_mii_bitbang_write(struct device *self, uint32_t val)
303 1.1 simonb {
304 1.1 simonb struct sbmac_softc *sc = (void *) self;
305 1.1 simonb sbmac_port_t reg;
306 1.1 simonb
307 1.1 simonb reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
308 1.1 simonb
309 1.1 simonb SBMAC_WRITECSR(reg, (val &
310 1.1 simonb (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
311 1.1 simonb }
312 1.1 simonb
313 1.1 simonb /*
314 1.1 simonb * Read an PHY register through the MII.
315 1.1 simonb */
316 1.1 simonb static int
317 1.1 simonb sbmac_mii_readreg(struct device *self, int phy, int reg)
318 1.1 simonb {
319 1.1 simonb
320 1.1 simonb return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
321 1.1 simonb }
322 1.1 simonb
323 1.1 simonb /*
324 1.1 simonb * Write to a PHY register through the MII.
325 1.1 simonb */
326 1.1 simonb static void
327 1.1 simonb sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
328 1.1 simonb {
329 1.1 simonb
330 1.1 simonb mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
331 1.1 simonb }
332 1.1 simonb
333 1.1 simonb static void
334 1.1 simonb sbmac_mii_statchg(struct device *self)
335 1.1 simonb {
336 1.1 simonb struct sbmac_softc *sc = (struct sbmac_softc *)self;
337 1.1 simonb sbmac_state_t oldstate;
338 1.1 simonb
339 1.1 simonb /* Stop the MAC in preparation for changing all of the parameters. */
340 1.1 simonb oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
341 1.1 simonb
342 1.1 simonb switch (sc->sc_ethercom.ec_if.if_baudrate) {
343 1.1 simonb default: /* if autonegotiation fails, assume 10Mbit */
344 1.1 simonb case IF_Mbps(10):
345 1.1 simonb sbmac_set_speed(sc, sbmac_speed_10);
346 1.1 simonb break;
347 1.1 simonb
348 1.1 simonb case IF_Mbps(100):
349 1.1 simonb sbmac_set_speed(sc, sbmac_speed_100);
350 1.1 simonb break;
351 1.1 simonb
352 1.1 simonb case IF_Mbps(1000):
353 1.1 simonb sbmac_set_speed(sc, sbmac_speed_1000);
354 1.1 simonb break;
355 1.1 simonb }
356 1.1 simonb
357 1.1 simonb if (sc->sc_mii.mii_media_active & IFM_FDX) {
358 1.1 simonb /* Configure for full-duplex */
359 1.1 simonb /* XXX: is flow control right for 10, 100? */
360 1.1 simonb sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
361 1.1 simonb } else {
362 1.1 simonb /* Configure for half-duplex */
363 1.1 simonb /* XXX: is flow control right? */
364 1.1 simonb sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
365 1.1 simonb }
366 1.1 simonb
367 1.1 simonb /* And put it back into its former state. */
368 1.1 simonb sbmac_set_channel_state(sc, oldstate);
369 1.1 simonb }
370 1.1 simonb
371 1.3 simonb /*
372 1.3 simonb * SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
373 1.3 simonb *
374 1.3 simonb * Initialize a DMA channel context. Since there are potentially
375 1.3 simonb * eight DMA channels per MAC, it's nice to do this in a standard
376 1.3 simonb * way.
377 1.3 simonb *
378 1.3 simonb * Input parameters:
379 1.3 simonb * d - sbmacdma_t structure (DMA channel context)
380 1.3 simonb * s - sbmac_softc structure (pointer to a MAC)
381 1.3 simonb * chan - channel number (0..1 right now)
382 1.3 simonb * txrx - Identifies DMA_TX or DMA_RX for channel direction
383 1.3 simonb * maxdescr - number of descriptors
384 1.3 simonb *
385 1.3 simonb * Return value:
386 1.3 simonb * nothing
387 1.3 simonb */
388 1.1 simonb
389 1.1 simonb static void
390 1.1 simonb sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
391 1.1 simonb int maxdescr)
392 1.1 simonb {
393 1.1 simonb /*
394 1.1 simonb * Save away interesting stuff in the structure
395 1.1 simonb */
396 1.1 simonb
397 1.3 simonb d->sbdma_eth = s;
398 1.3 simonb d->sbdma_channel = chan;
399 1.3 simonb d->sbdma_txdir = txrx;
400 1.1 simonb
401 1.1 simonb /*
402 1.1 simonb * initialize register pointers
403 1.1 simonb */
404 1.1 simonb
405 1.1 simonb d->sbdma_config0 = PKSEG1(s->sbm_base +
406 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
407 1.1 simonb d->sbdma_config1 = PKSEG1(s->sbm_base +
408 1.7 cgd R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
409 1.1 simonb d->sbdma_dscrbase = PKSEG1(s->sbm_base +
410 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
411 1.1 simonb d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
412 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
413 1.1 simonb d->sbdma_curdscr = PKSEG1(s->sbm_base +
414 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
415 1.1 simonb
416 1.1 simonb /*
417 1.1 simonb * Allocate memory for the ring
418 1.1 simonb */
419 1.1 simonb
420 1.1 simonb d->sbdma_maxdescr = maxdescr;
421 1.19 cgd d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
422 1.1 simonb
423 1.1 simonb d->sbdma_dscrtable = (sbdmadscr_t *)
424 1.19 cgd KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
425 1.1 simonb
426 1.1 simonb bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
427 1.1 simonb
428 1.1 simonb d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
429 1.1 simonb
430 1.1 simonb /*
431 1.1 simonb * And context table
432 1.1 simonb */
433 1.1 simonb
434 1.1 simonb d->sbdma_ctxtable = (struct mbuf **)
435 1.1 simonb KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
436 1.1 simonb
437 1.1 simonb bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
438 1.1 simonb }
439 1.1 simonb
440 1.3 simonb /*
441 1.3 simonb * SBDMA_CHANNEL_START(d)
442 1.3 simonb *
443 1.3 simonb * Initialize the hardware registers for a DMA channel.
444 1.3 simonb *
445 1.3 simonb * Input parameters:
446 1.3 simonb * d - DMA channel to init (context must be previously init'd
447 1.3 simonb *
448 1.3 simonb * Return value:
449 1.3 simonb * nothing
450 1.3 simonb */
451 1.1 simonb
452 1.1 simonb static void
453 1.1 simonb sbdma_channel_start(sbmacdma_t *d)
454 1.1 simonb {
455 1.1 simonb /*
456 1.1 simonb * Turn on the DMA channel
457 1.1 simonb */
458 1.1 simonb
459 1.1 simonb SBMAC_WRITECSR(d->sbdma_config1, 0);
460 1.1 simonb
461 1.1 simonb SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
462 1.1 simonb
463 1.1 simonb SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
464 1.1 simonb
465 1.1 simonb /*
466 1.1 simonb * Initialize ring pointers
467 1.1 simonb */
468 1.1 simonb
469 1.19 cgd d->sbdma_add_index = 0;
470 1.19 cgd d->sbdma_rem_index = 0;
471 1.1 simonb }
472 1.1 simonb
473 1.3 simonb /*
474 1.3 simonb * SBDMA_ADD_RCVBUFFER(d, m)
475 1.3 simonb *
476 1.3 simonb * Add a buffer to the specified DMA channel. For receive channels,
477 1.3 simonb * this queues a buffer for inbound packets.
478 1.3 simonb *
479 1.3 simonb * Input parameters:
480 1.3 simonb * d - DMA channel descriptor
481 1.3 simonb * m - mbuf to add, or NULL if we should allocate one.
482 1.3 simonb *
483 1.3 simonb * Return value:
484 1.3 simonb * 0 if buffer could not be added (ring is full)
485 1.3 simonb * 1 if buffer added successfully
486 1.3 simonb */
487 1.1 simonb
488 1.1 simonb static int
489 1.1 simonb sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
490 1.1 simonb {
491 1.19 cgd unsigned int dsc, nextdsc;
492 1.1 simonb struct mbuf *m_new = NULL;
493 1.1 simonb
494 1.1 simonb /* get pointer to our current place in the ring */
495 1.1 simonb
496 1.19 cgd dsc = d->sbdma_add_index;
497 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
498 1.1 simonb
499 1.1 simonb /*
500 1.1 simonb * figure out if the ring is full - if the next descriptor
501 1.1 simonb * is the same as the one that we're going to remove from
502 1.1 simonb * the ring, the ring is full
503 1.1 simonb */
504 1.1 simonb
505 1.19 cgd if (nextdsc == d->sbdma_rem_index)
506 1.1 simonb return ENOSPC;
507 1.1 simonb
508 1.1 simonb /*
509 1.1 simonb * Allocate an mbuf if we don't already have one.
510 1.1 simonb * If we do have an mbuf, reset it so that it's empty.
511 1.1 simonb */
512 1.1 simonb
513 1.1 simonb if (m == NULL) {
514 1.1 simonb MGETHDR(m_new, M_DONTWAIT, MT_DATA);
515 1.1 simonb if (m_new == NULL) {
516 1.1 simonb printf("%s: mbuf allocation failed\n",
517 1.1 simonb d->sbdma_eth->sc_dev.dv_xname);
518 1.1 simonb return ENOBUFS;
519 1.1 simonb }
520 1.1 simonb
521 1.1 simonb MCLGET(m_new, M_DONTWAIT);
522 1.1 simonb if (!(m_new->m_flags & M_EXT)) {
523 1.1 simonb printf("%s: mbuf cluster allocation failed\n",
524 1.1 simonb d->sbdma_eth->sc_dev.dv_xname);
525 1.1 simonb m_freem(m_new);
526 1.1 simonb return ENOBUFS;
527 1.1 simonb }
528 1.1 simonb
529 1.1 simonb m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
530 1.1 simonb m_adj(m_new, ETHER_ALIGN);
531 1.1 simonb } else {
532 1.1 simonb m_new = m;
533 1.1 simonb m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
534 1.1 simonb m_new->m_data = m_new->m_ext.ext_buf;
535 1.1 simonb m_adj(m_new, ETHER_ALIGN);
536 1.1 simonb }
537 1.1 simonb
538 1.1 simonb /*
539 1.1 simonb * fill in the descriptor
540 1.1 simonb */
541 1.1 simonb
542 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
543 1.1 simonb V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
544 1.1 simonb M_DMA_DSCRA_INTERRUPT;
545 1.1 simonb
546 1.1 simonb /* receiving: no options */
547 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = 0;
548 1.1 simonb
549 1.1 simonb /*
550 1.1 simonb * fill in the context
551 1.1 simonb */
552 1.1 simonb
553 1.19 cgd d->sbdma_ctxtable[dsc] = m_new;
554 1.1 simonb
555 1.1 simonb /*
556 1.1 simonb * point at next packet
557 1.1 simonb */
558 1.1 simonb
559 1.19 cgd d->sbdma_add_index = nextdsc;
560 1.1 simonb
561 1.1 simonb /*
562 1.1 simonb * Give the buffer to the DMA engine.
563 1.1 simonb */
564 1.1 simonb
565 1.1 simonb SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
566 1.1 simonb
567 1.1 simonb return 0; /* we did it */
568 1.1 simonb }
569 1.1 simonb
570 1.3 simonb /*
571 1.3 simonb * SBDMA_ADD_TXBUFFER(d, m)
572 1.3 simonb *
573 1.3 simonb * Add a transmit buffer to the specified DMA channel, causing a
574 1.3 simonb * transmit to start.
