sbmac.c revision 1.65 1 1.65 thorpej /* $NetBSD: sbmac.c,v 1.65 2022/09/18 12:43:41 thorpej Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.19 cgd * Copyright 2000, 2001, 2004
5 1.1 simonb * Broadcom Corporation. All rights reserved.
6 1.1 simonb *
7 1.1 simonb * This software is furnished under license and may be used and copied only
8 1.1 simonb * in accordance with the following terms and conditions. Subject to these
9 1.1 simonb * conditions, you may download, copy, install, use, modify and distribute
10 1.1 simonb * modified or unmodified copies of this software in source and/or binary
11 1.1 simonb * form. No title or ownership is transferred hereby.
12 1.1 simonb *
13 1.1 simonb * 1) Any source code used, modified or distributed must reproduce and
14 1.1 simonb * retain this copyright notice and list of conditions as they appear in
15 1.1 simonb * the source file.
16 1.1 simonb *
17 1.1 simonb * 2) No right is granted to use any trade name, trademark, or logo of
18 1.9 cgd * Broadcom Corporation. The "Broadcom Corporation" name may not be
19 1.9 cgd * used to endorse or promote products derived from this software
20 1.9 cgd * without the prior written permission of Broadcom Corporation.
21 1.1 simonb *
22 1.1 simonb * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23 1.1 simonb * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24 1.1 simonb * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25 1.1 simonb * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26 1.1 simonb * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27 1.1 simonb * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 1.1 simonb * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 1.1 simonb * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 1.1 simonb * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 1.1 simonb */
34 1.10 lukem
35 1.10 lukem #include <sys/cdefs.h>
36 1.65 thorpej __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.65 2022/09/18 12:43:41 thorpej Exp $");
37 1.1 simonb
38 1.1 simonb #include "opt_inet.h"
39 1.1 simonb #include "opt_ns.h"
40 1.1 simonb
41 1.1 simonb #include <sys/param.h>
42 1.1 simonb #include <sys/systm.h>
43 1.1 simonb #include <sys/sockio.h>
44 1.1 simonb #include <sys/mbuf.h>
45 1.56 simonb #include <sys/kmem.h>
46 1.1 simonb #include <sys/kernel.h>
47 1.1 simonb #include <sys/socket.h>
48 1.1 simonb #include <sys/queue.h>
49 1.1 simonb #include <sys/device.h>
50 1.1 simonb
51 1.1 simonb #include <net/if.h>
52 1.1 simonb #include <net/if_arp.h>
53 1.1 simonb #include <net/if_ether.h>
54 1.1 simonb #include <net/if_dl.h>
55 1.1 simonb #include <net/if_media.h>
56 1.1 simonb
57 1.1 simonb #include <net/bpf.h>
58 1.1 simonb
59 1.1 simonb #ifdef INET
60 1.1 simonb #include <netinet/in.h>
61 1.1 simonb #include <netinet/if_inarp.h>
62 1.1 simonb #endif
63 1.1 simonb
64 1.41 matt #include <mips/locore.h>
65 1.1 simonb
66 1.1 simonb #include "sbobiovar.h"
67 1.1 simonb
68 1.1 simonb #include <dev/mii/mii.h>
69 1.1 simonb #include <dev/mii/miivar.h>
70 1.1 simonb #include <dev/mii/mii_bitbang.h>
71 1.1 simonb
72 1.1 simonb #include <mips/sibyte/include/sb1250_defs.h>
73 1.1 simonb #include <mips/sibyte/include/sb1250_regs.h>
74 1.1 simonb #include <mips/sibyte/include/sb1250_mac.h>
75 1.1 simonb #include <mips/sibyte/include/sb1250_dma.h>
76 1.8 cgd #include <mips/sibyte/include/sb1250_scd.h>
77 1.1 simonb
78 1.49 mrg #include <evbmips/sbmips/systemsw.h>
79 1.49 mrg
80 1.3 simonb /* Simple types */
81 1.1 simonb
82 1.1 simonb typedef u_long sbmac_port_t;
83 1.1 simonb typedef uint64_t sbmac_physaddr_t;
84 1.1 simonb typedef uint64_t sbmac_enetaddr_t;
85 1.1 simonb
86 1.1 simonb typedef enum { sbmac_speed_auto, sbmac_speed_10,
87 1.1 simonb sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
88 1.1 simonb
89 1.1 simonb typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
90 1.1 simonb sbmac_duplex_full } sbmac_duplex_t;
91 1.1 simonb
92 1.1 simonb typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
93 1.1 simonb sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
94 1.1 simonb
95 1.1 simonb typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
96 1.1 simonb sbmac_state_broken } sbmac_state_t;
97 1.1 simonb
98 1.1 simonb
99 1.3 simonb /* Macros */
100 1.1 simonb
101 1.15 simonb #define SBMAC_EVENT_COUNTERS /* Include counters for various events */
102 1.15 simonb
103 1.19 cgd #define SBDMA_NEXTBUF(d, f) ((f + 1) & (d)->sbdma_dscr_mask)
104 1.1 simonb
105 1.56 simonb #define CACHELINESIZE 32
106 1.56 simonb #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
107 1.56 simonb #define KVTOPHYS(x) kvtophys((vaddr_t)(x))
108 1.1 simonb
109 1.1 simonb #ifdef SBMACDEBUG
110 1.1 simonb #define dprintf(x) printf x
111 1.1 simonb #else
112 1.1 simonb #define dprintf(x)
113 1.1 simonb #endif
114 1.1 simonb
115 1.46 christos #define SBMAC_READCSR(t) mips3_ld((register_t)(t))
116 1.46 christos #define SBMAC_WRITECSR(t, v) mips3_sd((register_t)(t), (v))
117 1.1 simonb
118 1.1 simonb #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
119 1.1 simonb
120 1.19 cgd /* These are limited to fit within one virtual page, and must be 2**N. */
121 1.17 cgd #define SBMAC_MAX_TXDESCR 256 /* should be 1024 */
122 1.17 cgd #define SBMAC_MAX_RXDESCR 256 /* should be 512 */
123 1.1 simonb
124 1.3 simonb /* DMA Descriptor structure */
125 1.1 simonb
126 1.1 simonb typedef struct sbdmadscr_s {
127 1.1 simonb uint64_t dscr_a;
128 1.1 simonb uint64_t dscr_b;
129 1.1 simonb } sbdmadscr_t;
130 1.1 simonb
131 1.3 simonb
132 1.3 simonb /* DMA Controller structure */
133 1.1 simonb
134 1.1 simonb typedef struct sbmacdma_s {
135 1.1 simonb
136 1.1 simonb /*
137 1.1 simonb * This stuff is used to identify the channel and the registers
138 1.1 simonb * associated with it.
139 1.1 simonb */
140 1.1 simonb
141 1.1 simonb struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
142 1.1 simonb int sbdma_channel; /* channel number */
143 1.1 simonb int sbdma_txdir; /* direction (1=transmit) */
144 1.1 simonb int sbdma_maxdescr; /* total # of descriptors in ring */
145 1.1 simonb sbmac_port_t sbdma_config0; /* DMA config register 0 */
146 1.1 simonb sbmac_port_t sbdma_config1; /* DMA config register 1 */
147 1.1 simonb sbmac_port_t sbdma_dscrbase; /* Descriptor base address */
148 1.59 msaitoh sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */
149 1.1 simonb sbmac_port_t sbdma_curdscr; /* current descriptor address */
150 1.1 simonb
151 1.1 simonb /*
152 1.1 simonb * This stuff is for maintenance of the ring
153 1.1 simonb */
154 1.1 simonb sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
155 1.1 simonb struct mbuf **sbdma_ctxtable; /* context table, one per descr */
156 1.19 cgd unsigned int sbdma_dscr_mask; /* sbdma_maxdescr - 1 */
157 1.1 simonb paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
158 1.19 cgd unsigned int sbdma_add_index; /* next dscr for sw to add */
159 1.19 cgd unsigned int sbdma_rem_index; /* next dscr for sw to remove */
160 1.1 simonb } sbmacdma_t;
161 1.1 simonb
162 1.1 simonb
163 1.3 simonb /* Ethernet softc structure */
164 1.1 simonb
165 1.1 simonb struct sbmac_softc {
166 1.1 simonb
167 1.1 simonb /*
168 1.1 simonb * NetBSD-specific things
169 1.1 simonb */
170 1.1 simonb struct ethercom sc_ethercom; /* Ethernet common part */
171 1.1 simonb struct mii_data sc_mii;
172 1.1 simonb struct callout sc_tick_ch;
173 1.1 simonb
174 1.38 matt device_t sc_dev; /* device */
175 1.61 msaitoh u_short sbm_if_flags;
176 1.1 simonb void *sbm_intrhand;
177 1.1 simonb
178 1.1 simonb /*
179 1.1 simonb * Controller-specific things
180 1.1 simonb */
181 1.1 simonb
182 1.1 simonb sbmac_port_t sbm_base; /* MAC's base address */
183 1.1 simonb sbmac_state_t sbm_state; /* current state */
184 1.1 simonb
185 1.1 simonb sbmac_port_t sbm_macenable; /* MAC Enable Register */
186 1.1 simonb sbmac_port_t sbm_maccfg; /* MAC Configuration Register */
187 1.1 simonb sbmac_port_t sbm_fifocfg; /* FIFO configuration register */
188 1.1 simonb sbmac_port_t sbm_framecfg; /* Frame configuration register */
189 1.1 simonb sbmac_port_t sbm_rxfilter; /* receive filter register */
190 1.1 simonb sbmac_port_t sbm_isr; /* Interrupt status register */
191 1.1 simonb sbmac_port_t sbm_imr; /* Interrupt mask register */
192 1.1 simonb
193 1.1 simonb sbmac_speed_t sbm_speed; /* current speed */
194 1.1 simonb sbmac_duplex_t sbm_duplex; /* current duplex */
195 1.1 simonb sbmac_fc_t sbm_fc; /* current flow control setting */
196 1.1 simonb int sbm_rxflags; /* received packet flags */
197 1.1 simonb
198 1.1 simonb u_char sbm_hwaddr[ETHER_ADDR_LEN];
199 1.1 simonb
200 1.1 simonb sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
201 1.1 simonb sbmacdma_t sbm_rxdma;
202 1.8 cgd
203 1.8 cgd int sbm_pass3_dma; /* chip has pass3 SOC DMA features */
204 1.15 simonb
205 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
206 1.15 simonb struct evcnt sbm_ev_rxintr; /* Rx interrupts */
207 1.15 simonb struct evcnt sbm_ev_txintr; /* Tx interrupts */
208 1.15 simonb struct evcnt sbm_ev_txdrop; /* Tx dropped due to no mbuf alloc failed */
209 1.15 simonb struct evcnt sbm_ev_txstall; /* Tx stalled due to no descriptors free */
210 1.15 simonb
211 1.15 simonb struct evcnt sbm_ev_txsplit; /* pass3 Tx split mbuf */
212 1.15 simonb struct evcnt sbm_ev_txkeep; /* pass3 Tx didn't split mbuf */
213 1.15 simonb #endif
214 1.1 simonb };
215 1.1 simonb
216 1.1 simonb
217 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
218 1.15 simonb #define SBMAC_EVCNT_INCR(ev) (ev).ev_count++
219 1.15 simonb #else
220 1.15 simonb #define SBMAC_EVCNT_INCR(ev) do { /* nothing */ } while (0)
221 1.15 simonb #endif
222 1.15 simonb
223 1.3 simonb /* Externs */
224 1.1 simonb
225 1.1 simonb extern paddr_t kvtophys(vaddr_t);
226 1.1 simonb
227 1.3 simonb /* Prototypes */
228 1.1 simonb
229 1.39 matt static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int);
230 1.39 matt static void sbdma_channel_start(sbmacdma_t *);
231 1.39 matt static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *);
232 1.39 matt static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *);
233 1.39 matt static void sbdma_emptyring(sbmacdma_t *);
234 1.39 matt static void sbdma_fillring(sbmacdma_t *);
235 1.39 matt static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *);
236 1.39 matt static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *);
237 1.39 matt static void sbmac_initctx(struct sbmac_softc *);
238 1.39 matt static void sbmac_channel_start(struct sbmac_softc *);
239 1.39 matt static void sbmac_channel_stop(struct sbmac_softc *);
240 1.1 simonb static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
241 1.1 simonb sbmac_state_t);
242 1.39 matt static void sbmac_promiscuous_mode(struct sbmac_softc *, bool);
243 1.39 matt static void sbmac_init_and_start(struct sbmac_softc *);
244 1.39 matt static uint64_t sbmac_addr2reg(u_char *);
245 1.39 matt static void sbmac_intr(void *, uint32_t, vaddr_t);
246 1.39 matt static void sbmac_start(struct ifnet *);
247 1.39 matt static void sbmac_setmulti(struct sbmac_softc *);
248 1.39 matt static int sbmac_ether_ioctl(struct ifnet *, u_long, void *);
249 1.30 dyoung static int sbmac_ioctl(struct ifnet *, u_long, void *);
250 1.39 matt static void sbmac_watchdog(struct ifnet *);
251 1.39 matt static int sbmac_match(device_t, cfdata_t, void *);
252 1.39 matt static void sbmac_attach(device_t, device_t, void *);
253 1.39 matt static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t);
254 1.39 matt static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t);
255 1.39 matt static void sbmac_tick(void *);
256 1.1 simonb
257 1.1 simonb
258 1.3 simonb /* Globals */
259 1.1 simonb
260 1.38 matt CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc),
261 1.6 thorpej sbmac_match, sbmac_attach, NULL, NULL);
262 1.1 simonb
263 1.38 matt static uint32_t sbmac_mii_bitbang_read(device_t self);
264 1.38 matt static void sbmac_mii_bitbang_write(device_t self, uint32_t val);
265 1.1 simonb
266 1.1 simonb static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
267 1.1 simonb sbmac_mii_bitbang_read,
268 1.1 simonb sbmac_mii_bitbang_write,
269 1.1 simonb {
270 1.1 simonb (uint32_t)M_MAC_MDIO_OUT, /* MII_BIT_MDO */
271 1.1 simonb (uint32_t)M_MAC_MDIO_IN, /* MII_BIT_MDI */
272 1.1 simonb (uint32_t)M_MAC_MDC, /* MII_BIT_MDC */
273 1.1 simonb 0, /* MII_BIT_DIR_HOST_PHY */
274 1.1 simonb (uint32_t)M_MAC_MDIO_DIR /* MII_BIT_DIR_PHY_HOST */
275 1.1 simonb }
276 1.1 simonb };
277 1.1 simonb
278 1.3 simonb static uint32_t
279 1.38 matt sbmac_mii_bitbang_read(device_t self)
280 1.1 simonb {
281 1.38 matt struct sbmac_softc *sc = device_private(self);
282 1.1 simonb sbmac_port_t reg;
283 1.1 simonb
284 1.1 simonb reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
285 1.1 simonb return (uint32_t) SBMAC_READCSR(reg);
286 1.1 simonb }
287 1.1 simonb
288 1.3 simonb static void
289 1.38 matt sbmac_mii_bitbang_write(device_t self, uint32_t val)
290 1.1 simonb {
291 1.38 matt struct sbmac_softc *sc = device_private(self);
292 1.1 simonb sbmac_port_t reg;
293 1.1 simonb
294 1.1 simonb reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
295 1.1 simonb
296 1.1 simonb SBMAC_WRITECSR(reg, (val &
297 1.58 msaitoh (M_MAC_MDC | M_MAC_MDIO_DIR | M_MAC_MDIO_OUT | M_MAC_MDIO_IN)));
298 1.1 simonb }
299 1.1 simonb
300 1.1 simonb /*
301 1.1 simonb * Read an PHY register through the MII.
