sbmac.c revision 1.11 1 /* $NetBSD: sbmac.c,v 1.11 2003/09/26 13:34:56 simonb Exp $ */
2
3 /*
4 * Copyright 2000, 2001
5 * Broadcom Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and copied only
8 * in accordance with the following terms and conditions. Subject to these
9 * conditions, you may download, copy, install, use, modify and distribute
10 * modified or unmodified copies of this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce and
14 * retain this copyright notice and list of conditions as they appear in
15 * the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Broadcom Corporation. The "Broadcom Corporation" name may not be
19 * used to endorse or promote products derived from this software
20 * without the prior written permission of Broadcom Corporation.
21 *
22 * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25 * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26 * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27 * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.11 2003/09/26 13:34:56 simonb Exp $");
37
38 #include "bpfilter.h"
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/queue.h>
50 #include <sys/device.h>
51
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_ether.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57
58 #if NBPFILTER > 0
59 #include <net/bpf.h>
60 #endif
61
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
65 #endif
66
67 #ifdef NS
68 #include <netns/ns.h>
69 #include <netns/ns_if.h>
70 #endif
71
72 #include <machine/locore.h>
73
74 #include "sbobiovar.h"
75
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
79
80 #include <mips/sibyte/include/sb1250_defs.h>
81 #include <mips/sibyte/include/sb1250_regs.h>
82 #include <mips/sibyte/include/sb1250_mac.h>
83 #include <mips/sibyte/include/sb1250_dma.h>
84 #include <mips/sibyte/include/sb1250_scd.h>
85
86
87 /* Simple types */
88
89 typedef u_long sbmac_port_t;
90 typedef uint64_t sbmac_physaddr_t;
91 typedef uint64_t sbmac_enetaddr_t;
92
93 typedef enum { sbmac_speed_auto, sbmac_speed_10,
94 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
95
96 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
97 sbmac_duplex_full } sbmac_duplex_t;
98
99 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
100 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
101
102 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
103 sbmac_state_broken } sbmac_state_t;
104
105
106 /* Macros */
107
108 #define SBDMA_NEXTBUF(d, f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
109 (d)->sbdma_dscrtable : (d)->f+1)
110
111
112 #define CACHELINESIZE 32
113 #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
114 #define KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
115 #define KVTOPHYS(x) kvtophys((vaddr_t)(x))
116
117 #ifdef SBMACDEBUG
118 #define dprintf(x) printf x
119 #else
120 #define dprintf(x)
121 #endif
122
123 #define SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
124 #define SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
125
126 #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
127
128 #define SBMAC_MAX_TXDESCR 64
129 #define SBMAC_MAX_RXDESCR 64
130
131 #define ETHER_ALIGN 2
132
133 /* DMA Descriptor structure */
134
135 typedef struct sbdmadscr_s {
136 uint64_t dscr_a;
137 uint64_t dscr_b;
138 } sbdmadscr_t;
139
140
141 /* DMA Controller structure */
142
143 typedef struct sbmacdma_s {
144
145 /*
146 * This stuff is used to identify the channel and the registers
147 * associated with it.
148 */
149
150 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
151 int sbdma_channel; /* channel number */
152 int sbdma_txdir; /* direction (1=transmit) */
153 int sbdma_maxdescr; /* total # of descriptors in ring */
154 sbmac_port_t sbdma_config0; /* DMA config register 0 */
155 sbmac_port_t sbdma_config1; /* DMA config register 1 */
156 sbmac_port_t sbdma_dscrbase; /* Descriptor base address */
157 sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */
158 sbmac_port_t sbdma_curdscr; /* current descriptor address */
159
160 /*
161 * This stuff is for maintenance of the ring
162 */
163
164 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
165 sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
166
167 struct mbuf **sbdma_ctxtable; /* context table, one per descr */
168
169 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
170 sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
171 sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
172 } sbmacdma_t;
173
174
175 /* Ethernet softc structure */
176
177 struct sbmac_softc {
178
179 /*
180 * NetBSD-specific things
181 */
182 struct device sc_dev; /* base device (must be first) */
183 struct ethercom sc_ethercom; /* Ethernet common part */
184 struct mii_data sc_mii;
185 struct callout sc_tick_ch;
186
187 int sbm_if_flags;
188 void *sbm_intrhand;
189
190 /*
191 * Controller-specific things
192 */
193
194 sbmac_port_t sbm_base; /* MAC's base address */
195 sbmac_state_t sbm_state; /* current state */
196
197 sbmac_port_t sbm_macenable; /* MAC Enable Register */
198 sbmac_port_t sbm_maccfg; /* MAC Configuration Register */
199 sbmac_port_t sbm_fifocfg; /* FIFO configuration register */
200 sbmac_port_t sbm_framecfg; /* Frame configuration register */
201 sbmac_port_t sbm_rxfilter; /* receive filter register */
202 sbmac_port_t sbm_isr; /* Interrupt status register */
203 sbmac_port_t sbm_imr; /* Interrupt mask register */
204
205 sbmac_speed_t sbm_speed; /* current speed */
206 sbmac_duplex_t sbm_duplex; /* current duplex */
207 sbmac_fc_t sbm_fc; /* current flow control setting */
208 int sbm_rxflags; /* received packet flags */
209
210 u_char sbm_hwaddr[ETHER_ADDR_LEN];
211
212 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
213 sbmacdma_t sbm_rxdma;
214
215 int sbm_pass3_dma; /* chip has pass3 SOC DMA features */
216 };
217
218
219 /* Externs */
220
221 extern paddr_t kvtophys(vaddr_t);
222
223 /* Prototypes */
224
225 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
226 int txrx, int maxdescr);
227 static void sbdma_channel_start(sbmacdma_t *d);
228 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
229 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
230 static void sbdma_emptyring(sbmacdma_t *d);
231 static void sbdma_fillring(sbmacdma_t *d);
232 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
233 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
234 static void sbmac_initctx(struct sbmac_softc *s);
235 static void sbmac_channel_start(struct sbmac_softc *s);
236 static void sbmac_channel_stop(struct sbmac_softc *s);
237 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
238 sbmac_state_t);
239 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
240 static void sbmac_init_and_start(struct sbmac_softc *sc);
241 static uint64_t sbmac_addr2reg(u_char *ptr);
242 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
243 static void sbmac_start(struct ifnet *ifp);
244 static void sbmac_setmulti(struct sbmac_softc *sc);
245 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
246 static int sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
247 static int sbmac_mediachange(struct ifnet *ifp);
248 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
249 static void sbmac_watchdog(struct ifnet *ifp);
250 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
251 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
252 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
253 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
254 sbmac_fc_t fc);
255 static void sbmac_tick(void *arg);
256
257
258 /* Globals */
259
260 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
261 sbmac_match, sbmac_attach, NULL, NULL);
262
263 static uint32_t sbmac_mii_bitbang_read(struct device *self);
264 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
265
266 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
267 sbmac_mii_bitbang_read,
268 sbmac_mii_bitbang_write,
269 {
270 (uint32_t)M_MAC_MDIO_OUT, /* MII_BIT_MDO */
271 (uint32_t)M_MAC_MDIO_IN, /* MII_BIT_MDI */
272 (uint32_t)M_MAC_MDC, /* MII_BIT_MDC */
273 0, /* MII_BIT_DIR_HOST_PHY */
274 (uint32_t)M_MAC_MDIO_DIR /* MII_BIT_DIR_PHY_HOST */
275 }
276 };
277
278 static uint32_t
279 sbmac_mii_bitbang_read(struct device *self)
280 {
281 struct sbmac_softc *sc = (void *) self;
282 sbmac_port_t reg;
283
284 reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
285 return (uint32_t) SBMAC_READCSR(reg);
286 }
287
288 static void
289 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
290 {
291 struct sbmac_softc *sc = (void *) self;
292 sbmac_port_t reg;
293
294 reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
295
296 SBMAC_WRITECSR(reg, (val &
297 (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
298 }
299
300 /*
301 * Read an PHY register through the MII.
