sbmac.c revision 1.40 1 1.40 matt /* $NetBSD: sbmac.c,v 1.40 2011/02/20 07:47:39 matt Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.19 cgd * Copyright 2000, 2001, 2004
5 1.1 simonb * Broadcom Corporation. All rights reserved.
6 1.1 simonb *
7 1.1 simonb * This software is furnished under license and may be used and copied only
8 1.1 simonb * in accordance with the following terms and conditions. Subject to these
9 1.1 simonb * conditions, you may download, copy, install, use, modify and distribute
10 1.1 simonb * modified or unmodified copies of this software in source and/or binary
11 1.1 simonb * form. No title or ownership is transferred hereby.
12 1.1 simonb *
13 1.1 simonb * 1) Any source code used, modified or distributed must reproduce and
14 1.1 simonb * retain this copyright notice and list of conditions as they appear in
15 1.1 simonb * the source file.
16 1.1 simonb *
17 1.1 simonb * 2) No right is granted to use any trade name, trademark, or logo of
18 1.9 cgd * Broadcom Corporation. The "Broadcom Corporation" name may not be
19 1.9 cgd * used to endorse or promote products derived from this software
20 1.9 cgd * without the prior written permission of Broadcom Corporation.
21 1.1 simonb *
22 1.1 simonb * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23 1.1 simonb * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24 1.1 simonb * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25 1.1 simonb * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26 1.1 simonb * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27 1.1 simonb * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 1.1 simonb * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 1.1 simonb * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 simonb */
34 1.10 lukem
35 1.10 lukem #include <sys/cdefs.h>
36 1.40 matt __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.40 2011/02/20 07:47:39 matt Exp $");
37 1.1 simonb
38 1.1 simonb #include "opt_inet.h"
39 1.1 simonb #include "opt_ns.h"
40 1.1 simonb
41 1.1 simonb #include <sys/param.h>
42 1.1 simonb #include <sys/systm.h>
43 1.1 simonb #include <sys/sockio.h>
44 1.1 simonb #include <sys/mbuf.h>
45 1.1 simonb #include <sys/malloc.h>
46 1.1 simonb #include <sys/kernel.h>
47 1.1 simonb #include <sys/socket.h>
48 1.1 simonb #include <sys/queue.h>
49 1.1 simonb #include <sys/device.h>
50 1.1 simonb
51 1.1 simonb #include <net/if.h>
52 1.1 simonb #include <net/if_arp.h>
53 1.1 simonb #include <net/if_ether.h>
54 1.1 simonb #include <net/if_dl.h>
55 1.1 simonb #include <net/if_media.h>
56 1.1 simonb
57 1.1 simonb #include <net/bpf.h>
58 1.1 simonb
59 1.1 simonb #ifdef INET
60 1.1 simonb #include <netinet/in.h>
61 1.1 simonb #include <netinet/if_inarp.h>
62 1.1 simonb #endif
63 1.1 simonb
64 1.1 simonb #ifdef NS
65 1.1 simonb #include <netns/ns.h>
66 1.1 simonb #include <netns/ns_if.h>
67 1.1 simonb #endif
68 1.1 simonb
69 1.1 simonb #include <machine/locore.h>
70 1.1 simonb
71 1.1 simonb #include "sbobiovar.h"
72 1.1 simonb
73 1.1 simonb #include <dev/mii/mii.h>
74 1.1 simonb #include <dev/mii/miivar.h>
75 1.1 simonb #include <dev/mii/mii_bitbang.h>
76 1.1 simonb
77 1.1 simonb #include <mips/sibyte/include/sb1250_defs.h>
78 1.1 simonb #include <mips/sibyte/include/sb1250_regs.h>
79 1.1 simonb #include <mips/sibyte/include/sb1250_mac.h>
80 1.1 simonb #include <mips/sibyte/include/sb1250_dma.h>
81 1.8 cgd #include <mips/sibyte/include/sb1250_scd.h>
82 1.1 simonb
83 1.3 simonb /* Simple types */
84 1.1 simonb
85 1.1 simonb typedef u_long sbmac_port_t;
86 1.1 simonb typedef uint64_t sbmac_physaddr_t;
87 1.1 simonb typedef uint64_t sbmac_enetaddr_t;
88 1.1 simonb
89 1.1 simonb typedef enum { sbmac_speed_auto, sbmac_speed_10,
90 1.1 simonb sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
91 1.1 simonb
92 1.1 simonb typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
93 1.1 simonb sbmac_duplex_full } sbmac_duplex_t;
94 1.1 simonb
95 1.1 simonb typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
96 1.1 simonb sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
97 1.1 simonb
98 1.1 simonb typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
99 1.1 simonb sbmac_state_broken } sbmac_state_t;
100 1.1 simonb
101 1.1 simonb
102 1.3 simonb /* Macros */
103 1.1 simonb
104 1.15 simonb #define SBMAC_EVENT_COUNTERS /* Include counters for various events */
105 1.15 simonb
106 1.19 cgd #define SBDMA_NEXTBUF(d, f) ((f + 1) & (d)->sbdma_dscr_mask)
107 1.1 simonb
108 1.1 simonb #define CACHELINESIZE 32
109 1.1 simonb #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
110 1.1 simonb #define KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
111 1.1 simonb #define KVTOPHYS(x) kvtophys((vaddr_t)(x))
112 1.1 simonb
113 1.1 simonb #ifdef SBMACDEBUG
114 1.1 simonb #define dprintf(x) printf x
115 1.1 simonb #else
116 1.1 simonb #define dprintf(x)
117 1.1 simonb #endif
118 1.1 simonb
119 1.35 matt #define SBMAC_READCSR(t) mips3_ld((volatile uint64_t *) (t))
120 1.35 matt #define SBMAC_WRITECSR(t, v) mips3_sd((volatile uint64_t *) (t), (v))
121 1.1 simonb
122 1.1 simonb #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
123 1.1 simonb
124 1.19 cgd /* These are limited to fit within one virtual page, and must be 2**N. */
125 1.17 cgd #define SBMAC_MAX_TXDESCR 256 /* should be 1024 */
126 1.17 cgd #define SBMAC_MAX_RXDESCR 256 /* should be 512 */
127 1.1 simonb
128 1.1 simonb #define ETHER_ALIGN 2
129 1.1 simonb
130 1.3 simonb /* DMA Descriptor structure */
131 1.1 simonb
132 1.1 simonb typedef struct sbdmadscr_s {
133 1.1 simonb uint64_t dscr_a;
134 1.1 simonb uint64_t dscr_b;
135 1.1 simonb } sbdmadscr_t;
136 1.1 simonb
137 1.3 simonb
138 1.3 simonb /* DMA Controller structure */
139 1.1 simonb
140 1.1 simonb typedef struct sbmacdma_s {
141 1.1 simonb
142 1.1 simonb /*
143 1.1 simonb * This stuff is used to identify the channel and the registers
144 1.1 simonb * associated with it.
145 1.1 simonb */
146 1.1 simonb
147 1.1 simonb struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
148 1.1 simonb int sbdma_channel; /* channel number */
149 1.1 simonb int sbdma_txdir; /* direction (1=transmit) */
150 1.1 simonb int sbdma_maxdescr; /* total # of descriptors in ring */
151 1.1 simonb sbmac_port_t sbdma_config0; /* DMA config register 0 */
152 1.1 simonb sbmac_port_t sbdma_config1; /* DMA config register 1 */
153 1.1 simonb sbmac_port_t sbdma_dscrbase; /* Descriptor base address */
154 1.1 simonb sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */
155 1.1 simonb sbmac_port_t sbdma_curdscr; /* current descriptor address */
156 1.1 simonb
157 1.1 simonb /*
158 1.1 simonb * This stuff is for maintenance of the ring
159 1.1 simonb */
160 1.1 simonb sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
161 1.1 simonb struct mbuf **sbdma_ctxtable; /* context table, one per descr */
162 1.19 cgd unsigned int sbdma_dscr_mask; /* sbdma_maxdescr - 1 */
163 1.1 simonb paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
164 1.19 cgd unsigned int sbdma_add_index; /* next dscr for sw to add */
165 1.19 cgd unsigned int sbdma_rem_index; /* next dscr for sw to remove */
166 1.1 simonb } sbmacdma_t;
167 1.1 simonb
168 1.1 simonb
169 1.3 simonb /* Ethernet softc structure */
170 1.1 simonb
171 1.1 simonb struct sbmac_softc {
172 1.1 simonb
173 1.1 simonb /*
174 1.1 simonb * NetBSD-specific things
175 1.1 simonb */
176 1.1 simonb struct ethercom sc_ethercom; /* Ethernet common part */
177 1.1 simonb struct mii_data sc_mii;
178 1.1 simonb struct callout sc_tick_ch;
179 1.1 simonb
180 1.38 matt device_t sc_dev; /* device */
181 1.1 simonb int sbm_if_flags;
182 1.1 simonb void *sbm_intrhand;
183 1.1 simonb
184 1.1 simonb /*
185 1.1 simonb * Controller-specific things
186 1.1 simonb */
187 1.1 simonb
188 1.1 simonb sbmac_port_t sbm_base; /* MAC's base address */
189 1.1 simonb sbmac_state_t sbm_state; /* current state */
190 1.1 simonb
191 1.1 simonb sbmac_port_t sbm_macenable; /* MAC Enable Register */
192 1.1 simonb sbmac_port_t sbm_maccfg; /* MAC Configuration Register */
193 1.1 simonb sbmac_port_t sbm_fifocfg; /* FIFO configuration register */
194 1.1 simonb sbmac_port_t sbm_framecfg; /* Frame configuration register */
195 1.1 simonb sbmac_port_t sbm_rxfilter; /* receive filter register */
196 1.1 simonb sbmac_port_t sbm_isr; /* Interrupt status register */
197 1.1 simonb sbmac_port_t sbm_imr; /* Interrupt mask register */
198 1.1 simonb
199 1.1 simonb sbmac_speed_t sbm_speed; /* current speed */
200 1.1 simonb sbmac_duplex_t sbm_duplex; /* current duplex */
201 1.1 simonb sbmac_fc_t sbm_fc; /* current flow control setting */
202 1.1 simonb int sbm_rxflags; /* received packet flags */
203 1.1 simonb
204 1.1 simonb u_char sbm_hwaddr[ETHER_ADDR_LEN];
205 1.1 simonb
206 1.1 simonb sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
207 1.1 simonb sbmacdma_t sbm_rxdma;
208 1.8 cgd
209 1.8 cgd int sbm_pass3_dma; /* chip has pass3 SOC DMA features */
210 1.15 simonb
211 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
212 1.15 simonb struct evcnt sbm_ev_rxintr; /* Rx interrupts */
213 1.15 simonb struct evcnt sbm_ev_txintr; /* Tx interrupts */
214 1.15 simonb struct evcnt sbm_ev_txdrop; /* Tx dropped due to no mbuf alloc failed */
215 1.15 simonb struct evcnt sbm_ev_txstall; /* Tx stalled due to no descriptors free */
216 1.15 simonb
217 1.15 simonb struct evcnt sbm_ev_txsplit; /* pass3 Tx split mbuf */
218 1.15 simonb struct evcnt sbm_ev_txkeep; /* pass3 Tx didn't split mbuf */
219 1.15 simonb #endif
220 1.1 simonb };
221 1.1 simonb
222 1.1 simonb
223 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
224 1.15 simonb #define SBMAC_EVCNT_INCR(ev) (ev).ev_count++
225 1.15 simonb #else
226 1.15 simonb #define SBMAC_EVCNT_INCR(ev) do { /* nothing */ } while (0)
227 1.15 simonb #endif
228 1.15 simonb
229 1.3 simonb /* Externs */
230 1.1 simonb
231 1.1 simonb extern paddr_t kvtophys(vaddr_t);
232 1.1 simonb
233 1.3 simonb /* Prototypes */
234 1.1 simonb
235 1.39 matt static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int);
236 1.39 matt static void sbdma_channel_start(sbmacdma_t *);
237 1.39 matt static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *);
238 1.39 matt static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *);
239 1.39 matt static void sbdma_emptyring(sbmacdma_t *);
240 1.39 matt static void sbdma_fillring(sbmacdma_t *);
241 1.39 matt static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *);
242 1.39 matt static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *);
243 1.39 matt static void sbmac_initctx(struct sbmac_softc *);
244 1.39 matt static void sbmac_channel_start(struct sbmac_softc *);
245 1.39 matt static void sbmac_channel_stop(struct sbmac_softc *);
246 1.1 simonb static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
247 1.1 simonb sbmac_state_t);
248 1.39 matt static void sbmac_promiscuous_mode(struct sbmac_softc *, bool);
249 1.39 matt static void sbmac_init_and_start(struct sbmac_softc *);
250 1.39 matt static uint64_t sbmac_addr2reg(u_char *);
251 1.39 matt static void sbmac_intr(void *, uint32_t, vaddr_t);
252 1.39 matt static void sbmac_start(struct ifnet *);
253 1.39 matt static void sbmac_setmulti(struct sbmac_softc *);
254 1.39 matt static int sbmac_ether_ioctl(struct ifnet *, u_long, void *);
255 1.30 dyoung static int sbmac_ioctl(struct ifnet *, u_long, void *);
256 1.39 matt static void sbmac_watchdog(struct ifnet *);
257 1.39 matt static int sbmac_match(device_t, cfdata_t, void *);
258 1.39 matt static void sbmac_attach(device_t, device_t, void *);
259 1.39 matt static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t);
260 1.39 matt static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t);
261 1.39 matt static void sbmac_tick(void *);
262 1.1 simonb
263 1.1 simonb
264 1.3 simonb /* Globals */
265 1.1 simonb
266 1.38 matt CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc),
267 1.6 thorpej sbmac_match, sbmac_attach, NULL, NULL);
268 1.1 simonb
269 1.38 matt static uint32_t sbmac_mii_bitbang_read(device_t self);
270 1.38 matt static void sbmac_mii_bitbang_write(device_t self, uint32_t val);
271 1.1 simonb
272 1.1 simonb static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
273 1.1 simonb sbmac_mii_bitbang_read,
274 1.1 simonb sbmac_mii_bitbang_write,
275 1.1 simonb {
276 1.1 simonb (uint32_t)M_MAC_MDIO_OUT, /* MII_BIT_MDO */
277 1.1 simonb (uint32_t)M_MAC_MDIO_IN, /* MII_BIT_MDI */
278 1.1 simonb (uint32_t)M_MAC_MDC, /* MII_BIT_MDC */
279 1.1 simonb 0, /* MII_BIT_DIR_HOST_PHY */
280 1.1 simonb (uint32_t)M_MAC_MDIO_DIR /* MII_BIT_DIR_PHY_HOST */
281 1.1 simonb }
282 1.1 simonb };
283 1.1 simonb
284 1.3 simonb static uint32_t
285 1.38 matt sbmac_mii_bitbang_read(device_t self)
286 1.1 simonb {
287 1.38 matt struct sbmac_softc *sc = device_private(self);
288 1.1 simonb sbmac_port_t reg;
289 1.1 simonb
290 1.1 simonb reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
291 1.1 simonb return (uint32_t) SBMAC_READCSR(reg);
292 1.1 simonb }
293 1.1 simonb
294 1.3 simonb static void
295 1.38 matt sbmac_mii_bitbang_write(device_t self, uint32_t val)
296 1.1 simonb {
297 1.38 matt struct sbmac_softc *sc = device_private(self);
298 1.1 simonb sbmac_port_t reg;
299 1.1 simonb
300 1.1 simonb reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
301 1.1 simonb
302 1.1 simonb SBMAC_WRITECSR(reg, (val &
303 1.1 simonb (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
304 1.1 simonb }
305 1.1 simonb
306 1.1 simonb /*
307 1.1 simonb * Read an PHY register through the MII.
