Home | History | Annotate | Line # | Download | only in dev
sbmac.c revision 1.13
      1 /* $NetBSD: sbmac.c,v 1.13 2004/03/08 11:28:48 simonb Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
     19  *    used to endorse or promote products derived from this software
     20  *    without the prior written permission of Broadcom Corporation.
     21  *
     22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.13 2004/03/08 11:28:48 simonb Exp $");
     37 
     38 #include "bpfilter.h"
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/queue.h>
     50 #include <sys/device.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_ether.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_media.h>
     57 
     58 #if NBPFILTER > 0
     59 #include <net/bpf.h>
     60 #endif
     61 
     62 #ifdef INET
     63 #include <netinet/in.h>
     64 #include <netinet/if_inarp.h>
     65 #endif
     66 
     67 #ifdef NS
     68 #include <netns/ns.h>
     69 #include <netns/ns_if.h>
     70 #endif
     71 
     72 #include <machine/locore.h>
     73 
     74 #include "sbobiovar.h"
     75 
     76 #include <dev/mii/mii.h>
     77 #include <dev/mii/miivar.h>
     78 #include <dev/mii/mii_bitbang.h>
     79 
     80 #include <mips/sibyte/include/sb1250_defs.h>
     81 #include <mips/sibyte/include/sb1250_regs.h>
     82 #include <mips/sibyte/include/sb1250_mac.h>
     83 #include <mips/sibyte/include/sb1250_dma.h>
     84 #include <mips/sibyte/include/sb1250_scd.h>
     85 
     86 
     87 /* Simple types */
     88 
     89 typedef u_long sbmac_port_t;
     90 typedef uint64_t sbmac_physaddr_t;
     91 typedef uint64_t sbmac_enetaddr_t;
     92 
     93 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     94 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     95 
     96 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     97 	       sbmac_duplex_full } sbmac_duplex_t;
     98 
     99 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
    100 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
    101 
    102 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
    103 	       sbmac_state_broken } sbmac_state_t;
    104 
    105 
    106 /* Macros */
    107 
    108 #define	SBDMA_NEXTBUF(d, f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
    109 			  (d)->sbdma_dscrtable : (d)->f+1)
    110 
    111 
    112 #define	CACHELINESIZE 32
    113 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
    114 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
    115 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
    116 
    117 #ifdef SBMACDEBUG
    118 #define	dprintf(x)	printf x
    119 #else
    120 #define	dprintf(x)
    121 #endif
    122 
    123 #define	SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
    124 #define	SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
    125 
    126 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    127 
    128 #define	SBMAC_MAX_TXDESCR	64
    129 #define	SBMAC_MAX_RXDESCR	64
    130 
    131 #define	ETHER_ALIGN	2
    132 
    133 /* DMA Descriptor structure */
    134 
    135 typedef struct sbdmadscr_s {
    136 	uint64_t dscr_a;
    137 	uint64_t dscr_b;
    138 } sbdmadscr_t;
    139 
    140 
    141 /* DMA Controller structure */
    142 
    143 typedef struct sbmacdma_s {
    144 
    145 	/*
    146 	 * This stuff is used to identify the channel and the registers
    147 	 * associated with it.