302 1.1 simonb */
303 1.1 simonb static int
304 1.52 msaitoh sbmac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
305 1.1 simonb {
306 1.1 simonb
307 1.52 msaitoh return mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg,
308 1.52 msaitoh val);
309 1.1 simonb }
310 1.1 simonb
311 1.1 simonb /*
312 1.1 simonb * Write to a PHY register through the MII.
313 1.1 simonb */
314 1.53 msaitoh static int
315 1.52 msaitoh sbmac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
316 1.1 simonb {
317 1.1 simonb
318 1.52 msaitoh return mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg,
319 1.52 msaitoh val);
320 1.1 simonb }
321 1.1 simonb
322 1.1 simonb static void
323 1.42 matt sbmac_mii_statchg(struct ifnet *ifp)
324 1.1 simonb {
325 1.42 matt struct sbmac_softc *sc = ifp->if_softc;
326 1.1 simonb sbmac_state_t oldstate;
327 1.1 simonb
328 1.1 simonb /* Stop the MAC in preparation for changing all of the parameters. */
329 1.1 simonb oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
330 1.1 simonb
331 1.1 simonb switch (sc->sc_ethercom.ec_if.if_baudrate) {
332 1.1 simonb default: /* if autonegotiation fails, assume 10Mbit */
333 1.1 simonb case IF_Mbps(10):
334 1.1 simonb sbmac_set_speed(sc, sbmac_speed_10);
335 1.1 simonb break;
336 1.1 simonb
337 1.1 simonb case IF_Mbps(100):
338 1.1 simonb sbmac_set_speed(sc, sbmac_speed_100);
339 1.1 simonb break;
340 1.1 simonb
341 1.1 simonb case IF_Mbps(1000):
342 1.1 simonb sbmac_set_speed(sc, sbmac_speed_1000);
343 1.1 simonb break;
344 1.1 simonb }
345 1.1 simonb
346 1.1 simonb if (sc->sc_mii.mii_media_active & IFM_FDX) {
347 1.1 simonb /* Configure for full-duplex */
348 1.1 simonb /* XXX: is flow control right for 10, 100? */
349 1.1 simonb sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
350 1.1 simonb } else {
351 1.1 simonb /* Configure for half-duplex */
352 1.1 simonb /* XXX: is flow control right? */
353 1.1 simonb sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
354 1.1 simonb }
355 1.1 simonb
356 1.1 simonb /* And put it back into its former state. */
357 1.1 simonb sbmac_set_channel_state(sc, oldstate);
358 1.1 simonb }
359 1.1 simonb
360 1.3 simonb /*
361 1.38 matt * SBDMA_INITCTX(d, sc, chan, txrx, maxdescr)
362 1.3 simonb *
363 1.3 simonb * Initialize a DMA channel context. Since there are potentially
364 1.3 simonb * eight DMA channels per MAC, it's nice to do this in a standard
365 1.3 simonb * way.
366 1.3 simonb *
367 1.3 simonb * Input parameters:
368 1.3 simonb * d - sbmacdma_t structure (DMA channel context)
369 1.39 matt * sc - sbmac_softc structure (pointer to a MAC)
370 1.3 simonb * chan - channel number (0..1 right now)
371 1.3 simonb * txrx - Identifies DMA_TX or DMA_RX for channel direction
372 1.3 simonb * maxdescr - number of descriptors
373 1.3 simonb *
374 1.3 simonb * Return value:
375 1.3 simonb * nothing
376 1.3 simonb */
377 1.1 simonb
378 1.1 simonb static void
379 1.38 matt sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx,
380 1.1 simonb int maxdescr)
381 1.1 simonb {
382 1.56 simonb uintptr_t ptr;
383 1.56 simonb
384 1.1 simonb /*
385 1.1 simonb * Save away interesting stuff in the structure
386 1.1 simonb */
387 1.1 simonb
388 1.38 matt d->sbdma_eth = sc;
389 1.3 simonb d->sbdma_channel = chan;
390 1.3 simonb d->sbdma_txdir = txrx;
391 1.1 simonb
392 1.1 simonb /*
393 1.1 simonb * initialize register pointers
394 1.1 simonb */
395 1.1 simonb
396 1.38 matt d->sbdma_config0 = PKSEG1(sc->sbm_base +
397 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
398 1.38 matt d->sbdma_config1 = PKSEG1(sc->sbm_base +
399 1.7 cgd R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
400 1.38 matt d->sbdma_dscrbase = PKSEG1(sc->sbm_base +
401 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
402 1.38 matt d->sbdma_dscrcnt = PKSEG1(sc->sbm_base +
403 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
404 1.38 matt d->sbdma_curdscr = PKSEG1(sc->sbm_base +
405 1.1 simonb R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
406 1.1 simonb
407 1.1 simonb /*
408 1.56 simonb * Allocate memory for the ring. This must be aligned to a
409 1.56 simonb * 32-byte cache line boundary on pass1 or pass2 silicon.
410 1.1 simonb */
411 1.1 simonb
412 1.1 simonb d->sbdma_maxdescr = maxdescr;
413 1.19 cgd d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
414 1.56 simonb ptr = (uintptr_t)kmem_zalloc(d->sbdma_maxdescr * sizeof(sbdmadscr_t) +
415 1.56 simonb CACHELINESIZE - 1, KM_SLEEP);
416 1.56 simonb d->sbdma_dscrtable = (sbdmadscr_t *)roundup2(ptr, CACHELINESIZE);
417 1.1 simonb
418 1.1 simonb d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
419 1.1 simonb
420 1.1 simonb /*
421 1.1 simonb * And context table
422 1.1 simonb */
423 1.1 simonb
424 1.1 simonb d->sbdma_ctxtable = (struct mbuf **)
425 1.56 simonb kmem_zalloc(d->sbdma_maxdescr * sizeof(struct mbuf *), KM_SLEEP);
426 1.1 simonb }
427 1.1 simonb
428 1.3 simonb /*
429 1.3 simonb * SBDMA_CHANNEL_START(d)
430 1.3 simonb *
431 1.3 simonb * Initialize the hardware registers for a DMA channel.
432 1.3 simonb *
433 1.3 simonb * Input parameters:
434 1.3 simonb * d - DMA channel to init (context must be previously init'd
435 1.3 simonb *
436 1.3 simonb * Return value:
437 1.3 simonb * nothing
438 1.3 simonb */
439 1.1 simonb
440 1.1 simonb static void
441 1.1 simonb sbdma_channel_start(sbmacdma_t *d)
442 1.1 simonb {
443 1.1 simonb /*
444 1.1 simonb * Turn on the DMA channel
445 1.1 simonb */
446 1.1 simonb
447 1.1 simonb SBMAC_WRITECSR(d->sbdma_config1, 0);
448 1.1 simonb
449 1.1 simonb SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
450 1.1 simonb
451 1.1 simonb SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
452 1.1 simonb
453 1.1 simonb /*
454 1.1 simonb * Initialize ring pointers
455 1.1 simonb */
456 1.1 simonb
457 1.19 cgd d->sbdma_add_index = 0;
458 1.19 cgd d->sbdma_rem_index = 0;
459 1.1 simonb }
460 1.1 simonb
461 1.3 simonb /*
462 1.3 simonb * SBDMA_ADD_RCVBUFFER(d, m)
463 1.3 simonb *
464 1.3 simonb * Add a buffer to the specified DMA channel. For receive channels,
465 1.3 simonb * this queues a buffer for inbound packets.
466 1.3 simonb *
467 1.3 simonb * Input parameters:
468 1.3 simonb * d - DMA channel descriptor
469 1.3 simonb * m - mbuf to add, or NULL if we should allocate one.
470 1.3 simonb *
471 1.3 simonb * Return value:
472 1.3 simonb * 0 if buffer could not be added (ring is full)
473 1.3 simonb * 1 if buffer added successfully
474 1.3 simonb */
475 1.1 simonb
476 1.1 simonb static int
477 1.1 simonb sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
478 1.1 simonb {
479 1.19 cgd unsigned int dsc, nextdsc;
480 1.1 simonb struct mbuf *m_new = NULL;
481 1.1 simonb
482 1.1 simonb /* get pointer to our current place in the ring */
483 1.1 simonb
484 1.19 cgd dsc = d->sbdma_add_index;
485 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
486 1.1 simonb
487 1.1 simonb /*
488 1.1 simonb * figure out if the ring is full - if the next descriptor
489 1.1 simonb * is the same as the one that we're going to remove from
490 1.1 simonb * the ring, the ring is full
491 1.1 simonb */
492 1.1 simonb
493 1.19 cgd if (nextdsc == d->sbdma_rem_index)
494 1.1 simonb return ENOSPC;
495 1.1 simonb
496 1.1 simonb /*
497 1.1 simonb * Allocate an mbuf if we don't already have one.
498 1.1 simonb * If we do have an mbuf, reset it so that it's empty.
499 1.1 simonb */
500 1.1 simonb
501 1.1 simonb if (m == NULL) {
502 1.1 simonb MGETHDR(m_new, M_DONTWAIT, MT_DATA);
503 1.1 simonb if (m_new == NULL) {
504 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev,
505 1.38 matt "mbuf allocation failed\n");
506 1.1 simonb return ENOBUFS;
507 1.1 simonb }
508 1.1 simonb
509 1.1 simonb MCLGET(m_new, M_DONTWAIT);
510 1.1 simonb if (!(m_new->m_flags & M_EXT)) {
511 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev,
512 1.38 matt "mbuf cluster allocation failed\n");
513 1.1 simonb m_freem(m_new);
514 1.1 simonb return ENOBUFS;
515 1.1 simonb }
516 1.1 simonb
517 1.1 simonb m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
518 1.1 simonb m_adj(m_new, ETHER_ALIGN);
519 1.1 simonb } else {
520 1.1 simonb m_new = m;
521 1.1 simonb m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
522 1.1 simonb m_new->m_data = m_new->m_ext.ext_buf;
523 1.1 simonb m_adj(m_new, ETHER_ALIGN);
524 1.1 simonb }
525 1.1 simonb
526 1.1 simonb /*
527 1.1 simonb * fill in the descriptor
528 1.1 simonb */
529 1.1 simonb
530 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
531 1.1 simonb V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
532 1.1 simonb M_DMA_DSCRA_INTERRUPT;
533 1.1 simonb
534 1.1 simonb /* receiving: no options */
535 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = 0;
536 1.1 simonb
537 1.1 simonb /*
538 1.1 simonb * fill in the context
539 1.1 simonb */
540 1.1 simonb
541 1.19 cgd d->sbdma_ctxtable[dsc] = m_new;
542 1.1 simonb
543 1.1 simonb /*
544 1.1 simonb * point at next packet
545 1.1 simonb */
546 1.1 simonb
547 1.19 cgd d->sbdma_add_index = nextdsc;
548 1.1 simonb
549 1.1 simonb /*
550 1.1 simonb * Give the buffer to the DMA engine.