302 */
303 static int
304 sbmac_mii_readreg(struct device *self, int phy, int reg)
305 {
306
307 return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
308 }
309
310 /*
311 * Write to a PHY register through the MII.
312 */
313 static void
314 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
315 {
316
317 mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
318 }
319
320 static void
321 sbmac_mii_statchg(struct device *self)
322 {
323 struct sbmac_softc *sc = (struct sbmac_softc *)self;
324 sbmac_state_t oldstate;
325
326 /* Stop the MAC in preparation for changing all of the parameters. */
327 oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
328
329 switch (sc->sc_ethercom.ec_if.if_baudrate) {
330 default: /* if autonegotiation fails, assume 10Mbit */
331 case IF_Mbps(10):
332 sbmac_set_speed(sc, sbmac_speed_10);
333 break;
334
335 case IF_Mbps(100):
336 sbmac_set_speed(sc, sbmac_speed_100);
337 break;
338
339 case IF_Mbps(1000):
340 sbmac_set_speed(sc, sbmac_speed_1000);
341 break;
342 }
343
344 if (sc->sc_mii.mii_media_active & IFM_FDX) {
345 /* Configure for full-duplex */
346 /* XXX: is flow control right for 10, 100? */
347 sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
348 } else {
349 /* Configure for half-duplex */
350 /* XXX: is flow control right? */
351 sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
352 }
353
354 /* And put it back into its former state. */
355 sbmac_set_channel_state(sc, oldstate);
356 }
357
358 /*
359 * SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
360 *
361 * Initialize a DMA channel context. Since there are potentially
362 * eight DMA channels per MAC, it's nice to do this in a standard
363 * way.
364 *
365 * Input parameters:
366 * d - sbmacdma_t structure (DMA channel context)
367 * s - sbmac_softc structure (pointer to a MAC)
368 * chan - channel number (0..1 right now)
369 * txrx - Identifies DMA_TX or DMA_RX for channel direction
370 * maxdescr - number of descriptors
371 *
372 * Return value:
373 * nothing
374 */
375
376 static void
377 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
378 int maxdescr)
379 {
380 /*
381 * Save away interesting stuff in the structure
382 */
383
384 d->sbdma_eth = s;
385 d->sbdma_channel = chan;
386 d->sbdma_txdir = txrx;
387
388 /*
389 * initialize register pointers
390 */
391
392 d->sbdma_config0 = PKSEG1(s->sbm_base +
393 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
394 d->sbdma_config1 = PKSEG1(s->sbm_base +
395 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
396 d->sbdma_dscrbase = PKSEG1(s->sbm_base +
397 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
398 d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
399 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
400 d->sbdma_curdscr = PKSEG1(s->sbm_base +
401 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
402
403 /*
404 * Allocate memory for the ring
405 */
406
407 d->sbdma_maxdescr = maxdescr;
408
409 d->sbdma_dscrtable = (sbdmadscr_t *)
410 KMALLOC(d->sbdma_maxdescr*sizeof(sbdmadscr_t));
411
412 bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
413
414 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
415
416 d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
417
418 /*
419 * And context table
420 */
421
422 d->sbdma_ctxtable = (struct mbuf **)
423 KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
424
425 bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
426 }
427
428 /*
429 * SBDMA_CHANNEL_START(d)
430 *
431 * Initialize the hardware registers for a DMA channel.
432 *
433 * Input parameters:
434 * d - DMA channel to init (context must be previously init'd
435 *
436 * Return value:
437 * nothing
438 */
439
440 static void
441 sbdma_channel_start(sbmacdma_t *d)
442 {
443 /*
444 * Turn on the DMA channel
445 */
446
447 SBMAC_WRITECSR(d->sbdma_config1, 0);
448
449 SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
450
451 SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
452
453 /*
454 * Initialize ring pointers
455 */
456
457 d->sbdma_addptr = d->sbdma_dscrtable;
458 d->sbdma_remptr = d->sbdma_dscrtable;
459 }
460
461 /*
462 * SBDMA_ADD_RCVBUFFER(d, m)
463 *
464 * Add a buffer to the specified DMA channel. For receive channels,
465 * this queues a buffer for inbound packets.
466 *
467 * Input parameters:
468 * d - DMA channel descriptor
469 * m - mbuf to add, or NULL if we should allocate one.
470 *
471 * Return value:
472 * 0 if buffer could not be added (ring is full)
473 * 1 if buffer added successfully
474 */
475
476 static int
477 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
478 {
479 sbdmadscr_t *dsc;
480 sbdmadscr_t *nextdsc;
481 struct mbuf *m_new = NULL;
482
483 /* get pointer to our current place in the ring */
484
485 dsc = d->sbdma_addptr;
486 nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
487
488 /*
489 * figure out if the ring is full - if the next descriptor
490 * is the same as the one that we're going to remove from
491 * the ring, the ring is full
492 */
493
494 if (nextdsc == d->sbdma_remptr)
495 return ENOSPC;
496
497 /*
498 * Allocate an mbuf if we don't already have one.
499 * If we do have an mbuf, reset it so that it's empty.
500 */
501
502 if (m == NULL) {
503 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
504 if (m_new == NULL) {
505 printf("%s: mbuf allocation failed\n",
506 d->sbdma_eth->sc_dev.dv_xname);
507 return ENOBUFS;
508 }
509
510 MCLGET(m_new, M_DONTWAIT);
511 if (!(m_new->m_flags & M_EXT)) {
512 printf("%s: mbuf cluster allocation failed\n",
513 d->sbdma_eth->sc_dev.dv_xname);
514 m_freem(m_new);
515 return ENOBUFS;
516 }
517
518 m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
519 m_adj(m_new, ETHER_ALIGN);
520 } else {
521 m_new = m;
522 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
523 m_new->m_data = m_new->m_ext.ext_buf;
524 m_adj(m_new, ETHER_ALIGN);
525 }
526
527 /*
528 * fill in the descriptor
529 */
530
531 dsc->dscr_a = KVTOPHYS(mtod(m_new, caddr_t)) |
532 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
533 M_DMA_DSCRA_INTERRUPT;
534
535 /* receiving: no options */
536 dsc->dscr_b = 0;
537
538 /*
539 * fill in the context
540 */
541
542 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
543
544 /*
545 * point at next packet
546 */
547
548 d->sbdma_addptr = nextdsc;
549
550 /*
551 * Give the buffer to the DMA engine.
552 */
553
554 SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
555
556 return 0; /* we did it */
557 }
558
559 /*
560 * SBDMA_ADD_TXBUFFER(d, m)
561 *
562 * Add a transmit buffer to the specified DMA channel, causing a
563 * transmit to start.
564 *
565 * Input parameters:
566 * d - DMA channel descriptor
567 * m - mbuf to add
568 *
569 * Return value:
570 * 0 transmit queued successfully
571 * otherwise error code
572 */
573
574 static int
575 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
576 {
577 sbdmadscr_t *dsc;
578 sbdmadscr_t *nextdsc;
579 sbdmadscr_t *prevdsc;
580 sbdmadscr_t *origdesc;
581 int length;
582 int num_mbufs = 0;
583 struct sbmac_softc *sc = d->sbdma_eth;
584
585 /* get pointer to our current place in the ring */
586
587 dsc = d->sbdma_addptr;
588 nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
589
590 /*
591 * figure out if the ring is full - if the next descriptor
592 * is the same as the one that we're going to remove from
593 * the ring, the ring is full
594 */
595
596 if (nextdsc == d->sbdma_remptr)
597 return ENOSPC;
598
599 #if 0
600 do {
601 struct mbuf *m0;
602
603 printf("mbuf chain: ");
604 for (m0 = m; m0 != 0; m0 = m0->m_next) {
605 printf("%d%c/%X ", m0->m_len,
606 m0->m_flags & M_EXT ? 'X' : 'N',
607 mtod(m0, u_int));
608 }
609 printf("\n");
610 } while (0);
611 #endif
612
613 /*
614 * PASS3 parts do not have buffer alignment restriction.