    148 	 */
    149 
    150 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    151 	int		sbdma_channel;	/* channel number */
    152 	int		sbdma_txdir;	/* direction (1=transmit) */
    153 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    154 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    155 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    156 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    157 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
    158 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    159 
    160 	/*
    161 	 * This stuff is for maintenance of the ring
    162 	 */
    163 
    164 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    165 	sbdmadscr_t	*sbdma_dscrtable_end;	/* end of descriptor table */
    166 
    167 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    168 
    169 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    170 	sbdmadscr_t	*sbdma_addptr;		/* next dscr for sw to add */
    171 	sbdmadscr_t	*sbdma_remptr;		/* next dscr for sw to remove */
    172 } sbmacdma_t;
    173 
    174 
    175 /* Ethernet softc structure */
    176 
    177 struct sbmac_softc {
    178 
    179 	/*
    180 	 * NetBSD-specific things
    181 	 */
    182 	struct device	sc_dev;		/* base device (must be first) */
    183 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    184 	struct mii_data	sc_mii;
    185 	struct callout	sc_tick_ch;
    186 
    187 	int		sbm_if_flags;
    188 	void		*sbm_intrhand;
    189 
    190 	/*
    191 	 * Controller-specific things
    192 	 */
    193 
    194 	sbmac_port_t	sbm_base;	/* MAC's base address */
    195 	sbmac_state_t	sbm_state;	/* current state */
    196 
    197 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    198 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    199 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    200 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    201 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    202 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    203 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    204 
    205 	sbmac_speed_t	sbm_speed;	/* current speed */
    206 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    207 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    208 	int		sbm_rxflags;	/* received packet flags */
    209 
    210 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    211 
    212 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    213 	sbmacdma_t	sbm_rxdma;
    214 
    215 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    216 };
    217 
    218 
    219 /* Externs */
    220 
    221 extern paddr_t kvtophys(vaddr_t);
    222 
    223 /* Prototypes */
    224 
    225 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
    226     int txrx, int maxdescr);
    227 static void sbdma_channel_start(sbmacdma_t *d);
    228 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
    229 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
    230 static void sbdma_emptyring(sbmacdma_t *d);
    231 static void sbdma_fillring(sbmacdma_t *d);
    232 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    233 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    234 static void sbmac_initctx(struct sbmac_softc *s);
    235 static void sbmac_channel_start(struct sbmac_softc *s);
    236 static void sbmac_channel_stop(struct sbmac_softc *s);
    237 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    238     sbmac_state_t);
    239 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
    240 static void sbmac_init_and_start(struct sbmac_softc *sc);
    241 static uint64_t sbmac_addr2reg(u_char *ptr);
    242 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
    243 static void sbmac_start(struct ifnet *ifp);
    244 static void sbmac_setmulti(struct sbmac_softc *sc);
    245 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
    246 static int sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
    247 static int sbmac_mediachange(struct ifnet *ifp);
    248 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
    249 static void sbmac_watchdog(struct ifnet *ifp);
    250 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
    251 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
    252 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
    253 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
    254     sbmac_fc_t fc);
    255 static void sbmac_tick(void *arg);
    256 
    257 
    258 /* Globals */
    259 
    260 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
    261     sbmac_match, sbmac_attach, NULL, NULL);
    262 
    263 static uint32_t sbmac_mii_bitbang_read(struct device *self);
    264 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
    265 
    266 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    267 	sbmac_mii_bitbang_read,
    268 	sbmac_mii_bitbang_write,
    269 	{
    270 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    271 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    272 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    273 		0,				/* MII_BIT_DIR_HOST_PHY */
    274 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    275 	}
    276 };
    277 
    278 static uint32_t
    279 sbmac_mii_bitbang_read(struct device *self)
    280 {
    281 	struct sbmac_softc *sc = (void *) self;
    282 	sbmac_port_t reg;
    283 
    284 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    285 	return (uint32_t) SBMAC_READCSR(reg);
    286 }
    287 
    288 static void
    289 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
    290 {
    291 	struct sbmac_softc *sc = (void *) self;
    292 	sbmac_port_t reg;
    293 
    294 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    295 
    296 	SBMAC_WRITECSR(reg, (val &
    297 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
    298 }
    299 
    300 /*
    301  * Read an PHY register through the MII.
    302  */
    303 static int
    304 sbmac_mii_readreg(struct device *self, int phy, int reg)
    305 {
    306 
    307 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
    308 }
    309 
    310 /*
    311  * Write to a PHY register through the MII.