308 1.1 simonb */
309 1.1 simonb static int
310 1.38 matt sbmac_mii_readreg(device_t self, int phy, int reg)
311 1.1 simonb {
312 1.1 simonb
313 1.1 simonb return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
314 1.1 simonb }
315 1.1 simonb
316 1.1 simonb /*
317 1.1 simonb * Write to a PHY register through the MII.
318 1.1 simonb */
319 1.1 simonb static void
320 1.38 matt sbmac_mii_writereg(device_t self, int phy, int reg, int val)
321 1.1 simonb {
322 1.1 simonb
323 1.1 simonb mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
324 1.1 simonb }
325 1.1 simonb
326 1.1 simonb static void
327 1.38 matt sbmac_mii_statchg(device_t self)
328 1.1 simonb {
329 1.38 matt struct sbmac_softc *sc = device_private(self);
330 1.1 simonb sbmac_state_t oldstate;
331 1.1 simonb
332 1.1 simonb /* Stop the MAC in preparation for changing all of the parameters. */
333 1.1 simonb oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
334 1.1 simonb
335 1.1 simonb switch (sc->sc_ethercom.ec_if.if_baudrate) {
336 1.1 simonb default: /* if autonegotiation fails, assume 10Mbit */
337 1.1 simonb case IF_Mbps(10):
338 1.1 simonb sbmac_set_speed(sc, sbmac_speed_10);
339 1.1 simonb break;
340 1.1 simonb
341 1.1 simonb case IF_Mbps(100):
342 1.1 simonb sbmac_set_speed(sc, sbmac_speed_100);
343 1.1 simonb break;
344 1.1 simonb
345 1.1 simonb case IF_Mbps(1000):
346 1.1 simonb sbmac_set_speed(sc, sbmac_speed_1000);
347 1.1 simonb break;
348 1.1 simonb }
349 1.1 simonb
350 1.1 simonb if (sc->sc_mii.mii_media_active & IFM_FDX) {
351 1.1 simonb /* Configure for full-duplex */
352 1.1 simonb /* XXX: is flow control right for 10, 100? */
353 1.1 simonb sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
354 1.1 simonb } else {
355 1.1 simonb /* Configure for half-duplex */
356 1.1 simonb /* XXX: is flow control right? */
357 1.1 simonb sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
358 1.1 simonb }
359 1.1 simonb
360 1.1 simonb /* And put it back into its former state. */
361 1.1 simonb sbmac_set_channel_state(sc, oldstate);
362 1.1 simonb }
363 1.1 simonb
364 1.3 simonb /*
365 1.38 matt * SBDMA_INITCTX(d, sc, chan, txrx, maxdescr)
366 1.3 simonb *
367 1.3 simonb * Initialize a DMA channel context. Since there are potentially
368 1.3 simonb * eight DMA channels per MAC, it's nice to do this in a standard
369 1.3 simonb * way.
370 1.3 simonb *
371 1.3 simonb * Input parameters:
372 1.3 simonb * d - sbmacdma_t structure (DMA channel context)
373 1.39 matt * sc - sbmac_softc structure (pointer to a MAC)
374 1.3 simonb * chan - channel number (0..1 right now)
375 1.3 simonb * txrx - Identifies DMA_TX or DMA_RX for channel direction
376 1.3 simonb * maxdescr - number of descriptors
377 1.3 simonb *
378 1.3 simonb * Return value:
379 1.3 simonb * nothing
380 1.3 simonb */
381 1.1 simonb
382 1.1 simonb static void
383 1.38 matt sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx,
384 1.1 simonb int maxdescr)
385 1.1 simonb {
386 1.1 simonb /*
387 1.1 simonb * Save away interesting stuff in the structure
388 1.1 simonb */
389 1.1 simonb
390 1.38 matt d->sbdma_eth = sc;
391 1.3 simonb d->sbdma_channel = chan;
392 1.3 simonb d->sbdma_txdir = txrx;
393 1.1 simonb
394 1.1 simonb /*
395 1.1 simonb * initialize register pointers
396 1.1 simonb */
397 1.1 simonb
398 1.38 matt d->sbdma_config0 = PKSEG1(sc->sbm_base +
399 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
400 1.38 matt d->sbdma_config1 = PKSEG1(sc->sbm_base +
401 1.7 cgd R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
402 1.38 matt d->sbdma_dscrbase = PKSEG1(sc->sbm_base +
403 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
404 1.38 matt d->sbdma_dscrcnt = PKSEG1(sc->sbm_base +
405 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
406 1.38 matt d->sbdma_curdscr = PKSEG1(sc->sbm_base +
407 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
408 1.1 simonb
409 1.1 simonb /*
410 1.1 simonb * Allocate memory for the ring
411 1.1 simonb */
412 1.1 simonb
413 1.1 simonb d->sbdma_maxdescr = maxdescr;
414 1.19 cgd d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
415 1.1 simonb
416 1.1 simonb d->sbdma_dscrtable = (sbdmadscr_t *)
417 1.19 cgd KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
418 1.1 simonb
419 1.31 cegger memset(d->sbdma_dscrtable, 0, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
420 1.1 simonb
421 1.1 simonb d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
422 1.1 simonb
423 1.1 simonb /*
424 1.1 simonb * And context table
425 1.1 simonb */
426 1.1 simonb
427 1.1 simonb d->sbdma_ctxtable = (struct mbuf **)
428 1.1 simonb KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
429 1.1 simonb
430 1.31 cegger memset(d->sbdma_ctxtable, 0, d->sbdma_maxdescr*sizeof(struct mbuf *));
431 1.1 simonb }
432 1.1 simonb
433 1.3 simonb /*
434 1.3 simonb * SBDMA_CHANNEL_START(d)
435 1.3 simonb *
436 1.3 simonb * Initialize the hardware registers for a DMA channel.
437 1.3 simonb *
438 1.3 simonb * Input parameters:
439 1.3 simonb * d - DMA channel to init (context must be previously init'd
440 1.3 simonb *
441 1.3 simonb * Return value:
442 1.3 simonb * nothing
443 1.3 simonb */
444 1.1 simonb
445 1.1 simonb static void
446 1.1 simonb sbdma_channel_start(sbmacdma_t *d)
447 1.1 simonb {
448 1.1 simonb /*
449 1.1 simonb * Turn on the DMA channel
450 1.1 simonb */
451 1.1 simonb
452 1.1 simonb SBMAC_WRITECSR(d->sbdma_config1, 0);
453 1.1 simonb
454 1.1 simonb SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
455 1.1 simonb
456 1.1 simonb SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
457 1.1 simonb
458 1.1 simonb /*
459 1.1 simonb * Initialize ring pointers
460 1.1 simonb */
461 1.1 simonb
462 1.19 cgd d->sbdma_add_index = 0;
463 1.19 cgd d->sbdma_rem_index = 0;
464 1.1 simonb }
465 1.1 simonb
466 1.3 simonb /*
467 1.3 simonb * SBDMA_ADD_RCVBUFFER(d, m)
468 1.3 simonb *
469 1.3 simonb * Add a buffer to the specified DMA channel. For receive channels,
470 1.3 simonb * this queues a buffer for inbound packets.
471 1.3 simonb *
472 1.3 simonb * Input parameters:
473 1.3 simonb * d - DMA channel descriptor
474 1.3 simonb * m - mbuf to add, or NULL if we should allocate one.
475 1.3 simonb *
476 1.3 simonb * Return value:
477 1.3 simonb * 0 if buffer could not be added (ring is full)
478 1.3 simonb * 1 if buffer added successfully
479 1.3 simonb */
480 1.1 simonb
481 1.1 simonb static int
482 1.1 simonb sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
483 1.1 simonb {
484 1.19 cgd unsigned int dsc, nextdsc;
485 1.1 simonb struct mbuf *m_new = NULL;
486 1.1 simonb
487 1.1 simonb /* get pointer to our current place in the ring */
488 1.1 simonb
489 1.19 cgd dsc = d->sbdma_add_index;
490 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
491 1.1 simonb
492 1.1 simonb /*
493 1.1 simonb * figure out if the ring is full - if the next descriptor
494 1.1 simonb * is the same as the one that we're going to remove from
495 1.1 simonb * the ring, the ring is full
496 1.1 simonb */
497 1.1 simonb
498 1.19 cgd if (nextdsc == d->sbdma_rem_index)
499 1.1 simonb return ENOSPC;
500 1.1 simonb
501 1.1 simonb /*
502 1.1 simonb * Allocate an mbuf if we don't already have one.
503 1.1 simonb * If we do have an mbuf, reset it so that it's empty.
504 1.1 simonb */
505 1.1 simonb
506 1.1 simonb if (m == NULL) {
507 1.1 simonb MGETHDR(m_new, M_DONTWAIT, MT_DATA);
508 1.1 simonb if (m_new == NULL) {
509 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev,
510 1.38 matt "mbuf allocation failed\n");
511 1.1 simonb return ENOBUFS;
512 1.1 simonb }
513 1.1 simonb
514 1.1 simonb MCLGET(m_new, M_DONTWAIT);
515 1.1 simonb if (!(m_new->m_flags & M_EXT)) {
516 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev,
517 1.38 matt "mbuf cluster allocation failed\n");
518 1.1 simonb m_freem(m_new);
519 1.1 simonb return ENOBUFS;
520 1.1 simonb }
521 1.1 simonb
522 1.1 simonb m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
523 1.1 simonb m_adj(m_new, ETHER_ALIGN);
524 1.1 simonb } else {
525 1.1 simonb m_new = m;
526 1.1 simonb m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
527 1.1 simonb m_new->m_data = m_new->m_ext.ext_buf;
528 1.1 simonb m_adj(m_new, ETHER_ALIGN);
529 1.1 simonb }
530 1.1 simonb
531 1.1 simonb /*
532 1.1 simonb * fill in the descriptor
533 1.1 simonb */
534 1.1 simonb
535 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
536 1.1 simonb V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
537 1.1 simonb M_DMA_DSCRA_INTERRUPT;
538 1.1 simonb
539 1.1 simonb /* receiving: no options */
540 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = 0;
541 1.1 simonb
542 1.1 simonb /*
543 1.1 simonb * fill in the context
544 1.1 simonb */
545 1.1 simonb
546 1.19 cgd d->sbdma_ctxtable[dsc] = m_new;
547 1.1 simonb
548 1.1 simonb /*
549 1.1 simonb * point at next packet
550 1.1 simonb */
551 1.1 simonb
552 1.19 cgd d->sbdma_add_index = nextdsc;
553 1.1 simonb
554 1.1 simonb /*
555 1.1 simonb * Give the buffer to the DMA engine.