551 1.1 simonb */
552 1.1 simonb
553 1.1 simonb SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
554 1.1 simonb
555 1.1 simonb return 0; /* we did it */
556 1.1 simonb }
557 1.1 simonb
558 1.3 simonb /*
559 1.3 simonb * SBDMA_ADD_TXBUFFER(d, m)
560 1.3 simonb *
561 1.3 simonb * Add a transmit buffer to the specified DMA channel, causing a
562 1.3 simonb * transmit to start.
563 1.3 simonb *
564 1.3 simonb * Input parameters:
565 1.3 simonb * d - DMA channel descriptor
566 1.3 simonb * m - mbuf to add
567 1.3 simonb *
568 1.3 simonb * Return value:
569 1.3 simonb * 0 transmit queued successfully
570 1.3 simonb * otherwise error code
571 1.3 simonb */
572 1.1 simonb
573 1.1 simonb static int
574 1.1 simonb sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
575 1.1 simonb {
576 1.59 msaitoh unsigned int dsc, nextdsc, prevdsc, origdesc;
577 1.1 simonb int length;
578 1.8 cgd int num_mbufs = 0;
579 1.8 cgd struct sbmac_softc *sc = d->sbdma_eth;
580 1.1 simonb
581 1.1 simonb /* get pointer to our current place in the ring */
582 1.1 simonb
583 1.19 cgd dsc = d->sbdma_add_index;
584 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
585 1.1 simonb
586 1.1 simonb /*
587 1.1 simonb * figure out if the ring is full - if the next descriptor
588 1.1 simonb * is the same as the one that we're going to remove from
589 1.1 simonb * the ring, the ring is full
590 1.1 simonb */
591 1.1 simonb
592 1.19 cgd if (nextdsc == d->sbdma_rem_index) {
593 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
594 1.1 simonb return ENOSPC;
595 1.15 simonb }
596 1.1 simonb
597 1.1 simonb /*
598 1.8 cgd * PASS3 parts do not have buffer alignment restriction.
599 1.8 cgd * No need to copy/coalesce to new mbuf. Also has different
600 1.8 cgd * descriptor format
601 1.1 simonb */
602 1.8 cgd if (sc->sbm_pass3_dma) {
603 1.8 cgd struct mbuf *m_temp = NULL;
604 1.8 cgd
605 1.8 cgd /*
606 1.8 cgd * Loop thru this mbuf record.
607 1.8 cgd * The head mbuf will have SOP set.
608 1.8 cgd */
609 1.58 msaitoh d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m, void *)) |
610 1.8 cgd M_DMA_ETHTX_SOP;
611 1.8 cgd
612 1.8 cgd /*
613 1.8 cgd * transmitting: set outbound options,buffer A size(+ low 5
614 1.8 cgd * bits of start addr),and packet length.
615 1.8 cgd */
616 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b =
617 1.8 cgd V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
618 1.15 simonb V_DMA_DSCRB_A_SIZE((m->m_len +
619 1.58 msaitoh (mtod(m, uintptr_t) & 0x0000001F))) |
620 1.16 cgd V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
621 1.16 cgd V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
622 1.8 cgd
623 1.19 cgd d->sbdma_add_index = nextdsc;
624 1.8 cgd origdesc = prevdsc = dsc;
625 1.19 cgd dsc = d->sbdma_add_index;
626 1.8 cgd num_mbufs++;
627 1.8 cgd
628 1.8 cgd /* Start with first non-head mbuf */
629 1.8 cgd for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
630 1.15 simonb int len, next_len;
631 1.15 simonb uint64_t addr;
632 1.8 cgd
633 1.8 cgd if (m_temp->m_len == 0)
634 1.8 cgd continue; /* Skip 0-length mbufs */
635 1.1 simonb
636 1.15 simonb len = m_temp->m_len;
637 1.22 christos addr = KVTOPHYS(mtod(m_temp, void *));
638 1.15 simonb
639 1.15 simonb /*
640 1.15 simonb * Check to see if the mbuf spans a page boundary. If
641 1.15 simonb * it does, and the physical pages behind the virtual
642 1.15 simonb * pages are not contiguous, split it so that each
643 1.43 snj * virtual page uses its own Tx descriptor.
644 1.15 simonb */
645 1.15 simonb if (trunc_page(addr) != trunc_page(addr + len - 1)) {
646 1.15 simonb next_len = (addr + len) - trunc_page(addr + len);
647 1.15 simonb
648 1.15 simonb len -= next_len;
649 1.15 simonb
650 1.15 simonb if (addr + len ==
651 1.23 simonb KVTOPHYS(mtod(m_temp, char *) + len)) {
652 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
653 1.15 simonb len += next_len;
654 1.15 simonb next_len = 0;
655 1.15 simonb } else {
656 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
657 1.15 simonb }
658 1.15 simonb } else {
659 1.15 simonb next_len = 0;
660 1.15 simonb }
661 1.15 simonb
662 1.15 simonb again:
663 1.8 cgd /*
664 1.8 cgd * fill in the descriptor
665 1.8 cgd */
666 1.19 cgd d->sbdma_dscrtable[dsc].dscr_a = addr;
667 1.8 cgd
668 1.13 simonb /*
669 1.13 simonb * transmitting: set outbound options,buffer A
670 1.13 simonb * size(+ low 5 bits of start addr)
671 1.13 simonb */
672 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
673 1.15 simonb V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
674 1.8 cgd
675 1.19 cgd d->sbdma_ctxtable[dsc] = NULL;
676 1.8 cgd
677 1.8 cgd /*
678 1.8 cgd * point at next descriptor
679 1.8 cgd */
680 1.19 cgd nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
681 1.19 cgd if (nextdsc == d->sbdma_rem_index) {
682 1.19 cgd d->sbdma_add_index = origdesc;
683 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
684 1.8 cgd return ENOSPC;
685 1.8 cgd }
686 1.19 cgd d->sbdma_add_index = nextdsc;
687 1.8 cgd
688 1.8 cgd prevdsc = dsc;
689 1.19 cgd dsc = d->sbdma_add_index;
690 1.8 cgd num_mbufs++;
691 1.15 simonb
692 1.15 simonb if (next_len != 0) {
693 1.23 simonb addr = KVTOPHYS(mtod(m_temp, char *) + len);
694 1.15 simonb len = next_len;
695 1.15 simonb
696 1.15 simonb next_len = 0;
697 1.15 simonb goto again;
698 1.15 simonb }
699 1.15 simonb
700 1.8 cgd }
701 1.16 cgd /* Set head mbuf to last context index */
702 1.19 cgd d->sbdma_ctxtable[prevdsc] = m;
703 1.16 cgd
704 1.16 cgd /* Interrupt on last dscr of packet. */
705 1.59 msaitoh d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
706 1.8 cgd } else {
707 1.8 cgd struct mbuf *m_new = NULL;
708 1.8 cgd /*
709 1.8 cgd * [BEGIN XXX]
710 1.13 simonb * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
711 1.13 simonb * assume it will fit). This is a temporary hack to get us
712 1.13 simonb * going.
713 1.8 cgd */
714 1.1 simonb
715 1.58 msaitoh MGETHDR(m_new, M_DONTWAIT, MT_DATA);
716 1.8 cgd if (m_new == NULL) {
717 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev,
718 1.38 matt "mbuf allocation failed\n");
719 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
720 1.8 cgd return ENOBUFS;
721 1.8 cgd }
722 1.1 simonb
723 1.58 msaitoh MCLGET(m_new, M_DONTWAIT);
724 1.8 cgd if (!(m_new->m_flags & M_EXT)) {
725 1.38 matt aprint_error_dev(d->sbdma_eth->sc_dev,
726 1.38 matt "mbuf cluster allocation failed\n");
727 1.8 cgd m_freem(m_new);
728 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
729 1.8 cgd return ENOBUFS;
730 1.8 cgd }
731 1.1 simonb
732 1.8 cgd m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
733 1.58 msaitoh /*m_adj(m_new, ETHER_ALIGN);*/
734 1.1 simonb
735 1.8 cgd /*
736 1.8 cgd * XXX Don't forget to include the offset portion in the
737 1.8 cgd * XXX cache block calculation when this code is rewritten!
738 1.8 cgd */
739 1.1 simonb
740 1.8 cgd /*
741 1.8 cgd * Copy data
742 1.8 cgd */
743 1.1 simonb
744 1.58 msaitoh m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
745 1.8 cgd m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
746 1.1 simonb
747 1.8 cgd /* Free old mbuf 'm', actual mbuf is now 'm_new' */
748 1.1 simonb
749 1.8 cgd // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
750 1.8 cgd // XXX: function succeeds.
751 1.8 cgd // m_freem(m);
752 1.8 cgd length = m_new->m_len;
753 1.1 simonb
754 1.8 cgd /* [END XXX] */
755 1.8 cgd /*
756 1.8 cgd * fill in the descriptor
757 1.8 cgd */
758 1.1 simonb
759 1.22 christos d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
760 1.8 cgd V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
761 1.8 cgd M_DMA_DSCRA_INTERRUPT |
762 1.8 cgd M_DMA_ETHTX_SOP;
763 1.8 cgd
764 1.8 cgd /* transmitting: set outbound options and length */
765 1.19 cgd d->sbdma_dscrtable[dsc].dscr_b =
766 1.13 simonb V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
767 1.8 cgd V_DMA_DSCRB_PKT_SIZE(length);
768 1.1 simonb
769 1.8 cgd num_mbufs++;
770 1.1 simonb
771 1.8 cgd /*
772 1.8 cgd * fill in the context
773 1.8 cgd */
774 1.1 simonb
775 1.19 cgd d->sbdma_ctxtable[dsc] = m_new;
776 1.1 simonb
777 1.8 cgd /*
778 1.8 cgd * point at next packet
779 1.8 cgd */
780 1.19 cgd d->sbdma_add_index = nextdsc;
781 1.8 cgd }
782 1.1 simonb
783 1.1 simonb /*
784 1.1 simonb * Give the buffer to the DMA engine.
785 1.1 simonb */
786 1.1 simonb
787 1.8 cgd SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
788 1.1 simonb
789 1.1 simonb return 0; /* we did it */
790 1.1 simonb }
791 1.1 simonb
792 1.3 simonb /*
793 1.3 simonb * SBDMA_EMPTYRING(d)
794 1.3 simonb *
795 1.3 simonb * Free all allocated mbufs on the specified DMA channel;
796 1.3 simonb *
797 1.3 simonb * Input parameters:
798 1.3 simonb * d - DMA channel
799 1.3 simonb *
800 1.3 simonb * Return value:
801 1.3 simonb * nothing
802 1.3 simonb */
803 1.1 simonb
804 1.1 simonb static void
805 1.1 simonb sbdma_emptyring(sbmacdma_t *d)
806 1.1 simonb {
807 1.1 simonb int idx;
808 1.1 simonb struct mbuf *m;
809 1.1 simonb
810 1.1 simonb for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
811 1.1 simonb m = d->sbdma_ctxtable[idx];
812 1.1 simonb if (m) {
813 1.1 simonb m_freem(m);
814 1.1 simonb d->sbdma_ctxtable[idx] = NULL;
815 1.1 simonb }
816 1.1 simonb }
817 1.1 simonb }
818 1.1 simonb
819 1.3 simonb /*
820 1.3 simonb * SBDMA_FILLRING(d)
821 1.3 simonb *
822 1.3 simonb * Fill the specified DMA channel (must be receive channel)
823 1.3 simonb * with mbufs
824 1.3 simonb *
825 1.3 simonb * Input parameters:
826 1.3 simonb * d - DMA channel
827 1.3 simonb *
828 1.3 simonb * Return value:
829 1.3 simonb * nothing
830 1.3 simonb */
831 1.1 simonb
832 1.1 simonb static void
833 1.1 simonb sbdma_fillring(sbmacdma_t *d)
834 1.1 simonb {
835 1.1 simonb int idx;
836 1.1 simonb
837 1.1 simonb for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
838 1.1 simonb if (sbdma_add_rcvbuffer(d, NULL) != 0)
839 1.1 simonb break;
840 1.1 simonb }
841 1.1 simonb
842 1.3 simonb /*
843 1.3 simonb * SBDMA_RX_PROCESS(sc, d)
844 1.3 simonb *
845 1.3 simonb * Process "completed" receive buffers on the specified DMA channel.