    312  */
    313 static void
    314 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
    315 {
    316 
    317 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
    318 }
    319 
    320 static void
    321 sbmac_mii_statchg(struct device *self)
    322 {
    323 	struct sbmac_softc *sc = (struct sbmac_softc *)self;
    324 	sbmac_state_t oldstate;
    325 
    326 	/* Stop the MAC in preparation for changing all of the parameters. */
    327 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    328 
    329 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    330 	default:		/* if autonegotiation fails, assume 10Mbit */
    331 	case IF_Mbps(10):
    332 		sbmac_set_speed(sc, sbmac_speed_10);
    333 		break;
    334 
    335 	case IF_Mbps(100):
    336 		sbmac_set_speed(sc, sbmac_speed_100);
    337 		break;
    338 
    339 	case IF_Mbps(1000):
    340 		sbmac_set_speed(sc, sbmac_speed_1000);
    341 		break;
    342 	}
    343 
    344 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    345 		/* Configure for full-duplex */
    346 		/* XXX: is flow control right for 10, 100? */
    347 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    348 	} else {
    349 		/* Configure for half-duplex */
    350 		/* XXX: is flow control right? */
    351 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    352 	}
    353 
    354 	/* And put it back into its former state. */
    355 	sbmac_set_channel_state(sc, oldstate);
    356 }
    357 
    358 /*
    359  *  SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
    360  *
    361  *  Initialize a DMA channel context.  Since there are potentially
    362  *  eight DMA channels per MAC, it's nice to do this in a standard
    363  *  way.
    364  *
    365  *  Input parameters:
    366  *	d - sbmacdma_t structure (DMA channel context)
    367  *	s - sbmac_softc structure (pointer to a MAC)
    368  *	chan - channel number (0..1 right now)
    369  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    370  *	maxdescr - number of descriptors
    371  *
    372  *  Return value:
    373  *	nothing
    374  */
    375 
    376 static void
    377 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
    378     int maxdescr)
    379 {
    380 	/*
    381 	 * Save away interesting stuff in the structure
    382 	 */
    383 
    384 	d->sbdma_eth = s;
    385 	d->sbdma_channel = chan;
    386 	d->sbdma_txdir = txrx;
    387 
    388 	/*
    389 	 * initialize register pointers
    390 	 */
    391 
    392 	d->sbdma_config0 = PKSEG1(s->sbm_base +
    393 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    394 	d->sbdma_config1 = PKSEG1(s->sbm_base +
    395 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    396 	d->sbdma_dscrbase = PKSEG1(s->sbm_base +
    397 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    398 	d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
    399 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    400 	d->sbdma_curdscr = PKSEG1(s->sbm_base +
    401 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    402 
    403 	/*
    404 	 * Allocate memory for the ring
    405 	 */
    406 
    407 	d->sbdma_maxdescr = maxdescr;
    408 
    409 	d->sbdma_dscrtable = (sbdmadscr_t *)
    410 	    KMALLOC(d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    411 
    412 	bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    413 
    414 	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
    415 
    416 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    417 
    418 	/*
    419 	 * And context table
    420 	 */
    421 
    422 	d->sbdma_ctxtable = (struct mbuf **)
    423 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
    424 
    425 	bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
    426 }
    427 
    428 /*
    429  *  SBDMA_CHANNEL_START(d)
    430  *
    431  *  Initialize the hardware registers for a DMA channel.
    432  *
    433  *  Input parameters:
    434  *	d - DMA channel to init (context must be previously init'd
    435  *
    436  *  Return value:
    437  *	nothing
    438  */
    439 
    440 static void
    441 sbdma_channel_start(sbmacdma_t *d)
    442 {
    443 	/*
    444 	 * Turn on the DMA channel
    445 	 */
    446 
    447 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    448 
    449 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    450 
    451 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    452 
    453 	/*
    454 	 * Initialize ring pointers
    455 	 */
    456 
    457 	d->sbdma_addptr = d->sbdma_dscrtable;
    458 	d->sbdma_remptr = d->sbdma_dscrtable;
    459 }
    460 
    461 /*
    462  *  SBDMA_ADD_RCVBUFFER(d, m)
    463  *
    464  *  Add a buffer to the specified DMA channel.   For receive channels,
    465  *  this queues a buffer for inbound packets.
    466  *
    467  *  Input parameters:
    468  *	d - DMA channel descriptor
    469  *	m - mbuf to add, or NULL if we should allocate one.