556 1.1 simonb */
557 1.1 simonb
558 1.1 simonb SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
559 1.1 simonb
560 1.1 simonb return 0; /* we did it */
561 1.1 simonb }
562 1.1 simonb
563 1.3 simonb /*
564 1.3 simonb * SBDMA_ADD_TXBUFFER(d, m)
565 1.3 simonb *
566 1.3 simonb * Add a transmit buffer to the specified DMA channel, causing a
567 1.3 simonb * transmit to start.
568 1.3 simonb *
569 1.3 simonb * Input parameters:
570 1.3 simonb * d - DMA channel descriptor
571 1.3 simonb * m - mbuf to add
572 1.3 simonb *
573 1.3 simonb * Return value:
574 1.3 simonb * 0 transmit queued successfully
575 1.3 simonb * otherwise error code
576 1.3 simonb */
577 1.1 simonb
578 1.1 simonb static int
579 1.1 simonb sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
580 1.1 simonb {
581 1.19 cgd unsigned int dsc, nextdsc, prevdsc, origdesc;
582 1.1 simonb int length;
583 1.8 cgd int num_mbufs = 0;
584 1.8 cgd struct sbmac_softc *sc = d->sbdma_eth;
585 1.1 simonb
586 1.1 simonb /* get pointer to our current place in the ring */
587 1.1 simonb
588 1.19 cgd dsc = d->sbdma_add_index;
589 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
590 1.1 simonb
591 1.1 simonb /*
592 1.1 simonb * figure out if the ring is full - if the next descriptor
593 1.1 simonb * is the same as the one that we're going to remove from
594 1.1 simonb * the ring, the ring is full
595 1.1 simonb */
596 1.1 simonb
597 1.19 cgd if (nextdsc == d->sbdma_rem_index) {
598 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
599 1.1 simonb return ENOSPC;
600 1.15 simonb }
601 1.1 simonb
602 1.1 simonb /*
603 1.8 cgd * PASS3 parts do not have buffer alignment restriction.
604 1.8 cgd * No need to copy/coalesce to new mbuf. Also has different
605 1.8 cgd * descriptor format
606 1.1 simonb */
607 1.8 cgd if (sc->sbm_pass3_dma) {
608 1.8 cgd struct mbuf *m_temp = NULL;
609 1.8 cgd
610 1.8 cgd /*
611 1.8 cgd * Loop thru this mbuf record.
612 1.8 cgd * The head mbuf will have SOP set.
613 1.8 cgd */
614 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
615 1.8 cgd M_DMA_ETHTX_SOP;
616 1.8 cgd
617 1.8 cgd /*
618 1.8 cgd * transmitting: set outbound options,buffer A size(+ low 5
619 1.8 cgd * bits of start addr),and packet length.
620 1.8 cgd */
621 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b =
622 1.8 cgd V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
623 1.15 simonb V_DMA_DSCRB_A_SIZE((m->m_len +
624 1.35 matt (mtod(m,uintptr_t) & 0x0000001F))) |
625 1.16 cgd V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
626 1.16 cgd V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
627 1.8 cgd
628 1.19 cgd d->sbdma_add_index = nextdsc;
629 1.8 cgd origdesc = prevdsc = dsc;
630 1.19 cgd dsc = d->sbdma_add_index;
631 1.8 cgd num_mbufs++;
632 1.8 cgd
633 1.8 cgd /* Start with first non-head mbuf */
634 1.8 cgd for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
635 1.15 simonb int len, next_len;
636 1.15 simonb uint64_t addr;
637 1.8 cgd
638 1.8 cgd if (m_temp->m_len == 0)
639 1.8 cgd continue; /* Skip 0-length mbufs */
640 1.1 simonb
641 1.15 simonb len = m_temp->m_len;
642 1.22 christos addr = KVTOPHYS(mtod(m_temp, void *));
643 1.15 simonb
644 1.15 simonb /*
645 1.15 simonb * Check to see if the mbuf spans a page boundary. If
646 1.15 simonb * it does, and the physical pages behind the virtual
647 1.15 simonb * pages are not contiguous, split it so that each
648 1.15 simonb * virtual page uses it's own Tx descriptor.
649 1.15 simonb */
650 1.15 simonb if (trunc_page(addr) != trunc_page(addr + len - 1)) {
651 1.15 simonb next_len = (addr + len) - trunc_page(addr + len);
652 1.15 simonb
653 1.15 simonb len -= next_len;
654 1.15 simonb
655 1.15 simonb if (addr + len ==
656 1.23 simonb KVTOPHYS(mtod(m_temp, char *) + len)) {
657 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
658 1.15 simonb len += next_len;
659 1.15 simonb next_len = 0;
660 1.15 simonb } else {
661 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
662 1.15 simonb }
663 1.15 simonb } else {
664 1.15 simonb next_len = 0;
665 1.15 simonb }
666 1.15 simonb
667 1.15 simonb again:
668 1.8 cgd /*
669 1.8 cgd * fill in the descriptor
670 1.8 cgd */
671 1.19 cgd d->sbdma_dscrtable[dsc].dscr_a = addr;
672 1.8 cgd
673 1.13 simonb /*
674 1.13 simonb * transmitting: set outbound options,buffer A
675 1.13 simonb * size(+ low 5 bits of start addr)
676 1.13 simonb */
677 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
678 1.15 simonb V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
679 1.8 cgd
680 1.19 cgd d->sbdma_ctxtable[dsc] = NULL;
681 1.8 cgd
682 1.8 cgd /*
683 1.8 cgd * point at next descriptor
684 1.8 cgd */
685 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
686 1.19 cgd if (nextdsc == d->sbdma_rem_index) {
687 1.19 cgd d->sbdma_add_index = origdesc;
688 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
689 1.8 cgd return ENOSPC;
690 1.8 cgd }
691 1.19 cgd d->sbdma_add_index = nextdsc;
692 1.8 cgd
693 1.8 cgd prevdsc = dsc;
694 1.19 cgd dsc = d->sbdma_add_index;
695 1.8 cgd num_mbufs++;
696 1.15 simonb
697 1.15 simonb if (next_len != 0) {
698 1.23 simonb addr = KVTOPHYS(mtod(m_temp, char *) + len);
699 1.15 simonb len = next_len;
700 1.15 simonb
701 1.15 simonb next_len = 0;
702 1.15 simonb goto again;
703 1.15 simonb }
704 1.15 simonb
705 1.8 cgd }
706 1.16 cgd /* Set head mbuf to last context index */
707 1.19 cgd d->sbdma_ctxtable[prevdsc] = m;
708 1.16 cgd
709 1.16 cgd /* Interrupt on last dscr of packet. */
710 1.19 cgd d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
711 1.8 cgd } else {
712 1.8 cgd struct mbuf *m_new = NULL;
713 1.8 cgd /*
714 1.8 cgd * [BEGIN XXX]
715 1.13 simonb * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
716 1.13 simonb * assume it will fit). This is a temporary hack to get us
717 1.13 simonb * going.
718 1.8 cgd */
719 1.1 simonb
720 1.8 cgd MGETHDR(m_new,M_DONTWAIT,MT_DATA);
721 1.8 cgd if (m_new == NULL) {
722 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev,
723 1.38 matt "mbuf allocation failed\n");
724 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
725 1.8 cgd return ENOBUFS;
726 1.8 cgd }
727 1.1 simonb
728 1.8 cgd MCLGET(m_new,M_DONTWAIT);
729 1.8 cgd if (!(m_new->m_flags & M_EXT)) {
730 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev,
731 1.38 matt "mbuf cluster allocation failed\n");
732 1.8 cgd m_freem(m_new);
733 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
734 1.8 cgd return ENOBUFS;
735 1.8 cgd }
736 1.1 simonb
737 1.8 cgd m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
738 1.8 cgd /*m_adj(m_new,ETHER_ALIGN);*/
739 1.1 simonb
740 1.8 cgd /*
741 1.8 cgd * XXX Don't forget to include the offset portion in the
742 1.8 cgd * XXX cache block calculation when this code is rewritten!
743 1.8 cgd */
744 1.1 simonb
745 1.8 cgd /*
746 1.8 cgd * Copy data
747 1.8 cgd */
748 1.1 simonb
749 1.22 christos m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
750 1.8 cgd m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
751 1.1 simonb
752 1.8 cgd /* Free old mbuf 'm', actual mbuf is now 'm_new' */
753 1.1 simonb
754 1.8 cgd // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
755 1.8 cgd // XXX: function succeeds.
756 1.8 cgd // m_freem(m);
757 1.8 cgd length = m_new->m_len;
758 1.1 simonb
759 1.8 cgd /* [END XXX] */
760 1.8 cgd /*
761 1.8 cgd * fill in the descriptor
762 1.8 cgd */
763 1.1 simonb
764 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
765 1.8 cgd V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
766 1.8 cgd M_DMA_DSCRA_INTERRUPT |
767 1.8 cgd M_DMA_ETHTX_SOP;
768 1.8 cgd
769 1.8 cgd /* transmitting: set outbound options and length */
770 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b =
771 1.13 simonb V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
772 1.8 cgd V_DMA_DSCRB_PKT_SIZE(length);
773 1.1 simonb
774 1.8 cgd num_mbufs++;
775 1.1 simonb
776 1.8 cgd /*
777 1.8 cgd * fill in the context
778 1.8 cgd */
779 1.1 simonb
780 1.19 cgd d->sbdma_ctxtable[dsc] = m_new;
781 1.1 simonb
782 1.8 cgd /*
783 1.8 cgd * point at next packet
784 1.8 cgd */
785 1.19 cgd d->sbdma_add_index = nextdsc;
786 1.8 cgd }
787 1.1 simonb
788 1.1 simonb /*
789 1.1 simonb * Give the buffer to the DMA engine.
790 1.1 simonb */
791 1.1 simonb
792 1.8 cgd SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
793 1.1 simonb
794 1.1 simonb return 0; /* we did it */
795 1.1 simonb }
796 1.1 simonb
797 1.3 simonb /*
798 1.3 simonb * SBDMA_EMPTYRING(d)
799 1.3 simonb *
800 1.3 simonb * Free all allocated mbufs on the specified DMA channel;
801 1.3 simonb *
802 1.3 simonb * Input parameters:
803 1.3 simonb * d - DMA channel
804 1.3 simonb *
805 1.3 simonb * Return value:
806 1.3 simonb * nothing
807 1.3 simonb */
808 1.1 simonb
809 1.1 simonb static void
810 1.1 simonb sbdma_emptyring(sbmacdma_t *d)
811 1.1 simonb {
812 1.1 simonb int idx;
813 1.1 simonb struct mbuf *m;
814 1.1 simonb
815 1.1 simonb for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
816 1.1 simonb m = d->sbdma_ctxtable[idx];
817 1.1 simonb if (m) {
818 1.1 simonb m_freem(m);
819 1.1 simonb d->sbdma_ctxtable[idx] = NULL;
820 1.1 simonb }
821 1.1 simonb }
822 1.1 simonb }
823 1.1 simonb
824 1.3 simonb /*
825 1.3 simonb * SBDMA_FILLRING(d)
826 1.3 simonb *
827 1.3 simonb * Fill the specified DMA channel (must be receive channel)
828 1.3 simonb * with mbufs
829 1.3 simonb *
830 1.3 simonb * Input parameters:
831 1.3 simonb * d - DMA channel
832 1.3 simonb *
833 1.3 simonb * Return value:
834 1.3 simonb * nothing
835 1.3 simonb */
836 1.1 simonb
837 1.1 simonb static void
838 1.1 simonb sbdma_fillring(sbmacdma_t *d)
839 1.1 simonb {
840 1.1 simonb int idx;
841 1.1 simonb
842 1.1 simonb for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
843 1.1 simonb if (sbdma_add_rcvbuffer(d, NULL) != 0)
844 1.1 simonb break;
845 1.1 simonb }
846 1.1 simonb
847 1.3 simonb /*
848 1.3 simonb * SBDMA_RX_PROCESS(sc, d)
849 1.3 simonb *
850 1.3 simonb * Process "completed" receive buffers on the specified DMA channel.
851 1.3 simonb * Note that this isn't really ideal for priority channels, since
852 1.3 simonb * it processes all of the packets on a given channel before
853 1.3 simonb * returning.