575 1.3 simonb *
576 1.3 simonb * Input parameters:
577 1.3 simonb * d - DMA channel descriptor
578 1.3 simonb * m - mbuf to add
579 1.3 simonb *
580 1.3 simonb * Return value:
581 1.3 simonb * 0 transmit queued successfully
582 1.3 simonb * otherwise error code
583 1.3 simonb */
584 1.1 simonb
585 1.1 simonb static int
586 1.1 simonb sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
587 1.1 simonb {
588 1.19 cgd unsigned int dsc, nextdsc, prevdsc, origdesc;
589 1.1 simonb int length;
590 1.8 cgd int num_mbufs = 0;
591 1.8 cgd struct sbmac_softc *sc = d->sbdma_eth;
592 1.1 simonb
593 1.1 simonb /* get pointer to our current place in the ring */
594 1.1 simonb
595 1.19 cgd dsc = d->sbdma_add_index;
596 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
597 1.1 simonb
598 1.1 simonb /*
599 1.1 simonb * figure out if the ring is full - if the next descriptor
600 1.1 simonb * is the same as the one that we're going to remove from
601 1.1 simonb * the ring, the ring is full
602 1.1 simonb */
603 1.1 simonb
604 1.19 cgd if (nextdsc == d->sbdma_rem_index) {
605 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
606 1.1 simonb return ENOSPC;
607 1.15 simonb }
608 1.1 simonb
609 1.1 simonb /*
610 1.8 cgd * PASS3 parts do not have buffer alignment restriction.
611 1.8 cgd * No need to copy/coalesce to new mbuf. Also has different
612 1.8 cgd * descriptor format
613 1.1 simonb */
614 1.8 cgd if (sc->sbm_pass3_dma) {
615 1.8 cgd struct mbuf *m_temp = NULL;
616 1.8 cgd
617 1.8 cgd /*
618 1.8 cgd * Loop thru this mbuf record.
619 1.8 cgd * The head mbuf will have SOP set.
620 1.8 cgd */
621 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
622 1.8 cgd M_DMA_ETHTX_SOP;
623 1.8 cgd
624 1.8 cgd /*
625 1.8 cgd * transmitting: set outbound options,buffer A size(+ low 5
626 1.8 cgd * bits of start addr),and packet length.
627 1.8 cgd */
628 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b =
629 1.8 cgd V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
630 1.15 simonb V_DMA_DSCRB_A_SIZE((m->m_len +
631 1.15 simonb (mtod(m,unsigned int) & 0x0000001F))) |
632 1.16 cgd V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
633 1.16 cgd V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
634 1.8 cgd
635 1.19 cgd d->sbdma_add_index = nextdsc;
636 1.8 cgd origdesc = prevdsc = dsc;
637 1.19 cgd dsc = d->sbdma_add_index;
638 1.8 cgd num_mbufs++;
639 1.8 cgd
640 1.8 cgd /* Start with first non-head mbuf */
641 1.8 cgd for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
642 1.15 simonb int len, next_len;
643 1.15 simonb uint64_t addr;
644 1.8 cgd
645 1.8 cgd if (m_temp->m_len == 0)
646 1.8 cgd continue; /* Skip 0-length mbufs */
647 1.1 simonb
648 1.15 simonb len = m_temp->m_len;
649 1.22 christos addr = KVTOPHYS(mtod(m_temp, void *));
650 1.15 simonb
651 1.15 simonb /*
652 1.15 simonb * Check to see if the mbuf spans a page boundary. If
653 1.15 simonb * it does, and the physical pages behind the virtual
654 1.15 simonb * pages are not contiguous, split it so that each
655 1.15 simonb * virtual page uses it's own Tx descriptor.
656 1.15 simonb */
657 1.15 simonb if (trunc_page(addr) != trunc_page(addr + len - 1)) {
658 1.15 simonb next_len = (addr + len) - trunc_page(addr + len);
659 1.15 simonb
660 1.15 simonb len -= next_len;
661 1.15 simonb
662 1.15 simonb if (addr + len ==
663 1.23 simonb KVTOPHYS(mtod(m_temp, char *) + len)) {
664 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
665 1.15 simonb len += next_len;
666 1.15 simonb next_len = 0;
667 1.15 simonb } else {
668 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
669 1.15 simonb }
670 1.15 simonb } else {
671 1.15 simonb next_len = 0;
672 1.15 simonb }
673 1.15 simonb
674 1.15 simonb again:
675 1.8 cgd /*
676 1.8 cgd * fill in the descriptor
677 1.8 cgd */
678 1.19 cgd d->sbdma_dscrtable[dsc].dscr_a = addr;
679 1.8 cgd
680 1.13 simonb /*
681 1.13 simonb * transmitting: set outbound options,buffer A
682 1.13 simonb * size(+ low 5 bits of start addr)
683 1.13 simonb */
684 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
685 1.15 simonb V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
686 1.8 cgd
687 1.19 cgd d->sbdma_ctxtable[dsc] = NULL;
688 1.8 cgd
689 1.8 cgd /*
690 1.8 cgd * point at next descriptor
691 1.8 cgd */
692 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
693 1.19 cgd if (nextdsc == d->sbdma_rem_index) {
694 1.19 cgd d->sbdma_add_index = origdesc;
695 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
696 1.8 cgd return ENOSPC;
697 1.8 cgd }
698 1.19 cgd d->sbdma_add_index = nextdsc;
699 1.8 cgd
700 1.8 cgd prevdsc = dsc;
701 1.19 cgd dsc = d->sbdma_add_index;
702 1.8 cgd num_mbufs++;
703 1.15 simonb
704 1.15 simonb if (next_len != 0) {
705 1.23 simonb addr = KVTOPHYS(mtod(m_temp, char *) + len);
706 1.15 simonb len = next_len;
707 1.15 simonb
708 1.15 simonb next_len = 0;
709 1.15 simonb goto again;
710 1.15 simonb }
711 1.15 simonb
712 1.8 cgd }
713 1.16 cgd /* Set head mbuf to last context index */
714 1.19 cgd d->sbdma_ctxtable[prevdsc] = m;
715 1.16 cgd
716 1.16 cgd /* Interrupt on last dscr of packet. */
717 1.19 cgd d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
718 1.8 cgd } else {
719 1.8 cgd struct mbuf *m_new = NULL;
720 1.8 cgd /*
721 1.8 cgd * [BEGIN XXX]
722 1.13 simonb * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
723 1.13 simonb * assume it will fit). This is a temporary hack to get us
724 1.13 simonb * going.
725 1.8 cgd */
726 1.1 simonb
727 1.8 cgd MGETHDR(m_new,M_DONTWAIT,MT_DATA);
728 1.8 cgd if (m_new == NULL) {
729 1.8 cgd printf("%s: mbuf allocation failed\n",
730 1.8 cgd d->sbdma_eth->sc_dev.dv_xname);
731 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
732 1.8 cgd return ENOBUFS;
733 1.8 cgd }
734 1.1 simonb
735 1.8 cgd MCLGET(m_new,M_DONTWAIT);
736 1.8 cgd if (!(m_new->m_flags & M_EXT)) {
737 1.8 cgd printf("%s: mbuf cluster allocation failed\n",
738 1.8 cgd d->sbdma_eth->sc_dev.dv_xname);
739 1.8 cgd m_freem(m_new);
740 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
741 1.8 cgd return ENOBUFS;
742 1.8 cgd }
743 1.1 simonb
744 1.8 cgd m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
745 1.8 cgd /*m_adj(m_new,ETHER_ALIGN);*/
746 1.1 simonb
747 1.8 cgd /*
748 1.8 cgd * XXX Don't forget to include the offset portion in the
749 1.8 cgd * XXX cache block calculation when this code is rewritten!
750 1.8 cgd */
751 1.1 simonb
752 1.8 cgd /*
753 1.8 cgd * Copy data
754 1.8 cgd */
755 1.1 simonb
756 1.22 christos m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
757 1.8 cgd m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
758 1.1 simonb
759 1.8 cgd /* Free old mbuf 'm', actual mbuf is now 'm_new' */
760 1.1 simonb
761 1.8 cgd // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
762 1.8 cgd // XXX: function succeeds.
763 1.8 cgd // m_freem(m);
764 1.8 cgd length = m_new->m_len;
765 1.1 simonb
766 1.8 cgd /* [END XXX] */
767 1.8 cgd /*
768 1.8 cgd * fill in the descriptor
769 1.8 cgd */
770 1.1 simonb
771 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
772 1.8 cgd V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
773 1.8 cgd M_DMA_DSCRA_INTERRUPT |
774 1.8 cgd M_DMA_ETHTX_SOP;
775 1.8 cgd
776 1.8 cgd /* transmitting: set outbound options and length */
777 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b =
778 1.13 simonb V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
779 1.8 cgd V_DMA_DSCRB_PKT_SIZE(length);
780 1.1 simonb
781 1.8 cgd num_mbufs++;
782 1.1 simonb
783 1.8 cgd /*
784 1.8 cgd * fill in the context
785 1.8 cgd */
786 1.1 simonb
787 1.19 cgd d->sbdma_ctxtable[dsc] = m_new;
788 1.1 simonb
789 1.8 cgd /*
790 1.8 cgd * point at next packet
791 1.8 cgd */
792 1.19 cgd d->sbdma_add_index = nextdsc;
793 1.8 cgd }
794 1.1 simonb
795 1.1 simonb /*
796 1.1 simonb * Give the buffer to the DMA engine.
797 1.1 simonb */
798 1.1 simonb
799 1.8 cgd SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
800 1.1 simonb
801 1.1 simonb return 0; /* we did it */
802 1.1 simonb }
803 1.1 simonb
804 1.3 simonb /*
805 1.3 simonb * SBDMA_EMPTYRING(d)
806 1.3 simonb *
807 1.3 simonb * Free all allocated mbufs on the specified DMA channel;
808 1.3 simonb *
809 1.3 simonb * Input parameters:
810 1.3 simonb * d - DMA channel
811 1.3 simonb *
812 1.3 simonb * Return value:
813 1.3 simonb * nothing
814 1.3 simonb */
815 1.1 simonb
816 1.1 simonb static void
817 1.1 simonb sbdma_emptyring(sbmacdma_t *d)
818 1.1 simonb {
819 1.1 simonb int idx;
820 1.1 simonb struct mbuf *m;
821 1.1 simonb
822 1.1 simonb for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
823 1.1 simonb m = d->sbdma_ctxtable[idx];
824 1.1 simonb if (m) {
825 1.1 simonb m_freem(m);
826 1.1 simonb d->sbdma_ctxtable[idx] = NULL;
827 1.1 simonb }
828 1.1 simonb }
829 1.1 simonb }
830 1.1 simonb
831 1.3 simonb /*
832 1.3 simonb * SBDMA_FILLRING(d)
833 1.3 simonb *
834 1.3 simonb * Fill the specified DMA channel (must be receive channel)
835 1.3 simonb * with mbufs
836 1.3 simonb *
837 1.3 simonb * Input parameters:
838 1.3 simonb * d - DMA channel
839 1.3 simonb *
840 1.3 simonb * Return value:
841 1.3 simonb * nothing
842 1.3 simonb */
843 1.1 simonb
844 1.1 simonb static void
845 1.1 simonb sbdma_fillring(sbmacdma_t *d)
846 1.1 simonb {
847 1.1 simonb int idx;
848 1.1 simonb
849 1.1 simonb for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
850 1.1 simonb if (sbdma_add_rcvbuffer(d, NULL) != 0)
851 1.1 simonb break;
852 1.1 simonb }
853 1.1 simonb
854 1.3 simonb /*
855 1.3 simonb * SBDMA_RX_PROCESS(sc, d)
856 1.3 simonb *
857 1.3 simonb * Process "completed" receive buffers on the specified DMA channel.