846 1.3 simonb * Note that this isn't really ideal for priority channels, since
847 1.3 simonb * it processes all of the packets on a given channel before
848 1.3 simonb * returning.
849 1.3 simonb *
850 1.3 simonb * Input parameters:
851 1.3 simonb * sc - softc structure
852 1.3 simonb * d - DMA channel context
853 1.3 simonb *
854 1.3 simonb * Return value:
855 1.3 simonb * nothing
856 1.3 simonb */
857 1.1 simonb
858 1.1 simonb static void
859 1.1 simonb sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
860 1.1 simonb {
861 1.1 simonb int curidx;
862 1.1 simonb int hwidx;
863 1.19 cgd sbdmadscr_t *dscp;
864 1.1 simonb struct mbuf *m;
865 1.1 simonb int len;
866 1.1 simonb
867 1.1 simonb struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
868 1.1 simonb
869 1.1 simonb for (;;) {
870 1.1 simonb /*
871 1.1 simonb * figure out where we are (as an index) and where
872 1.1 simonb * the hardware is (also as an index)
873 1.1 simonb *
874 1.1 simonb * This could be done faster if (for example) the
875 1.1 simonb * descriptor table was page-aligned and contiguous in
876 1.1 simonb * both virtual and physical memory -- you could then
877 1.1 simonb * just compare the low-order bits of the virtual address
878 1.19 cgd * (sbdma_rem_index) and the physical address
879 1.19 cgd * (sbdma_curdscr CSR).
880 1.1 simonb */
881 1.1 simonb
882 1.19 cgd curidx = d->sbdma_rem_index;
883 1.1 simonb hwidx = (int)
884 1.1 simonb (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
885 1.1 simonb d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
886 1.1 simonb
887 1.1 simonb /*
888 1.1 simonb * If they're the same, that means we've processed all
889 1.1 simonb * of the descriptors up to (but not including) the one that
890 1.1 simonb * the hardware is working on right now.
891 1.1 simonb */
892 1.1 simonb
893 1.1 simonb if (curidx == hwidx)
894 1.1 simonb break;
895 1.1 simonb
896 1.1 simonb /*
897 1.1 simonb * Otherwise, get the packet's mbuf ptr back
898 1.1 simonb */
899 1.1 simonb
900 1.19 cgd dscp = &(d->sbdma_dscrtable[curidx]);
901 1.1 simonb m = d->sbdma_ctxtable[curidx];
902 1.1 simonb d->sbdma_ctxtable[curidx] = NULL;
903 1.1 simonb
904 1.19 cgd len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
905 1.1 simonb
906 1.1 simonb /*
907 1.1 simonb * Check packet status. If good, process it.
908 1.1 simonb * If not, silently drop it and put it back on the
909 1.1 simonb * receive ring.
910 1.1 simonb */
911 1.1 simonb
912 1.19 cgd if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
913 1.1 simonb
914 1.1 simonb /*
915 1.1 simonb * Set length into the packet
916 1.1 simonb * XXX do we remove the CRC here?
917 1.1 simonb */
918 1.1 simonb m->m_pkthdr.len = m->m_len = len;
919 1.1 simonb
920 1.45 ozaki m_set_rcvif(m, ifp);
921 1.1 simonb
922 1.1 simonb
923 1.1 simonb /*
924 1.1 simonb * Add a new buffer to replace the old one.
925 1.1 simonb */
926 1.1 simonb sbdma_add_rcvbuffer(d, NULL);
927 1.1 simonb
928 1.1 simonb /*
929 1.1 simonb * Handle BPF listeners. Let the BPF user see the
930 1.1 simonb * packet, but don't pass it up to the ether_input()
931 1.1 simonb * layer unless it's a broadcast packet, multicast
932 1.1 simonb * packet, matches our ethernet address or the
933 1.1 simonb * interface is in promiscuous mode.
934 1.1 simonb */
935 1.1 simonb
936 1.1 simonb /*
937 1.1 simonb * Pass the buffer to the kernel
938 1.1 simonb */
939 1.44 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
940 1.1 simonb } else {
941 1.1 simonb /*
942 1.1 simonb * Packet was mangled somehow. Just drop it and
943 1.1 simonb * put it back on the receive ring.
944 1.1 simonb */
945 1.1 simonb sbdma_add_rcvbuffer(d, m);
946 1.1 simonb }
947 1.1 simonb
948 1.1 simonb /*
949 1.1 simonb * .. and advance to the next buffer.
950 1.1 simonb */
951 1.1 simonb
952 1.19 cgd d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
953 1.1 simonb }
954 1.1 simonb }
955 1.1 simonb
956 1.3 simonb /*
957 1.3 simonb * SBDMA_TX_PROCESS(sc, d)
958 1.3 simonb *
959 1.3 simonb * Process "completed" transmit buffers on the specified DMA channel.
960 1.3 simonb * This is normally called within the interrupt service routine.
961 1.3 simonb * Note that this isn't really ideal for priority channels, since
962 1.3 simonb * it processes all of the packets on a given channel before
963 1.3 simonb * returning.
964 1.3 simonb *
965 1.3 simonb * Input parameters:
966 1.3 simonb * sc - softc structure
967 1.3 simonb * d - DMA channel context
968 1.3 simonb *
969 1.3 simonb * Return value:
970 1.3 simonb * nothing
971 1.3 simonb */
972 1.1 simonb
973 1.1 simonb static void
974 1.1 simonb sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
975 1.1 simonb {
976 1.1 simonb int curidx;
977 1.1 simonb int hwidx;
978 1.1 simonb struct mbuf *m;
979 1.1 simonb
980 1.1 simonb struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
981 1.1 simonb
982 1.1 simonb for (;;) {
983 1.1 simonb /*
984 1.1 simonb * figure out where we are (as an index) and where
985 1.1 simonb * the hardware is (also as an index)
986 1.1 simonb *
987 1.1 simonb * This could be done faster if (for example) the
988 1.1 simonb * descriptor table was page-aligned and contiguous in
989 1.1 simonb * both virtual and physical memory -- you could then
990 1.1 simonb * just compare the low-order bits of the virtual address
991 1.19 cgd * (sbdma_rem_index) and the physical address
992 1.19 cgd * (sbdma_curdscr CSR).
993 1.1 simonb */
994 1.1 simonb
995 1.19 cgd curidx = d->sbdma_rem_index;
996 1.1 simonb hwidx = (int)
997 1.1 simonb (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
998 1.1 simonb d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
999 1.1 simonb
1000 1.1 simonb /*
1001 1.1 simonb * If they're the same, that means we've processed all
1002 1.1 simonb * of the descriptors up to (but not including) the one that
1003 1.1 simonb * the hardware is working on right now.
1004 1.1 simonb */
1005 1.1 simonb
1006 1.1 simonb if (curidx == hwidx)
1007 1.1 simonb break;
1008 1.1 simonb
1009 1.1 simonb /*
1010 1.1 simonb * Otherwise, get the packet's mbuf ptr back
1011 1.1 simonb */
1012 1.1 simonb
1013 1.1 simonb m = d->sbdma_ctxtable[curidx];
1014 1.1 simonb d->sbdma_ctxtable[curidx] = NULL;
1015 1.1 simonb
1016 1.1 simonb /*
1017 1.24 christos * for transmits we just free buffers and count packets.
1018 1.1 simonb */
1019 1.62 thorpej if_statinc(ifp, if_opackets);
1020 1.1 simonb m_freem(m);
1021 1.1 simonb
1022 1.1 simonb /*
1023 1.1 simonb * .. and advance to the next buffer.
1024 1.1 simonb */
1025 1.1 simonb
1026 1.19 cgd d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
1027 1.1 simonb }
1028 1.1 simonb }
1029 1.1 simonb
1030 1.3 simonb /*
1031 1.3 simonb * SBMAC_INITCTX(s)
1032 1.3 simonb *
1033 1.3 simonb * Initialize an Ethernet context structure - this is called
1034 1.3 simonb * once per MAC on the 1250. Memory is allocated here, so don't
1035 1.3 simonb * call it again from inside the ioctl routines that bring the
1036 1.3 simonb * interface up/down
1037 1.3 simonb *
1038 1.3 simonb * Input parameters:
1039 1.39 matt * sc - sbmac context structure
1040 1.3 simonb *
1041 1.3 simonb * Return value:
1042 1.3 simonb * 0
1043 1.3 simonb */
1044 1.1 simonb
1045 1.1 simonb static void
1046 1.38 matt sbmac_initctx(struct sbmac_softc *sc)
1047 1.1 simonb {
1048 1.8 cgd uint64_t sysrev;
1049 1.1 simonb
1050 1.1 simonb /*
1051 1.1 simonb * figure out the addresses of some ports
1052 1.1 simonb */
1053 1.1 simonb
1054 1.38 matt sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE);
1055 1.59 msaitoh sc->sbm_maccfg = PKSEG1(sc->sbm_base + R_MAC_CFG);
1056 1.59 msaitoh sc->sbm_fifocfg = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG);
1057 1.38 matt sc->sbm_framecfg = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG);
1058 1.38 matt sc->sbm_rxfilter = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG);
1059 1.59 msaitoh sc->sbm_isr = PKSEG1(sc->sbm_base + R_MAC_STATUS);
1060 1.59 msaitoh sc->sbm_imr = PKSEG1(sc->sbm_base + R_MAC_INT_MASK);
1061 1.1 simonb
1062 1.1 simonb /*
1063 1.1 simonb * Initialize the DMA channels. Right now, only one per MAC is used
1064 1.1 simonb * Note: Only do this _once_, as it allocates memory from the kernel!
1065 1.1 simonb */
1066 1.1 simonb
1067 1.38 matt sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1068 1.38 matt sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1069 1.1 simonb
1070 1.1 simonb /*
1071 1.1 simonb * initial state is OFF
1072 1.1 simonb */
1073 1.1 simonb
1074 1.38 matt sc->sbm_state = sbmac_state_off;
1075 1.1 simonb
1076 1.1 simonb /*
1077 1.1 simonb * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1078 1.1 simonb */
1079 1.1 simonb
1080 1.38 matt sc->sbm_speed = sbmac_speed_10;
1081 1.38 matt sc->sbm_duplex = sbmac_duplex_half;
1082 1.38 matt sc->sbm_fc = sbmac_fc_disabled;
1083 1.8 cgd
1084 1.58 msaitoh /*
1085 1.8 cgd * Determine SOC type. 112x has Pass3 SOC features.
1086 1.8 cgd */
1087 1.8 cgd sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1088 1.38 matt sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1089 1.8 cgd SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1090 1.8 cgd SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1091 1.8 cgd (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1092 1.18 cgd G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1093 1.15 simonb #ifdef SBMAC_EVENT_COUNTERS
1094 1.39 matt const char * const xname = device_xname(sc->sc_dev);
1095 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1096 1.38 matt NULL, xname, "rxintr");
1097 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR,
1098 1.38 matt NULL, xname, "txintr");
1099 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1100 1.38 matt NULL, xname, "txdrop");
1101 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC,
1102 1.38 matt NULL, xname, "txstall");
1103 1.38 matt if (sc->sbm_pass3_dma) {
1104 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1105 1.38 matt NULL, xname, "pass3tx-split");
1106 1.38 matt evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1107 1.38 matt NULL, xname, "pass3tx-keep");
1108 1.11 simonb }
1109 1.15 simonb #endif
1110 1.1 simonb }
1111 1.1 simonb
1112 1.3 simonb /*
1113 1.3 simonb * SBMAC_CHANNEL_START(s)
1114 1.3 simonb *
1115 1.3 simonb * Start packet processing on this MAC.
1116 1.3 simonb *
1117 1.3 simonb * Input parameters:
1118 1.39 matt * sc - sbmac structure
1119 1.3 simonb *
1120 1.3 simonb * Return value:
1121 1.3 simonb * nothing
1122 1.3 simonb */
1123 1.1 simonb
1124 1.1 simonb static void
1125 1.38 matt sbmac_channel_start(struct sbmac_softc *sc)
1126 1.1 simonb {
1127 1.1 simonb uint64_t reg;
1128 1.1 simonb sbmac_port_t port;
1129 1.1 simonb uint64_t cfg, fifo, framecfg;
1130 1.1 simonb int idx;
1131 1.8 cgd uint64_t dma_cfg0, fifo_cfg;
1132 1.8 cgd sbmacdma_t *txdma;
1133 1.1 simonb
1134 1.1 simonb /*
1135 1.1 simonb * Don't do this if running
1136 1.1 simonb */
1137 1.1 simonb
1138 1.38 matt if (sc->sbm_state == sbmac_state_on)
1139 1.1 simonb return;
1140 1.1 simonb
1141 1.1 simonb /*
1142 1.1 simonb * Bring the controller out of reset, but leave it off.