615 * No need to copy/coalesce to new mbuf. Also has different
616 * descriptor format
617 */
618 if (sc->sbm_pass3_dma) {
619 struct mbuf *m_temp = NULL;
620
621 /*
622 * Loop thru this mbuf record.
623 * The head mbuf will have SOP set.
624 */
625 dsc->dscr_a = KVTOPHYS(mtod(m,caddr_t)) |
626 M_DMA_DSCRA_INTERRUPT |
627 M_DMA_ETHTX_SOP;
628
629 /*
630 * transmitting: set outbound options,buffer A size(+ low 5
631 * bits of start addr),and packet length.
632 */
633 dsc->dscr_b =
634 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
635 V_DMA_DSCRB_A_SIZE((m->m_len + (mtod(m,unsigned int) & 0x0000001F))) |
636 V_DMA_DSCRB_PKT_SIZE_MSB( (m->m_pkthdr.len & 0xB000) ) |
637 V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len);
638
639 d->sbdma_addptr = nextdsc;
640 origdesc = prevdsc = dsc;
641 dsc = d->sbdma_addptr;
642 num_mbufs++;
643
644 /* Start with first non-head mbuf */
645 for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
646
647 if (m_temp->m_len == 0)
648 continue; /* Skip 0-length mbufs */
649
650 /*
651 * fill in the descriptor
652 */
653
654 dsc->dscr_a = KVTOPHYS(mtod(m_temp,caddr_t)) |
655 M_DMA_DSCRA_INTERRUPT;
656
657 /* transmitting: set outbound options,buffer A size(+ low 5 bits of start addr) */
658 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
659 V_DMA_DSCRB_A_SIZE( (m_temp->m_len + (mtod(m_temp,unsigned int) & 0x0000001F)) );
660
661 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = NULL;
662
663 /*
664 * point at next descriptor
665 */
666 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
667 if (nextdsc == d->sbdma_remptr) {
668 d->sbdma_addptr = origdesc;
669 return ENOSPC;
670 }
671 d->sbdma_addptr = nextdsc;
672
673 prevdsc = dsc;
674 dsc = d->sbdma_addptr;
675 num_mbufs++;
676 }
677
678 /*Set head mbuf to last context index*/
679 d->sbdma_ctxtable[prevdsc-d->sbdma_dscrtable] = m;
680 } else {
681 struct mbuf *m_new = NULL;
682 /*
683 * [BEGIN XXX]
684 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we assume
685 * it will fit). This is a temporary hack to get us going.
686 */
687
688 MGETHDR(m_new,M_DONTWAIT,MT_DATA);
689 if (m_new == NULL) {
690 printf("%s: mbuf allocation failed\n",
691 d->sbdma_eth->sc_dev.dv_xname);
692 return ENOBUFS;
693 }
694
695 MCLGET(m_new,M_DONTWAIT);
696 if (!(m_new->m_flags & M_EXT)) {
697 printf("%s: mbuf cluster allocation failed\n",
698 d->sbdma_eth->sc_dev.dv_xname);
699 m_freem(m_new);
700 return ENOBUFS;
701 }
702
703 m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
704 /*m_adj(m_new,ETHER_ALIGN);*/
705
706 /*
707 * XXX Don't forget to include the offset portion in the
708 * XXX cache block calculation when this code is rewritten!
709 */
710
711 /*
712 * Copy data
713 */
714
715 m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,caddr_t));
716 m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
717
718 /* Free old mbuf 'm', actual mbuf is now 'm_new' */
719
720 // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
721 // XXX: function succeeds.
722 // m_freem(m);
723 length = m_new->m_len;
724
725 /* [END XXX] */
726 /*
727 * fill in the descriptor
728 */
729
730 dsc->dscr_a = KVTOPHYS(mtod(m_new,caddr_t)) |
731 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
732 M_DMA_DSCRA_INTERRUPT |
733 M_DMA_ETHTX_SOP;
734
735 /* transmitting: set outbound options and length */
736 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
737 V_DMA_DSCRB_PKT_SIZE(length);
738
739 num_mbufs++;
740
741 /*
742 * fill in the context
743 */
744
745 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
746
747 /*
748 * point at next packet
749 */
750 d->sbdma_addptr = nextdsc;
751 }
752
753 /*
754 * Give the buffer to the DMA engine.
755 */
756
757 SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
758
759 return 0; /* we did it */
760 }
761
762 /*
763 * SBDMA_EMPTYRING(d)
764 *
765 * Free all allocated mbufs on the specified DMA channel;
766 *
767 * Input parameters:
768 * d - DMA channel
769 *
770 * Return value:
771 * nothing
772 */
773
774 static void
775 sbdma_emptyring(sbmacdma_t *d)
776 {
777 int idx;
778 struct mbuf *m;
779
780 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
781 m = d->sbdma_ctxtable[idx];
782 if (m) {
783 m_freem(m);
784 d->sbdma_ctxtable[idx] = NULL;
785 }
786 }
787 }
788
789 /*
790 * SBDMA_FILLRING(d)
791 *
792 * Fill the specified DMA channel (must be receive channel)
793 * with mbufs
794 *
795 * Input parameters:
796 * d - DMA channel
797 *
798 * Return value:
799 * nothing
800 */
801
802 static void
803 sbdma_fillring(sbmacdma_t *d)
804 {
805 int idx;
806
807 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
808 if (sbdma_add_rcvbuffer(d, NULL) != 0)
809 break;
810 }
811
812 /*
813 * SBDMA_RX_PROCESS(sc, d)
814 *
815 * Process "completed" receive buffers on the specified DMA channel.
816 * Note that this isn't really ideal for priority channels, since
817 * it processes all of the packets on a given channel before
818 * returning.
819 *
820 * Input parameters:
821 * sc - softc structure
822 * d - DMA channel context
823 *
824 * Return value:
825 * nothing
826 */
827
828 static void
829 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
830 {
831 int curidx;
832 int hwidx;
833 sbdmadscr_t *dsc;
834 struct mbuf *m;
835 struct ether_header *eh;
836 int len;
837
838 struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
839
840 for (;;) {
841 /*
842 * figure out where we are (as an index) and where
843 * the hardware is (also as an index)
844 *
845 * This could be done faster if (for example) the
846 * descriptor table was page-aligned and contiguous in
847 * both virtual and physical memory -- you could then
848 * just compare the low-order bits of the virtual address
849 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
850 */
851
852 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
853 hwidx = (int)
854 (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
855 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
856
857 /*
858 * If they're the same, that means we've processed all
859 * of the descriptors up to (but not including) the one that
860 * the hardware is working on right now.
861 */
862
863 if (curidx == hwidx)
864 break;
865
866 /*
867 * Otherwise, get the packet's mbuf ptr back
868 */
869
870 dsc = &(d->sbdma_dscrtable[curidx]);
871 m = d->sbdma_ctxtable[curidx];
872 d->sbdma_ctxtable[curidx] = NULL;
873
874 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
875
876 /*
877 * Check packet status. If good, process it.
878 * If not, silently drop it and put it back on the
879 * receive ring.
880 */
881
882 if (! (dsc->dscr_a & M_DMA_ETHRX_BAD)) {
883
884 /*
885 * Set length into the packet
886 * XXX do we remove the CRC here?