858 1.3 simonb * Note that this isn't really ideal for priority channels, since
859 1.3 simonb * it processes all of the packets on a given channel before
860 1.3 simonb * returning.
861 1.3 simonb *
862 1.3 simonb * Input parameters:
863 1.3 simonb * sc - softc structure
864 1.3 simonb * d - DMA channel context
865 1.3 simonb *
866 1.3 simonb * Return value:
867 1.3 simonb * nothing
868 1.3 simonb */
869 1.1 simonb
870 1.1 simonb static void
871 1.1 simonb sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
872 1.1 simonb {
873 1.1 simonb int curidx;
874 1.1 simonb int hwidx;
875 1.19 cgd sbdmadscr_t *dscp;
876 1.1 simonb struct mbuf *m;
877 1.1 simonb int len;
878 1.1 simonb
879 1.1 simonb struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
880 1.1 simonb
881 1.1 simonb for (;;) {
882 1.1 simonb /*
883 1.1 simonb * figure out where we are (as an index) and where
884 1.1 simonb * the hardware is (also as an index)
885 1.1 simonb *
886 1.1 simonb * This could be done faster if (for example) the
887 1.1 simonb * descriptor table was page-aligned and contiguous in
888 1.1 simonb * both virtual and physical memory -- you could then
889 1.1 simonb * just compare the low-order bits of the virtual address
890 1.19 cgd * (sbdma_rem_index) and the physical address
891 1.19 cgd * (sbdma_curdscr CSR).
892 1.1 simonb */
893 1.1 simonb
894 1.19 cgd curidx = d->sbdma_rem_index;
895 1.1 simonb hwidx = (int)
896 1.1 simonb (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
897 1.1 simonb d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
898 1.1 simonb
899 1.1 simonb /*
900 1.1 simonb * If they're the same, that means we've processed all
901 1.1 simonb * of the descriptors up to (but not including) the one that
902 1.1 simonb * the hardware is working on right now.
903 1.1 simonb */
904 1.1 simonb
905 1.1 simonb if (curidx == hwidx)
906 1.1 simonb break;
907 1.1 simonb
908 1.1 simonb /*
909 1.1 simonb * Otherwise, get the packet's mbuf ptr back
910 1.1 simonb */
911 1.1 simonb
912 1.19 cgd dscp = &(d->sbdma_dscrtable[curidx]);
913 1.1 simonb m = d->sbdma_ctxtable[curidx];
914 1.1 simonb d->sbdma_ctxtable[curidx] = NULL;
915 1.1 simonb
916 1.19 cgd len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
917 1.1 simonb
918 1.1 simonb /*
919 1.1 simonb * Check packet status. If good, process it.
920 1.1 simonb * If not, silently drop it and put it back on the
921 1.1 simonb * receive ring.
922 1.1 simonb */
923 1.1 simonb
924 1.19 cgd if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
925 1.1 simonb
926 1.1 simonb /*
927 1.1 simonb * Set length into the packet
928 1.1 simonb * XXX do we remove the CRC here?
929 1.1 simonb */
930 1.1 simonb m->m_pkthdr.len = m->m_len = len;
931 1.1 simonb
932 1.1 simonb ifp->if_ipackets++;
933 1.1 simonb m->m_pkthdr.rcvif = ifp;
934 1.1 simonb
935 1.1 simonb
936 1.1 simonb /*
937 1.1 simonb * Add a new buffer to replace the old one.
938 1.1 simonb */
939 1.1 simonb sbdma_add_rcvbuffer(d, NULL);
940 1.1 simonb
941 1.1 simonb #if (NBPFILTER > 0)
942 1.1 simonb /*
943 1.1 simonb * Handle BPF listeners. Let the BPF user see the
944 1.1 simonb * packet, but don't pass it up to the ether_input()
945 1.1 simonb * layer unless it's a broadcast packet, multicast
946 1.1 simonb * packet, matches our ethernet address or the
947 1.1 simonb * interface is in promiscuous mode.
948 1.1 simonb */
949 1.1 simonb
950 1.1 simonb if (ifp->if_bpf)
951 1.1 simonb bpf_mtap(ifp->if_bpf, m);
952 1.1 simonb #endif
953 1.1 simonb /*
954 1.1 simonb * Pass the buffer to the kernel
955 1.1 simonb */
956 1.1 simonb (*ifp->if_input)(ifp, m);
957 1.1 simonb } else {
958 1.1 simonb /*
959 1.1 simonb * Packet was mangled somehow. Just drop it and
960 1.1 simonb * put it back on the receive ring.
961 1.1 simonb */
962 1.1 simonb sbdma_add_rcvbuffer(d, m);
963 1.1 simonb }
964 1.1 simonb
965 1.1 simonb /*
966 1.1 simonb * .. and advance to the next buffer.
967 1.1 simonb */
968 1.1 simonb
969 1.19 cgd d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
970 1.1 simonb }
971 1.1 simonb }
972 1.1 simonb
973 1.3 simonb /*
974 1.3 simonb * SBDMA_TX_PROCESS(sc, d)
975 1.3 simonb *
976 1.3 simonb * Process "completed" transmit buffers on the specified DMA channel.
977 1.3 simonb * This is normally called within the interrupt service routine.
978 1.3 simonb * Note that this isn't really ideal for priority channels, since
979 1.3 simonb * it processes all of the packets on a given channel before
980 1.3 simonb * returning.
981 1.3 simonb *
982 1.3 simonb * Input parameters:
983 1.3 simonb * sc - softc structure
984 1.3 simonb * d - DMA channel context
985 1.3 simonb *
986 1.3 simonb * Return value:
987 1.3 simonb * nothing
988 1.3 simonb */
989 1.1 simonb
990 1.1 simonb static void
991 1.1 simonb sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
992 1.1 simonb {
993 1.1 simonb int curidx;
994 1.1 simonb int hwidx;
995 1.1 simonb struct mbuf *m;
996 1.1 simonb
997 1.1 simonb struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
998 1.1 simonb
999 1.1 simonb for (;;) {
1000 1.1 simonb /*
1001 1.1 simonb * figure out where we are (as an index) and where
1002 1.1 simonb * the hardware is (also as an index)
1003 1.1 simonb *
1004 1.1 simonb * This could be done faster if (for example) the
1005 1.1 simonb * descriptor table was page-aligned and contiguous in
1006 1.1 simonb * both virtual and physical memory -- you could then
1007 1.1 simonb * just compare the low-order bits of the virtual address
1008 1.19 cgd * (sbdma_rem_index) and the physical address
1009 1.19 cgd * (sbdma_curdscr CSR).
1010 1.1 simonb */
1011 1.1 simonb
1012 1.19 cgd curidx = d->sbdma_rem_index;
1013 1.1 simonb hwidx = (int)
1014 1.1 simonb (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1015 1.1 simonb d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1016 1.1 simonb
1017 1.1 simonb /*
1018 1.1 simonb * If they're the same, that means we've processed all
1019 1.1 simonb * of the descriptors up to (but not including) the one that
1020 1.1 simonb * the hardware is working on right now.
1021 1.1 simonb */
1022 1.1 simonb
1023 1.1 simonb if (curidx == hwidx)
1024 1.1 simonb break;
1025 1.1 simonb
1026 1.1 simonb /*
1027 1.1 simonb * Otherwise, get the packet's mbuf ptr back
1028 1.1 simonb */
1029 1.1 simonb
1030 1.1 simonb m = d->sbdma_ctxtable[curidx];
1031 1.1 simonb d->sbdma_ctxtable[curidx] = NULL;
1032 1.1 simonb
1033 1.1 simonb /*
1034 1.24 christos * for transmits we just free buffers and count packets.
1035 1.1 simonb */
1036 1.24 christos ifp->if_opackets++;
1037 1.1 simonb m_freem(m);
1038 1.1 simonb
1039 1.1 simonb /*
1040 1.1 simonb * .. and advance to the next buffer.
1041 1.1 simonb */
1042 1.1 simonb
1043 1.19 cgd d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
1044 1.1 simonb }
1045 1.1 simonb
1046 1.1 simonb /*
1047 1.1 simonb * Decide what to set the IFF_OACTIVE bit in the interface to.
1048 1.1 simonb * It's supposed to reflect if the interface is actively
1049 1.1 simonb * transmitting, but that's really hard to do quickly.
1050 1.1 simonb */
1051 1.1 simonb
1052 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
1053 1.1 simonb }
1054 1.1 simonb
1055 1.3 simonb /*
1056 1.3 simonb * SBMAC_INITCTX(s)
1057 1.3 simonb *
1058 1.3 simonb * Initialize an Ethernet context structure - this is called
1059 1.3 simonb * once per MAC on the 1250. Memory is allocated here, so don't
1060 1.3 simonb * call it again from inside the ioctl routines that bring the
1061 1.3 simonb * interface up/down
1062 1.3 simonb *
1063 1.3 simonb * Input parameters:
1064 1.3 simonb * s - sbmac context structure
1065 1.3 simonb *
1066 1.3 simonb * Return value:
1067 1.3 simonb * 0
1068 1.3 simonb */
1069 1.1 simonb
1070 1.1 simonb static void
1071 1.1 simonb sbmac_initctx(struct sbmac_softc *s)
1072 1.1 simonb {
1073 1.8 cgd uint64_t sysrev;
1074 1.1 simonb
1075 1.1 simonb /*
1076 1.1 simonb * figure out the addresses of some ports
1077 1.1 simonb */
1078 1.1 simonb
1079 1.1 simonb s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
1080 1.1 simonb s->sbm_maccfg = PKSEG1(s->sbm_base + R_MAC_CFG);
1081 1.1 simonb s->sbm_fifocfg = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
1082 1.1 simonb s->sbm_framecfg = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
1083 1.1 simonb s->sbm_rxfilter = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
1084 1.1 simonb s->sbm_isr = PKSEG1(s->sbm_base + R_MAC_STATUS);
1085 1.1 simonb s->sbm_imr = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
1086 1.1 simonb
1087 1.1 simonb /*
1088 1.1 simonb * Initialize the DMA channels. Right now, only one per MAC is used
1089 1.1 simonb * Note: Only do this _once_, as it allocates memory from the kernel!
1090 1.1 simonb */
1091 1.1 simonb
1092 1.1 simonb sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1093 1.1 simonb sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1094 1.1 simonb
1095 1.1 simonb /*
1096 1.1 simonb * initial state is OFF
1097 1.1 simonb */
1098 1.1 simonb
1099 1.1 simonb s->sbm_state = sbmac_state_off;
1100 1.1 simonb
1101 1.1 simonb /*
1102 1.1 simonb * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1103 1.1 simonb */
1104 1.1 simonb
1105 1.1 simonb s->sbm_speed = sbmac_speed_10;
1106 1.1 simonb s->sbm_duplex = sbmac_duplex_half;
1107 1.1 simonb s->sbm_fc = sbmac_fc_disabled;
1108 1.8 cgd
1109 1.8 cgd /*
1110 1.8 cgd * Determine SOC type. 112x has Pass3 SOC features.