1143 1.1 simonb */
1144 1.1 simonb
1145 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, 0);
1146 1.1 simonb
1147 1.1 simonb /*
1148 1.1 simonb * Ignore all received packets
1149 1.1 simonb */
1150 1.1 simonb
1151 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1152 1.1 simonb
1153 1.1 simonb /*
1154 1.1 simonb * Calculate values for various control registers.
1155 1.1 simonb */
1156 1.1 simonb
1157 1.1 simonb cfg = M_MAC_RETRY_EN |
1158 1.1 simonb M_MAC_TX_HOLD_SOP_EN |
1159 1.1 simonb V_MAC_TX_PAUSE_CNT_16K |
1160 1.1 simonb M_MAC_AP_STAT_EN |
1161 1.1 simonb M_MAC_SS_EN |
1162 1.1 simonb 0;
1163 1.1 simonb
1164 1.1 simonb fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1165 1.1 simonb V_MAC_TX_RD_THRSH(4) |
1166 1.1 simonb V_MAC_TX_RL_THRSH(4) |
1167 1.1 simonb V_MAC_RX_PL_THRSH(4) |
1168 1.1 simonb V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1169 1.1 simonb V_MAC_RX_PL_THRSH(4) |
1170 1.1 simonb V_MAC_RX_RL_THRSH(8) |
1171 1.1 simonb 0;
1172 1.1 simonb
1173 1.1 simonb framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1174 1.1 simonb V_MAC_MAX_FRAMESZ_DEFAULT |
1175 1.1 simonb V_MAC_BACKOFF_SEL(1);
1176 1.1 simonb
1177 1.1 simonb /*
1178 1.1 simonb * Clear out the hash address map
1179 1.1 simonb */
1180 1.1 simonb
1181 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE);
1182 1.1 simonb for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1183 1.1 simonb SBMAC_WRITECSR(port, 0);
1184 1.1 simonb port += sizeof(uint64_t);
1185 1.1 simonb }
1186 1.1 simonb
1187 1.1 simonb /*
1188 1.1 simonb * Clear out the exact-match table
1189 1.1 simonb */
1190 1.1 simonb
1191 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
1192 1.1 simonb for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1193 1.1 simonb SBMAC_WRITECSR(port, 0);
1194 1.1 simonb port += sizeof(uint64_t);
1195 1.1 simonb }
1196 1.1 simonb
1197 1.1 simonb /*
1198 1.1 simonb * Clear out the DMA Channel mapping table registers
1199 1.1 simonb */
1200 1.1 simonb
1201 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE);
1202 1.1 simonb for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1203 1.1 simonb SBMAC_WRITECSR(port, 0);
1204 1.1 simonb port += sizeof(uint64_t);
1205 1.1 simonb }
1206 1.1 simonb
1207 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE);
1208 1.1 simonb for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1209 1.1 simonb SBMAC_WRITECSR(port, 0);
1210 1.1 simonb port += sizeof(uint64_t);
1211 1.1 simonb }
1212 1.1 simonb
1213 1.1 simonb /*
1214 1.1 simonb * Program the hardware address. It goes into the hardware-address
1215 1.1 simonb * register as well as the first filter register.
1216 1.1 simonb */
1217 1.1 simonb
1218 1.38 matt reg = sbmac_addr2reg(sc->sbm_hwaddr);
1219 1.1 simonb
1220 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
1221 1.1 simonb SBMAC_WRITECSR(port, reg);
1222 1.38 matt port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR);
1223 1.1 simonb SBMAC_WRITECSR(port, 0); // pass1 workaround
1224 1.1 simonb
1225 1.1 simonb /*
1226 1.1 simonb * Set the receive filter for no packets, and write values
1227 1.1 simonb * to the various config registers
1228 1.1 simonb */
1229 1.1 simonb
1230 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1231 1.38 matt SBMAC_WRITECSR(sc->sbm_imr, 0);
1232 1.38 matt SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
1233 1.38 matt SBMAC_WRITECSR(sc->sbm_fifocfg, fifo);
1234 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1235 1.1 simonb
1236 1.1 simonb /*
1237 1.1 simonb * Initialize DMA channels (rings should be ok now)
1238 1.1 simonb */
1239 1.1 simonb
1240 1.38 matt sbdma_channel_start(&(sc->sbm_rxdma));
1241 1.38 matt sbdma_channel_start(&(sc->sbm_txdma));
1242 1.1 simonb
1243 1.1 simonb /*
1244 1.1 simonb * Configure the speed, duplex, and flow control
1245 1.1 simonb */
1246 1.1 simonb
1247 1.38 matt sbmac_set_speed(sc, sc->sbm_speed);
1248 1.38 matt sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc);
1249 1.1 simonb
1250 1.1 simonb /*
1251 1.1 simonb * Fill the receive ring
1252 1.1 simonb */
1253 1.1 simonb
1254 1.38 matt sbdma_fillring(&(sc->sbm_rxdma));
1255 1.1 simonb
1256 1.1 simonb /*
1257 1.1 simonb * Turn on the rest of the bits in the enable register
1258 1.1 simonb */
1259 1.1 simonb
1260 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1261 1.1 simonb M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1262 1.1 simonb
1263 1.1 simonb
1264 1.1 simonb /*
1265 1.1 simonb * Accept any kind of interrupt on TX and RX DMA channel 0
1266 1.1 simonb */
1267 1.38 matt SBMAC_WRITECSR(sc->sbm_imr,
1268 1.1 simonb (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1269 1.1 simonb (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1270 1.1 simonb
1271 1.1 simonb /*
1272 1.1 simonb * Enable receiving unicasts and broadcasts
1273 1.1 simonb */
1274 1.1 simonb
1275 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1276 1.1 simonb
1277 1.1 simonb /*
1278 1.8 cgd * On chips which support unaligned DMA features, set the descriptor
1279 1.8 cgd * ring for transmit channels to use the unaligned buffer format.
1280 1.8 cgd */
1281 1.58 msaitoh txdma = &(sc->sbm_txdma);
1282 1.8 cgd
1283 1.38 matt if (sc->sbm_pass3_dma) {
1284 1.8 cgd dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1285 1.8 cgd dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1286 1.8 cgd M_DMA_TBX_EN | M_DMA_TDX_EN;
1287 1.58 msaitoh SBMAC_WRITECSR(txdma->sbdma_config0, dma_cfg0);
1288 1.8 cgd
1289 1.38 matt fifo_cfg = SBMAC_READCSR(sc->sbm_fifocfg);
1290 1.8 cgd fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1291 1.8 cgd V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1292 1.58 msaitoh SBMAC_WRITECSR(sc->sbm_fifocfg, fifo_cfg);
1293 1.8 cgd }
1294 1.8 cgd
1295 1.8 cgd /*
1296 1.1 simonb * we're running now.
1297 1.1 simonb */
1298 1.1 simonb
1299 1.38 matt sc->sbm_state = sbmac_state_on;
1300 1.38 matt sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1301 1.1 simonb
1302 1.1 simonb /*
1303 1.1 simonb * Program multicast addresses
1304 1.1 simonb */
1305 1.1 simonb
1306 1.38 matt sbmac_setmulti(sc);
1307 1.1 simonb
1308 1.1 simonb /*
1309 1.1 simonb * If channel was in promiscuous mode before, turn that on
1310 1.1 simonb */
1311 1.1 simonb
1312 1.38 matt if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1313 1.39 matt sbmac_promiscuous_mode(sc, true);
1314 1.1 simonb
1315 1.1 simonb /*
1316 1.1 simonb * Turn on the once-per-second timer
1317 1.1 simonb */
1318 1.1 simonb
1319 1.38 matt callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc);
1320 1.1 simonb }
1321 1.1 simonb
1322 1.3 simonb /*
1323 1.3 simonb * SBMAC_CHANNEL_STOP(s)
1324 1.3 simonb *
1325 1.3 simonb * Stop packet processing on this MAC.
1326 1.3 simonb *
1327 1.3 simonb * Input parameters:
1328 1.39 matt * sc - sbmac structure
1329 1.3 simonb *
1330 1.3 simonb * Return value:
1331 1.3 simonb * nothing
1332 1.3 simonb */
1333 1.1 simonb
1334 1.3 simonb static void
1335 1.38 matt sbmac_channel_stop(struct sbmac_softc *sc)
1336 1.1 simonb {
1337 1.3 simonb uint64_t ctl;
1338 1.1 simonb
1339 1.3 simonb /* don't do this if already stopped */
1340 1.1 simonb
1341 1.38 matt if (sc->sbm_state == sbmac_state_off)
1342 1.3 simonb return;
1343 1.1 simonb
1344 1.3 simonb /* don't accept any packets, disable all interrupts */
1345 1.1 simonb
1346 1.38 matt SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
1347 1.38 matt SBMAC_WRITECSR(sc->sbm_imr, 0);
1348 1.1 simonb
1349 1.3 simonb /* Turn off ticker */
1350 1.1 simonb
1351 1.38 matt callout_stop(&(sc->sc_tick_ch));
1352 1.1 simonb
1353 1.3 simonb /* turn off receiver and transmitter */
1354 1.1 simonb
1355 1.38 matt ctl = SBMAC_READCSR(sc->sbm_macenable);
1356 1.3 simonb ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1357 1.38 matt SBMAC_WRITECSR(sc->sbm_macenable, ctl);
1358 1.1 simonb
1359 1.3 simonb /* We're stopped now. */
1360 1.1 simonb
1361 1.38 matt sc->sbm_state = sbmac_state_off;
1362 1.38 matt sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1363 1.1 simonb
1364 1.3 simonb /* Empty the receive and transmit rings */
1365 1.1 simonb
1366 1.38 matt sbdma_emptyring(&(sc->sbm_rxdma));
1367 1.38 matt sbdma_emptyring(&(sc->sbm_txdma));
1368 1.3 simonb }
1369 1.3 simonb
1370 1.3 simonb /*
1371 1.3 simonb * SBMAC_SET_CHANNEL_STATE(state)
1372 1.3 simonb *
1373 1.3 simonb * Set the channel's state ON or OFF
1374 1.3 simonb *
1375 1.3 simonb * Input parameters:
1376 1.3 simonb * state - new state
1377 1.3 simonb *
1378 1.3 simonb * Return value:
1379 1.3 simonb * old state
1380 1.3 simonb */
1381 1.1 simonb
1382 1.3 simonb static sbmac_state_t
1383 1.3 simonb sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1384 1.3 simonb {
1385 1.3 simonb sbmac_state_t oldstate = sc->sbm_state;
1386 1.3 simonb
1387 1.3 simonb /*
1388 1.3 simonb * If same as previous state, return
1389 1.3 simonb */
1390 1.3 simonb
1391 1.3 simonb if (state == oldstate)
1392 1.3 simonb return oldstate;
1393 1.3 simonb
1394 1.3 simonb /*
1395 1.3 simonb * If new state is ON, turn channel on
1396 1.3 simonb */
1397 1.3 simonb
1398 1.3 simonb if (state == sbmac_state_on)
1399 1.3 simonb sbmac_channel_start(sc);
1400 1.3 simonb else
1401 1.3 simonb sbmac_channel_stop(sc);
1402 1.3 simonb
1403 1.3 simonb /*
1404 1.3 simonb * Return previous state
1405 1.3 simonb */
1406 1.3 simonb
1407 1.3 simonb return oldstate;
1408 1.1 simonb }
1409 1.1 simonb
1410 1.3 simonb /*
1411 1.39 matt * SBMAC_PROMISCUOUS_MODE(sc, enabled)
1412 1.3 simonb *
1413 1.3 simonb * Turn on or off promiscuous mode
1414 1.3 simonb *
1415 1.3 simonb * Input parameters:
1416 1.3 simonb * sc - softc
1417 1.39 matt * enabled - true to turn on, false to turn off
1418 1.3 simonb *
1419 1.3 simonb * Return value:
1420 1.3 simonb * nothing
1421 1.3 simonb */
1422 1.3 simonb
1423 1.3 simonb static void
1424 1.39 matt sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled)
1425 1.1 simonb {
1426 1.3 simonb uint64_t reg;
1427 1.1 simonb
1428 1.3 simonb if (sc->sbm_state != sbmac_state_on)
1429 1.3 simonb return;
1430 1.1 simonb
1431 1.39 matt if (enabled) {
1432 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1433 1.3 simonb reg |= M_MAC_ALLPKT_EN;
1434 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1435 1.3 simonb } else {
1436 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1437 1.3 simonb reg &= ~M_MAC_ALLPKT_EN;
1438 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1439 1.1 simonb }
1440 1.3 simonb }
1441 1.1 simonb
1442 1.3 simonb /*
1443 1.3 simonb * SBMAC_INIT_AND_START(sc)
1444 1.3 simonb *
1445 1.3 simonb * Stop the channel and restart it. This is generally used
1446 1.3 simonb * when we have to do something to the channel that requires
1447 1.3 simonb * a swift kick.