854 1.3 simonb *
855 1.3 simonb * Input parameters:
856 1.3 simonb * sc - softc structure
857 1.3 simonb * d - DMA channel context
858 1.3 simonb *
859 1.3 simonb * Return value:
860 1.3 simonb * nothing
861 1.3 simonb */
862 1.1 simonb
863 1.1 simonb static void
864 1.1 simonb sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
865 1.1 simonb {
866 1.1 simonb int curidx;
867 1.1 simonb int hwidx;
868 1.19 cgd sbdmadscr_t *dscp;
869 1.1 simonb struct mbuf *m;
870 1.1 simonb int len;
871 1.1 simonb
872 1.1 simonb struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
873 1.1 simonb
874 1.1 simonb for (;;) {
875 1.1 simonb /*
876 1.1 simonb * figure out where we are (as an index) and where
877 1.1 simonb * the hardware is (also as an index)
878 1.1 simonb *
879 1.1 simonb * This could be done faster if (for example) the
880 1.1 simonb * descriptor table was page-aligned and contiguous in
881 1.1 simonb * both virtual and physical memory -- you could then
882 1.1 simonb * just compare the low-order bits of the virtual address
883 1.19 cgd * (sbdma_rem_index) and the physical address
884 1.19 cgd * (sbdma_curdscr CSR).
885 1.1 simonb */
886 1.1 simonb
887 1.19 cgd curidx = d->sbdma_rem_index;
888 1.1 simonb hwidx = (int)
889 1.1 simonb (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
890 1.1 simonb d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
891 1.1 simonb
892 1.1 simonb /*
893 1.1 simonb * If they're the same, that means we've processed all
894 1.1 simonb * of the descriptors up to (but not including) the one that
895 1.1 simonb * the hardware is working on right now.
896 1.1 simonb */
897 1.1 simonb
898 1.1 simonb if (curidx == hwidx)
899 1.1 simonb break;
900 1.1 simonb
901 1.1 simonb /*
902 1.1 simonb * Otherwise, get the packet's mbuf ptr back
903 1.1 simonb */
904 1.1 simonb
905 1.19 cgd dscp = &(d->sbdma_dscrtable[curidx]);
906 1.1 simonb m = d->sbdma_ctxtable[curidx];
907 1.1 simonb d->sbdma_ctxtable[curidx] = NULL;
908 1.1 simonb
909 1.19 cgd len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
910 1.1 simonb
911 1.1 simonb /*
912 1.1 simonb * Check packet status. If good, process it.
913 1.1 simonb * If not, silently drop it and put it back on the
914 1.1 simonb * receive ring.
915 1.1 simonb */
916 1.1 simonb
917 1.19 cgd if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
918 1.1 simonb
919 1.1 simonb /*
920 1.1 simonb * Set length into the packet
921 1.1 simonb * XXX do we remove the CRC here?
922 1.1 simonb */
923 1.1 simonb m->m_pkthdr.len = m->m_len = len;
924 1.1 simonb
925 1.1 simonb ifp->if_ipackets++;
926 1.1 simonb m->m_pkthdr.rcvif = ifp;
927 1.1 simonb
928 1.1 simonb
929 1.1 simonb /*
930 1.1 simonb * Add a new buffer to replace the old one.
931 1.1 simonb */
932 1.1 simonb sbdma_add_rcvbuffer(d, NULL);
933 1.1 simonb
934 1.1 simonb /*
935 1.1 simonb * Handle BPF listeners. Let the BPF user see the
936 1.1 simonb * packet, but don't pass it up to the ether_input()
937 1.1 simonb * layer unless it's a broadcast packet, multicast
938 1.1 simonb * packet, matches our ethernet address or the
939 1.1 simonb * interface is in promiscuous mode.
940 1.1 simonb */
941 1.1 simonb
942 1.37 joerg bpf_mtap(ifp, m);
943 1.1 simonb /*
944 1.1 simonb * Pass the buffer to the kernel
945 1.1 simonb */
946 1.1 simonb (*ifp->if_input)(ifp, m);
947 1.1 simonb } else {
948 1.1 simonb /*
949 1.1 simonb * Packet was mangled somehow. Just drop it and
950 1.1 simonb * put it back on the receive ring.
951 1.1 simonb */
952 1.1 simonb sbdma_add_rcvbuffer(d, m);
953 1.1 simonb }
954 1.1 simonb
955 1.1 simonb /*
956 1.1 simonb * .. and advance to the next buffer.
957 1.1 simonb */
958 1.1 simonb
959 1.19 cgd d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
960 1.1 simonb }
961 1.1 simonb }
962 1.1 simonb
963 1.3 simonb /*
964 1.3 simonb * SBDMA_TX_PROCESS(sc, d)
965 1.3 simonb *
966 1.3 simonb * Process "completed" transmit buffers on the specified DMA channel.
967 1.3 simonb * This is normally called within the interrupt service routine.
968 1.3 simonb * Note that this isn't really ideal for priority channels, since
969 1.3 simonb * it processes all of the packets on a given channel before
970 1.3 simonb * returning.
971 1.3 simonb *
972 1.3 simonb * Input parameters:
973 1.3 simonb * sc - softc structure
974 1.3 simonb * d - DMA channel context
975 1.3 simonb *
976 1.3 simonb * Return value:
977 1.3 simonb * nothing
978 1.3 simonb */
979 1.1 simonb
980 1.1 simonb static void
981 1.1 simonb sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
982 1.1 simonb {
983 1.1 simonb int curidx;
984 1.1 simonb int hwidx;
985 1.1 simonb struct mbuf *m;
986 1.1 simonb
987 1.1 simonb struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
988 1.1 simonb
989 1.1 simonb for (;;) {
990 1.1 simonb /*
991 1.1 simonb * figure out where we are (as an index) and where
992 1.1 simonb * the hardware is (also as an index)
993 1.1 simonb *
994 1.1 simonb * This could be done faster if (for example) the
995 1.1 simonb * descriptor table was page-aligned and contiguous in
996 1.1 simonb * both virtual and physical memory -- you could then
997 1.1 simonb * just compare the low-order bits of the virtual address
998 1.19 cgd * (sbdma_rem_index) and the physical address
999 1.19 cgd * (sbdma_curdscr CSR).
1000 1.1 simonb */
1001 1.1 simonb
1002 1.19 cgd curidx = d->sbdma_rem_index;
1003 1.1 simonb hwidx = (int)
1004 1.1 simonb (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1005 1.1 simonb d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1006 1.1 simonb
1007 1.1 simonb /*
1008 1.1 simonb * If they're the same, that means we've processed all
1009 1.1 simonb * of the descriptors up to (but not including) the one that
1010 1.1 simonb * the hardware is working on right now.
1011 1.1 simonb */
1012 1.1 simonb
1013 1.1 simonb if (curidx == hwidx)
1014 1.1 simonb break;
1015 1.1 simonb
1016 1.1 simonb /*
1017 1.1 simonb * Otherwise, get the packet's mbuf ptr back
1018 1.1 simonb */
1019 1.1 simonb
1020 1.1 simonb m = d->sbdma_ctxtable[curidx];
1021 1.1 simonb d->sbdma_ctxtable[curidx] = NULL;
1022 1.1 simonb
1023 1.1 simonb /*
1024 1.24 christos * for transmits we just free buffers and count packets.
1025 1.1 simonb */
1026 1.24 christos ifp->if_opackets++;
1027 1.1 simonb m_freem(m);
1028 1.1 simonb
1029 1.1 simonb /*
1030 1.1 simonb * .. and advance to the next buffer.
1031 1.1 simonb */
1032 1.1 simonb
1033 1.19 cgd d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
1034 1.1 simonb }
1035 1.1 simonb
1036 1.1 simonb /*
1037 1.1 simonb * Decide what to set the IFF_OACTIVE bit in the interface to.
1038 1.1 simonb * It's supposed to reflect if the interface is actively
1039 1.1 simonb * transmitting, but that's really hard to do quickly.
1040 1.1 simonb */
1041 1.1 simonb
1042 1.1 simonb ifp->if_flags &= ~IFF_OACTIVE;
1043 1.1 simonb }
1044 1.1 simonb
1045 1.3 simonb /*
1046 1.3 simonb * SBMAC_INITCTX(s)
1047 1.3 simonb *
1048 1.3 simonb * Initialize an Ethernet context structure - this is called
1049 1.3 simonb * once per MAC on the 1250. Memory is allocated here, so don't
1050 1.3 simonb * call it again from inside the ioctl routines that bring the
1051 1.3 simonb * interface up/down
1052 1.3 simonb *
1053 1.3 simonb * Input parameters:
1054 1.39 matt * sc - sbmac context structure
1055 1.3 simonb *
1056 1.3 simonb * Return value:
1057 1.3 simonb * 0
1058 1.3 simonb */
1059 1.1 simonb
1060 1.1 simonb static void
1061 1.38 matt sbmac_initctx(struct sbmac_softc *sc)
1062 1.1 simonb {
1063 1.8 cgd uint64_t sysrev;
1064 1.1 simonb
1065 1.1 simonb /*
1066 1.1 simonb * figure out the addresses of some ports
1067 1.1 simonb */
1068 1.1 simonb
1069 1.38 matt sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE);
1070 1.38 matt sc->sbm_maccfg = PKSEG1(sc->sbm_base + R_MAC_CFG);
1071 1.38 matt sc->sbm_fifocfg = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG);
1072 1.38 matt sc->sbm_framecfg = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG);
1073 1.38 matt sc->sbm_rxfilter = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG);
1074 1.38 matt sc->sbm_isr = PKSEG1(sc->sbm_base + R_MAC_STATUS);
1075 1.38 matt sc->sbm_imr = PKSEG1(sc->sbm_base + R_MAC_INT_MASK);
1076 1.1 simonb
1077 1.1 simonb /*
1078 1.1 simonb * Initialize the DMA channels. Right now, only one per MAC is used
1079 1.1 simonb * Note: Only do this _once_, as it allocates memory from the kernel!
1080 1.1 simonb */
1081 1.1 simonb
1082 1.38 matt sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1083 1.38 matt sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1084 1.1 simonb
1085 1.1 simonb /*
1086 1.1 simonb * initial state is OFF
1087 1.1 simonb */
1088 1.1 simonb
1089 1.38 matt sc->sbm_state = sbmac_state_off;
1090 1.1 simonb
1091 1.1 simonb /*
1092 1.1 simonb * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1093 1.1 simonb */
1094 1.1 simonb
1095 1.38 matt sc->sbm_speed = sbmac_speed_10;
1096 1.38 matt sc->sbm_duplex = sbmac_duplex_half;
1097 1.38 matt sc->sbm_fc = sbmac_fc_disabled;
1098 1.8 cgd
1099 1.8 cgd /*
1100 1.8 cgd * Determine SOC type. 112x has Pass3 SOC features.
1101 1.8 cgd */
1102 1.8 cgd sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1103 1.38 matt sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1104 1.8 cgd SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1105 1.8 cgd SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1106 1.8 cgd (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1107 1.18 cgd G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1108 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
1109 1.39 matt const char * const xname = device_xname(sc->sc_dev);
1110 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1111 1.38 matt NULL, xname, "rxintr");
1112 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR,
1113 1.38 matt NULL, xname, "txintr");
1114 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1115 1.38 matt NULL, xname, "txdrop");
1116 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC,
1117 1.38 matt NULL, xname, "txstall");
1118 1.38 matt if (sc->sbm_pass3_dma) {
1119 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1120 1.38 matt NULL, xname, "pass3tx-split");
1121 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1122 1.38 matt NULL, xname, "pass3tx-keep");
1123 1.11 simonb }
1124 1.15 simonb #endif
1125 1.1 simonb }
1126 1.1 simonb
1127 1.3 simonb /*
1128 1.3 simonb * SBMAC_CHANNEL_START(s)
1129 1.3 simonb *
1130 1.3 simonb * Start packet processing on this MAC.
1131 1.3 simonb *
1132 1.3 simonb * Input parameters:
1133 1.39 matt * sc - sbmac structure
1134 1.3 simonb *
1135 1.3 simonb * Return value:
1136 1.3 simonb * nothing
1137 1.3 simonb */
1138 1.1 simonb
1139 1.1 simonb static void
1140 1.38 matt sbmac_channel_start(struct sbmac_softc *sc)
1141 1.1 simonb {
1142 1.1 simonb uint64_t reg;
1143 1.1 simonb sbmac_port_t port;
1144 1.1 simonb uint64_t cfg, fifo, framecfg;
1145 1.1 simonb int idx;
1146 1.8 cgd uint64_t dma_cfg0, fifo_cfg;
1147 1.8 cgd sbmacdma_t *txdma;
1148 1.1 simonb
1149 1.1 simonb /*
1150 1.1 simonb * Don't do this if running
1151 1.1 simonb */
1152 1.1 simonb
1153 1.38 matt if (sc->sbm_state == sbmac_state_on)
1154 1.1 simonb return;
1155 1.1 simonb
1156 1.1 simonb /*
1157 1.1 simonb * Bring the controller out of reset, but leave it off.
1158 1.1 simonb */
1159 1.1 simonb
1160 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, 0);
1161 1.1 simonb
1162 1.1 simonb /*
1163 1.1 simonb * Ignore all received packets
1164 1.1 simonb */
1165 1.1 simonb
1166 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1167 1.1 simonb
1168 1.1 simonb /*
1169 1.1 simonb * Calculate values for various control registers.