1111 1.8 cgd */
1112 1.8 cgd sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1113 1.8 cgd s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1114 1.8 cgd SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1115 1.8 cgd SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1116 1.8 cgd (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1117 1.18 cgd G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1118 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
1119 1.15 simonb evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1120 1.15 simonb NULL, s->sc_dev.dv_xname, "rxintr");
1121 1.15 simonb evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
1122 1.15 simonb NULL, s->sc_dev.dv_xname, "txintr");
1123 1.15 simonb evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1124 1.15 simonb NULL, s->sc_dev.dv_xname, "txdrop");
1125 1.15 simonb evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
1126 1.15 simonb NULL, s->sc_dev.dv_xname, "txstall");
1127 1.11 simonb if (s->sbm_pass3_dma) {
1128 1.15 simonb evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1129 1.15 simonb NULL, s->sc_dev.dv_xname, "pass3tx-split");
1130 1.15 simonb evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1131 1.15 simonb NULL, s->sc_dev.dv_xname, "pass3tx-keep");
1132 1.11 simonb }
1133 1.15 simonb #endif
1134 1.1 simonb }
1135 1.1 simonb
1136 1.3 simonb /*
1137 1.3 simonb * SBMAC_CHANNEL_START(s)
1138 1.3 simonb *
1139 1.3 simonb * Start packet processing on this MAC.
1140 1.3 simonb *
1141 1.3 simonb * Input parameters:
1142 1.3 simonb * s - sbmac structure
1143 1.3 simonb *
1144 1.3 simonb * Return value:
1145 1.3 simonb * nothing
1146 1.3 simonb */
1147 1.1 simonb
1148 1.1 simonb static void
1149 1.1 simonb sbmac_channel_start(struct sbmac_softc *s)
1150 1.1 simonb {
1151 1.1 simonb uint64_t reg;
1152 1.1 simonb sbmac_port_t port;
1153 1.1 simonb uint64_t cfg, fifo, framecfg;
1154 1.1 simonb int idx;
1155 1.8 cgd uint64_t dma_cfg0, fifo_cfg;
1156 1.8 cgd sbmacdma_t *txdma;
1157 1.1 simonb
1158 1.1 simonb /*
1159 1.1 simonb * Don't do this if running
1160 1.1 simonb */
1161 1.1 simonb
1162 1.1 simonb if (s->sbm_state == sbmac_state_on)
1163 1.1 simonb return;
1164 1.1 simonb
1165 1.1 simonb /*
1166 1.1 simonb * Bring the controller out of reset, but leave it off.
1167 1.1 simonb */
1168 1.1 simonb
1169 1.1 simonb SBMAC_WRITECSR(s->sbm_macenable, 0);
1170 1.1 simonb
1171 1.1 simonb /*
1172 1.1 simonb * Ignore all received packets
1173 1.1 simonb */
1174 1.1 simonb
1175 1.1 simonb SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1176 1.1 simonb
1177 1.1 simonb /*
1178 1.1 simonb * Calculate values for various control registers.
1179 1.1 simonb */
1180 1.1 simonb
1181 1.1 simonb cfg = M_MAC_RETRY_EN |
1182 1.1 simonb M_MAC_TX_HOLD_SOP_EN |
1183 1.1 simonb V_MAC_TX_PAUSE_CNT_16K |
1184 1.1 simonb M_MAC_AP_STAT_EN |
1185 1.1 simonb M_MAC_SS_EN |
1186 1.1 simonb 0;
1187 1.1 simonb
1188 1.1 simonb fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1189 1.1 simonb V_MAC_TX_RD_THRSH(4) |
1190 1.1 simonb V_MAC_TX_RL_THRSH(4) |
1191 1.1 simonb V_MAC_RX_PL_THRSH(4) |
1192 1.1 simonb V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1193 1.1 simonb V_MAC_RX_PL_THRSH(4) |
1194 1.1 simonb V_MAC_RX_RL_THRSH(8) |
1195 1.1 simonb 0;
1196 1.1 simonb
1197 1.1 simonb framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1198 1.1 simonb V_MAC_MAX_FRAMESZ_DEFAULT |
1199 1.1 simonb V_MAC_BACKOFF_SEL(1);
1200 1.1 simonb
1201 1.1 simonb /*
1202 1.1 simonb * Clear out the hash address map
1203 1.1 simonb */
1204 1.1 simonb
1205 1.1 simonb port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
1206 1.1 simonb for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1207 1.1 simonb SBMAC_WRITECSR(port, 0);
1208 1.1 simonb port += sizeof(uint64_t);
1209 1.1 simonb }
1210 1.1 simonb
1211 1.1 simonb /*
1212 1.1 simonb * Clear out the exact-match table
1213 1.1 simonb */
1214 1.1 simonb
1215 1.1 simonb port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1216 1.1 simonb for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1217 1.1 simonb SBMAC_WRITECSR(port, 0);
1218 1.1 simonb port += sizeof(uint64_t);
1219 1.1 simonb }
1220 1.1 simonb
1221 1.1 simonb /*
1222 1.1 simonb * Clear out the DMA Channel mapping table registers
1223 1.1 simonb */
1224 1.1 simonb
1225 1.1 simonb port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
1226 1.1 simonb for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1227 1.1 simonb SBMAC_WRITECSR(port, 0);
1228 1.1 simonb port += sizeof(uint64_t);
1229 1.1 simonb }
1230 1.1 simonb
1231 1.1 simonb port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
1232 1.1 simonb for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1233 1.1 simonb SBMAC_WRITECSR(port, 0);
1234 1.1 simonb port += sizeof(uint64_t);
1235 1.1 simonb }
1236 1.1 simonb
1237 1.1 simonb /*
1238 1.1 simonb * Program the hardware address. It goes into the hardware-address
1239 1.1 simonb * register as well as the first filter register.
1240 1.1 simonb */
1241 1.1 simonb
1242 1.1 simonb reg = sbmac_addr2reg(s->sbm_hwaddr);
1243 1.1 simonb
1244 1.1 simonb port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1245 1.1 simonb SBMAC_WRITECSR(port, reg);
1246 1.1 simonb port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
1247 1.1 simonb SBMAC_WRITECSR(port, 0); // pass1 workaround
1248 1.1 simonb
1249 1.1 simonb /*
1250 1.1 simonb * Set the receive filter for no packets, and write values
1251 1.1 simonb * to the various config registers
1252 1.1 simonb */
1253 1.1 simonb
1254 1.1 simonb SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1255 1.1 simonb SBMAC_WRITECSR(s->sbm_imr, 0);
1256 1.1 simonb SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1257 1.1 simonb SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
1258 1.1 simonb SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1259 1.1 simonb
1260 1.1 simonb /*
1261 1.1 simonb * Initialize DMA channels (rings should be ok now)
1262 1.1 simonb */
1263 1.1 simonb
1264 1.1 simonb sbdma_channel_start(&(s->sbm_rxdma));
1265 1.1 simonb sbdma_channel_start(&(s->sbm_txdma));
1266 1.1 simonb
1267 1.1 simonb /*
1268 1.1 simonb * Configure the speed, duplex, and flow control
1269 1.1 simonb */
1270 1.1 simonb
1271 1.1 simonb sbmac_set_speed(s, s->sbm_speed);
1272 1.1 simonb sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
1273 1.1 simonb
1274 1.1 simonb /*
1275 1.1 simonb * Fill the receive ring
1276 1.1 simonb */
1277 1.1 simonb
1278 1.1 simonb sbdma_fillring(&(s->sbm_rxdma));
1279 1.1 simonb
1280 1.1 simonb /*
1281 1.1 simonb * Turn on the rest of the bits in the enable register
1282 1.1 simonb */
1283 1.1 simonb
1284 1.1 simonb SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1285 1.1 simonb M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1286 1.1 simonb
1287 1.1 simonb
1288 1.1 simonb /*
1289 1.1 simonb * Accept any kind of interrupt on TX and RX DMA channel 0
1290 1.1 simonb */
1291 1.1 simonb SBMAC_WRITECSR(s->sbm_imr,
1292 1.1 simonb (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1293 1.1 simonb (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1294 1.1 simonb
1295 1.1 simonb /*
1296 1.1 simonb * Enable receiving unicasts and broadcasts
1297 1.1 simonb */
1298 1.1 simonb
1299 1.1 simonb SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1300 1.1 simonb
1301 1.1 simonb /*
1302 1.8 cgd * On chips which support unaligned DMA features, set the descriptor
1303 1.8 cgd * ring for transmit channels to use the unaligned buffer format.
1304 1.8 cgd */
1305 1.8 cgd txdma = &(s->sbm_txdma);
1306 1.8 cgd
1307 1.8 cgd if (s->sbm_pass3_dma) {
1308 1.8 cgd dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1309 1.8 cgd dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1310 1.8 cgd M_DMA_TBX_EN | M_DMA_TDX_EN;
1311 1.8 cgd SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1312 1.8 cgd
1313 1.8 cgd fifo_cfg = SBMAC_READCSR(s->sbm_fifocfg);
1314 1.8 cgd fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1315 1.8 cgd V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1316 1.8 cgd SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
1317 1.8 cgd }
1318 1.8 cgd
1319 1.8 cgd /*
1320 1.1 simonb * we're running now.
1321 1.1 simonb */
1322 1.1 simonb
1323 1.1 simonb s->sbm_state = sbmac_state_on;
1324 1.1 simonb s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1325 1.1 simonb
1326 1.1 simonb /*
1327 1.1 simonb * Program multicast addresses
1328 1.1 simonb */
1329 1.1 simonb
1330 1.1 simonb sbmac_setmulti(s);
1331 1.1 simonb
1332 1.1 simonb /*
1333 1.1 simonb * If channel was in promiscuous mode before, turn that on
1334 1.1 simonb */
1335 1.1 simonb
1336 1.1 simonb if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1337 1.1 simonb sbmac_promiscuous_mode(s, 1);
1338 1.1 simonb
1339 1.1 simonb /*
1340 1.1 simonb * Turn on the once-per-second timer
1341 1.1 simonb */
1342 1.1 simonb
1343 1.1 simonb callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
1344 1.1 simonb }
1345 1.1 simonb
1346 1.3 simonb /*
1347 1.3 simonb * SBMAC_CHANNEL_STOP(s)
1348 1.3 simonb *
1349 1.3 simonb * Stop packet processing on this MAC.