887 */
888 m->m_pkthdr.len = m->m_len = len;
889
890 ifp->if_ipackets++;
891 eh = mtod(m, struct ether_header *);
892 m->m_pkthdr.rcvif = ifp;
893
894
895 /*
896 * Add a new buffer to replace the old one.
897 */
898 sbdma_add_rcvbuffer(d, NULL);
899
900 #if (NBPFILTER > 0)
901 /*
902 * Handle BPF listeners. Let the BPF user see the
903 * packet, but don't pass it up to the ether_input()
904 * layer unless it's a broadcast packet, multicast
905 * packet, matches our ethernet address or the
906 * interface is in promiscuous mode.
907 */
908
909 if (ifp->if_bpf)
910 bpf_mtap(ifp->if_bpf, m);
911 #endif
912 /*
913 * Pass the buffer to the kernel
914 */
915 (*ifp->if_input)(ifp, m);
916 } else {
917 /*
918 * Packet was mangled somehow. Just drop it and
919 * put it back on the receive ring.
920 */
921 sbdma_add_rcvbuffer(d, m);
922 }
923
924 /*
925 * .. and advance to the next buffer.
926 */
927
928 d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
929 }
930 }
931
932 /*
933 * SBDMA_TX_PROCESS(sc, d)
934 *
935 * Process "completed" transmit buffers on the specified DMA channel.
936 * This is normally called within the interrupt service routine.
937 * Note that this isn't really ideal for priority channels, since
938 * it processes all of the packets on a given channel before
939 * returning.
940 *
941 * Input parameters:
942 * sc - softc structure
943 * d - DMA channel context
944 *
945 * Return value:
946 * nothing
947 */
948
949 static void
950 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
951 {
952 int curidx;
953 int hwidx;
954 sbdmadscr_t *dsc;
955 struct mbuf *m;
956
957 struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
958
959 for (;;) {
960 /*
961 * figure out where we are (as an index) and where
962 * the hardware is (also as an index)
963 *
964 * This could be done faster if (for example) the
965 * descriptor table was page-aligned and contiguous in
966 * both virtual and physical memory -- you could then
967 * just compare the low-order bits of the virtual address
968 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
969 */
970
971 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
972 hwidx = (int)
973 (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
974 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
975
976 /*
977 * If they're the same, that means we've processed all
978 * of the descriptors up to (but not including) the one that
979 * the hardware is working on right now.
980 */
981
982 if (curidx == hwidx)
983 break;
984
985 /*
986 * Otherwise, get the packet's mbuf ptr back
987 */
988
989 dsc = &(d->sbdma_dscrtable[curidx]);
990 m = d->sbdma_ctxtable[curidx];
991 d->sbdma_ctxtable[curidx] = NULL;
992
993 /*
994 * for transmits, we just free buffers.
995 */
996
997 m_freem(m);
998
999 /*
1000 * .. and advance to the next buffer.
1001 */
1002
1003 d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
1004 }
1005
1006 /*
1007 * Decide what to set the IFF_OACTIVE bit in the interface to.
1008 * It's supposed to reflect if the interface is actively
1009 * transmitting, but that's really hard to do quickly.
1010 */
1011
1012 ifp->if_flags &= ~IFF_OACTIVE;
1013 }
1014
1015 /*
1016 * SBMAC_INITCTX(s)
1017 *
1018 * Initialize an Ethernet context structure - this is called
1019 * once per MAC on the 1250. Memory is allocated here, so don't
1020 * call it again from inside the ioctl routines that bring the
1021 * interface up/down
1022 *
1023 * Input parameters:
1024 * s - sbmac context structure
1025 *
1026 * Return value:
1027 * 0
1028 */
1029
1030 static void
1031 sbmac_initctx(struct sbmac_softc *s)
1032 {
1033 uint64_t sysrev;
1034
1035 /*
1036 * figure out the addresses of some ports
1037 */
1038
1039 s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
1040 s->sbm_maccfg = PKSEG1(s->sbm_base + R_MAC_CFG);
1041 s->sbm_fifocfg = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
1042 s->sbm_framecfg = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
1043 s->sbm_rxfilter = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
1044 s->sbm_isr = PKSEG1(s->sbm_base + R_MAC_STATUS);
1045 s->sbm_imr = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
1046
1047 /*
1048 * Initialize the DMA channels. Right now, only one per MAC is used
1049 * Note: Only do this _once_, as it allocates memory from the kernel!
1050 */
1051
1052 sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1053 sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1054
1055 /*
1056 * initial state is OFF
1057 */
1058
1059 s->sbm_state = sbmac_state_off;
1060
1061 /*
1062 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1063 */
1064
1065 s->sbm_speed = sbmac_speed_10;
1066 s->sbm_duplex = sbmac_duplex_half;
1067 s->sbm_fc = sbmac_fc_disabled;
1068
1069 /*
1070 * Determine SOC type. 112x has Pass3 SOC features.
1071 */
1072 sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1073 s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1074 SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1075 SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1076 (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1077 0));
1078 if (s->sbm_pass3_dma) {
1079 printf("\n");
1080 printf("%s: disabling unaligned tx DMA\n", s->sc_dev.dv_xname);
1081 printf("%s", s->sc_dev.dv_xname);
1082 s->sbm_pass3_dma = 0;
1083 }
1084 }
1085
1086 /*
1087 * SBMAC_CHANNEL_START(s)
1088 *
1089 * Start packet processing on this MAC.
1090 *
1091 * Input parameters:
1092 * s - sbmac structure
1093 *
1094 * Return value:
1095 * nothing
1096 */
1097
1098 static void
1099 sbmac_channel_start(struct sbmac_softc *s)
1100 {
1101 uint64_t reg;
1102 sbmac_port_t port;
1103 uint64_t cfg, fifo, framecfg;
1104 int idx;
1105 uint64_t dma_cfg0, fifo_cfg;
1106 sbmacdma_t *txdma;
1107
1108 /*
1109 * Don't do this if running
1110 */
1111
1112 if (s->sbm_state == sbmac_state_on)
1113 return;
1114
1115 /*
1116 * Bring the controller out of reset, but leave it off.
1117 */
1118
1119 SBMAC_WRITECSR(s->sbm_macenable, 0);
1120
1121 /*
1122 * Ignore all received packets
1123 */
1124
1125 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1126
1127 /*
1128 * Calculate values for various control registers.
1129 */
1130
1131 cfg = M_MAC_RETRY_EN |
1132 M_MAC_TX_HOLD_SOP_EN |
1133 V_MAC_TX_PAUSE_CNT_16K |
1134 M_MAC_AP_STAT_EN |
1135 M_MAC_SS_EN |
1136 0;
1137
1138 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1139 V_MAC_TX_RD_THRSH(4) |
1140 V_MAC_TX_RL_THRSH(4) |
1141 V_MAC_RX_PL_THRSH(4) |
1142 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1143 V_MAC_RX_PL_THRSH(4) |
1144 V_MAC_RX_RL_THRSH(8) |
1145 0;
1146
1147 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1148 V_MAC_MAX_FRAMESZ_DEFAULT |
1149 V_MAC_BACKOFF_SEL(1);
1150
1151 /*
1152 * Clear out the hash address map
1153 */
1154
1155 port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
1156 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1157 SBMAC_WRITECSR(port, 0);
1158 port += sizeof(uint64_t);
1159 }
1160
1161 /*
1162 * Clear out the exact-match table
1163 */
1164
1165 port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1166 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1167 SBMAC_WRITECSR(port, 0);
1168 port += sizeof(uint64_t);
1169 }
1170
1171 /*
1172 * Clear out the DMA Channel mapping table registers
1173 */
1174
1175 port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
1176 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1177 SBMAC_WRITECSR(port, 0);
1178 port += sizeof(uint64_t);
1179 }
1180
1181 port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
1182 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1183 SBMAC_WRITECSR(port, 0);
1184 port += sizeof(uint64_t);
1185 }
1186
1187 /*
1188 * Program the hardware address. It goes into the hardware-address
1189 * register as well as the first filter register.