    470  *
    471  *  Return value:
    472  *	0 if buffer could not be added (ring is full)
    473  *	1 if buffer added successfully
    474  */
    475 
    476 static int
    477 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    478 {
    479 	sbdmadscr_t *dsc;
    480 	sbdmadscr_t *nextdsc;
    481 	struct mbuf *m_new = NULL;
    482 
    483 	/* get pointer to our current place in the ring */
    484 
    485 	dsc = d->sbdma_addptr;
    486 	nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
    487 
    488 	/*
    489 	 * figure out if the ring is full - if the next descriptor
    490 	 * is the same as the one that we're going to remove from
    491 	 * the ring, the ring is full
    492 	 */
    493 
    494 	if (nextdsc == d->sbdma_remptr)
    495 		return ENOSPC;
    496 
    497 	/*
    498 	 * Allocate an mbuf if we don't already have one.
    499 	 * If we do have an mbuf, reset it so that it's empty.
    500 	 */
    501 
    502 	if (m == NULL) {
    503 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    504 		if (m_new == NULL) {
    505 			printf("%s: mbuf allocation failed\n",
    506 			    d->sbdma_eth->sc_dev.dv_xname);
    507 			return ENOBUFS;
    508 		}
    509 
    510 		MCLGET(m_new, M_DONTWAIT);
    511 		if (!(m_new->m_flags & M_EXT)) {
    512 			printf("%s: mbuf cluster allocation failed\n",
    513 			    d->sbdma_eth->sc_dev.dv_xname);
    514 			m_freem(m_new);
    515 			return ENOBUFS;
    516 		}
    517 
    518 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    519 		m_adj(m_new, ETHER_ALIGN);
    520 	} else {
    521 		m_new = m;
    522 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    523 		m_new->m_data = m_new->m_ext.ext_buf;
    524 		m_adj(m_new, ETHER_ALIGN);
    525 	}
    526 
    527 	/*
    528 	 * fill in the descriptor
    529 	 */
    530 
    531 	dsc->dscr_a = KVTOPHYS(mtod(m_new, caddr_t)) |
    532 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    533 	    M_DMA_DSCRA_INTERRUPT;
    534 
    535 	/* receiving: no options */
    536 	dsc->dscr_b = 0;
    537 
    538 	/*
    539 	 * fill in the context
    540 	 */
    541 
    542 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
    543 
    544 	/*
    545 	 * point at next packet
    546 	 */
    547 
    548 	d->sbdma_addptr = nextdsc;
    549 
    550 	/*
    551 	 * Give the buffer to the DMA engine.
    552 	 */
    553 
    554 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    555 
    556 	return 0;					/* we did it */
    557 }
    558 
    559 /*
    560  *  SBDMA_ADD_TXBUFFER(d, m)
    561  *
    562  *  Add a transmit buffer to the specified DMA channel, causing a
    563  *  transmit to start.
    564  *
    565  *  Input parameters:
    566  *	d - DMA channel descriptor
    567  *	m - mbuf to add
    568  *
    569  *  Return value:
    570  *	0 transmit queued successfully
    571  *	otherwise error code
    572  */
    573 
    574 static int
    575 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    576 {
    577 	sbdmadscr_t *dsc;
    578 	sbdmadscr_t *nextdsc;
    579 	sbdmadscr_t *prevdsc;
    580 	sbdmadscr_t *origdesc;
    581 	int length;
    582 	int num_mbufs = 0;
    583 	struct sbmac_softc *sc = d->sbdma_eth;
    584 
    585 	/* get pointer to our current place in the ring */
    586 
    587 	dsc = d->sbdma_addptr;
    588 	nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
    589 
    590 	/*
    591 	 * figure out if the ring is full - if the next descriptor
    592 	 * is the same as the one that we're going to remove from
    593 	 * the ring, the ring is full
    594 	 */
    595 
    596 	if (nextdsc == d->sbdma_remptr)
    597 		return ENOSPC;
    598 
    599 #if 0
    600 	do {
    601 		struct mbuf *m0;
    602 
    603 		printf("mbuf chain: ");
    604 		for (m0 = m; m0 != 0; m0 = m0->m_next) {
    605 			printf("%d%c/%X ", m0->m_len,
    606 			m0->m_flags & M_EXT ? 'X' : 'N',
    607 			mtod(m0, u_int));
    608 		}
    609 		printf("\n");
    610 	} while (0);
    611 #endif
    612 
    613 	/*
    614 	 * PASS3 parts do not have buffer alignment restriction.