1448 1.3 simonb *
1449 1.3 simonb * Input parameters:
1450 1.3 simonb * sc - softc
1451 1.3 simonb */
1452 1.1 simonb
1453 1.3 simonb static void
1454 1.3 simonb sbmac_init_and_start(struct sbmac_softc *sc)
1455 1.3 simonb {
1456 1.3 simonb int s;
1457 1.3 simonb
1458 1.3 simonb s = splnet();
1459 1.1 simonb
1460 1.13 simonb mii_pollstat(&sc->sc_mii); /* poll phy for current speed */
1461 1.42 matt sbmac_mii_statchg(&sc->sc_ethercom.ec_if); /* set state to new speed */
1462 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_on);
1463 1.1 simonb
1464 1.3 simonb splx(s);
1465 1.1 simonb }
1466 1.1 simonb
1467 1.3 simonb /*
1468 1.3 simonb * SBMAC_ADDR2REG(ptr)
1469 1.3 simonb *
1470 1.3 simonb * Convert six bytes into the 64-bit register value that
1471 1.3 simonb * we typically write into the SBMAC's address/mcast registers
1472 1.3 simonb *
1473 1.3 simonb * Input parameters:
1474 1.3 simonb * ptr - pointer to 6 bytes
1475 1.3 simonb *
1476 1.3 simonb * Return value:
1477 1.3 simonb * register value
1478 1.3 simonb */
1479 1.3 simonb
1480 1.3 simonb static uint64_t
1481 1.3 simonb sbmac_addr2reg(u_char *ptr)
1482 1.3 simonb {
1483 1.3 simonb uint64_t reg = 0;
1484 1.1 simonb
1485 1.3 simonb ptr += 6;
1486 1.3 simonb
1487 1.3 simonb reg |= (uint64_t) *(--ptr);
1488 1.3 simonb reg <<= 8;
1489 1.3 simonb reg |= (uint64_t) *(--ptr);
1490 1.3 simonb reg <<= 8;
1491 1.3 simonb reg |= (uint64_t) *(--ptr);
1492 1.3 simonb reg <<= 8;
1493 1.3 simonb reg |= (uint64_t) *(--ptr);
1494 1.3 simonb reg <<= 8;
1495 1.3 simonb reg |= (uint64_t) *(--ptr);
1496 1.3 simonb reg <<= 8;
1497 1.3 simonb reg |= (uint64_t) *(--ptr);
1498 1.3 simonb
1499 1.3 simonb return reg;
1500 1.3 simonb }
1501 1.3 simonb
1502 1.3 simonb /*
1503 1.39 matt * SBMAC_SET_SPEED(sc, speed)
1504 1.3 simonb *
1505 1.3 simonb * Configure LAN speed for the specified MAC.
1506 1.3 simonb * Warning: must be called when MAC is off!
1507 1.3 simonb *
1508 1.3 simonb * Input parameters:
1509 1.39 matt * sc - sbmac structure
1510 1.3 simonb * speed - speed to set MAC to (see sbmac_speed_t enum)
1511 1.3 simonb *
1512 1.3 simonb * Return value:
1513 1.39 matt * true if successful
1514 1.39 matt * false indicates invalid parameters
1515 1.3 simonb */
1516 1.1 simonb
1517 1.39 matt static bool
1518 1.38 matt sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed)
1519 1.1 simonb {
1520 1.3 simonb uint64_t cfg;
1521 1.3 simonb uint64_t framecfg;
1522 1.3 simonb
1523 1.3 simonb /*
1524 1.3 simonb * Save new current values
1525 1.3 simonb */
1526 1.1 simonb
1527 1.38 matt sc->sbm_speed = speed;
1528 1.1 simonb
1529 1.38 matt if (sc->sbm_state != sbmac_state_off)
1530 1.3 simonb panic("sbmac_set_speed while MAC not off");
1531 1.3 simonb
1532 1.3 simonb /*
1533 1.3 simonb * Read current register values
1534 1.3 simonb */
1535 1.3 simonb
1536 1.38 matt cfg = SBMAC_READCSR(sc->sbm_maccfg);
1537 1.38 matt framecfg = SBMAC_READCSR(sc->sbm_framecfg);
1538 1.1 simonb
1539 1.3 simonb /*
1540 1.3 simonb * Mask out the stuff we want to change
1541 1.3 simonb */
1542 1.1 simonb
1543 1.3 simonb cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1544 1.3 simonb framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1545 1.3 simonb M_MAC_SLOT_SIZE);
1546 1.1 simonb
1547 1.3 simonb /*
1548 1.3 simonb * Now add in the new bits
1549 1.3 simonb */
1550 1.1 simonb
1551 1.3 simonb switch (speed) {
1552 1.1 simonb case sbmac_speed_10:
1553 1.3 simonb framecfg |= V_MAC_IFG_RX_10 |
1554 1.3 simonb V_MAC_IFG_TX_10 |
1555 1.3 simonb K_MAC_IFG_THRSH_10 |
1556 1.3 simonb V_MAC_SLOT_SIZE_10;
1557 1.3 simonb cfg |= V_MAC_SPEED_SEL_10MBPS;
1558 1.3 simonb break;
1559 1.1 simonb
1560 1.1 simonb case sbmac_speed_100:
1561 1.3 simonb framecfg |= V_MAC_IFG_RX_100 |
1562 1.3 simonb V_MAC_IFG_TX_100 |
1563 1.3 simonb V_MAC_IFG_THRSH_100 |
1564 1.3 simonb V_MAC_SLOT_SIZE_100;
1565 1.3 simonb cfg |= V_MAC_SPEED_SEL_100MBPS ;
1566 1.3 simonb break;
1567 1.1 simonb
1568 1.1 simonb case sbmac_speed_1000:
1569 1.3 simonb framecfg |= V_MAC_IFG_RX_1000 |
1570 1.3 simonb V_MAC_IFG_TX_1000 |
1571 1.3 simonb V_MAC_IFG_THRSH_1000 |
1572 1.3 simonb V_MAC_SLOT_SIZE_1000;
1573 1.3 simonb cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1574 1.3 simonb break;
1575 1.1 simonb
1576 1.1 simonb case sbmac_speed_auto: /* XXX not implemented */
1577 1.3 simonb /* fall through */
1578 1.1 simonb default:
1579 1.39 matt return false;
1580 1.1 simonb }
1581 1.1 simonb
1582 1.3 simonb /*
1583 1.3 simonb * Send the bits back to the hardware
1584 1.3 simonb */
1585 1.1 simonb
1586 1.38 matt SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
1587 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1588 1.1 simonb
1589 1.39 matt return true;
1590 1.1 simonb }
1591 1.1 simonb
1592 1.3 simonb /*
1593 1.38 matt * SBMAC_SET_DUPLEX(sc, duplex, fc)
1594 1.3 simonb *
1595 1.3 simonb * Set Ethernet duplex and flow control options for this MAC
1596 1.3 simonb * Warning: must be called when MAC is off!
1597 1.3 simonb *
1598 1.3 simonb * Input parameters:
1599 1.39 matt * sc - sbmac structure
1600 1.3 simonb * duplex - duplex setting (see sbmac_duplex_t)
1601 1.3 simonb * fc - flow control setting (see sbmac_fc_t)
1602 1.3 simonb *
1603 1.3 simonb * Return value:
1604 1.39 matt * true if ok
1605 1.39 matt * false if an invalid parameter combination was specified
1606 1.3 simonb */
1607 1.1 simonb
1608 1.39 matt static bool
1609 1.38 matt sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc)
1610 1.1 simonb {
1611 1.3 simonb uint64_t cfg;
1612 1.1 simonb
1613 1.3 simonb /*
1614 1.3 simonb * Save new current values
1615 1.3 simonb */
1616 1.1 simonb
1617 1.38 matt sc->sbm_duplex = duplex;
1618 1.38 matt sc->sbm_fc = fc;
1619 1.1 simonb
1620 1.38 matt if (sc->sbm_state != sbmac_state_off)
1621 1.3 simonb panic("sbmac_set_duplex while MAC not off");
1622 1.1 simonb
1623 1.3 simonb /*
1624 1.3 simonb * Read current register values
1625 1.3 simonb */
1626 1.1 simonb
1627 1.38 matt cfg = SBMAC_READCSR(sc->sbm_maccfg);
1628 1.1 simonb
1629 1.3 simonb /*
1630 1.3 simonb * Mask off the stuff we're about to change
1631 1.3 simonb */
1632 1.1 simonb
1633 1.3 simonb cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1634 1.1 simonb
1635 1.3 simonb switch (duplex) {
1636 1.1 simonb case sbmac_duplex_half:
1637 1.3 simonb switch (fc) {
1638 1.1 simonb case sbmac_fc_disabled:
1639 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1640 1.3 simonb break;
1641 1.1 simonb
1642 1.1 simonb case sbmac_fc_collision:
1643 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1644 1.3 simonb break;
1645 1.1 simonb
1646 1.1 simonb case sbmac_fc_carrier:
1647 1.3 simonb cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1648 1.3 simonb break;
1649 1.1 simonb
1650 1.1 simonb case sbmac_fc_auto: /* XXX not implemented */
1651 1.3 simonb /* fall through */
1652 1.1 simonb case sbmac_fc_frame: /* not valid in half duplex */
1653 1.1 simonb default: /* invalid selection */
1654 1.4 provos panic("%s: invalid half duplex fc selection %d",
1655 1.38 matt device_xname(sc->sc_dev), fc);
1656 1.39 matt return false;
1657 1.1 simonb }
1658 1.3 simonb break;
1659 1.1 simonb
1660 1.1 simonb case sbmac_duplex_full:
1661 1.3 simonb switch (fc) {
1662 1.1 simonb case sbmac_fc_disabled:
1663 1.3 simonb cfg |= V_MAC_FC_CMD_DISABLED;
1664 1.3 simonb break;
1665 1.1 simonb
1666 1.1 simonb case sbmac_fc_frame:
1667 1.3 simonb cfg |= V_MAC_FC_CMD_ENABLED;
1668 1.3 simonb break;
1669 1.1 simonb
1670 1.1 simonb case sbmac_fc_collision: /* not valid in full duplex */
1671 1.1 simonb case sbmac_fc_carrier: /* not valid in full duplex */
1672 1.1 simonb case sbmac_fc_auto: /* XXX not implemented */
1673 1.3 simonb /* fall through */
1674 1.1 simonb default:
1675 1.4 provos panic("%s: invalid full duplex fc selection %d",
1676 1.38 matt device_xname(sc->sc_dev), fc);
1677 1.39 matt return false;
1678 1.1 simonb }
1679 1.3 simonb break;
1680 1.1 simonb
1681 1.1 simonb default:
1682 1.3 simonb /* fall through */
1683 1.1 simonb case sbmac_duplex_auto:
1684 1.38 matt panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex);
1685 1.3 simonb /* XXX not implemented */
1686 1.3 simonb break;
1687 1.1 simonb }
1688 1.1 simonb
1689 1.3 simonb /*
1690 1.3 simonb * Send the bits back to the hardware
1691 1.3 simonb */
1692 1.1 simonb
1693 1.38 matt SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
1694 1.1 simonb
1695 1.39 matt return true;
1696 1.1 simonb }
1697 1.1 simonb
1698 1.3 simonb /*
1699 1.3 simonb * SBMAC_INTR()
1700 1.3 simonb *
1701 1.3 simonb * Interrupt handler for MAC interrupts
1702 1.3 simonb *
1703 1.3 simonb * Input parameters:
1704 1.3 simonb * MAC structure
1705 1.3 simonb *
1706 1.3 simonb * Return value:
1707 1.3 simonb * nothing
1708 1.3 simonb */
1709 1.1 simonb
1710 1.1 simonb /* ARGSUSED */
1711 1.1 simonb static void
1712 1.35 matt sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
1713 1.1 simonb {
1714 1.38 matt struct sbmac_softc *sc = xsc;
1715 1.14 simonb struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1716 1.1 simonb uint64_t isr;
1717 1.1 simonb
1718 1.1 simonb for (;;) {
1719 1.1 simonb
1720 1.1 simonb /*
1721 1.1 simonb * Read the ISR (this clears the bits in the real register)
1722 1.1 simonb */
1723 1.1 simonb
1724 1.1 simonb isr = SBMAC_READCSR(sc->sbm_isr);
1725 1.1 simonb
1726 1.1 simonb if (isr == 0)
1727 1.1 simonb break;
1728 1.1 simonb
1729 1.1 simonb /*
1730 1.1 simonb * Transmits on channel 0
1731 1.1 simonb */
1732 1.1 simonb
1733 1.15 simonb if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1734 1.1 simonb sbdma_tx_process(sc, &(sc->sbm_txdma));
1735 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1736 1.15 simonb }
1737 1.1 simonb
1738 1.1 simonb /*
1739 1.1 simonb * Receives on channel 0
1740 1.1 simonb */
1741 1.1 simonb
1742 1.15 simonb if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1743 1.1 simonb sbdma_rx_process(sc, &(sc->sbm_rxdma));
1744 1.15 simonb SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1745 1.15 simonb }
1746 1.1 simonb }
1747 1.14 simonb
1748 1.14 simonb /* try to get more packets going */
1749 1.48 ozaki if_schedule_deferred_start(ifp);
1750 1.1 simonb }
1751 1.1 simonb
1752 1.1 simonb
1753 1.3 simonb /*
1754 1.3 simonb * SBMAC_START(ifp)
1755 1.3 simonb *
1756 1.3 simonb * Start output on the specified interface. Basically, we
1757 1.3 simonb * queue as many buffers as we can until the ring fills up, or
1758 1.3 simonb * we run off the end of the queue, whichever comes first.