1190 */
1191
1192 reg = sbmac_addr2reg(s->sbm_hwaddr);
1193
1194 port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1195 SBMAC_WRITECSR(port, reg);
1196 port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
1197 SBMAC_WRITECSR(port, 0); // pass1 workaround
1198
1199 /*
1200 * Set the receive filter for no packets, and write values
1201 * to the various config registers
1202 */
1203
1204 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1205 SBMAC_WRITECSR(s->sbm_imr, 0);
1206 SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1207 SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
1208 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1209
1210 /*
1211 * Initialize DMA channels (rings should be ok now)
1212 */
1213
1214 sbdma_channel_start(&(s->sbm_rxdma));
1215 sbdma_channel_start(&(s->sbm_txdma));
1216
1217 /*
1218 * Configure the speed, duplex, and flow control
1219 */
1220
1221 sbmac_set_speed(s, s->sbm_speed);
1222 sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
1223
1224 /*
1225 * Fill the receive ring
1226 */
1227
1228 sbdma_fillring(&(s->sbm_rxdma));
1229
1230 /*
1231 * Turn on the rest of the bits in the enable register
1232 */
1233
1234 SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1235 M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1236
1237
1238 /*
1239 * Accept any kind of interrupt on TX and RX DMA channel 0
1240 */
1241 SBMAC_WRITECSR(s->sbm_imr,
1242 (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1243 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1244
1245 /*
1246 * Enable receiving unicasts and broadcasts
1247 */
1248
1249 SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1250
1251 /*
1252 * On chips which support unaligned DMA features, set the descriptor
1253 * ring for transmit channels to use the unaligned buffer format.
1254 */
1255 txdma = &(s->sbm_txdma);
1256
1257 if (s->sbm_pass3_dma) {
1258
1259 dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1260 dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1261 M_DMA_TBX_EN | M_DMA_TDX_EN;
1262 SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1263
1264 fifo_cfg = SBMAC_READCSR(s->sbm_fifocfg);
1265 fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1266 V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1267 SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
1268 }
1269
1270 /*
1271 * we're running now.
1272 */
1273
1274 s->sbm_state = sbmac_state_on;
1275 s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1276
1277 /*
1278 * Program multicast addresses
1279 */
1280
1281 sbmac_setmulti(s);
1282
1283 /*
1284 * If channel was in promiscuous mode before, turn that on
1285 */
1286
1287 if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1288 sbmac_promiscuous_mode(s, 1);
1289
1290 /*
1291 * Turn on the once-per-second timer
1292 */
1293
1294 callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
1295 }
1296
1297 /*
1298 * SBMAC_CHANNEL_STOP(s)
1299 *
1300 * Stop packet processing on this MAC.
1301 *
1302 * Input parameters:
1303 * s - sbmac structure
1304 *
1305 * Return value:
1306 * nothing
1307 */
1308
1309 static void
1310 sbmac_channel_stop(struct sbmac_softc *s)
1311 {
1312 uint64_t ctl;
1313
1314 /* don't do this if already stopped */
1315
1316 if (s->sbm_state == sbmac_state_off)
1317 return;
1318
1319 /* don't accept any packets, disable all interrupts */
1320
1321 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1322 SBMAC_WRITECSR(s->sbm_imr, 0);
1323
1324 /* Turn off ticker */
1325
1326 callout_stop(&(s->sc_tick_ch));
1327
1328 /* turn off receiver and transmitter */
1329
1330 ctl = SBMAC_READCSR(s->sbm_macenable);
1331 ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1332 SBMAC_WRITECSR(s->sbm_macenable, ctl);
1333
1334 /* We're stopped now. */
1335
1336 s->sbm_state = sbmac_state_off;
1337 s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1338
1339 /* Empty the receive and transmit rings */
1340
1341 sbdma_emptyring(&(s->sbm_rxdma));
1342 sbdma_emptyring(&(s->sbm_txdma));
1343 }
1344
1345 /*
1346 * SBMAC_SET_CHANNEL_STATE(state)
1347 *
1348 * Set the channel's state ON or OFF
1349 *
1350 * Input parameters:
1351 * state - new state
1352 *
1353 * Return value:
1354 * old state
1355 */
1356
1357 static sbmac_state_t
1358 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1359 {
1360 sbmac_state_t oldstate = sc->sbm_state;
1361
1362 /*
1363 * If same as previous state, return
1364 */
1365
1366 if (state == oldstate)
1367 return oldstate;
1368
1369 /*
1370 * If new state is ON, turn channel on
1371 */
1372
1373 if (state == sbmac_state_on)
1374 sbmac_channel_start(sc);
1375 else
1376 sbmac_channel_stop(sc);
1377
1378 /*
1379 * Return previous state
1380 */
1381
1382 return oldstate;
1383 }
1384
1385 /*
1386 * SBMAC_PROMISCUOUS_MODE(sc, onoff)
1387 *
1388 * Turn on or off promiscuous mode
1389 *
1390 * Input parameters:
1391 * sc - softc
1392 * onoff - 1 to turn on, 0 to turn off
1393 *
1394 * Return value:
1395 * nothing
1396 */
1397
1398 static void
1399 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
1400 {
1401 uint64_t reg;
1402
1403 if (sc->sbm_state != sbmac_state_on)
1404 return;
1405
1406 if (onoff) {
1407 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1408 reg |= M_MAC_ALLPKT_EN;
1409 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1410 } else {
1411 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1412 reg &= ~M_MAC_ALLPKT_EN;
1413 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1414 }
1415 }
1416
1417 /*
1418 * SBMAC_INIT_AND_START(sc)
1419 *
1420 * Stop the channel and restart it. This is generally used
1421 * when we have to do something to the channel that requires
1422 * a swift kick.
1423 *
1424 * Input parameters:
1425 * sc - softc
1426 */
1427
1428 static void
1429 sbmac_init_and_start(struct sbmac_softc *sc)
1430 {
1431 int s;
1432
1433 s = splnet();
1434
1435 mii_pollstat(&sc->sc_mii); /* poll phy for current speed */
1436 sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
1437 sbmac_set_channel_state(sc, sbmac_state_on);
1438
1439 splx(s);
1440 }
1441
1442 /*
1443 * SBMAC_ADDR2REG(ptr)
1444 *
1445 * Convert six bytes into the 64-bit register value that
1446 * we typically write into the SBMAC's address/mcast registers
1447 *
1448 * Input parameters:
1449 * ptr - pointer to 6 bytes
1450 *
1451 * Return value:
1452 * register value
1453 */
1454
1455 static uint64_t
1456 sbmac_addr2reg(u_char *ptr)
1457 {
1458 uint64_t reg = 0;
1459
1460 ptr += 6;
1461
1462 reg |= (uint64_t) *(--ptr);
1463 reg <<= 8;
1464 reg |= (uint64_t) *(--ptr);
1465 reg <<= 8;
1466 reg |= (uint64_t) *(--ptr);
1467 reg <<= 8;
1468 reg |= (uint64_t) *(--ptr);
1469 reg <<= 8;
1470 reg |= (uint64_t) *(--ptr);
1471 reg <<= 8;
1472 reg |= (uint64_t) *(--ptr);
1473
1474 return reg;
1475 }
1476
1477 /*
1478 * SBMAC_SET_SPEED(s, speed)
1479 *
1480 * Configure LAN speed for the specified MAC.