1350 1.3 simonb *
1351 1.3 simonb * Input parameters:
1352 1.3 simonb * s - sbmac structure
1353 1.3 simonb *
1354 1.3 simonb * Return value:
1355 1.3 simonb * nothing
1356 1.3 simonb */
1357 1.1 simonb
1358 1.3 simonb static void
1359 1.3 simonb sbmac_channel_stop(struct sbmac_softc *s)
1360 1.1 simonb {
1361 1.3 simonb uint64_t ctl;
1362 1.1 simonb
1363 1.3 simonb /* don't do this if already stopped */
1364 1.1 simonb
1365 1.3 simonb if (s->sbm_state == sbmac_state_off)
1366 1.3 simonb return;
1367 1.1 simonb
1368 1.3 simonb /* don't accept any packets, disable all interrupts */
1369 1.1 simonb
1370 1.3 simonb SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1371 1.3 simonb SBMAC_WRITECSR(s->sbm_imr, 0);
1372 1.1 simonb
1373 1.3 simonb /* Turn off ticker */
1374 1.1 simonb
1375 1.3 simonb callout_stop(&(s->sc_tick_ch));
1376 1.1 simonb
1377 1.3 simonb /* turn off receiver and transmitter */
1378 1.1 simonb
1379 1.3 simonb ctl = SBMAC_READCSR(s->sbm_macenable);
1380 1.3 simonb ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1381 1.3 simonb SBMAC_WRITECSR(s->sbm_macenable, ctl);
1382 1.1 simonb
1383 1.3 simonb /* We're stopped now. */
1384 1.1 simonb
1385 1.3 simonb s->sbm_state = sbmac_state_off;
1386 1.3 simonb s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1387 1.1 simonb
1388 1.3 simonb /* Empty the receive and transmit rings */
1389 1.1 simonb
1390 1.3 simonb sbdma_emptyring(&(s->sbm_rxdma));
1391 1.3 simonb sbdma_emptyring(&(s->sbm_txdma));
1392 1.3 simonb }
1393 1.3 simonb
1394 1.3 simonb /*
1395 1.3 simonb * SBMAC_SET_CHANNEL_STATE(state)
1396 1.3 simonb *
1397 1.3 simonb * Set the channel's state ON or OFF
1398 1.3 simonb *
1399 1.3 simonb * Input parameters:
1400 1.3 simonb * state - new state
1401 1.3 simonb *
1402 1.3 simonb * Return value:
1403 1.3 simonb * old state
1404 1.3 simonb */
1405 1.1 simonb
1406 1.3 simonb static sbmac_state_t
1407 1.3 simonb sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1408 1.3 simonb {
1409 1.3 simonb sbmac_state_t oldstate = sc->sbm_state;
1410 1.3 simonb
1411 1.3 simonb /*
1412 1.3 simonb * If same as previous state, return
1413 1.3 simonb */
1414 1.3 simonb
1415 1.3 simonb if (state == oldstate)
1416 1.3 simonb return oldstate;
1417 1.3 simonb
1418 1.3 simonb /*
1419 1.3 simonb * If new state is ON, turn channel on
1420 1.3 simonb */
1421 1.3 simonb
1422 1.3 simonb if (state == sbmac_state_on)
1423 1.3 simonb sbmac_channel_start(sc);
1424 1.3 simonb else
1425 1.3 simonb sbmac_channel_stop(sc);
1426 1.3 simonb
1427 1.3 simonb /*
1428 1.3 simonb * Return previous state
1429 1.3 simonb */
1430 1.3 simonb
1431 1.3 simonb return oldstate;
1432 1.1 simonb }
1433 1.1 simonb
1434 1.3 simonb /*
1435 1.3 simonb * SBMAC_PROMISCUOUS_MODE(sc, onoff)
1436 1.3 simonb *
1437 1.3 simonb * Turn on or off promiscuous mode
1438 1.3 simonb *
1439 1.3 simonb * Input parameters:
1440 1.3 simonb * sc - softc
1441 1.3 simonb * onoff - 1 to turn on, 0 to turn off
1442 1.3 simonb *
1443 1.3 simonb * Return value:
1444 1.3 simonb * nothing
1445 1.3 simonb */
1446 1.3 simonb
1447 1.3 simonb static void
1448 1.3 simonb sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
1449 1.1 simonb {
1450 1.3 simonb uint64_t reg;
1451 1.1 simonb
1452 1.3 simonb if (sc->sbm_state != sbmac_state_on)
1453 1.3 simonb return;
1454 1.1 simonb
1455 1.3 simonb if (onoff) {
1456 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1457 1.3 simonb reg |= M_MAC_ALLPKT_EN;
1458 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1459 1.3 simonb } else {
1460 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1461 1.3 simonb reg &= ~M_MAC_ALLPKT_EN;
1462 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1463 1.1 simonb }
1464 1.3 simonb }
1465 1.1 simonb
1466 1.3 simonb /*
1467 1.3 simonb * SBMAC_INIT_AND_START(sc)
1468 1.3 simonb *
1469 1.3 simonb * Stop the channel and restart it. This is generally used
1470 1.3 simonb * when we have to do something to the channel that requires
1471 1.3 simonb * a swift kick.
1472 1.3 simonb *
1473 1.3 simonb * Input parameters:
1474 1.3 simonb * sc - softc
1475 1.3 simonb */
1476 1.1 simonb
1477 1.3 simonb static void
1478 1.3 simonb sbmac_init_and_start(struct sbmac_softc *sc)
1479 1.3 simonb {
1480 1.3 simonb int s;
1481 1.3 simonb
1482 1.3 simonb s = splnet();
1483 1.1 simonb
1484 1.13 simonb mii_pollstat(&sc->sc_mii); /* poll phy for current speed */
1485 1.13 simonb sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
1486 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_on);
1487 1.1 simonb
1488 1.3 simonb splx(s);
1489 1.1 simonb }
1490 1.1 simonb
1491 1.3 simonb /*
1492 1.3 simonb * SBMAC_ADDR2REG(ptr)
1493 1.3 simonb *
1494 1.3 simonb * Convert six bytes into the 64-bit register value that
1495 1.3 simonb * we typically write into the SBMAC's address/mcast registers
1496 1.3 simonb *
1497 1.3 simonb * Input parameters:
1498 1.3 simonb * ptr - pointer to 6 bytes
1499 1.3 simonb *
1500 1.3 simonb * Return value:
1501 1.3 simonb * register value
1502 1.3 simonb */
1503 1.3 simonb
1504 1.3 simonb static uint64_t
1505 1.3 simonb sbmac_addr2reg(u_char *ptr)
1506 1.3 simonb {
1507 1.3 simonb uint64_t reg = 0;
1508 1.1 simonb
1509 1.3 simonb ptr += 6;
1510 1.3 simonb
1511 1.3 simonb reg |= (uint64_t) *(--ptr);
1512 1.3 simonb reg <<= 8;
1513 1.3 simonb reg |= (uint64_t) *(--ptr);
1514 1.3 simonb reg <<= 8;
1515 1.3 simonb reg |= (uint64_t) *(--ptr);
1516 1.3 simonb reg <<= 8;
1517 1.3 simonb reg |= (uint64_t) *(--ptr);
1518 1.3 simonb reg <<= 8;
1519 1.3 simonb reg |= (uint64_t) *(--ptr);
1520 1.3 simonb reg <<= 8;
1521 1.3 simonb reg |= (uint64_t) *(--ptr);
1522 1.3 simonb
1523 1.3 simonb return reg;
1524 1.3 simonb }
1525 1.3 simonb
1526 1.3 simonb /*
1527 1.3 simonb * SBMAC_SET_SPEED(s, speed)
1528 1.3 simonb *
1529 1.3 simonb * Configure LAN speed for the specified MAC.
1530 1.3 simonb * Warning: must be called when MAC is off!
1531 1.3 simonb *
1532 1.3 simonb * Input parameters:
1533 1.3 simonb * s - sbmac structure
1534 1.3 simonb * speed - speed to set MAC to (see sbmac_speed_t enum)
1535 1.3 simonb *
1536 1.3 simonb * Return value:
1537 1.3 simonb * 1 if successful
1538 1.3 simonb * 0 indicates invalid parameters
1539 1.3 simonb */
1540 1.1 simonb
1541 1.3 simonb static int
1542 1.3 simonb sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
1543 1.1 simonb {
1544 1.3 simonb uint64_t cfg;
1545 1.3 simonb uint64_t framecfg;
1546 1.3 simonb
1547 1.3 simonb /*
1548 1.3 simonb * Save new current values
1549 1.3 simonb */
1550 1.1 simonb
1551 1.3 simonb s->sbm_speed = speed;
1552 1.1 simonb
1553 1.3 simonb if (s->sbm_state != sbmac_state_off)
1554 1.3 simonb panic("sbmac_set_speed while MAC not off");
1555 1.3 simonb
1556 1.3 simonb /*
1557 1.3 simonb * Read current register values
1558 1.3 simonb */
1559 1.3 simonb
1560 1.3 simonb cfg = SBMAC_READCSR(s->sbm_maccfg);
1561 1.3 simonb framecfg = SBMAC_READCSR(s->sbm_framecfg);
1562 1.1 simonb
1563 1.3 simonb /*
1564 1.3 simonb * Mask out the stuff we want to change
1565 1.3 simonb */
1566 1.1 simonb
1567 1.3 simonb cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1568 1.3 simonb framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1569 1.3 simonb M_MAC_SLOT_SIZE);
1570 1.1 simonb
1571 1.3 simonb /*
1572 1.3 simonb * Now add in the new bits
1573 1.3 simonb */
1574 1.1 simonb
1575 1.3 simonb switch (speed) {
1576 1.1 simonb case sbmac_speed_10:
1577 1.3 simonb framecfg |= V_MAC_IFG_RX_10 |
1578 1.3 simonb V_MAC_IFG_TX_10 |
1579 1.3 simonb K_MAC_IFG_THRSH_10 |
1580 1.3 simonb V_MAC_SLOT_SIZE_10;
1581 1.3 simonb cfg |= V_MAC_SPEED_SEL_10MBPS;
1582 1.3 simonb break;
1583 1.1 simonb
1584 1.1 simonb case sbmac_speed_100:
1585 1.3 simonb framecfg |= V_MAC_IFG_RX_100 |
1586 1.3 simonb V_MAC_IFG_TX_100 |
1587 1.3 simonb V_MAC_IFG_THRSH_100 |
1588 1.3 simonb V_MAC_SLOT_SIZE_100;
1589 1.3 simonb cfg |= V_MAC_SPEED_SEL_100MBPS ;
1590 1.3 simonb break;
1591 1.1 simonb
1592 1.1 simonb case sbmac_speed_1000:
1593 1.3 simonb framecfg |= V_MAC_IFG_RX_1000 |
1594 1.3 simonb V_MAC_IFG_TX_1000 |
1595 1.3 simonb V_MAC_IFG_THRSH_1000 |
1596 1.3 simonb V_MAC_SLOT_SIZE_1000;
1597 1.3 simonb cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1598 1.3 simonb break;
1599 1.1 simonb
1600 1.1 simonb case sbmac_speed_auto: /* XXX not implemented */
1601 1.3 simonb /* fall through */
1602 1.1 simonb default:
1603 1.3 simonb return 0;
1604 1.1 simonb }
1605 1.1 simonb
1606 1.3 simonb /*
1607 1.3 simonb * Send the bits back to the hardware
1608 1.3 simonb */
1609 1.1 simonb
1610 1.3 simonb SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1611 1.3 simonb SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1612 1.1 simonb
1613 1.3 simonb return 1;
1614 1.1 simonb }
1615 1.1 simonb
1616 1.3 simonb /*
1617 1.3 simonb * SBMAC_SET_DUPLEX(s, duplex, fc)
1618 1.3 simonb *
1619 1.3 simonb * Set Ethernet duplex and flow control options for this MAC
1620 1.3 simonb * Warning: must be called when MAC is off!