1170 1.1 simonb */
1171 1.1 simonb
1172 1.1 simonb cfg = M_MAC_RETRY_EN |
1173 1.1 simonb M_MAC_TX_HOLD_SOP_EN |
1174 1.1 simonb V_MAC_TX_PAUSE_CNT_16K |
1175 1.1 simonb M_MAC_AP_STAT_EN |
1176 1.1 simonb M_MAC_SS_EN |
1177 1.1 simonb 0;
1178 1.1 simonb
1179 1.1 simonb fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1180 1.1 simonb V_MAC_TX_RD_THRSH(4) |
1181 1.1 simonb V_MAC_TX_RL_THRSH(4) |
1182 1.1 simonb V_MAC_RX_PL_THRSH(4) |
1183 1.1 simonb V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1184 1.1 simonb V_MAC_RX_PL_THRSH(4) |
1185 1.1 simonb V_MAC_RX_RL_THRSH(8) |
1186 1.1 simonb 0;
1187 1.1 simonb
1188 1.1 simonb framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1189 1.1 simonb V_MAC_MAX_FRAMESZ_DEFAULT |
1190 1.1 simonb V_MAC_BACKOFF_SEL(1);
1191 1.1 simonb
1192 1.1 simonb /*
1193 1.1 simonb * Clear out the hash address map
1194 1.1 simonb */
1195 1.1 simonb
1196 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE);
1197 1.1 simonb for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1198 1.1 simonb SBMAC_WRITECSR(port, 0);
1199 1.1 simonb port += sizeof(uint64_t);
1200 1.1 simonb }
1201 1.1 simonb
1202 1.1 simonb /*
1203 1.1 simonb * Clear out the exact-match table
1204 1.1 simonb */
1205 1.1 simonb
1206 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
1207 1.1 simonb for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1208 1.1 simonb SBMAC_WRITECSR(port, 0);
1209 1.1 simonb port += sizeof(uint64_t);
1210 1.1 simonb }
1211 1.1 simonb
1212 1.1 simonb /*
1213 1.1 simonb * Clear out the DMA Channel mapping table registers
1214 1.1 simonb */
1215 1.1 simonb
1216 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE);
1217 1.1 simonb for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1218 1.1 simonb SBMAC_WRITECSR(port, 0);
1219 1.1 simonb port += sizeof(uint64_t);
1220 1.1 simonb }
1221 1.1 simonb
1222 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE);
1223 1.1 simonb for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1224 1.1 simonb SBMAC_WRITECSR(port, 0);
1225 1.1 simonb port += sizeof(uint64_t);
1226 1.1 simonb }
1227 1.1 simonb
1228 1.1 simonb /*
1229 1.1 simonb * Program the hardware address. It goes into the hardware-address
1230 1.1 simonb * register as well as the first filter register.
1231 1.1 simonb */
1232 1.1 simonb
1233 1.38 matt reg = sbmac_addr2reg(sc->sbm_hwaddr);
1234 1.1 simonb
1235 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
1236 1.1 simonb SBMAC_WRITECSR(port, reg);
1237 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR);
1238 1.1 simonb SBMAC_WRITECSR(port, 0); // pass1 workaround
1239 1.1 simonb
1240 1.1 simonb /*
1241 1.1 simonb * Set the receive filter for no packets, and write values
1242 1.1 simonb * to the various config registers
1243 1.1 simonb */
1244 1.1 simonb
1245 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1246 1.38 matt SBMAC_WRITECSR(sc->sbm_imr, 0);
1247 1.38 matt SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
1248 1.38 matt SBMAC_WRITECSR(sc->sbm_fifocfg, fifo);
1249 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1250 1.1 simonb
1251 1.1 simonb /*
1252 1.1 simonb * Initialize DMA channels (rings should be ok now)
1253 1.1 simonb */
1254 1.1 simonb
1255 1.38 matt sbdma_channel_start(&(sc->sbm_rxdma));
1256 1.38 matt sbdma_channel_start(&(sc->sbm_txdma));
1257 1.1 simonb
1258 1.1 simonb /*
1259 1.1 simonb * Configure the speed, duplex, and flow control
1260 1.1 simonb */
1261 1.1 simonb
1262 1.38 matt sbmac_set_speed(sc, sc->sbm_speed);
1263 1.38 matt sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc);
1264 1.1 simonb
1265 1.1 simonb /*
1266 1.1 simonb * Fill the receive ring
1267 1.1 simonb */
1268 1.1 simonb
1269 1.38 matt sbdma_fillring(&(sc->sbm_rxdma));
1270 1.1 simonb
1271 1.1 simonb /*
1272 1.1 simonb * Turn on the rest of the bits in the enable register
1273 1.1 simonb */
1274 1.1 simonb
1275 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1276 1.1 simonb M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1277 1.1 simonb
1278 1.1 simonb
1279 1.1 simonb /*
1280 1.1 simonb * Accept any kind of interrupt on TX and RX DMA channel 0
1281 1.1 simonb */
1282 1.38 matt SBMAC_WRITECSR(sc->sbm_imr,
1283 1.1 simonb (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1284 1.1 simonb (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1285 1.1 simonb
1286 1.1 simonb /*
1287 1.1 simonb * Enable receiving unicasts and broadcasts
1288 1.1 simonb */
1289 1.1 simonb
1290 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1291 1.1 simonb
1292 1.1 simonb /*
1293 1.8 cgd * On chips which support unaligned DMA features, set the descriptor
1294 1.8 cgd * ring for transmit channels to use the unaligned buffer format.
1295 1.8 cgd */
1296 1.38 matt txdma = &(sc->sbm_txdma);
1297 1.8 cgd
1298 1.38 matt if (sc->sbm_pass3_dma) {
1299 1.8 cgd dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1300 1.8 cgd dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1301 1.8 cgd M_DMA_TBX_EN | M_DMA_TDX_EN;
1302 1.8 cgd SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1303 1.8 cgd
1304 1.38 matt fifo_cfg = SBMAC_READCSR(sc->sbm_fifocfg);
1305 1.8 cgd fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1306 1.8 cgd V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1307 1.38 matt SBMAC_WRITECSR(sc->sbm_fifocfg,fifo_cfg);
1308 1.8 cgd }
1309 1.8 cgd
1310 1.8 cgd /*
1311 1.1 simonb * we're running now.
1312 1.1 simonb */
1313 1.1 simonb
1314 1.38 matt sc->sbm_state = sbmac_state_on;
1315 1.38 matt sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1316 1.1 simonb
1317 1.1 simonb /*
1318 1.1 simonb * Program multicast addresses
1319 1.1 simonb */
1320 1.1 simonb
1321 1.38 matt sbmac_setmulti(sc);
1322 1.1 simonb
1323 1.1 simonb /*
1324 1.1 simonb * If channel was in promiscuous mode before, turn that on
1325 1.1 simonb */
1326 1.1 simonb
1327 1.38 matt if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1328 1.39 matt sbmac_promiscuous_mode(sc, true);
1329 1.1 simonb
1330 1.1 simonb /*
1331 1.1 simonb * Turn on the once-per-second timer
1332 1.1 simonb */
1333 1.1 simonb
1334 1.38 matt callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc);
1335 1.1 simonb }
1336 1.1 simonb
1337 1.3 simonb /*
1338 1.3 simonb * SBMAC_CHANNEL_STOP(s)
1339 1.3 simonb *
1340 1.3 simonb * Stop packet processing on this MAC.
1341 1.3 simonb *
1342 1.3 simonb * Input parameters:
1343 1.39 matt * sc - sbmac structure
1344 1.3 simonb *
1345 1.3 simonb * Return value:
1346 1.3 simonb * nothing
1347 1.3 simonb */
1348 1.1 simonb
1349 1.3 simonb static void
1350 1.38 matt sbmac_channel_stop(struct sbmac_softc *sc)
1351 1.1 simonb {
1352 1.3 simonb uint64_t ctl;
1353 1.1 simonb
1354 1.3 simonb /* don't do this if already stopped */
1355 1.1 simonb
1356 1.38 matt if (sc->sbm_state == sbmac_state_off)
1357 1.3 simonb return;
1358 1.1 simonb
1359 1.3 simonb /* don't accept any packets, disable all interrupts */
1360 1.1 simonb
1361 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1362 1.38 matt SBMAC_WRITECSR(sc->sbm_imr, 0);
1363 1.1 simonb
1364 1.3 simonb /* Turn off ticker */
1365 1.1 simonb
1366 1.38 matt callout_stop(&(sc->sc_tick_ch));
1367 1.1 simonb
1368 1.3 simonb /* turn off receiver and transmitter */
1369 1.1 simonb
1370 1.38 matt ctl = SBMAC_READCSR(sc->sbm_macenable);
1371 1.3 simonb ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1372 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, ctl);
1373 1.1 simonb
1374 1.3 simonb /* We're stopped now. */
1375 1.1 simonb
1376 1.38 matt sc->sbm_state = sbmac_state_off;
1377 1.38 matt sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1378 1.1 simonb
1379 1.3 simonb /* Empty the receive and transmit rings */
1380 1.1 simonb
1381 1.38 matt sbdma_emptyring(&(sc->sbm_rxdma));
1382 1.38 matt sbdma_emptyring(&(sc->sbm_txdma));
1383 1.3 simonb }
1384 1.3 simonb
1385 1.3 simonb /*
1386 1.3 simonb * SBMAC_SET_CHANNEL_STATE(state)
1387 1.3 simonb *
1388 1.3 simonb * Set the channel's state ON or OFF
1389 1.3 simonb *
1390 1.3 simonb * Input parameters:
1391 1.3 simonb * state - new state
1392 1.3 simonb *
1393 1.3 simonb * Return value:
1394 1.3 simonb * old state
1395 1.3 simonb */
1396 1.1 simonb
1397 1.3 simonb static sbmac_state_t
1398 1.3 simonb sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1399 1.3 simonb {
1400 1.3 simonb sbmac_state_t oldstate = sc->sbm_state;
1401 1.3 simonb
1402 1.3 simonb /*
1403 1.3 simonb * If same as previous state, return
1404 1.3 simonb */
1405 1.3 simonb
1406 1.3 simonb if (state == oldstate)
1407 1.3 simonb return oldstate;
1408 1.3 simonb
1409 1.3 simonb /*
1410 1.3 simonb * If new state is ON, turn channel on
1411 1.3 simonb */
1412 1.3 simonb
1413 1.3 simonb if (state == sbmac_state_on)
1414 1.3 simonb sbmac_channel_start(sc);
1415 1.3 simonb else
1416 1.3 simonb sbmac_channel_stop(sc);
1417 1.3 simonb
1418 1.3 simonb /*
1419 1.3 simonb * Return previous state
1420 1.3 simonb */
1421 1.3 simonb
1422 1.3 simonb return oldstate;
1423 1.1 simonb }
1424 1.1 simonb
1425 1.3 simonb /*
1426 1.39 matt * SBMAC_PROMISCUOUS_MODE(sc, enabled)
1427 1.3 simonb *
1428 1.3 simonb * Turn on or off promiscuous mode
1429 1.3 simonb *
1430 1.3 simonb * Input parameters:
1431 1.3 simonb * sc - softc
1432 1.39 matt * enabled - true to turn on, false to turn off
1433 1.3 simonb *
1434 1.3 simonb * Return value:
1435 1.3 simonb * nothing
1436 1.3 simonb */
1437 1.3 simonb
1438 1.3 simonb static void
1439 1.39 matt sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled)
1440 1.1 simonb {
1441 1.3 simonb uint64_t reg;
1442 1.1 simonb
1443 1.3 simonb if (sc->sbm_state != sbmac_state_on)
1444 1.3 simonb return;
1445 1.1 simonb
1446 1.39 matt if (enabled) {
1447 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1448 1.3 simonb reg |= M_MAC_ALLPKT_EN;
1449 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1450 1.3 simonb } else {
1451 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1452 1.3 simonb reg &= ~M_MAC_ALLPKT_EN;
1453 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1454 1.1 simonb }
1455 1.3 simonb }
1456 1.1 simonb
1457 1.3 simonb /*
1458 1.3 simonb * SBMAC_INIT_AND_START(sc)
1459 1.3 simonb *
1460 1.3 simonb * Stop the channel and restart it. This is generally used
1461 1.3 simonb * when we have to do something to the channel that requires
1462 1.3 simonb * a swift kick.