1481 * Warning: must be called when MAC is off!
1482 *
1483 * Input parameters:
1484 * s - sbmac structure
1485 * speed - speed to set MAC to (see sbmac_speed_t enum)
1486 *
1487 * Return value:
1488 * 1 if successful
1489 * 0 indicates invalid parameters
1490 */
1491
1492 static int
1493 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
1494 {
1495 uint64_t cfg;
1496 uint64_t framecfg;
1497
1498 /*
1499 * Save new current values
1500 */
1501
1502 s->sbm_speed = speed;
1503
1504 if (s->sbm_state != sbmac_state_off)
1505 panic("sbmac_set_speed while MAC not off");
1506
1507 /*
1508 * Read current register values
1509 */
1510
1511 cfg = SBMAC_READCSR(s->sbm_maccfg);
1512 framecfg = SBMAC_READCSR(s->sbm_framecfg);
1513
1514 /*
1515 * Mask out the stuff we want to change
1516 */
1517
1518 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1519 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1520 M_MAC_SLOT_SIZE);
1521
1522 /*
1523 * Now add in the new bits
1524 */
1525
1526 switch (speed) {
1527 case sbmac_speed_10:
1528 framecfg |= V_MAC_IFG_RX_10 |
1529 V_MAC_IFG_TX_10 |
1530 K_MAC_IFG_THRSH_10 |
1531 V_MAC_SLOT_SIZE_10;
1532 cfg |= V_MAC_SPEED_SEL_10MBPS;
1533 break;
1534
1535 case sbmac_speed_100:
1536 framecfg |= V_MAC_IFG_RX_100 |
1537 V_MAC_IFG_TX_100 |
1538 V_MAC_IFG_THRSH_100 |
1539 V_MAC_SLOT_SIZE_100;
1540 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1541 break;
1542
1543 case sbmac_speed_1000:
1544 framecfg |= V_MAC_IFG_RX_1000 |
1545 V_MAC_IFG_TX_1000 |
1546 V_MAC_IFG_THRSH_1000 |
1547 V_MAC_SLOT_SIZE_1000;
1548 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1549 break;
1550
1551 case sbmac_speed_auto: /* XXX not implemented */
1552 /* fall through */
1553 default:
1554 return 0;
1555 }
1556
1557 /*
1558 * Send the bits back to the hardware
1559 */
1560
1561 SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1562 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1563
1564 return 1;
1565 }
1566
1567 /*
1568 * SBMAC_SET_DUPLEX(s, duplex, fc)
1569 *
1570 * Set Ethernet duplex and flow control options for this MAC
1571 * Warning: must be called when MAC is off!
1572 *
1573 * Input parameters:
1574 * s - sbmac structure
1575 * duplex - duplex setting (see sbmac_duplex_t)
1576 * fc - flow control setting (see sbmac_fc_t)
1577 *
1578 * Return value:
1579 * 1 if ok
1580 * 0 if an invalid parameter combination was specified
1581 */
1582
1583 static int
1584 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
1585 {
1586 uint64_t cfg;
1587
1588 /*
1589 * Save new current values
1590 */
1591
1592 s->sbm_duplex = duplex;
1593 s->sbm_fc = fc;
1594
1595 if (s->sbm_state != sbmac_state_off)
1596 panic("sbmac_set_duplex while MAC not off");
1597
1598 /*
1599 * Read current register values
1600 */
1601
1602 cfg = SBMAC_READCSR(s->sbm_maccfg);
1603
1604 /*
1605 * Mask off the stuff we're about to change
1606 */
1607
1608 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1609
1610 switch (duplex) {
1611 case sbmac_duplex_half:
1612 switch (fc) {
1613 case sbmac_fc_disabled:
1614 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1615 break;
1616
1617 case sbmac_fc_collision:
1618 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1619 break;
1620
1621 case sbmac_fc_carrier:
1622 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1623 break;
1624
1625 case sbmac_fc_auto: /* XXX not implemented */
1626 /* fall through */
1627 case sbmac_fc_frame: /* not valid in half duplex */
1628 default: /* invalid selection */
1629 panic("%s: invalid half duplex fc selection %d",
1630 s->sc_dev.dv_xname, fc);
1631 return 0;
1632 }
1633 break;
1634
1635 case sbmac_duplex_full:
1636 switch (fc) {
1637 case sbmac_fc_disabled:
1638 cfg |= V_MAC_FC_CMD_DISABLED;
1639 break;
1640
1641 case sbmac_fc_frame:
1642 cfg |= V_MAC_FC_CMD_ENABLED;
1643 break;
1644
1645 case sbmac_fc_collision: /* not valid in full duplex */
1646 case sbmac_fc_carrier: /* not valid in full duplex */
1647 case sbmac_fc_auto: /* XXX not implemented */
1648 /* fall through */
1649 default:
1650 panic("%s: invalid full duplex fc selection %d",
1651 s->sc_dev.dv_xname, fc);
1652 return 0;
1653 }
1654 break;
1655
1656 default:
1657 /* fall through */
1658 case sbmac_duplex_auto:
1659 panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
1660 /* XXX not implemented */
1661 break;
1662 }
1663
1664 /*
1665 * Send the bits back to the hardware
1666 */
1667
1668 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1669
1670 return 1;
1671 }
1672
1673 /*
1674 * SBMAC_INTR()
1675 *
1676 * Interrupt handler for MAC interrupts
1677 *
1678 * Input parameters:
1679 * MAC structure
1680 *
1681 * Return value:
1682 * nothing
1683 */
1684
1685 /* ARGSUSED */
1686 static void
1687 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
1688 {
1689 struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
1690 uint64_t isr;
1691
1692 for (;;) {
1693
1694 /*
1695 * Read the ISR (this clears the bits in the real register)
1696 */
1697
1698 isr = SBMAC_READCSR(sc->sbm_isr);
1699
1700 if (isr == 0)
1701 break;
1702
1703 /*
1704 * Transmits on channel 0
1705 */
1706
1707 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
1708 sbdma_tx_process(sc, &(sc->sbm_txdma));
1709
1710 /*
1711 * Receives on channel 0
1712 */
1713
1714 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0))
1715 sbdma_rx_process(sc, &(sc->sbm_rxdma));
1716 }
1717 }
1718
1719
1720 /*
1721 * SBMAC_START(ifp)
1722 *
1723 * Start output on the specified interface. Basically, we
1724 * queue as many buffers as we can until the ring fills up, or
1725 * we run off the end of the queue, whichever comes first.
1726 *
1727 * Input parameters:
1728 * ifp - interface
1729 *
1730 * Return value:
1731 * nothing
1732 */
1733
1734 static void
1735 sbmac_start(struct ifnet *ifp)
1736 {
1737 struct sbmac_softc *sc;
1738 struct mbuf *m_head = NULL;
1739 int rv;
1740
1741 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1742 return;
1743
1744 sc = ifp->if_softc;
1745
1746 for (;;) {
1747
1748 IF_DEQUEUE(&ifp->if_snd, m_head);
1749 if (m_head == NULL)
1750 break;
1751
1752 /*
1753 * Put the buffer on the transmit ring. If we
1754 * don't have room, set the OACTIVE flag and wait
1755 * for the NIC to drain the ring.
1756 */
1757
1758 rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1759
1760 if (rv == 0) {
1761 /*
1762 * If there's a BPF listener, bounce a copy of this frame
1763 * to it.
1764 */
1765 #if (NBPFILTER > 0)
1766 if (ifp->if_bpf)
1767 bpf_mtap(ifp->if_bpf, m_head);
1768 #endif
1769 if (!sc->sbm_pass3_dma) {
1770 /*
1771 * Don't free mbuf if we're not copying to new mbuf in sbdma_add_txbuffer.