1621 1.3 simonb *
1622 1.3 simonb * Input parameters:
1623 1.3 simonb * s - sbmac structure
1624 1.3 simonb * duplex - duplex setting (see sbmac_duplex_t)
1625 1.3 simonb * fc - flow control setting (see sbmac_fc_t)
1626 1.3 simonb *
1627 1.3 simonb * Return value:
1628 1.3 simonb * 1 if ok
1629 1.3 simonb * 0 if an invalid parameter combination was specified
1630 1.3 simonb */
1631 1.1 simonb
1632 1.3 simonb static int
1633 1.3 simonb sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
1634 1.1 simonb {
1635 1.3 simonb uint64_t cfg;
1636 1.1 simonb
1637 1.3 simonb /*
1638 1.3 simonb * Save new current values
1639 1.3 simonb */
1640 1.1 simonb
1641 1.3 simonb s->sbm_duplex = duplex;
1642 1.3 simonb s->sbm_fc = fc;
1643 1.1 simonb
1644 1.3 simonb if (s->sbm_state != sbmac_state_off)
1645 1.3 simonb panic("sbmac_set_duplex while MAC not off");
1646 1.1 simonb
1647 1.3 simonb /*
1648 1.3 simonb * Read current register values
1649 1.3 simonb */
1650 1.1 simonb
1651 1.3 simonb cfg = SBMAC_READCSR(s->sbm_maccfg);
1652 1.1 simonb
1653 1.3 simonb /*
1654 1.3 simonb * Mask off the stuff we're about to change
1655 1.3 simonb */
1656 1.1 simonb
1657 1.3 simonb cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1658 1.1 simonb
1659 1.3 simonb switch (duplex) {
1660 1.1 simonb case sbmac_duplex_half:
1661 1.3 simonb switch (fc) {
1662 1.1 simonb case sbmac_fc_disabled:
1663 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1664 1.3 simonb break;
1665 1.1 simonb
1666 1.1 simonb case sbmac_fc_collision:
1667 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1668 1.3 simonb break;
1669 1.1 simonb
1670 1.1 simonb case sbmac_fc_carrier:
1671 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1672 1.3 simonb break;
1673 1.1 simonb
1674 1.1 simonb case sbmac_fc_auto: /* XXX not implemented */
1675 1.3 simonb /* fall through */
1676 1.1 simonb case sbmac_fc_frame: /* not valid in half duplex */
1677 1.1 simonb default: /* invalid selection */
1678 1.4 provos panic("%s: invalid half duplex fc selection %d",
1679 1.3 simonb s->sc_dev.dv_xname, fc);
1680 1.3 simonb return 0;
1681 1.1 simonb }
1682 1.3 simonb break;
1683 1.1 simonb
1684 1.1 simonb case sbmac_duplex_full:
1685 1.3 simonb switch (fc) {
1686 1.1 simonb case sbmac_fc_disabled:
1687 1.3 simonb cfg |= V_MAC_FC_CMD_DISABLED;
1688 1.3 simonb break;
1689 1.1 simonb
1690 1.1 simonb case sbmac_fc_frame:
1691 1.3 simonb cfg |= V_MAC_FC_CMD_ENABLED;
1692 1.3 simonb break;
1693 1.1 simonb
1694 1.1 simonb case sbmac_fc_collision: /* not valid in full duplex */
1695 1.1 simonb case sbmac_fc_carrier: /* not valid in full duplex */
1696 1.1 simonb case sbmac_fc_auto: /* XXX not implemented */
1697 1.3 simonb /* fall through */
1698 1.1 simonb default:
1699 1.4 provos panic("%s: invalid full duplex fc selection %d",
1700 1.3 simonb s->sc_dev.dv_xname, fc);
1701 1.3 simonb return 0;
1702 1.1 simonb }
1703 1.3 simonb break;
1704 1.1 simonb
1705 1.1 simonb default:
1706 1.3 simonb /* fall through */
1707 1.1 simonb case sbmac_duplex_auto:
1708 1.4 provos panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
1709 1.3 simonb /* XXX not implemented */
1710 1.3 simonb break;
1711 1.1 simonb }
1712 1.1 simonb
1713 1.3 simonb /*
1714 1.3 simonb * Send the bits back to the hardware
1715 1.3 simonb */
1716 1.1 simonb
1717 1.3 simonb SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1718 1.1 simonb
1719 1.3 simonb return 1;
1720 1.1 simonb }
1721 1.1 simonb
1722 1.3 simonb /*
1723 1.3 simonb * SBMAC_INTR()
1724 1.3 simonb *
1725 1.3 simonb * Interrupt handler for MAC interrupts
1726 1.3 simonb *
1727 1.3 simonb * Input parameters:
1728 1.3 simonb * MAC structure
1729 1.3 simonb *
1730 1.3 simonb * Return value:
1731 1.3 simonb * nothing
1732 1.3 simonb */
1733 1.1 simonb
1734 1.1 simonb /* ARGSUSED */
1735 1.1 simonb static void
1736 1.1 simonb sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
1737 1.1 simonb {
1738 1.1 simonb struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
1739 1.14 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1740 1.1 simonb uint64_t isr;
1741 1.1 simonb
1742 1.1 simonb for (;;) {
1743 1.1 simonb
1744 1.1 simonb /*
1745 1.1 simonb * Read the ISR (this clears the bits in the real register)
1746 1.1 simonb */
1747 1.1 simonb
1748 1.1 simonb isr = SBMAC_READCSR(sc->sbm_isr);
1749 1.1 simonb
1750 1.1 simonb if (isr == 0)
1751 1.1 simonb break;
1752 1.1 simonb
1753 1.1 simonb /*
1754 1.1 simonb * Transmits on channel 0
1755 1.1 simonb */
1756 1.1 simonb
1757 1.15 simonb if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1758 1.1 simonb sbdma_tx_process(sc, &(sc->sbm_txdma));
1759 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1760 1.15 simonb }
1761 1.1 simonb
1762 1.1 simonb /*
1763 1.1 simonb * Receives on channel 0
1764 1.1 simonb */
1765 1.1 simonb
1766 1.15 simonb if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1767 1.1 simonb sbdma_rx_process(sc, &(sc->sbm_rxdma));
1768 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1769 1.15 simonb }
1770 1.1 simonb }
1771 1.14 simonb
1772 1.14 simonb /* try to get more packets going */
1773 1.14 simonb sbmac_start(ifp);
1774 1.1 simonb }
1775 1.1 simonb
1776 1.1 simonb
1777 1.3 simonb /*
1778 1.3 simonb * SBMAC_START(ifp)
1779 1.3 simonb *
1780 1.3 simonb * Start output on the specified interface. Basically, we
1781 1.3 simonb * queue as many buffers as we can until the ring fills up, or
1782 1.3 simonb * we run off the end of the queue, whichever comes first.
1783 1.3 simonb *
1784 1.3 simonb * Input parameters:
1785 1.3 simonb * ifp - interface
1786 1.3 simonb *
1787 1.3 simonb * Return value:
1788 1.3 simonb * nothing
1789 1.3 simonb */
1790 1.3 simonb
1791 1.3 simonb static void
1792 1.3 simonb sbmac_start(struct ifnet *ifp)
1793 1.1 simonb {
1794 1.3 simonb struct sbmac_softc *sc;
1795 1.3 simonb struct mbuf *m_head = NULL;
1796 1.3 simonb int rv;
1797 1.1 simonb
1798 1.3 simonb if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1799 1.3 simonb return;
1800 1.3 simonb
1801 1.3 simonb sc = ifp->if_softc;
1802 1.1 simonb
1803 1.3 simonb for (;;) {
1804 1.1 simonb
1805 1.3 simonb IF_DEQUEUE(&ifp->if_snd, m_head);
1806 1.3 simonb if (m_head == NULL)
1807 1.3 simonb break;
1808 1.1 simonb
1809 1.3 simonb /*
1810 1.3 simonb * Put the buffer on the transmit ring. If we
1811 1.3 simonb * don't have room, set the OACTIVE flag and wait
1812 1.3 simonb * for the NIC to drain the ring.
1813 1.3 simonb */
1814 1.3 simonb
1815 1.3 simonb rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1816 1.3 simonb
1817 1.3 simonb if (rv == 0) {
1818 1.3 simonb /*
1819 1.13 simonb * If there's a BPF listener, bounce a copy of this
1820 1.13 simonb * frame to it.
1821 1.3 simonb */
1822 1.3 simonb #if (NBPFILTER > 0)
1823 1.3 simonb if (ifp->if_bpf)
1824 1.3 simonb bpf_mtap(ifp->if_bpf, m_head);
1825 1.3 simonb #endif
1826 1.8 cgd if (!sc->sbm_pass3_dma) {
1827 1.8 cgd /*
1828 1.13 simonb * Don't free mbuf if we're not copying to new
1829 1.13 simonb * mbuf in sbdma_add_txbuffer. It will be
1830 1.13 simonb * freed in sbdma_tx_process.
1831 1.8 cgd */
1832 1.8 cgd m_freem(m_head);
1833 1.8 cgd }
1834 1.3 simonb } else {
1835 1.3 simonb IF_PREPEND(&ifp->if_snd, m_head);
1836 1.3 simonb ifp->if_flags |= IFF_OACTIVE;
1837 1.3 simonb break;
1838 1.3 simonb }
1839 1.3 simonb }
1840 1.3 simonb }
1841 1.3 simonb
1842 1.3 simonb /*
1843 1.3 simonb * SBMAC_SETMULTI(sc)
1844 1.3 simonb *
1845 1.3 simonb * Reprogram the multicast table into the hardware, given
1846 1.3 simonb * the list of multicasts associated with the interface
1847 1.3 simonb * structure.
1848 1.3 simonb *
1849 1.3 simonb * Input parameters:
1850 1.3 simonb * sc - softc
1851 1.3 simonb *
1852 1.3 simonb * Return value:
1853 1.3 simonb * nothing
1854 1.3 simonb */
1855 1.3 simonb
1856 1.3 simonb static void
1857 1.3 simonb sbmac_setmulti(struct sbmac_softc *sc)
1858 1.3 simonb {
1859 1.3 simonb struct ifnet *ifp;
1860 1.3 simonb uint64_t reg;
1861 1.3 simonb sbmac_port_t port;
1862 1.3 simonb int idx;
1863 1.3 simonb struct ether_multi *enm;
1864 1.3 simonb struct ether_multistep step;
1865 1.3 simonb
1866 1.3 simonb ifp = &sc->sc_ethercom.ec_if;
1867 1.1 simonb
1868 1.1 simonb /*
1869 1.3 simonb * Clear out entire multicast table. We do this by nuking
1870 1.3 simonb * the entire hash table and all the direct matches except
1871 1.3 simonb * the first one, which is used for our station address
1872 1.1 simonb */
1873 1.1 simonb
1874 1.3 simonb for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1875 1.13 simonb port = PKSEG1(sc->sbm_base +
1876 1.13 simonb R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1877 1.3 simonb SBMAC_WRITECSR(port, 0);
1878 1.3 simonb }
1879 1.1 simonb
1880 1.3 simonb for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1881 1.13 simonb port = PKSEG1(sc->sbm_base +
1882 1.13 simonb R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1883 1.3 simonb SBMAC_WRITECSR(port, 0);
1884 1.3 simonb }
1885 1.1 simonb
1886 1.1 simonb /*
1887 1.3 simonb * Clear the filter to say we don't want any multicasts.
1888 1.1 simonb */
1889 1.3 simonb
1890 1.1 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1891 1.3 simonb reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1892 1.1 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1893 1.3 simonb
1894 1.3 simonb if (ifp->if_flags & IFF_ALLMULTI) {
1895 1.3 simonb /*
1896 1.3 simonb * Enable ALL multicasts. Do this by inverting the
1897 1.3 simonb * multicast enable bit.