1463 1.3 simonb *
1464 1.3 simonb * Input parameters:
1465 1.3 simonb * sc - softc
1466 1.3 simonb */
1467 1.1 simonb
1468 1.3 simonb static void
1469 1.3 simonb sbmac_init_and_start(struct sbmac_softc *sc)
1470 1.3 simonb {
1471 1.3 simonb int s;
1472 1.3 simonb
1473 1.3 simonb s = splnet();
1474 1.1 simonb
1475 1.13 simonb mii_pollstat(&sc->sc_mii); /* poll phy for current speed */
1476 1.38 matt sbmac_mii_statchg(sc->sc_dev); /* set state to new speed */
1477 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_on);
1478 1.1 simonb
1479 1.3 simonb splx(s);
1480 1.1 simonb }
1481 1.1 simonb
1482 1.3 simonb /*
1483 1.3 simonb * SBMAC_ADDR2REG(ptr)
1484 1.3 simonb *
1485 1.3 simonb * Convert six bytes into the 64-bit register value that
1486 1.3 simonb * we typically write into the SBMAC's address/mcast registers
1487 1.3 simonb *
1488 1.3 simonb * Input parameters:
1489 1.3 simonb * ptr - pointer to 6 bytes
1490 1.3 simonb *
1491 1.3 simonb * Return value:
1492 1.3 simonb * register value
1493 1.3 simonb */
1494 1.3 simonb
1495 1.3 simonb static uint64_t
1496 1.3 simonb sbmac_addr2reg(u_char *ptr)
1497 1.3 simonb {
1498 1.3 simonb uint64_t reg = 0;
1499 1.1 simonb
1500 1.3 simonb ptr += 6;
1501 1.3 simonb
1502 1.3 simonb reg |= (uint64_t) *(--ptr);
1503 1.3 simonb reg <<= 8;
1504 1.3 simonb reg |= (uint64_t) *(--ptr);
1505 1.3 simonb reg <<= 8;
1506 1.3 simonb reg |= (uint64_t) *(--ptr);
1507 1.3 simonb reg <<= 8;
1508 1.3 simonb reg |= (uint64_t) *(--ptr);
1509 1.3 simonb reg <<= 8;
1510 1.3 simonb reg |= (uint64_t) *(--ptr);
1511 1.3 simonb reg <<= 8;
1512 1.3 simonb reg |= (uint64_t) *(--ptr);
1513 1.3 simonb
1514 1.3 simonb return reg;
1515 1.3 simonb }
1516 1.3 simonb
1517 1.3 simonb /*
1518 1.39 matt * SBMAC_SET_SPEED(sc, speed)
1519 1.3 simonb *
1520 1.3 simonb * Configure LAN speed for the specified MAC.
1521 1.3 simonb * Warning: must be called when MAC is off!
1522 1.3 simonb *
1523 1.3 simonb * Input parameters:
1524 1.39 matt * sc - sbmac structure
1525 1.3 simonb * speed - speed to set MAC to (see sbmac_speed_t enum)
1526 1.3 simonb *
1527 1.3 simonb * Return value:
1528 1.39 matt * true if successful
1529 1.39 matt * false indicates invalid parameters
1530 1.3 simonb */
1531 1.1 simonb
1532 1.39 matt static bool
1533 1.38 matt sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed)
1534 1.1 simonb {
1535 1.3 simonb uint64_t cfg;
1536 1.3 simonb uint64_t framecfg;
1537 1.3 simonb
1538 1.3 simonb /*
1539 1.3 simonb * Save new current values
1540 1.3 simonb */
1541 1.1 simonb
1542 1.38 matt sc->sbm_speed = speed;
1543 1.1 simonb
1544 1.38 matt if (sc->sbm_state != sbmac_state_off)
1545 1.3 simonb panic("sbmac_set_speed while MAC not off");
1546 1.3 simonb
1547 1.3 simonb /*
1548 1.3 simonb * Read current register values
1549 1.3 simonb */
1550 1.3 simonb
1551 1.38 matt cfg = SBMAC_READCSR(sc->sbm_maccfg);
1552 1.38 matt framecfg = SBMAC_READCSR(sc->sbm_framecfg);
1553 1.1 simonb
1554 1.3 simonb /*
1555 1.3 simonb * Mask out the stuff we want to change
1556 1.3 simonb */
1557 1.1 simonb
1558 1.3 simonb cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1559 1.3 simonb framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1560 1.3 simonb M_MAC_SLOT_SIZE);
1561 1.1 simonb
1562 1.3 simonb /*
1563 1.3 simonb * Now add in the new bits
1564 1.3 simonb */
1565 1.1 simonb
1566 1.3 simonb switch (speed) {
1567 1.1 simonb case sbmac_speed_10:
1568 1.3 simonb framecfg |= V_MAC_IFG_RX_10 |
1569 1.3 simonb V_MAC_IFG_TX_10 |
1570 1.3 simonb K_MAC_IFG_THRSH_10 |
1571 1.3 simonb V_MAC_SLOT_SIZE_10;
1572 1.3 simonb cfg |= V_MAC_SPEED_SEL_10MBPS;
1573 1.3 simonb break;
1574 1.1 simonb
1575 1.1 simonb case sbmac_speed_100:
1576 1.3 simonb framecfg |= V_MAC_IFG_RX_100 |
1577 1.3 simonb V_MAC_IFG_TX_100 |
1578 1.3 simonb V_MAC_IFG_THRSH_100 |
1579 1.3 simonb V_MAC_SLOT_SIZE_100;
1580 1.3 simonb cfg |= V_MAC_SPEED_SEL_100MBPS ;
1581 1.3 simonb break;
1582 1.1 simonb
1583 1.1 simonb case sbmac_speed_1000:
1584 1.3 simonb framecfg |= V_MAC_IFG_RX_1000 |
1585 1.3 simonb V_MAC_IFG_TX_1000 |
1586 1.3 simonb V_MAC_IFG_THRSH_1000 |
1587 1.3 simonb V_MAC_SLOT_SIZE_1000;
1588 1.3 simonb cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1589 1.3 simonb break;
1590 1.1 simonb
1591 1.1 simonb case sbmac_speed_auto: /* XXX not implemented */
1592 1.3 simonb /* fall through */
1593 1.1 simonb default:
1594 1.39 matt return false;
1595 1.1 simonb }
1596 1.1 simonb
1597 1.3 simonb /*
1598 1.3 simonb * Send the bits back to the hardware
1599 1.3 simonb */
1600 1.1 simonb
1601 1.38 matt SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
1602 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1603 1.1 simonb
1604 1.39 matt return true;
1605 1.1 simonb }
1606 1.1 simonb
1607 1.3 simonb /*
1608 1.38 matt * SBMAC_SET_DUPLEX(sc, duplex, fc)
1609 1.3 simonb *
1610 1.3 simonb * Set Ethernet duplex and flow control options for this MAC
1611 1.3 simonb * Warning: must be called when MAC is off!
1612 1.3 simonb *
1613 1.3 simonb * Input parameters:
1614 1.39 matt * sc - sbmac structure
1615 1.3 simonb * duplex - duplex setting (see sbmac_duplex_t)
1616 1.3 simonb * fc - flow control setting (see sbmac_fc_t)
1617 1.3 simonb *
1618 1.3 simonb * Return value:
1619 1.39 matt * true if ok
1620 1.39 matt * false if an invalid parameter combination was specified
1621 1.3 simonb */
1622 1.1 simonb
1623 1.39 matt static bool
1624 1.38 matt sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc)
1625 1.1 simonb {
1626 1.3 simonb uint64_t cfg;
1627 1.1 simonb
1628 1.3 simonb /*
1629 1.3 simonb * Save new current values
1630 1.3 simonb */
1631 1.1 simonb
1632 1.38 matt sc->sbm_duplex = duplex;
1633 1.38 matt sc->sbm_fc = fc;
1634 1.1 simonb
1635 1.38 matt if (sc->sbm_state != sbmac_state_off)
1636 1.3 simonb panic("sbmac_set_duplex while MAC not off");
1637 1.1 simonb
1638 1.3 simonb /*
1639 1.3 simonb * Read current register values
1640 1.3 simonb */
1641 1.1 simonb
1642 1.38 matt cfg = SBMAC_READCSR(sc->sbm_maccfg);
1643 1.1 simonb
1644 1.3 simonb /*
1645 1.3 simonb * Mask off the stuff we're about to change
1646 1.3 simonb */
1647 1.1 simonb
1648 1.3 simonb cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1649 1.1 simonb
1650 1.3 simonb switch (duplex) {
1651 1.1 simonb case sbmac_duplex_half:
1652 1.3 simonb switch (fc) {
1653 1.1 simonb case sbmac_fc_disabled:
1654 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1655 1.3 simonb break;
1656 1.1 simonb
1657 1.1 simonb case sbmac_fc_collision:
1658 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1659 1.3 simonb break;
1660 1.1 simonb
1661 1.1 simonb case sbmac_fc_carrier:
1662 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1663 1.3 simonb break;
1664 1.1 simonb
1665 1.1 simonb case sbmac_fc_auto: /* XXX not implemented */
1666 1.3 simonb /* fall through */
1667 1.1 simonb case sbmac_fc_frame: /* not valid in half duplex */
1668 1.1 simonb default: /* invalid selection */
1669 1.4 provos panic("%s: invalid half duplex fc selection %d",
1670 1.38 matt device_xname(sc->sc_dev), fc);
1671 1.39 matt return false;
1672 1.1 simonb }
1673 1.3 simonb break;
1674 1.1 simonb
1675 1.1 simonb case sbmac_duplex_full:
1676 1.3 simonb switch (fc) {
1677 1.1 simonb case sbmac_fc_disabled:
1678 1.3 simonb cfg |= V_MAC_FC_CMD_DISABLED;
1679 1.3 simonb break;
1680 1.1 simonb
1681 1.1 simonb case sbmac_fc_frame:
1682 1.3 simonb cfg |= V_MAC_FC_CMD_ENABLED;
1683 1.3 simonb break;
1684 1.1 simonb
1685 1.1 simonb case sbmac_fc_collision: /* not valid in full duplex */
1686 1.1 simonb case sbmac_fc_carrier: /* not valid in full duplex */
1687 1.1 simonb case sbmac_fc_auto: /* XXX not implemented */
1688 1.3 simonb /* fall through */
1689 1.1 simonb default:
1690 1.4 provos panic("%s: invalid full duplex fc selection %d",
1691 1.38 matt device_xname(sc->sc_dev), fc);
1692 1.39 matt return false;
1693 1.1 simonb }
1694 1.3 simonb break;
1695 1.1 simonb
1696 1.1 simonb default:
1697 1.3 simonb /* fall through */
1698 1.1 simonb case sbmac_duplex_auto:
1699 1.38 matt panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex);
1700 1.3 simonb /* XXX not implemented */
1701 1.3 simonb break;
1702 1.1 simonb }
1703 1.1 simonb
1704 1.3 simonb /*
1705 1.3 simonb * Send the bits back to the hardware
1706 1.3 simonb */
1707 1.1 simonb
1708 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1709 1.1 simonb
1710 1.39 matt return true;
1711 1.1 simonb }
1712 1.1 simonb
1713 1.3 simonb /*
1714 1.3 simonb * SBMAC_INTR()
1715 1.3 simonb *
1716 1.3 simonb * Interrupt handler for MAC interrupts
1717 1.3 simonb *
1718 1.3 simonb * Input parameters:
1719 1.3 simonb * MAC structure
1720 1.3 simonb *
1721 1.3 simonb * Return value:
1722 1.3 simonb * nothing
1723 1.3 simonb */
1724 1.1 simonb
1725 1.1 simonb /* ARGSUSED */
1726 1.1 simonb static void
1727 1.35 matt sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
1728 1.1 simonb {
1729 1.38 matt struct sbmac_softc *sc = xsc;
1730 1.14 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1731 1.1 simonb uint64_t isr;
1732 1.1 simonb
1733 1.1 simonb for (;;) {
1734 1.1 simonb
1735 1.1 simonb /*
1736 1.1 simonb * Read the ISR (this clears the bits in the real register)
1737 1.1 simonb */
1738 1.1 simonb
1739 1.1 simonb isr = SBMAC_READCSR(sc->sbm_isr);
1740 1.1 simonb
1741 1.1 simonb if (isr == 0)
1742 1.1 simonb break;
1743 1.1 simonb
1744 1.1 simonb /*
1745 1.1 simonb * Transmits on channel 0
1746 1.1 simonb */
1747 1.1 simonb
1748 1.15 simonb if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1749 1.1 simonb sbdma_tx_process(sc, &(sc->sbm_txdma));
1750 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1751 1.15 simonb }
1752 1.1 simonb
1753 1.1 simonb /*
1754 1.1 simonb * Receives on channel 0
1755 1.1 simonb */
1756 1.1 simonb
1757 1.15 simonb if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1758 1.1 simonb sbdma_rx_process(sc, &(sc->sbm_rxdma));
1759 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1760 1.15 simonb }
1761 1.1 simonb }
1762 1.14 simonb
1763 1.14 simonb /* try to get more packets going */
1764 1.14 simonb sbmac_start(ifp);
1765 1.1 simonb }
1766 1.1 simonb
1767 1.1 simonb
1768 1.3 simonb /*
1769 1.3 simonb * SBMAC_START(ifp)
1770 1.3 simonb *
1771 1.3 simonb * Start output on the specified interface. Basically, we
1772 1.3 simonb * queue as many buffers as we can until the ring fills up, or
1773 1.3 simonb * we run off the end of the queue, whichever comes first.