1772 * It will be freed in sbdma_tx_process.
1773 */
1774 m_freem(m_head);
1775 }
1776 } else {
1777 IF_PREPEND(&ifp->if_snd, m_head);
1778 ifp->if_flags |= IFF_OACTIVE;
1779 break;
1780 }
1781 }
1782 }
1783
1784 /*
1785 * SBMAC_SETMULTI(sc)
1786 *
1787 * Reprogram the multicast table into the hardware, given
1788 * the list of multicasts associated with the interface
1789 * structure.
1790 *
1791 * Input parameters:
1792 * sc - softc
1793 *
1794 * Return value:
1795 * nothing
1796 */
1797
1798 static void
1799 sbmac_setmulti(struct sbmac_softc *sc)
1800 {
1801 struct ifnet *ifp;
1802 uint64_t reg;
1803 sbmac_port_t port;
1804 int idx;
1805 struct ether_multi *enm;
1806 struct ether_multistep step;
1807
1808 ifp = &sc->sc_ethercom.ec_if;
1809
1810 /*
1811 * Clear out entire multicast table. We do this by nuking
1812 * the entire hash table and all the direct matches except
1813 * the first one, which is used for our station address
1814 */
1815
1816 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1817 port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1818 SBMAC_WRITECSR(port, 0);
1819 }
1820
1821 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1822 port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1823 SBMAC_WRITECSR(port, 0);
1824 }
1825
1826 /*
1827 * Clear the filter to say we don't want any multicasts.
1828 */
1829
1830 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1831 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1832 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1833
1834 if (ifp->if_flags & IFF_ALLMULTI) {
1835 /*
1836 * Enable ALL multicasts. Do this by inverting the
1837 * multicast enable bit.
1838 */
1839 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1840 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1841 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1842 return;
1843 }
1844
1845 /*
1846 * Progam new multicast entries. For now, only use the
1847 * perfect filter. In the future we'll need to use the
1848 * hash filter if the perfect filter overflows
1849 */
1850
1851 /*
1852 * XXX only using perfect filter for now, need to use hash
1853 * XXX if the table overflows
1854 */
1855
1856 idx = 1; /* skip station address */
1857 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1858 while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1859 reg = sbmac_addr2reg(enm->enm_addrlo);
1860 port = PKSEG1(sc->sbm_base +
1861 R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1862 SBMAC_WRITECSR(port, reg);
1863 idx++;
1864 ETHER_NEXT_MULTI(step, enm);
1865 }
1866
1867 /*
1868 * Enable the "accept multicast bits" if we programmed at least one
1869 * multicast.
1870 */
1871
1872 if (idx > 1) {
1873 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1874 reg |= M_MAC_MCAST_EN;
1875 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1876 }
1877 }
1878
1879 /*
1880 * SBMAC_ETHER_IOCTL(ifp, cmd, data)
1881 *
1882 * Generic IOCTL requests for this interface. The basic
1883 * stuff is handled here for bringing the interface up,
1884 * handling multicasts, etc.
1885 *
1886 * Input parameters:
1887 * ifp - interface structure
1888 * cmd - command code
1889 * data - pointer to data
1890 *
1891 * Return value:
1892 * return value (0 is success)
1893 */
1894
1895 static int
1896 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1897 {
1898 struct ifaddr *ifa = (struct ifaddr *) data;
1899 struct sbmac_softc *sc = ifp->if_softc;
1900
1901 switch (cmd) {
1902 case SIOCSIFADDR:
1903 ifp->if_flags |= IFF_UP;
1904
1905 switch (ifa->ifa_addr->sa_family) {
1906 #ifdef INET
1907 case AF_INET:
1908 sbmac_init_and_start(sc);
1909 arp_ifinit(ifp, ifa);
1910 break;
1911 #endif
1912 #ifdef NS
1913 case AF_NS:
1914 {
1915 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1916
1917 if (ns_nullhost(*ina))
1918 ina->x_host = *(union ns_host *)LLADDR(ifp->if_sadl);
1919 else
1920 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1921 ifp->if_addrlen);
1922 /* Set new address. */
1923 sbmac_init_and_start(sc);
1924 break;
1925 }
1926 #endif
1927 default:
1928 sbmac_init_and_start(sc);
1929 break;
1930 }
1931 break;
1932
1933 default:
1934 return (EINVAL);
1935 }
1936
1937 return (0);
1938 }
1939
1940 /*
1941 * SBMAC_IOCTL(ifp, command, data)
1942 *
1943 * Main IOCTL handler - dispatches to other IOCTLs for various
1944 * types of requests.
1945 *
1946 * Input parameters:
1947 * ifp - interface pointer
1948 * command - command code
1949 * data - pointer to argument data
1950 *
1951 * Return value:
1952 * 0 if ok
1953 * else error code
1954 */
1955
1956 static int
1957 sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1958 {
1959 struct sbmac_softc *sc = ifp->if_softc;
1960 struct ifreq *ifr = (struct ifreq *) data;
1961 int s, error = 0;
1962
1963 s = splnet();
1964
1965 switch(command) {
1966 case SIOCSIFADDR:
1967 case SIOCGIFADDR:
1968 error = sbmac_ether_ioctl(ifp, command, data);
1969 break;
1970 case SIOCSIFMTU:
1971 if (ifr->ifr_mtu > ETHER_MAX_LEN)
1972 error = EINVAL;
1973 else {
1974 ifp->if_mtu = ifr->ifr_mtu;
1975 /* XXX Program new MTU here */
1976 }
1977 break;
1978 case SIOCSIFFLAGS:
1979 if (ifp->if_flags & IFF_UP) {
1980 /*
1981 * If only the state of the PROMISC flag changed,
1982 * just tweak the hardware registers.
1983 */
1984 if ((ifp->if_flags & IFF_RUNNING) &&
1985 (ifp->if_flags & IFF_PROMISC)) {
1986 /* turn on promiscuous mode */
1987 sbmac_promiscuous_mode(sc, 1);
1988 } else if (ifp->if_flags & IFF_RUNNING &&
1989 !(ifp->if_flags & IFF_PROMISC)) {
1990 /* turn off promiscuous mode */
1991 sbmac_promiscuous_mode(sc, 0);
1992 } else
1993 sbmac_set_channel_state(sc, sbmac_state_on);
1994 } else {
1995 if (ifp->if_flags & IFF_RUNNING)
1996 sbmac_set_channel_state(sc, sbmac_state_off);
1997 }
1998
1999 sc->sbm_if_flags = ifp->if_flags;
2000 error = 0;
2001 break;
2002
2003 case SIOCADDMULTI:
2004 case SIOCDELMULTI:
2005 if (ifp->if_flags & IFF_RUNNING) {
2006 sbmac_setmulti(sc);
2007 error = 0;
2008 }
2009 break;
2010 case SIOCSIFMEDIA:
2011 case SIOCGIFMEDIA:
2012 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2013 break;
2014 default:
2015 error = EINVAL;
2016 break;
2017 }
2018
2019 (void)splx(s);
2020
2021 return(error);
2022 }
2023
2024 /*
2025 * SBMAC_IFMEDIA_UPD(ifp)
2026 *
2027 * Configure an appropriate media type for this interface,
2028 * given the data in the interface structure
2029 *
2030 * Input parameters:
2031 * ifp - interface
2032 *
2033 * Return value:
2034 * 0 if ok
2035 * else error code
2036 */
2037
2038 static int
2039 sbmac_mediachange(struct ifnet *ifp)
2040 {
2041 struct sbmac_softc *sc = ifp->if_softc;
2042
2043 if (ifp->if_flags & IFF_UP)
2044 mii_mediachg(&sc->sc_mii);
2045 return(0);
2046 }
2047
2048 /*
2049 * SBMAC_IFMEDIA_STS(ifp, ifmr)
2050 *
2051 * Report current media status (used by ifconfig, for example)
2052 *
2053 * Input parameters:
2054 * ifp - interface structure
2055 * ifmr - media request structure
2056 *
2057 * Return value:
2058 * nothing
2059 */
2060
2061 static void
2062 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
2063 {
2064 struct sbmac_softc *sc = ifp->if_softc;
2065
2066 mii_pollstat(&sc->sc_mii);
2067 req->ifm_status = sc->sc_mii.mii_media_status;
2068 req->ifm_active = sc->sc_mii.mii_media_active;
2069 }
2070
2071 /*
2072 * SBMAC_WATCHDOG(ifp)
2073 *
2074 * Called periodically to make sure we're still happy.