1898 1.3 simonb */
1899 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1900 1.3 simonb reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1901 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1902 1.3 simonb return;
1903 1.1 simonb }
1904 1.1 simonb
1905 1.3 simonb /*
1906 1.3 simonb * Progam new multicast entries. For now, only use the
1907 1.3 simonb * perfect filter. In the future we'll need to use the
1908 1.3 simonb * hash filter if the perfect filter overflows
1909 1.3 simonb */
1910 1.3 simonb
1911 1.3 simonb /*
1912 1.3 simonb * XXX only using perfect filter for now, need to use hash
1913 1.3 simonb * XXX if the table overflows
1914 1.3 simonb */
1915 1.3 simonb
1916 1.3 simonb idx = 1; /* skip station address */
1917 1.3 simonb ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1918 1.3 simonb while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1919 1.3 simonb reg = sbmac_addr2reg(enm->enm_addrlo);
1920 1.3 simonb port = PKSEG1(sc->sbm_base +
1921 1.3 simonb R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1922 1.3 simonb SBMAC_WRITECSR(port, reg);
1923 1.3 simonb idx++;
1924 1.3 simonb ETHER_NEXT_MULTI(step, enm);
1925 1.1 simonb }
1926 1.1 simonb
1927 1.3 simonb /*
1928 1.3 simonb * Enable the "accept multicast bits" if we programmed at least one
1929 1.3 simonb * multicast.
1930 1.3 simonb */
1931 1.1 simonb
1932 1.3 simonb if (idx > 1) {
1933 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1934 1.3 simonb reg |= M_MAC_MCAST_EN;
1935 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1936 1.1 simonb }
1937 1.1 simonb }
1938 1.1 simonb
1939 1.3 simonb /*
1940 1.3 simonb * SBMAC_ETHER_IOCTL(ifp, cmd, data)
1941 1.3 simonb *
1942 1.3 simonb * Generic IOCTL requests for this interface. The basic
1943 1.3 simonb * stuff is handled here for bringing the interface up,
1944 1.3 simonb * handling multicasts, etc.
1945 1.3 simonb *
1946 1.3 simonb * Input parameters:
1947 1.3 simonb * ifp - interface structure
1948 1.3 simonb * cmd - command code
1949 1.3 simonb * data - pointer to data
1950 1.3 simonb *
1951 1.3 simonb * Return value:
1952 1.3 simonb * return value (0 is success)
1953 1.3 simonb */
1954 1.1 simonb
1955 1.3 simonb static int
1956 1.22 christos sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1957 1.1 simonb {
1958 1.3 simonb struct ifaddr *ifa = (struct ifaddr *) data;
1959 1.3 simonb struct sbmac_softc *sc = ifp->if_softc;
1960 1.1 simonb
1961 1.3 simonb switch (cmd) {
1962 1.1 simonb case SIOCSIFADDR:
1963 1.3 simonb ifp->if_flags |= IFF_UP;
1964 1.1 simonb
1965 1.3 simonb switch (ifa->ifa_addr->sa_family) {
1966 1.1 simonb #ifdef INET
1967 1.1 simonb case AF_INET:
1968 1.3 simonb sbmac_init_and_start(sc);
1969 1.3 simonb arp_ifinit(ifp, ifa);
1970 1.3 simonb break;
1971 1.1 simonb #endif
1972 1.1 simonb #ifdef NS
1973 1.1 simonb case AF_NS:
1974 1.1 simonb {
1975 1.3 simonb struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1976 1.1 simonb
1977 1.3 simonb if (ns_nullhost(*ina))
1978 1.13 simonb ina->x_host =
1979 1.13 simonb *(union ns_host *)LLADDR(ifp->if_sadl);
1980 1.3 simonb else
1981 1.3 simonb bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1982 1.3 simonb ifp->if_addrlen);
1983 1.3 simonb /* Set new address. */
1984 1.3 simonb sbmac_init_and_start(sc);
1985 1.3 simonb break;
1986 1.3 simonb }
1987 1.1 simonb #endif
1988 1.1 simonb default:
1989 1.3 simonb sbmac_init_and_start(sc);
1990 1.3 simonb break;
1991 1.1 simonb }
1992 1.3 simonb break;
1993 1.1 simonb
1994 1.1 simonb default:
1995 1.3 simonb return (EINVAL);
1996 1.1 simonb }
1997 1.1 simonb
1998 1.3 simonb return (0);
1999 1.1 simonb }
2000 1.1 simonb
2001 1.3 simonb /*
2002 1.3 simonb * SBMAC_IOCTL(ifp, command, data)
2003 1.3 simonb *
2004 1.3 simonb * Main IOCTL handler - dispatches to other IOCTLs for various
2005 1.3 simonb * types of requests.
2006 1.3 simonb *
2007 1.3 simonb * Input parameters:
2008 1.3 simonb * ifp - interface pointer
2009 1.3 simonb * command - command code
2010 1.3 simonb * data - pointer to argument data
2011 1.3 simonb *
2012 1.3 simonb * Return value:
2013 1.3 simonb * 0 if ok
2014 1.3 simonb * else error code
2015 1.3 simonb */
2016 1.1 simonb
2017 1.3 simonb static int
2018 1.22 christos sbmac_ioctl(struct ifnet *ifp, u_long command, void *data)
2019 1.1 simonb {
2020 1.3 simonb struct sbmac_softc *sc = ifp->if_softc;
2021 1.3 simonb struct ifreq *ifr = (struct ifreq *) data;
2022 1.3 simonb int s, error = 0;
2023 1.1 simonb
2024 1.3 simonb s = splnet();
2025 1.1 simonb
2026 1.3 simonb switch(command) {
2027 1.1 simonb case SIOCSIFADDR:
2028 1.1 simonb case SIOCGIFADDR:
2029 1.3 simonb error = sbmac_ether_ioctl(ifp, command, data);
2030 1.3 simonb break;
2031 1.1 simonb case SIOCSIFMTU:
2032 1.3 simonb if (ifr->ifr_mtu > ETHER_MAX_LEN)
2033 1.3 simonb error = EINVAL;
2034 1.3 simonb else {
2035 1.3 simonb ifp->if_mtu = ifr->ifr_mtu;
2036 1.3 simonb /* XXX Program new MTU here */
2037 1.1 simonb }
2038 1.3 simonb break;
2039 1.1 simonb case SIOCSIFFLAGS:
2040 1.3 simonb if (ifp->if_flags & IFF_UP) {
2041 1.3 simonb /*
2042 1.3 simonb * If only the state of the PROMISC flag changed,
2043 1.3 simonb * just tweak the hardware registers.
2044 1.3 simonb */
2045 1.3 simonb if ((ifp->if_flags & IFF_RUNNING) &&
2046 1.3 simonb (ifp->if_flags & IFF_PROMISC)) {
2047 1.3 simonb /* turn on promiscuous mode */
2048 1.3 simonb sbmac_promiscuous_mode(sc, 1);
2049 1.3 simonb } else if (ifp->if_flags & IFF_RUNNING &&
2050 1.3 simonb !(ifp->if_flags & IFF_PROMISC)) {
2051 1.3 simonb /* turn off promiscuous mode */
2052 1.3 simonb sbmac_promiscuous_mode(sc, 0);
2053 1.3 simonb } else
2054 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_on);
2055 1.3 simonb } else {
2056 1.3 simonb if (ifp->if_flags & IFF_RUNNING)
2057 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_off);
2058 1.1 simonb }
2059 1.1 simonb
2060 1.3 simonb sc->sbm_if_flags = ifp->if_flags;
2061 1.3 simonb error = 0;
2062 1.3 simonb break;
2063 1.1 simonb
2064 1.1 simonb case SIOCADDMULTI:
2065 1.1 simonb case SIOCDELMULTI:
2066 1.3 simonb if (ifp->if_flags & IFF_RUNNING) {
2067 1.3 simonb sbmac_setmulti(sc);
2068 1.3 simonb error = 0;
2069 1.1 simonb }
2070 1.3 simonb break;
2071 1.1 simonb case SIOCSIFMEDIA:
2072 1.1 simonb case SIOCGIFMEDIA:
2073 1.3 simonb error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2074 1.3 simonb break;
2075 1.1 simonb default:
2076 1.3 simonb error = EINVAL;
2077 1.3 simonb break;
2078 1.1 simonb }
2079 1.1 simonb
2080 1.3 simonb (void)splx(s);
2081 1.1 simonb
2082 1.3 simonb return(error);
2083 1.1 simonb }
2084 1.1 simonb
2085 1.3 simonb /*
2086 1.3 simonb * SBMAC_IFMEDIA_UPD(ifp)
2087 1.3 simonb *
2088 1.3 simonb * Configure an appropriate media type for this interface,
2089 1.3 simonb * given the data in the interface structure
2090 1.3 simonb *
2091 1.3 simonb * Input parameters:
2092 1.3 simonb * ifp - interface
2093 1.3 simonb *
2094 1.3 simonb * Return value:
2095 1.3 simonb * 0 if ok
2096 1.3 simonb * else error code
2097 1.3 simonb */
2098 1.1 simonb
2099 1.3 simonb static int
2100 1.3 simonb sbmac_mediachange(struct ifnet *ifp)
2101 1.1 simonb {
2102 1.1 simonb struct sbmac_softc *sc = ifp->if_softc;
2103 1.1 simonb
2104 1.1 simonb if (ifp->if_flags & IFF_UP)
2105 1.1 simonb mii_mediachg(&sc->sc_mii);
2106 1.1 simonb return(0);
2107 1.1 simonb }
2108 1.1 simonb
2109 1.3 simonb /*
2110 1.3 simonb * SBMAC_IFMEDIA_STS(ifp, ifmr)
2111 1.3 simonb *
2112 1.3 simonb * Report current media status (used by ifconfig, for example)
2113 1.3 simonb *
2114 1.3 simonb * Input parameters:
2115 1.3 simonb * ifp - interface structure
2116 1.3 simonb * ifmr - media request structure
2117 1.3 simonb *
2118 1.3 simonb * Return value:
2119 1.3 simonb * nothing
2120 1.3 simonb */
2121 1.1 simonb
2122 1.3 simonb static void
2123 1.3 simonb sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
2124 1.1 simonb {
2125 1.1 simonb struct sbmac_softc *sc = ifp->if_softc;
2126 1.1 simonb
2127 1.1 simonb mii_pollstat(&sc->sc_mii);
2128 1.1 simonb req->ifm_status = sc->sc_mii.mii_media_status;
2129 1.1 simonb req->ifm_active = sc->sc_mii.mii_media_active;
2130 1.1 simonb }
2131 1.1 simonb
2132 1.3 simonb /*
2133 1.3 simonb * SBMAC_WATCHDOG(ifp)
2134 1.3 simonb *
2135 1.3 simonb * Called periodically to make sure we're still happy.
2136 1.3 simonb *
2137 1.3 simonb * Input parameters:
2138 1.3 simonb * ifp - interface structure
2139 1.3 simonb *
2140 1.3 simonb * Return value:
2141 1.3 simonb * nothing
2142 1.3 simonb */
2143 1.1 simonb
2144 1.3 simonb static void
2145 1.3 simonb sbmac_watchdog(struct ifnet *ifp)
2146 1.3 simonb {
2147 1.1 simonb
2148 1.3 simonb /* XXX do something */
2149 1.1 simonb }
2150 1.1 simonb
2151 1.1 simonb /*
2152 1.1 simonb * One second timer, used to tick MII.