1774 1.3 simonb *
1775 1.3 simonb * Input parameters:
1776 1.3 simonb * ifp - interface
1777 1.3 simonb *
1778 1.3 simonb * Return value:
1779 1.3 simonb * nothing
1780 1.3 simonb */
1781 1.3 simonb
1782 1.3 simonb static void
1783 1.3 simonb sbmac_start(struct ifnet *ifp)
1784 1.1 simonb {
1785 1.3 simonb struct sbmac_softc *sc;
1786 1.3 simonb struct mbuf *m_head = NULL;
1787 1.3 simonb int rv;
1788 1.1 simonb
1789 1.3 simonb if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1790 1.3 simonb return;
1791 1.3 simonb
1792 1.3 simonb sc = ifp->if_softc;
1793 1.1 simonb
1794 1.3 simonb for (;;) {
1795 1.1 simonb
1796 1.3 simonb IF_DEQUEUE(&ifp->if_snd, m_head);
1797 1.3 simonb if (m_head == NULL)
1798 1.3 simonb break;
1799 1.1 simonb
1800 1.3 simonb /*
1801 1.3 simonb * Put the buffer on the transmit ring. If we
1802 1.3 simonb * don't have room, set the OACTIVE flag and wait
1803 1.3 simonb * for the NIC to drain the ring.
1804 1.3 simonb */
1805 1.3 simonb
1806 1.3 simonb rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1807 1.3 simonb
1808 1.3 simonb if (rv == 0) {
1809 1.3 simonb /*
1810 1.13 simonb * If there's a BPF listener, bounce a copy of this
1811 1.13 simonb * frame to it.
1812 1.3 simonb */
1813 1.37 joerg bpf_mtap(ifp, m_head);
1814 1.8 cgd if (!sc->sbm_pass3_dma) {
1815 1.8 cgd /*
1816 1.13 simonb * Don't free mbuf if we're not copying to new
1817 1.13 simonb * mbuf in sbdma_add_txbuffer. It will be
1818 1.13 simonb * freed in sbdma_tx_process.
1819 1.8 cgd */
1820 1.8 cgd m_freem(m_head);
1821 1.8 cgd }
1822 1.3 simonb } else {
1823 1.3 simonb IF_PREPEND(&ifp->if_snd, m_head);
1824 1.3 simonb ifp->if_flags |= IFF_OACTIVE;
1825 1.3 simonb break;
1826 1.3 simonb }
1827 1.3 simonb }
1828 1.3 simonb }
1829 1.3 simonb
1830 1.3 simonb /*
1831 1.3 simonb * SBMAC_SETMULTI(sc)
1832 1.3 simonb *
1833 1.3 simonb * Reprogram the multicast table into the hardware, given
1834 1.3 simonb * the list of multicasts associated with the interface
1835 1.3 simonb * structure.
1836 1.3 simonb *
1837 1.3 simonb * Input parameters:
1838 1.3 simonb * sc - softc
1839 1.3 simonb *
1840 1.3 simonb * Return value:
1841 1.3 simonb * nothing
1842 1.3 simonb */
1843 1.3 simonb
1844 1.3 simonb static void
1845 1.3 simonb sbmac_setmulti(struct sbmac_softc *sc)
1846 1.3 simonb {
1847 1.3 simonb struct ifnet *ifp;
1848 1.3 simonb uint64_t reg;
1849 1.3 simonb sbmac_port_t port;
1850 1.3 simonb int idx;
1851 1.3 simonb struct ether_multi *enm;
1852 1.3 simonb struct ether_multistep step;
1853 1.3 simonb
1854 1.3 simonb ifp = &sc->sc_ethercom.ec_if;
1855 1.1 simonb
1856 1.1 simonb /*
1857 1.3 simonb * Clear out entire multicast table. We do this by nuking
1858 1.3 simonb * the entire hash table and all the direct matches except
1859 1.3 simonb * the first one, which is used for our station address
1860 1.1 simonb */
1861 1.1 simonb
1862 1.3 simonb for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1863 1.13 simonb port = PKSEG1(sc->sbm_base +
1864 1.13 simonb R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1865 1.3 simonb SBMAC_WRITECSR(port, 0);
1866 1.3 simonb }
1867 1.1 simonb
1868 1.3 simonb for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1869 1.13 simonb port = PKSEG1(sc->sbm_base +
1870 1.13 simonb R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1871 1.3 simonb SBMAC_WRITECSR(port, 0);
1872 1.3 simonb }
1873 1.1 simonb
1874 1.1 simonb /*
1875 1.3 simonb * Clear the filter to say we don't want any multicasts.
1876 1.1 simonb */
1877 1.3 simonb
1878 1.1 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1879 1.3 simonb reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1880 1.1 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1881 1.3 simonb
1882 1.3 simonb if (ifp->if_flags & IFF_ALLMULTI) {
1883 1.3 simonb /*
1884 1.3 simonb * Enable ALL multicasts. Do this by inverting the
1885 1.3 simonb * multicast enable bit.
1886 1.3 simonb */
1887 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1888 1.3 simonb reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1889 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1890 1.3 simonb return;
1891 1.1 simonb }
1892 1.1 simonb
1893 1.3 simonb /*
1894 1.3 simonb * Progam new multicast entries. For now, only use the
1895 1.3 simonb * perfect filter. In the future we'll need to use the
1896 1.3 simonb * hash filter if the perfect filter overflows
1897 1.3 simonb */
1898 1.3 simonb
1899 1.3 simonb /*
1900 1.3 simonb * XXX only using perfect filter for now, need to use hash
1901 1.3 simonb * XXX if the table overflows
1902 1.3 simonb */
1903 1.3 simonb
1904 1.3 simonb idx = 1; /* skip station address */
1905 1.3 simonb ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1906 1.3 simonb while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1907 1.3 simonb reg = sbmac_addr2reg(enm->enm_addrlo);
1908 1.3 simonb port = PKSEG1(sc->sbm_base +
1909 1.3 simonb R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1910 1.3 simonb SBMAC_WRITECSR(port, reg);
1911 1.3 simonb idx++;
1912 1.3 simonb ETHER_NEXT_MULTI(step, enm);
1913 1.1 simonb }
1914 1.1 simonb
1915 1.3 simonb /*
1916 1.3 simonb * Enable the "accept multicast bits" if we programmed at least one
1917 1.3 simonb * multicast.
1918 1.3 simonb */
1919 1.1 simonb
1920 1.3 simonb if (idx > 1) {
1921 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1922 1.3 simonb reg |= M_MAC_MCAST_EN;
1923 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1924 1.1 simonb }
1925 1.1 simonb }
1926 1.1 simonb
1927 1.3 simonb /*
1928 1.3 simonb * SBMAC_ETHER_IOCTL(ifp, cmd, data)
1929 1.3 simonb *
1930 1.3 simonb * Generic IOCTL requests for this interface. The basic
1931 1.3 simonb * stuff is handled here for bringing the interface up,
1932 1.3 simonb * handling multicasts, etc.
1933 1.3 simonb *
1934 1.3 simonb * Input parameters:
1935 1.3 simonb * ifp - interface structure
1936 1.3 simonb * cmd - command code
1937 1.3 simonb * data - pointer to data
1938 1.3 simonb *
1939 1.3 simonb * Return value:
1940 1.3 simonb * return value (0 is success)
1941 1.3 simonb */
1942 1.1 simonb
1943 1.3 simonb static int
1944 1.22 christos sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1945 1.1 simonb {
1946 1.3 simonb struct ifaddr *ifa = (struct ifaddr *) data;
1947 1.3 simonb struct sbmac_softc *sc = ifp->if_softc;
1948 1.1 simonb
1949 1.3 simonb switch (cmd) {
1950 1.29 dyoung case SIOCINITIFADDR:
1951 1.3 simonb ifp->if_flags |= IFF_UP;
1952 1.1 simonb
1953 1.3 simonb switch (ifa->ifa_addr->sa_family) {
1954 1.1 simonb #ifdef INET
1955 1.1 simonb case AF_INET:
1956 1.3 simonb sbmac_init_and_start(sc);
1957 1.3 simonb arp_ifinit(ifp, ifa);
1958 1.3 simonb break;
1959 1.1 simonb #endif
1960 1.1 simonb #ifdef NS
1961 1.1 simonb case AF_NS:
1962 1.1 simonb {
1963 1.3 simonb struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1964 1.1 simonb
1965 1.3 simonb if (ns_nullhost(*ina))
1966 1.13 simonb ina->x_host =
1967 1.13 simonb *(union ns_host *)LLADDR(ifp->if_sadl);
1968 1.3 simonb else
1969 1.34 cegger memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
1970 1.3 simonb ifp->if_addrlen);
1971 1.3 simonb /* Set new address. */
1972 1.3 simonb sbmac_init_and_start(sc);
1973 1.3 simonb break;
1974 1.3 simonb }
1975 1.1 simonb #endif
1976 1.1 simonb default:
1977 1.3 simonb sbmac_init_and_start(sc);
1978 1.3 simonb break;
1979 1.1 simonb }
1980 1.3 simonb break;
1981 1.1 simonb
1982 1.1 simonb default:
1983 1.29 dyoung return ENOTTY;
1984 1.1 simonb }
1985 1.1 simonb
1986 1.3 simonb return (0);
1987 1.1 simonb }
1988 1.1 simonb
1989 1.3 simonb /*
1990 1.30 dyoung * SBMAC_IOCTL(ifp, cmd, data)
1991 1.3 simonb *
1992 1.3 simonb * Main IOCTL handler - dispatches to other IOCTLs for various
1993 1.3 simonb * types of requests.
1994 1.3 simonb *
1995 1.3 simonb * Input parameters:
1996 1.3 simonb * ifp - interface pointer
1997 1.30 dyoung * cmd - command code
1998 1.3 simonb * data - pointer to argument data
1999 1.3 simonb *
2000 1.3 simonb * Return value:
2001 1.3 simonb * 0 if ok
2002 1.3 simonb * else error code
2003 1.3 simonb */
2004 1.1 simonb
2005 1.3 simonb static int
2006 1.30 dyoung sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2007 1.1 simonb {
2008 1.3 simonb struct sbmac_softc *sc = ifp->if_softc;
2009 1.3 simonb struct ifreq *ifr = (struct ifreq *) data;
2010 1.3 simonb int s, error = 0;
2011 1.1 simonb
2012 1.3 simonb s = splnet();
2013 1.1 simonb
2014 1.30 dyoung switch (cmd) {
2015 1.29 dyoung case SIOCINITIFADDR:
2016 1.30 dyoung error = sbmac_ether_ioctl(ifp, cmd, data);
2017 1.3 simonb break;
2018 1.1 simonb case SIOCSIFMTU:
2019 1.28 dyoung if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
2020 1.3 simonb error = EINVAL;
2021 1.30 dyoung else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
2022 1.3 simonb /* XXX Program new MTU here */
2023 1.28 dyoung error = 0;
2024 1.3 simonb break;
2025 1.1 simonb case SIOCSIFFLAGS:
2026 1.29 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
2027 1.29 dyoung break;
2028 1.3 simonb if (ifp->if_flags & IFF_UP) {
2029 1.3 simonb /*
2030 1.3 simonb * If only the state of the PROMISC flag changed,
2031 1.3 simonb * just tweak the hardware registers.
2032 1.3 simonb */
2033 1.3 simonb if ((ifp->if_flags & IFF_RUNNING) &&
2034 1.3 simonb (ifp->if_flags & IFF_PROMISC)) {
2035 1.3 simonb /* turn on promiscuous mode */
2036 1.39 matt sbmac_promiscuous_mode(sc, true);
2037 1.3 simonb } else if (ifp->if_flags & IFF_RUNNING &&
2038 1.3 simonb !(ifp->if_flags & IFF_PROMISC)) {
2039 1.3 simonb /* turn off promiscuous mode */
2040 1.39 matt sbmac_promiscuous_mode(sc, false);
2041 1.3 simonb } else
2042 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_on);
2043 1.3 simonb } else {
2044 1.3 simonb if (ifp->if_flags & IFF_RUNNING)
2045 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_off);
2046 1.1 simonb }
2047 1.1 simonb
2048 1.3 simonb sc->sbm_if_flags = ifp->if_flags;
2049 1.3 simonb error = 0;
2050 1.3 simonb break;
2051 1.1 simonb
2052 1.1 simonb case SIOCADDMULTI:
2053 1.1 simonb case SIOCDELMULTI:
2054 1.27 dyoung case SIOCSIFMEDIA:
2055 1.27 dyoung case SIOCGIFMEDIA:
2056 1.30 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2057 1.3 simonb error = 0;
2058 1.27 dyoung if (ifp->if_flags & IFF_RUNNING)
2059 1.27 dyoung sbmac_setmulti(sc);
2060 1.1 simonb }
2061 1.3 simonb break;
2062 1.1 simonb default:
2063 1.30 dyoung error = ether_ioctl(ifp, cmd, data);
2064 1.3 simonb break;
2065 1.1 simonb }
2066 1.1 simonb
2067 1.3 simonb (void)splx(s);
2068 1.1 simonb
2069 1.3 simonb return(error);
2070 1.1 simonb }
2071 1.1 simonb
2072 1.3 simonb /*
2073 1.3 simonb * SBMAC_IFMEDIA_UPD(ifp)
2074 1.3 simonb *
2075 1.3 simonb * Configure an appropriate media type for this interface,
2076 1.3 simonb * given the data in the interface structure
2077 1.3 simonb *
2078 1.3 simonb * Input parameters:
2079 1.3 simonb * ifp - interface
2080 1.3 simonb *
2081 1.3 simonb * Return value:
2082 1.3 simonb * 0 if ok
2083 1.3 simonb * else error code
2084 1.3 simonb */
2085 1.1 simonb
2086 1.3 simonb /*
2087 1.3 simonb * SBMAC_IFMEDIA_STS(ifp, ifmr)
2088 1.3 simonb *
2089 1.3 simonb * Report current media status (used by ifconfig, for example)
2090 1.3 simonb *
2091 1.3 simonb * Input parameters:
2092 1.3 simonb * ifp - interface structure
2093 1.3 simonb * ifmr - media request structure
2094 1.3 simonb *
2095 1.3 simonb * Return value:
2096 1.3 simonb * nothing
2097 1.3 simonb */
2098 1.1 simonb
2099 1.3 simonb /*
2100 1.3 simonb * SBMAC_WATCHDOG(ifp)
2101 1.3 simonb *
2102 1.3 simonb * Called periodically to make sure we're still happy.