2075 *
2076 * Input parameters:
2077 * ifp - interface structure
2078 *
2079 * Return value:
2080 * nothing
2081 */
2082
2083 static void
2084 sbmac_watchdog(struct ifnet *ifp)
2085 {
2086
2087 /* XXX do something */
2088 }
2089
2090 /*
2091 * One second timer, used to tick MII.
2092 */
2093 static void
2094 sbmac_tick(void *arg)
2095 {
2096 struct sbmac_softc *sc = arg;
2097 int s;
2098
2099 s = splnet();
2100 mii_tick(&sc->sc_mii);
2101 splx(s);
2102
2103 callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2104 }
2105
2106
2107 /*
2108 * SBMAC_MATCH(parent, match, aux)
2109 *
2110 * Part of the config process - see if this device matches the
2111 * info about what we expect to find on the bus.
2112 *
2113 * Input parameters:
2114 * parent - parent bus structure
2115 * match -
2116 * aux - bus-specific args
2117 *
2118 * Return value:
2119 * 1 if we match
2120 * 0 if we don't match
2121 */
2122
2123 static int
2124 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
2125 {
2126 struct sbobio_attach_args *sap = aux;
2127
2128 /*
2129 * Make sure it's a MAC
2130 */
2131
2132 if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2133 return 0;
2134
2135 /*
2136 * Yup, it is.
2137 */
2138
2139 return 1;
2140 }
2141
2142 /*
2143 * SBMAC_PARSE_XDIGIT(str)
2144 *
2145 * Parse a hex digit, returning its value
2146 *
2147 * Input parameters:
2148 * str - character
2149 *
2150 * Return value:
2151 * hex value, or -1 if invalid
2152 */
2153
2154 static int
2155 sbmac_parse_xdigit(char str)
2156 {
2157 int digit;
2158
2159 if ((str >= '0') && (str <= '9'))
2160 digit = str - '0';
2161 else if ((str >= 'a') && (str <= 'f'))
2162 digit = str - 'a' + 10;
2163 else if ((str >= 'A') && (str <= 'F'))
2164 digit = str - 'A' + 10;
2165 else
2166 digit = -1;
2167
2168 return digit;
2169 }
2170
2171 /*
2172 * SBMAC_PARSE_HWADDR(str, hwaddr)
2173 *
2174 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2175 * Ethernet address.
2176 *
2177 * Input parameters:
2178 * str - string
2179 * hwaddr - pointer to hardware address
2180 *
2181 * Return value:
2182 * 0 if ok, else -1
2183 */
2184
2185 static int
2186 sbmac_parse_hwaddr(char *str, u_char *hwaddr)
2187 {
2188 int digit1, digit2;
2189 int idx = 6;
2190
2191 while (*str && (idx > 0)) {
2192 digit1 = sbmac_parse_xdigit(*str);
2193 if (digit1 < 0)
2194 return -1;
2195 str++;
2196 if (!*str)
2197 return -1;
2198
2199 if ((*str == ':') || (*str == '-')) {
2200 digit2 = digit1;
2201 digit1 = 0;
2202 } else {
2203 digit2 = sbmac_parse_xdigit(*str);
2204 if (digit2 < 0)
2205 return -1;
2206 str++;
2207 }
2208
2209 *hwaddr++ = (digit1 << 4) | digit2;
2210 idx--;
2211
2212 if (*str == '-')
2213 str++;
2214 if (*str == ':')
2215 str++;
2216 }
2217 return 0;
2218 }
2219
2220 /*
2221 * SBMAC_ATTACH(parent, self, aux)
2222 *
2223 * Attach routine - init hardware and hook ourselves into NetBSD.
2224 *
2225 * Input parameters:
2226 * parent - parent bus device
2227 * self - our softc
2228 * aux - attach data
2229 *
2230 * Return value:
2231 * nothing
2232 */
2233
2234 static void
2235 sbmac_attach(struct device *parent, struct device *self, void *aux)
2236 {
2237 struct ifnet *ifp;
2238 struct sbmac_softc *sc;
2239 struct sbobio_attach_args *sap = aux;
2240 u_char *eaddr;
2241 static int unit = 0; /* XXX */
2242 uint64_t ea_reg;
2243 int idx;
2244
2245 sc = (struct sbmac_softc *)self;
2246
2247 /* Determine controller base address */
2248
2249 sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
2250
2251 eaddr = sc->sbm_hwaddr;
2252
2253 /*
2254 * Initialize context (get pointers to registers and stuff), then
2255 * allocate the memory for the descriptor tables.
2256 */
2257
2258 sbmac_initctx(sc);
2259
2260 callout_init(&(sc->sc_tick_ch));
2261
2262 /*
2263 * Read the ethernet address. The firwmare left this programmed
2264 * for us in the ethernet address register for each mac.
2265 */
2266
2267 ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2268 for (idx = 0; idx < 6; idx++) {
2269 eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2270 ea_reg >>= 8;
2271 }
2272
2273 #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2274 if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2275 eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2276 sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2277 eaddr[5] = unit;
2278 }
2279
2280 #ifdef SBMAC_ETH0_HWADDR
2281 if (unit == 0)
2282 sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2283 #endif
2284 #ifdef SBMAC_ETH1_HWADDR
2285 if (unit == 1)
2286 sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2287 #endif
2288 #ifdef SBMAC_ETH2_HWADDR
2289 if (unit == 2)
2290 sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2291 #endif
2292 unit++;
2293
2294 /*
2295 * Display Ethernet address (this is called during the config process
2296 * so we need to finish off the config message that was being displayed)
2297 */
2298 printf(": Ethernet%s\n",
2299 sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2300 printf("%s: Ethernet address: %s\n", self->dv_xname,
2301 ether_sprintf(eaddr));
2302
2303
2304 /*
2305 * Set up ifnet structure
2306 */
2307
2308 ifp = &sc->sc_ethercom.ec_if;
2309 ifp->if_softc = sc;
2310 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2311 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_NOTRAILERS;
2312 ifp->if_ioctl = sbmac_ioctl;
2313 ifp->if_start = sbmac_start;
2314 ifp->if_watchdog = sbmac_watchdog;
2315 ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2316
2317 /*
2318 * Set up ifmedia support.
2319 */
2320
2321 /*
2322 * Initialize MII/media info.
2323 */
2324 sc->sc_mii.mii_ifp = ifp;
2325 sc->sc_mii.mii_readreg = sbmac_mii_readreg;
2326 sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2327 sc->sc_mii.mii_statchg = sbmac_mii_statchg;
2328 ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
2329 sbmac_mediastatus);
2330 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2331 MII_OFFSET_ANY, 0);
2332
2333 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2334 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2335 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2336 } else {
2337 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2338 }
2339
2340
2341 /*
2342 * map/route interrupt
2343 */
2344
2345 sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
2346 sbmac_intr, sc);
2347
2348 /*
2349 * Call MI attach routines.
2350 */
2351 if_attach(ifp);
2352 ether_ifattach(ifp, eaddr);
2353 }
2354