1759 1.3 simonb *
1760 1.3 simonb * Input parameters:
1761 1.3 simonb * ifp - interface
1762 1.3 simonb *
1763 1.3 simonb * Return value:
1764 1.3 simonb * nothing
1765 1.3 simonb */
1766 1.3 simonb
1767 1.3 simonb static void
1768 1.3 simonb sbmac_start(struct ifnet *ifp)
1769 1.1 simonb {
1770 1.3 simonb struct sbmac_softc *sc;
1771 1.3 simonb struct mbuf *m_head = NULL;
1772 1.3 simonb int rv;
1773 1.1 simonb
1774 1.65 thorpej if ((ifp->if_flags & IFF_RUNNING) == 0)
1775 1.3 simonb return;
1776 1.3 simonb
1777 1.3 simonb sc = ifp->if_softc;
1778 1.1 simonb
1779 1.3 simonb for (;;) {
1780 1.1 simonb
1781 1.64 thorpej IF_POLL(&ifp->if_snd, m_head);
1782 1.3 simonb if (m_head == NULL)
1783 1.3 simonb break;
1784 1.1 simonb
1785 1.3 simonb /*
1786 1.3 simonb * Put the buffer on the transmit ring. If we
1787 1.65 thorpej * don't have room, we'll try to get things going
1788 1.65 thorpej * again after a transmit interrupt.
1789 1.3 simonb */
1790 1.3 simonb
1791 1.3 simonb rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1792 1.3 simonb
1793 1.3 simonb if (rv == 0) {
1794 1.3 simonb /*
1795 1.13 simonb * If there's a BPF listener, bounce a copy of this
1796 1.13 simonb * frame to it.
1797 1.3 simonb */
1798 1.64 thorpej IF_DEQUEUE(&ifp->if_snd, m_head);
1799 1.50 msaitoh bpf_mtap(ifp, m_head, BPF_D_OUT);
1800 1.8 cgd if (!sc->sbm_pass3_dma) {
1801 1.8 cgd /*
1802 1.13 simonb * Don't free mbuf if we're not copying to new
1803 1.13 simonb * mbuf in sbdma_add_txbuffer. It will be
1804 1.13 simonb * freed in sbdma_tx_process.
1805 1.8 cgd */
1806 1.8 cgd m_freem(m_head);
1807 1.8 cgd }
1808 1.3 simonb }
1809 1.3 simonb }
1810 1.3 simonb }
1811 1.3 simonb
1812 1.3 simonb /*
1813 1.3 simonb * SBMAC_SETMULTI(sc)
1814 1.3 simonb *
1815 1.3 simonb * Reprogram the multicast table into the hardware, given
1816 1.3 simonb * the list of multicasts associated with the interface
1817 1.3 simonb * structure.
1818 1.3 simonb *
1819 1.3 simonb * Input parameters:
1820 1.3 simonb * sc - softc
1821 1.3 simonb *
1822 1.3 simonb * Return value:
1823 1.3 simonb * nothing
1824 1.3 simonb */
1825 1.3 simonb
1826 1.3 simonb static void
1827 1.3 simonb sbmac_setmulti(struct sbmac_softc *sc)
1828 1.3 simonb {
1829 1.58 msaitoh struct ethercom *ec = &sc->sc_ethercom;
1830 1.58 msaitoh struct ifnet *ifp = &ec->ec_if;
1831 1.3 simonb uint64_t reg;
1832 1.3 simonb sbmac_port_t port;
1833 1.3 simonb int idx;
1834 1.3 simonb struct ether_multi *enm;
1835 1.3 simonb struct ether_multistep step;
1836 1.3 simonb
1837 1.1 simonb /*
1838 1.3 simonb * Clear out entire multicast table. We do this by nuking
1839 1.3 simonb * the entire hash table and all the direct matches except
1840 1.3 simonb * the first one, which is used for our station address
1841 1.1 simonb */
1842 1.1 simonb
1843 1.3 simonb for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1844 1.13 simonb port = PKSEG1(sc->sbm_base +
1845 1.13 simonb R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1846 1.3 simonb SBMAC_WRITECSR(port, 0);
1847 1.3 simonb }
1848 1.1 simonb
1849 1.3 simonb for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1850 1.13 simonb port = PKSEG1(sc->sbm_base +
1851 1.13 simonb R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1852 1.3 simonb SBMAC_WRITECSR(port, 0);
1853 1.3 simonb }
1854 1.1 simonb
1855 1.1 simonb /*
1856 1.3 simonb * Clear the filter to say we don't want any multicasts.
1857 1.1 simonb */
1858 1.3 simonb
1859 1.1 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1860 1.3 simonb reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1861 1.1 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1862 1.3 simonb
1863 1.3 simonb if (ifp->if_flags & IFF_ALLMULTI) {
1864 1.3 simonb /*
1865 1.3 simonb * Enable ALL multicasts. Do this by inverting the
1866 1.3 simonb * multicast enable bit.
1867 1.3 simonb */
1868 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1869 1.3 simonb reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1870 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1871 1.3 simonb return;
1872 1.1 simonb }
1873 1.1 simonb
1874 1.3 simonb /*
1875 1.63 msaitoh * Program new multicast entries. For now, only use the
1876 1.3 simonb * perfect filter. In the future we'll need to use the
1877 1.3 simonb * hash filter if the perfect filter overflows
1878 1.3 simonb */
1879 1.3 simonb
1880 1.3 simonb /*
1881 1.3 simonb * XXX only using perfect filter for now, need to use hash
1882 1.3 simonb * XXX if the table overflows
1883 1.3 simonb */
1884 1.3 simonb
1885 1.3 simonb idx = 1; /* skip station address */
1886 1.60 msaitoh ETHER_LOCK(ec);
1887 1.58 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
1888 1.3 simonb while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1889 1.3 simonb reg = sbmac_addr2reg(enm->enm_addrlo);
1890 1.3 simonb port = PKSEG1(sc->sbm_base +
1891 1.3 simonb R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1892 1.3 simonb SBMAC_WRITECSR(port, reg);
1893 1.3 simonb idx++;
1894 1.3 simonb ETHER_NEXT_MULTI(step, enm);
1895 1.1 simonb }
1896 1.60 msaitoh ETHER_UNLOCK(ec);
1897 1.1 simonb
1898 1.3 simonb /*
1899 1.3 simonb * Enable the "accept multicast bits" if we programmed at least one
1900 1.3 simonb * multicast.
1901 1.3 simonb */
1902 1.1 simonb
1903 1.3 simonb if (idx > 1) {
1904 1.3 simonb reg = SBMAC_READCSR(sc->sbm_rxfilter);
1905 1.3 simonb reg |= M_MAC_MCAST_EN;
1906 1.3 simonb SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1907 1.1 simonb }
1908 1.1 simonb }
1909 1.1 simonb
1910 1.3 simonb /*
1911 1.3 simonb * SBMAC_ETHER_IOCTL(ifp, cmd, data)
1912 1.3 simonb *
1913 1.3 simonb * Generic IOCTL requests for this interface. The basic
1914 1.3 simonb * stuff is handled here for bringing the interface up,
1915 1.3 simonb * handling multicasts, etc.
1916 1.3 simonb *
1917 1.3 simonb * Input parameters:
1918 1.3 simonb * ifp - interface structure
1919 1.3 simonb * cmd - command code
1920 1.3 simonb * data - pointer to data
1921 1.3 simonb *
1922 1.3 simonb * Return value:
1923 1.3 simonb * return value (0 is success)
1924 1.3 simonb */
1925 1.1 simonb
1926 1.3 simonb static int
1927 1.22 christos sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1928 1.1 simonb {
1929 1.3 simonb struct ifaddr *ifa = (struct ifaddr *) data;
1930 1.3 simonb struct sbmac_softc *sc = ifp->if_softc;
1931 1.1 simonb
1932 1.3 simonb switch (cmd) {
1933 1.29 dyoung case SIOCINITIFADDR:
1934 1.3 simonb ifp->if_flags |= IFF_UP;
1935 1.1 simonb
1936 1.3 simonb switch (ifa->ifa_addr->sa_family) {
1937 1.1 simonb #ifdef INET
1938 1.1 simonb case AF_INET:
1939 1.3 simonb sbmac_init_and_start(sc);
1940 1.3 simonb arp_ifinit(ifp, ifa);
1941 1.3 simonb break;
1942 1.1 simonb #endif
1943 1.1 simonb default:
1944 1.3 simonb sbmac_init_and_start(sc);
1945 1.3 simonb break;
1946 1.1 simonb }
1947 1.3 simonb break;
1948 1.1 simonb
1949 1.1 simonb default:
1950 1.29 dyoung return ENOTTY;
1951 1.1 simonb }
1952 1.1 simonb
1953 1.58 msaitoh return 0;
1954 1.1 simonb }
1955 1.1 simonb
1956 1.3 simonb /*
1957 1.30 dyoung * SBMAC_IOCTL(ifp, cmd, data)
1958 1.3 simonb *
1959 1.3 simonb * Main IOCTL handler - dispatches to other IOCTLs for various
1960 1.3 simonb * types of requests.
1961 1.3 simonb *
1962 1.3 simonb * Input parameters:
1963 1.3 simonb * ifp - interface pointer
1964 1.30 dyoung * cmd - command code
1965 1.3 simonb * data - pointer to argument data
1966 1.3 simonb *
1967 1.3 simonb * Return value:
1968 1.3 simonb * 0 if ok
1969 1.3 simonb * else error code
1970 1.3 simonb */
1971 1.1 simonb
1972 1.3 simonb static int
1973 1.30 dyoung sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1974 1.1 simonb {
1975 1.3 simonb struct sbmac_softc *sc = ifp->if_softc;
1976 1.3 simonb struct ifreq *ifr = (struct ifreq *) data;
1977 1.3 simonb int s, error = 0;
1978 1.1 simonb
1979 1.3 simonb s = splnet();
1980 1.1 simonb
1981 1.30 dyoung switch (cmd) {
1982 1.29 dyoung case SIOCINITIFADDR:
1983 1.30 dyoung error = sbmac_ether_ioctl(ifp, cmd, data);
1984 1.3 simonb break;
1985 1.1 simonb case SIOCSIFMTU:
1986 1.28 dyoung if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
1987 1.3 simonb error = EINVAL;
1988 1.30 dyoung else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1989 1.3 simonb /* XXX Program new MTU here */
1990 1.28 dyoung error = 0;
1991 1.3 simonb break;
1992 1.1 simonb case SIOCSIFFLAGS:
1993 1.29 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1994 1.29 dyoung break;
1995 1.3 simonb if (ifp->if_flags & IFF_UP) {
1996 1.3 simonb /*
1997 1.3 simonb * If only the state of the PROMISC flag changed,
1998 1.3 simonb * just tweak the hardware registers.
1999 1.3 simonb */
2000 1.3 simonb if ((ifp->if_flags & IFF_RUNNING) &&
2001 1.3 simonb (ifp->if_flags & IFF_PROMISC)) {
2002 1.3 simonb /* turn on promiscuous mode */
2003 1.39 matt sbmac_promiscuous_mode(sc, true);
2004 1.3 simonb } else if (ifp->if_flags & IFF_RUNNING &&
2005 1.3 simonb !(ifp->if_flags & IFF_PROMISC)) {
2006 1.3 simonb /* turn off promiscuous mode */
2007 1.39 matt sbmac_promiscuous_mode(sc, false);
2008 1.3 simonb } else
2009 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_on);
2010 1.3 simonb } else {
2011 1.3 simonb if (ifp->if_flags & IFF_RUNNING)
2012 1.3 simonb sbmac_set_channel_state(sc, sbmac_state_off);
2013 1.1 simonb }
2014 1.1 simonb
2015 1.3 simonb sc->sbm_if_flags = ifp->if_flags;
2016 1.3 simonb error = 0;
2017 1.3 simonb break;
2018 1.1 simonb
2019 1.57 msaitoh default:
2020 1.30 dyoung if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2021 1.3 simonb error = 0;
2022 1.27 dyoung if (ifp->if_flags & IFF_RUNNING)
2023 1.27 dyoung sbmac_setmulti(sc);
2024 1.1 simonb }
2025 1.3 simonb break;
2026 1.1 simonb }
2027 1.1 simonb
2028 1.3 simonb (void)splx(s);
2029 1.1 simonb
2030 1.58 msaitoh return error;
2031 1.1 simonb }
2032 1.1 simonb
2033 1.3 simonb /*
2034 1.3 simonb * SBMAC_IFMEDIA_UPD(ifp)
2035 1.3 simonb *
2036 1.3 simonb * Configure an appropriate media type for this interface,
2037 1.3 simonb * given the data in the interface structure
2038 1.3 simonb *
2039 1.3 simonb * Input parameters:
2040 1.3 simonb * ifp - interface
2041 1.3 simonb *
2042 1.3 simonb * Return value:
2043 1.3 simonb * 0 if ok
2044 1.3 simonb * else error code
2045 1.3 simonb */
2046 1.1 simonb
2047 1.3 simonb /*
2048 1.3 simonb * SBMAC_IFMEDIA_STS(ifp, ifmr)
2049 1.3 simonb *
2050 1.3 simonb * Report current media status (used by ifconfig, for example)
2051 1.3 simonb *
2052 1.3 simonb * Input parameters:
2053 1.3 simonb * ifp - interface structure
2054 1.3 simonb * ifmr - media request structure
2055 1.3 simonb *
2056 1.3 simonb * Return value:
2057 1.3 simonb * nothing
2058 1.3 simonb */
2059 1.1 simonb
2060 1.3 simonb /*
2061 1.3 simonb * SBMAC_WATCHDOG(ifp)
2062 1.3 simonb *
2063 1.3 simonb * Called periodically to make sure we're still happy.