2103 1.3 simonb *
2104 1.3 simonb * Input parameters:
2105 1.3 simonb * ifp - interface structure
2106 1.3 simonb *
2107 1.3 simonb * Return value:
2108 1.3 simonb * nothing
2109 1.3 simonb */
2110 1.1 simonb
2111 1.3 simonb static void
2112 1.3 simonb sbmac_watchdog(struct ifnet *ifp)
2113 1.3 simonb {
2114 1.1 simonb
2115 1.3 simonb /* XXX do something */
2116 1.1 simonb }
2117 1.1 simonb
2118 1.1 simonb /*
2119 1.1 simonb * One second timer, used to tick MII.
2120 1.1 simonb */
2121 1.3 simonb static void
2122 1.3 simonb sbmac_tick(void *arg)
2123 1.1 simonb {
2124 1.3 simonb struct sbmac_softc *sc = arg;
2125 1.3 simonb int s;
2126 1.1 simonb
2127 1.3 simonb s = splnet();
2128 1.3 simonb mii_tick(&sc->sc_mii);
2129 1.3 simonb splx(s);
2130 1.1 simonb
2131 1.3 simonb callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2132 1.1 simonb }
2133 1.1 simonb
2134 1.1 simonb
2135 1.3 simonb /*
2136 1.3 simonb * SBMAC_MATCH(parent, match, aux)
2137 1.3 simonb *
2138 1.3 simonb * Part of the config process - see if this device matches the
2139 1.3 simonb * info about what we expect to find on the bus.
2140 1.3 simonb *
2141 1.3 simonb * Input parameters:
2142 1.3 simonb * parent - parent bus structure
2143 1.3 simonb * match -
2144 1.3 simonb * aux - bus-specific args
2145 1.3 simonb *
2146 1.3 simonb * Return value:
2147 1.3 simonb * 1 if we match
2148 1.3 simonb * 0 if we don't match
2149 1.3 simonb */
2150 1.1 simonb
2151 1.3 simonb static int
2152 1.38 matt sbmac_match(device_t parent, cfdata_t match, void *aux)
2153 1.1 simonb {
2154 1.39 matt struct sbobio_attach_args *sa = aux;
2155 1.3 simonb
2156 1.3 simonb /*
2157 1.3 simonb * Make sure it's a MAC
2158 1.3 simonb */
2159 1.39 matt if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2160 1.3 simonb return 0;
2161 1.1 simonb
2162 1.3 simonb /*
2163 1.3 simonb * Yup, it is.
2164 1.3 simonb */
2165 1.3 simonb
2166 1.3 simonb return 1;
2167 1.3 simonb }
2168 1.3 simonb
2169 1.3 simonb /*
2170 1.3 simonb * SBMAC_PARSE_XDIGIT(str)
2171 1.3 simonb *
2172 1.3 simonb * Parse a hex digit, returning its value
2173 1.3 simonb *
2174 1.3 simonb * Input parameters:
2175 1.3 simonb * str - character
2176 1.3 simonb *
2177 1.3 simonb * Return value:
2178 1.3 simonb * hex value, or -1 if invalid
2179 1.3 simonb */
2180 1.3 simonb
2181 1.3 simonb static int
2182 1.3 simonb sbmac_parse_xdigit(char str)
2183 1.3 simonb {
2184 1.3 simonb int digit;
2185 1.3 simonb
2186 1.3 simonb if ((str >= '0') && (str <= '9'))
2187 1.3 simonb digit = str - '0';
2188 1.3 simonb else if ((str >= 'a') && (str <= 'f'))
2189 1.3 simonb digit = str - 'a' + 10;
2190 1.3 simonb else if ((str >= 'A') && (str <= 'F'))
2191 1.3 simonb digit = str - 'A' + 10;
2192 1.3 simonb else
2193 1.3 simonb digit = -1;
2194 1.3 simonb
2195 1.3 simonb return digit;
2196 1.3 simonb }
2197 1.3 simonb
2198 1.3 simonb /*
2199 1.3 simonb * SBMAC_PARSE_HWADDR(str, hwaddr)
2200 1.3 simonb *
2201 1.3 simonb * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2202 1.3 simonb * Ethernet address.
2203 1.3 simonb *
2204 1.3 simonb * Input parameters:
2205 1.3 simonb * str - string
2206 1.3 simonb * hwaddr - pointer to hardware address
2207 1.3 simonb *
2208 1.3 simonb * Return value:
2209 1.3 simonb * 0 if ok, else -1
2210 1.3 simonb */
2211 1.3 simonb
2212 1.3 simonb static int
2213 1.20 jmc sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
2214 1.3 simonb {
2215 1.3 simonb int digit1, digit2;
2216 1.3 simonb int idx = 6;
2217 1.1 simonb
2218 1.3 simonb while (*str && (idx > 0)) {
2219 1.3 simonb digit1 = sbmac_parse_xdigit(*str);
2220 1.3 simonb if (digit1 < 0)
2221 1.3 simonb return -1;
2222 1.3 simonb str++;
2223 1.3 simonb if (!*str)
2224 1.3 simonb return -1;
2225 1.3 simonb
2226 1.3 simonb if ((*str == ':') || (*str == '-')) {
2227 1.3 simonb digit2 = digit1;
2228 1.3 simonb digit1 = 0;
2229 1.3 simonb } else {
2230 1.3 simonb digit2 = sbmac_parse_xdigit(*str);
2231 1.3 simonb if (digit2 < 0)
2232 1.3 simonb return -1;
2233 1.3 simonb str++;
2234 1.3 simonb }
2235 1.3 simonb
2236 1.3 simonb *hwaddr++ = (digit1 << 4) | digit2;
2237 1.3 simonb idx--;
2238 1.3 simonb
2239 1.3 simonb if (*str == '-')
2240 1.3 simonb str++;
2241 1.3 simonb if (*str == ':')
2242 1.3 simonb str++;
2243 1.3 simonb }
2244 1.1 simonb return 0;
2245 1.3 simonb }
2246 1.3 simonb
2247 1.3 simonb /*
2248 1.3 simonb * SBMAC_ATTACH(parent, self, aux)
2249 1.3 simonb *
2250 1.3 simonb * Attach routine - init hardware and hook ourselves into NetBSD.
2251 1.3 simonb *
2252 1.3 simonb * Input parameters:
2253 1.3 simonb * parent - parent bus device
2254 1.3 simonb * self - our softc
2255 1.3 simonb * aux - attach data
2256 1.3 simonb *
2257 1.3 simonb * Return value:
2258 1.3 simonb * nothing
2259 1.3 simonb */
2260 1.3 simonb
2261 1.3 simonb static void
2262 1.38 matt sbmac_attach(device_t parent, device_t self, void *aux)
2263 1.3 simonb {
2264 1.39 matt struct sbmac_softc * const sc = device_private(self);
2265 1.39 matt struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2266 1.39 matt struct sbobio_attach_args * const sa = aux;
2267 1.3 simonb u_char *eaddr;
2268 1.3 simonb static int unit = 0; /* XXX */
2269 1.3 simonb uint64_t ea_reg;
2270 1.3 simonb int idx;
2271 1.3 simonb
2272 1.38 matt sc->sc_dev = self;
2273 1.3 simonb
2274 1.3 simonb /* Determine controller base address */
2275 1.3 simonb
2276 1.40 matt sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset;
2277 1.3 simonb
2278 1.3 simonb eaddr = sc->sbm_hwaddr;
2279 1.3 simonb
2280 1.3 simonb /*
2281 1.3 simonb * Initialize context (get pointers to registers and stuff), then
2282 1.3 simonb * allocate the memory for the descriptor tables.
2283 1.3 simonb */
2284 1.3 simonb
2285 1.3 simonb sbmac_initctx(sc);
2286 1.3 simonb
2287 1.25 ad callout_init(&(sc->sc_tick_ch), 0);
2288 1.3 simonb
2289 1.3 simonb /*
2290 1.3 simonb * Read the ethernet address. The firwmare left this programmed
2291 1.3 simonb * for us in the ethernet address register for each mac.
2292 1.3 simonb */
2293 1.1 simonb
2294 1.3 simonb ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2295 1.3 simonb for (idx = 0; idx < 6; idx++) {
2296 1.3 simonb eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2297 1.3 simonb ea_reg >>= 8;
2298 1.1 simonb }
2299 1.1 simonb
2300 1.1 simonb #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2301 1.3 simonb if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2302 1.3 simonb eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2303 1.3 simonb sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2304 1.3 simonb eaddr[5] = unit;
2305 1.1 simonb }
2306 1.1 simonb
2307 1.1 simonb #ifdef SBMAC_ETH0_HWADDR
2308 1.3 simonb if (unit == 0)
2309 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2310 1.1 simonb #endif
2311 1.1 simonb #ifdef SBMAC_ETH1_HWADDR
2312 1.3 simonb if (unit == 1)
2313 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2314 1.1 simonb #endif
2315 1.1 simonb #ifdef SBMAC_ETH2_HWADDR
2316 1.3 simonb if (unit == 2)
2317 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2318 1.1 simonb #endif
2319 1.3 simonb unit++;
2320 1.3 simonb
2321 1.3 simonb /*
2322 1.3 simonb * Display Ethernet address (this is called during the config process
2323 1.3 simonb * so we need to finish off the config message that was being displayed)
2324 1.3 simonb */
2325 1.38 matt aprint_normal(": Ethernet%s\n",
2326 1.8 cgd sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2327 1.38 matt aprint_normal_dev(self, "Ethernet address: %s\n", ether_sprintf(eaddr));
2328 1.1 simonb
2329 1.3 simonb
2330 1.3 simonb /*
2331 1.3 simonb * Set up ifnet structure
2332 1.3 simonb */
2333 1.3 simonb
2334 1.3 simonb ifp->if_softc = sc;
2335 1.39 matt memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
2336 1.13 simonb ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2337 1.13 simonb IFF_NOTRAILERS;
2338 1.3 simonb ifp->if_ioctl = sbmac_ioctl;
2339 1.3 simonb ifp->if_start = sbmac_start;
2340 1.3 simonb ifp->if_watchdog = sbmac_watchdog;
2341 1.3 simonb ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2342 1.3 simonb
2343 1.3 simonb /*
2344 1.3 simonb * Set up ifmedia support.
2345 1.3 simonb */
2346 1.3 simonb
2347 1.3 simonb /*
2348 1.3 simonb * Initialize MII/media info.
2349 1.3 simonb */
2350 1.3 simonb sc->sc_mii.mii_ifp = ifp;
2351 1.3 simonb sc->sc_mii.mii_readreg = sbmac_mii_readreg;
2352 1.3 simonb sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2353 1.3 simonb sc->sc_mii.mii_statchg = sbmac_mii_statchg;
2354 1.27 dyoung sc->sc_ethercom.ec_mii = &sc->sc_mii;
2355 1.27 dyoung ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
2356 1.27 dyoung ether_mediastatus);
2357 1.38 matt mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2358 1.3 simonb MII_OFFSET_ANY, 0);
2359 1.3 simonb
2360 1.3 simonb if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2361 1.3 simonb ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2362 1.3 simonb ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2363 1.3 simonb } else {
2364 1.3 simonb ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2365 1.1 simonb }
2366 1.1 simonb
2367 1.1 simonb
2368 1.3 simonb /*
2369 1.3 simonb * map/route interrupt
2370 1.3 simonb */
2371 1.3 simonb
2372 1.39 matt sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET,
2373 1.3 simonb sbmac_intr, sc);
2374 1.3 simonb
2375 1.3 simonb /*
2376 1.3 simonb * Call MI attach routines.
2377 1.3 simonb */
2378 1.3 simonb if_attach(ifp);
2379 1.3 simonb ether_ifattach(ifp, eaddr);
2380 1.1 simonb }
2381