2153 1.1 simonb */
2154 1.3 simonb static void
2155 1.3 simonb sbmac_tick(void *arg)
2156 1.1 simonb {
2157 1.3 simonb struct sbmac_softc *sc = arg;
2158 1.3 simonb int s;
2159 1.1 simonb
2160 1.3 simonb s = splnet();
2161 1.3 simonb mii_tick(&sc->sc_mii);
2162 1.3 simonb splx(s);
2163 1.1 simonb
2164 1.3 simonb callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2165 1.1 simonb }
2166 1.1 simonb
2167 1.1 simonb
2168 1.3 simonb /*
2169 1.3 simonb * SBMAC_MATCH(parent, match, aux)
2170 1.3 simonb *
2171 1.3 simonb * Part of the config process - see if this device matches the
2172 1.3 simonb * info about what we expect to find on the bus.
2173 1.3 simonb *
2174 1.3 simonb * Input parameters:
2175 1.3 simonb * parent - parent bus structure
2176 1.3 simonb * match -
2177 1.3 simonb * aux - bus-specific args
2178 1.3 simonb *
2179 1.3 simonb * Return value:
2180 1.3 simonb * 1 if we match
2181 1.3 simonb * 0 if we don't match
2182 1.3 simonb */
2183 1.1 simonb
2184 1.3 simonb static int
2185 1.3 simonb sbmac_match(struct device *parent, struct cfdata *match, void *aux)
2186 1.1 simonb {
2187 1.3 simonb struct sbobio_attach_args *sap = aux;
2188 1.3 simonb
2189 1.3 simonb /*
2190 1.3 simonb * Make sure it's a MAC
2191 1.3 simonb */
2192 1.3 simonb
2193 1.3 simonb if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2194 1.3 simonb return 0;
2195 1.1 simonb
2196 1.3 simonb /*
2197 1.3 simonb * Yup, it is.
2198 1.3 simonb */
2199 1.3 simonb
2200 1.3 simonb return 1;
2201 1.3 simonb }
2202 1.3 simonb
2203 1.3 simonb /*
2204 1.3 simonb * SBMAC_PARSE_XDIGIT(str)
2205 1.3 simonb *
2206 1.3 simonb * Parse a hex digit, returning its value
2207 1.3 simonb *
2208 1.3 simonb * Input parameters:
2209 1.3 simonb * str - character
2210 1.3 simonb *
2211 1.3 simonb * Return value:
2212 1.3 simonb * hex value, or -1 if invalid
2213 1.3 simonb */
2214 1.3 simonb
2215 1.3 simonb static int
2216 1.3 simonb sbmac_parse_xdigit(char str)
2217 1.3 simonb {
2218 1.3 simonb int digit;
2219 1.3 simonb
2220 1.3 simonb if ((str >= '0') && (str <= '9'))
2221 1.3 simonb digit = str - '0';
2222 1.3 simonb else if ((str >= 'a') && (str <= 'f'))
2223 1.3 simonb digit = str - 'a' + 10;
2224 1.3 simonb else if ((str >= 'A') && (str <= 'F'))
2225 1.3 simonb digit = str - 'A' + 10;
2226 1.3 simonb else
2227 1.3 simonb digit = -1;
2228 1.3 simonb
2229 1.3 simonb return digit;
2230 1.3 simonb }
2231 1.3 simonb
2232 1.3 simonb /*
2233 1.3 simonb * SBMAC_PARSE_HWADDR(str, hwaddr)
2234 1.3 simonb *
2235 1.3 simonb * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2236 1.3 simonb * Ethernet address.
2237 1.3 simonb *
2238 1.3 simonb * Input parameters:
2239 1.3 simonb * str - string
2240 1.3 simonb * hwaddr - pointer to hardware address
2241 1.3 simonb *
2242 1.3 simonb * Return value:
2243 1.3 simonb * 0 if ok, else -1
2244 1.3 simonb */
2245 1.3 simonb
2246 1.3 simonb static int
2247 1.20 jmc sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
2248 1.3 simonb {
2249 1.3 simonb int digit1, digit2;
2250 1.3 simonb int idx = 6;
2251 1.1 simonb
2252 1.3 simonb while (*str && (idx > 0)) {
2253 1.3 simonb digit1 = sbmac_parse_xdigit(*str);
2254 1.3 simonb if (digit1 < 0)
2255 1.3 simonb return -1;
2256 1.3 simonb str++;
2257 1.3 simonb if (!*str)
2258 1.3 simonb return -1;
2259 1.3 simonb
2260 1.3 simonb if ((*str == ':') || (*str == '-')) {
2261 1.3 simonb digit2 = digit1;
2262 1.3 simonb digit1 = 0;
2263 1.3 simonb } else {
2264 1.3 simonb digit2 = sbmac_parse_xdigit(*str);
2265 1.3 simonb if (digit2 < 0)
2266 1.3 simonb return -1;
2267 1.3 simonb str++;
2268 1.3 simonb }
2269 1.3 simonb
2270 1.3 simonb *hwaddr++ = (digit1 << 4) | digit2;
2271 1.3 simonb idx--;
2272 1.3 simonb
2273 1.3 simonb if (*str == '-')
2274 1.3 simonb str++;
2275 1.3 simonb if (*str == ':')
2276 1.3 simonb str++;
2277 1.3 simonb }
2278 1.1 simonb return 0;
2279 1.3 simonb }
2280 1.3 simonb
2281 1.3 simonb /*
2282 1.3 simonb * SBMAC_ATTACH(parent, self, aux)
2283 1.3 simonb *
2284 1.3 simonb * Attach routine - init hardware and hook ourselves into NetBSD.
2285 1.3 simonb *
2286 1.3 simonb * Input parameters:
2287 1.3 simonb * parent - parent bus device
2288 1.3 simonb * self - our softc
2289 1.3 simonb * aux - attach data
2290 1.3 simonb *
2291 1.3 simonb * Return value:
2292 1.3 simonb * nothing
2293 1.3 simonb */
2294 1.3 simonb
2295 1.3 simonb static void
2296 1.3 simonb sbmac_attach(struct device *parent, struct device *self, void *aux)
2297 1.3 simonb {
2298 1.3 simonb struct ifnet *ifp;
2299 1.3 simonb struct sbmac_softc *sc;
2300 1.3 simonb struct sbobio_attach_args *sap = aux;
2301 1.3 simonb u_char *eaddr;
2302 1.3 simonb static int unit = 0; /* XXX */
2303 1.3 simonb uint64_t ea_reg;
2304 1.3 simonb int idx;
2305 1.3 simonb
2306 1.3 simonb sc = (struct sbmac_softc *)self;
2307 1.3 simonb
2308 1.3 simonb /* Determine controller base address */
2309 1.3 simonb
2310 1.3 simonb sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
2311 1.3 simonb
2312 1.3 simonb eaddr = sc->sbm_hwaddr;
2313 1.3 simonb
2314 1.3 simonb /*
2315 1.3 simonb * Initialize context (get pointers to registers and stuff), then
2316 1.3 simonb * allocate the memory for the descriptor tables.
2317 1.3 simonb */
2318 1.3 simonb
2319 1.3 simonb sbmac_initctx(sc);
2320 1.3 simonb
2321 1.3 simonb callout_init(&(sc->sc_tick_ch));
2322 1.3 simonb
2323 1.3 simonb /*
2324 1.3 simonb * Read the ethernet address. The firwmare left this programmed
2325 1.3 simonb * for us in the ethernet address register for each mac.
2326 1.3 simonb */
2327 1.1 simonb
2328 1.3 simonb ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2329 1.3 simonb for (idx = 0; idx < 6; idx++) {
2330 1.3 simonb eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2331 1.3 simonb ea_reg >>= 8;
2332 1.1 simonb }
2333 1.1 simonb
2334 1.1 simonb #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2335 1.3 simonb if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2336 1.3 simonb eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2337 1.3 simonb sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2338 1.3 simonb eaddr[5] = unit;
2339 1.1 simonb }
2340 1.1 simonb
2341 1.1 simonb #ifdef SBMAC_ETH0_HWADDR
2342 1.3 simonb if (unit == 0)
2343 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2344 1.1 simonb #endif
2345 1.1 simonb #ifdef SBMAC_ETH1_HWADDR
2346 1.3 simonb if (unit == 1)
2347 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2348 1.1 simonb #endif
2349 1.1 simonb #ifdef SBMAC_ETH2_HWADDR
2350 1.3 simonb if (unit == 2)
2351 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2352 1.1 simonb #endif
2353 1.3 simonb unit++;
2354 1.3 simonb
2355 1.3 simonb /*
2356 1.3 simonb * Display Ethernet address (this is called during the config process
2357 1.3 simonb * so we need to finish off the config message that was being displayed)
2358 1.3 simonb */
2359 1.8 cgd printf(": Ethernet%s\n",
2360 1.8 cgd sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2361 1.8 cgd printf("%s: Ethernet address: %s\n", self->dv_xname,
2362 1.3 simonb ether_sprintf(eaddr));
2363 1.1 simonb
2364 1.3 simonb
2365 1.3 simonb /*
2366 1.3 simonb * Set up ifnet structure
2367 1.3 simonb */
2368 1.3 simonb
2369 1.3 simonb ifp = &sc->sc_ethercom.ec_if;
2370 1.3 simonb ifp->if_softc = sc;
2371 1.3 simonb bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2372 1.13 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2373 1.13 simonb IFF_NOTRAILERS;
2374 1.3 simonb ifp->if_ioctl = sbmac_ioctl;
2375 1.3 simonb ifp->if_start = sbmac_start;
2376 1.3 simonb ifp->if_watchdog = sbmac_watchdog;
2377 1.3 simonb ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2378 1.3 simonb
2379 1.3 simonb /*
2380 1.3 simonb * Set up ifmedia support.
2381 1.3 simonb */
2382 1.3 simonb
2383 1.3 simonb /*
2384 1.3 simonb * Initialize MII/media info.
2385 1.3 simonb */
2386 1.3 simonb sc->sc_mii.mii_ifp = ifp;
2387 1.3 simonb sc->sc_mii.mii_readreg = sbmac_mii_readreg;
2388 1.3 simonb sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2389 1.3 simonb sc->sc_mii.mii_statchg = sbmac_mii_statchg;
2390 1.3 simonb ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
2391 1.3 simonb sbmac_mediastatus);
2392 1.3 simonb mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2393 1.3 simonb MII_OFFSET_ANY, 0);
2394 1.3 simonb
2395 1.3 simonb if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2396 1.3 simonb ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2397 1.3 simonb ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2398 1.3 simonb } else {
2399 1.3 simonb ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2400 1.1 simonb }
2401 1.1 simonb
2402 1.1 simonb
2403 1.3 simonb /*
2404 1.3 simonb * map/route interrupt
2405 1.3 simonb */
2406 1.3 simonb
2407 1.3 simonb sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
2408 1.3 simonb sbmac_intr, sc);
2409 1.3 simonb
2410 1.3 simonb /*
2411 1.3 simonb * Call MI attach routines.
2412 1.3 simonb */
2413 1.3 simonb if_attach(ifp);
2414 1.3 simonb ether_ifattach(ifp, eaddr);
2415 1.1 simonb }
2416