2064 1.3 simonb *
2065 1.3 simonb * Input parameters:
2066 1.3 simonb * ifp - interface structure
2067 1.3 simonb *
2068 1.3 simonb * Return value:
2069 1.3 simonb * nothing
2070 1.3 simonb */
2071 1.1 simonb
2072 1.3 simonb static void
2073 1.3 simonb sbmac_watchdog(struct ifnet *ifp)
2074 1.3 simonb {
2075 1.1 simonb
2076 1.3 simonb /* XXX do something */
2077 1.1 simonb }
2078 1.1 simonb
2079 1.1 simonb /*
2080 1.1 simonb * One second timer, used to tick MII.
2081 1.1 simonb */
2082 1.3 simonb static void
2083 1.3 simonb sbmac_tick(void *arg)
2084 1.1 simonb {
2085 1.3 simonb struct sbmac_softc *sc = arg;
2086 1.3 simonb int s;
2087 1.1 simonb
2088 1.3 simonb s = splnet();
2089 1.3 simonb mii_tick(&sc->sc_mii);
2090 1.3 simonb splx(s);
2091 1.1 simonb
2092 1.3 simonb callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2093 1.1 simonb }
2094 1.1 simonb
2095 1.1 simonb
2096 1.3 simonb /*
2097 1.3 simonb * SBMAC_MATCH(parent, match, aux)
2098 1.3 simonb *
2099 1.3 simonb * Part of the config process - see if this device matches the
2100 1.3 simonb * info about what we expect to find on the bus.
2101 1.3 simonb *
2102 1.3 simonb * Input parameters:
2103 1.3 simonb * parent - parent bus structure
2104 1.3 simonb * match -
2105 1.3 simonb * aux - bus-specific args
2106 1.3 simonb *
2107 1.3 simonb * Return value:
2108 1.3 simonb * 1 if we match
2109 1.3 simonb * 0 if we don't match
2110 1.3 simonb */
2111 1.1 simonb
2112 1.3 simonb static int
2113 1.38 matt sbmac_match(device_t parent, cfdata_t match, void *aux)
2114 1.1 simonb {
2115 1.39 matt struct sbobio_attach_args *sa = aux;
2116 1.3 simonb
2117 1.3 simonb /*
2118 1.3 simonb * Make sure it's a MAC
2119 1.3 simonb */
2120 1.39 matt if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2121 1.3 simonb return 0;
2122 1.1 simonb
2123 1.3 simonb /*
2124 1.3 simonb * Yup, it is.
2125 1.3 simonb */
2126 1.3 simonb
2127 1.3 simonb return 1;
2128 1.3 simonb }
2129 1.3 simonb
2130 1.3 simonb /*
2131 1.3 simonb * SBMAC_PARSE_XDIGIT(str)
2132 1.3 simonb *
2133 1.3 simonb * Parse a hex digit, returning its value
2134 1.3 simonb *
2135 1.3 simonb * Input parameters:
2136 1.3 simonb * str - character
2137 1.3 simonb *
2138 1.3 simonb * Return value:
2139 1.3 simonb * hex value, or -1 if invalid
2140 1.3 simonb */
2141 1.3 simonb
2142 1.3 simonb static int
2143 1.3 simonb sbmac_parse_xdigit(char str)
2144 1.3 simonb {
2145 1.3 simonb int digit;
2146 1.3 simonb
2147 1.3 simonb if ((str >= '0') && (str <= '9'))
2148 1.3 simonb digit = str - '0';
2149 1.3 simonb else if ((str >= 'a') && (str <= 'f'))
2150 1.3 simonb digit = str - 'a' + 10;
2151 1.3 simonb else if ((str >= 'A') && (str <= 'F'))
2152 1.3 simonb digit = str - 'A' + 10;
2153 1.3 simonb else
2154 1.3 simonb digit = -1;
2155 1.3 simonb
2156 1.3 simonb return digit;
2157 1.3 simonb }
2158 1.3 simonb
2159 1.3 simonb /*
2160 1.3 simonb * SBMAC_PARSE_HWADDR(str, hwaddr)
2161 1.3 simonb *
2162 1.3 simonb * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2163 1.3 simonb * Ethernet address.
2164 1.3 simonb *
2165 1.3 simonb * Input parameters:
2166 1.3 simonb * str - string
2167 1.3 simonb * hwaddr - pointer to hardware address
2168 1.3 simonb *
2169 1.3 simonb * Return value:
2170 1.3 simonb * 0 if ok, else -1
2171 1.3 simonb */
2172 1.3 simonb
2173 1.3 simonb static int
2174 1.20 jmc sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
2175 1.3 simonb {
2176 1.3 simonb int digit1, digit2;
2177 1.3 simonb int idx = 6;
2178 1.1 simonb
2179 1.3 simonb while (*str && (idx > 0)) {
2180 1.3 simonb digit1 = sbmac_parse_xdigit(*str);
2181 1.3 simonb if (digit1 < 0)
2182 1.3 simonb return -1;
2183 1.3 simonb str++;
2184 1.3 simonb if (!*str)
2185 1.3 simonb return -1;
2186 1.3 simonb
2187 1.3 simonb if ((*str == ':') || (*str == '-')) {
2188 1.3 simonb digit2 = digit1;
2189 1.3 simonb digit1 = 0;
2190 1.3 simonb } else {
2191 1.3 simonb digit2 = sbmac_parse_xdigit(*str);
2192 1.3 simonb if (digit2 < 0)
2193 1.3 simonb return -1;
2194 1.3 simonb str++;
2195 1.3 simonb }
2196 1.3 simonb
2197 1.3 simonb *hwaddr++ = (digit1 << 4) | digit2;
2198 1.3 simonb idx--;
2199 1.3 simonb
2200 1.3 simonb if (*str == '-')
2201 1.3 simonb str++;
2202 1.3 simonb if (*str == ':')
2203 1.3 simonb str++;
2204 1.3 simonb }
2205 1.1 simonb return 0;
2206 1.3 simonb }
2207 1.3 simonb
2208 1.3 simonb /*
2209 1.3 simonb * SBMAC_ATTACH(parent, self, aux)
2210 1.3 simonb *
2211 1.3 simonb * Attach routine - init hardware and hook ourselves into NetBSD.
2212 1.3 simonb *
2213 1.3 simonb * Input parameters:
2214 1.3 simonb * parent - parent bus device
2215 1.3 simonb * self - our softc
2216 1.3 simonb * aux - attach data
2217 1.3 simonb *
2218 1.3 simonb * Return value:
2219 1.3 simonb * nothing
2220 1.3 simonb */
2221 1.3 simonb
2222 1.3 simonb static void
2223 1.38 matt sbmac_attach(device_t parent, device_t self, void *aux)
2224 1.3 simonb {
2225 1.39 matt struct sbmac_softc * const sc = device_private(self);
2226 1.39 matt struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
2227 1.58 msaitoh struct mii_data * const mii = &sc->sc_mii;
2228 1.39 matt struct sbobio_attach_args * const sa = aux;
2229 1.3 simonb u_char *eaddr;
2230 1.3 simonb static int unit = 0; /* XXX */
2231 1.3 simonb uint64_t ea_reg;
2232 1.3 simonb int idx;
2233 1.3 simonb
2234 1.38 matt sc->sc_dev = self;
2235 1.3 simonb
2236 1.3 simonb /* Determine controller base address */
2237 1.3 simonb
2238 1.40 matt sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset;
2239 1.3 simonb
2240 1.3 simonb eaddr = sc->sbm_hwaddr;
2241 1.3 simonb
2242 1.3 simonb /*
2243 1.3 simonb * Initialize context (get pointers to registers and stuff), then
2244 1.3 simonb * allocate the memory for the descriptor tables.
2245 1.3 simonb */
2246 1.3 simonb
2247 1.3 simonb sbmac_initctx(sc);
2248 1.3 simonb
2249 1.25 ad callout_init(&(sc->sc_tick_ch), 0);
2250 1.3 simonb
2251 1.3 simonb /*
2252 1.3 simonb * Read the ethernet address. The firwmare left this programmed
2253 1.3 simonb * for us in the ethernet address register for each mac.
2254 1.3 simonb */
2255 1.1 simonb
2256 1.3 simonb ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2257 1.3 simonb for (idx = 0; idx < 6; idx++) {
2258 1.3 simonb eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2259 1.3 simonb ea_reg >>= 8;
2260 1.1 simonb }
2261 1.1 simonb
2262 1.1 simonb #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2263 1.3 simonb if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2264 1.3 simonb eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2265 1.3 simonb sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2266 1.3 simonb eaddr[5] = unit;
2267 1.1 simonb }
2268 1.1 simonb
2269 1.1 simonb #ifdef SBMAC_ETH0_HWADDR
2270 1.3 simonb if (unit == 0)
2271 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2272 1.1 simonb #endif
2273 1.1 simonb #ifdef SBMAC_ETH1_HWADDR
2274 1.3 simonb if (unit == 1)
2275 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2276 1.1 simonb #endif
2277 1.1 simonb #ifdef SBMAC_ETH2_HWADDR
2278 1.3 simonb if (unit == 2)
2279 1.3 simonb sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2280 1.1 simonb #endif
2281 1.3 simonb unit++;
2282 1.3 simonb
2283 1.3 simonb /*
2284 1.3 simonb * Display Ethernet address (this is called during the config process
2285 1.3 simonb * so we need to finish off the config message that was being displayed)
2286 1.3 simonb */
2287 1.38 matt aprint_normal(": Ethernet%s\n",
2288 1.8 cgd sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2289 1.51 sevan aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
2290 1.1 simonb
2291 1.3 simonb
2292 1.3 simonb /*
2293 1.3 simonb * Set up ifnet structure
2294 1.3 simonb */
2295 1.3 simonb
2296 1.3 simonb ifp->if_softc = sc;
2297 1.39 matt memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
2298 1.54 msaitoh ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2299 1.3 simonb ifp->if_ioctl = sbmac_ioctl;
2300 1.3 simonb ifp->if_start = sbmac_start;
2301 1.3 simonb ifp->if_watchdog = sbmac_watchdog;
2302 1.3 simonb ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2303 1.3 simonb
2304 1.3 simonb /*
2305 1.3 simonb * Set up ifmedia support.
2306 1.3 simonb */
2307 1.3 simonb
2308 1.3 simonb /*
2309 1.3 simonb * Initialize MII/media info.
2310 1.3 simonb */
2311 1.59 msaitoh mii->mii_ifp = ifp;
2312 1.58 msaitoh mii->mii_readreg = sbmac_mii_readreg;
2313 1.58 msaitoh mii->mii_writereg = sbmac_mii_writereg;
2314 1.58 msaitoh mii->mii_statchg = sbmac_mii_statchg;
2315 1.58 msaitoh sc->sc_ethercom.ec_mii = mii;
2316 1.58 msaitoh ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
2317 1.58 msaitoh mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
2318 1.3 simonb MII_OFFSET_ANY, 0);
2319 1.3 simonb
2320 1.58 msaitoh if (LIST_FIRST(&mii->mii_phys) == NULL) {
2321 1.58 msaitoh ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
2322 1.58 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
2323 1.58 msaitoh } else
2324 1.58 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
2325 1.1 simonb
2326 1.3 simonb /*
2327 1.3 simonb * map/route interrupt
2328 1.3 simonb */
2329 1.3 simonb
2330 1.39 matt sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET,
2331 1.3 simonb sbmac_intr, sc);
2332 1.3 simonb
2333 1.3 simonb /*
2334 1.3 simonb * Call MI attach routines.
2335 1.3 simonb */
2336 1.3 simonb if_attach(ifp);
2337 1.48 ozaki if_deferred_start_init(ifp, NULL);
2338 1.3 simonb ether_ifattach(ifp, eaddr);
2339 1.1 simonb }
2340