    615 	 * No need to copy/coalesce to new mbuf.  Also has different
    616 	 * descriptor format
    617 	 */
    618 	if (sc->sbm_pass3_dma) {
    619 		struct mbuf *m_temp = NULL;
    620 
    621 		/*
    622 		 * Loop thru this mbuf record.
    623 		 * The head mbuf will have SOP set.
    624 		 */
    625 		dsc->dscr_a = KVTOPHYS(mtod(m,caddr_t)) |
    626 		    M_DMA_DSCRA_INTERRUPT |
    627 		    M_DMA_ETHTX_SOP;
    628 
    629 		/*
    630 		 * transmitting: set outbound options,buffer A size(+ low 5
    631 		 * bits of start addr),and packet length.
    632 		 */
    633 		dsc->dscr_b =
    634 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    635 		    V_DMA_DSCRB_A_SIZE((m->m_len + (mtod(m,unsigned int) & 0x0000001F))) |
    636 		    V_DMA_DSCRB_PKT_SIZE_MSB( (m->m_pkthdr.len & 0xB000) ) |
    637 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len);
    638 
    639 		d->sbdma_addptr = nextdsc;
    640 		origdesc = prevdsc = dsc;
    641 		dsc = d->sbdma_addptr;
    642 		num_mbufs++;
    643 
    644 		/* Start with first non-head mbuf */
    645 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    646 
    647 			if (m_temp->m_len == 0)
    648 				continue;	/* Skip 0-length mbufs */
    649 
    650 			/*
    651 			 * fill in the descriptor
    652 			 */
    653 
    654 			dsc->dscr_a = KVTOPHYS(mtod(m_temp,caddr_t)) |
    655 			    M_DMA_DSCRA_INTERRUPT;
    656 
    657 			/*
    658 			 * transmitting: set outbound options,buffer A
    659 			 * size(+ low 5 bits of start addr)
    660 			 */
    661 			dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    662 			    V_DMA_DSCRB_A_SIZE( (m_temp->m_len +
    663 			    (mtod(m_temp,unsigned int) & 0x0000001F)) );
    664 
    665 			d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = NULL;
    666 
    667 			/*
    668 			 * point at next descriptor
    669 			 */
    670 			nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
    671 			if (nextdsc == d->sbdma_remptr) {
    672 				d->sbdma_addptr = origdesc;
    673 				return ENOSPC;
    674 			}
    675 			d->sbdma_addptr = nextdsc;
    676 
    677 			prevdsc = dsc;
    678 			dsc = d->sbdma_addptr;
    679 			num_mbufs++;
    680 		}
    681 
    682 		/*Set head mbuf to last context index*/
    683 		d->sbdma_ctxtable[prevdsc-d->sbdma_dscrtable] = m;
    684 	} else {
    685 		struct mbuf *m_new = NULL;
    686 		/*
    687 		 * [BEGIN XXX]
    688 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
    689 		 * assume it will fit).  This is a temporary hack to get us
    690 		 * going.
    691 		 */
    692 
    693 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
    694 		if (m_new == NULL) {
    695 			printf("%s: mbuf allocation failed\n",
    696 			    d->sbdma_eth->sc_dev.dv_xname);
    697 			return ENOBUFS;
    698 		}
    699 
    700 		MCLGET(m_new,M_DONTWAIT);
    701 		if (!(m_new->m_flags & M_EXT)) {
    702 			printf("%s: mbuf cluster allocation failed\n",
    703 			    d->sbdma_eth->sc_dev.dv_xname);
    704 			m_freem(m_new);
    705 			return ENOBUFS;
    706 		}
    707 
    708 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    709 		/*m_adj(m_new,ETHER_ALIGN);*/
    710 
    711 		/*
    712 		 * XXX Don't forget to include the offset portion in the
    713 		 * XXX cache block calculation when this code is rewritten!
    714 		 */
    715 
    716 		/*
    717 		 * Copy data
    718 		 */
    719 
    720 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,caddr_t));
    721 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    722 
    723 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    724 
    725 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    726 		// XXX: function succeeds.
    727 		// m_freem(m);
    728 		length = m_new->m_len;
    729 
    730 		/* [END XXX] */
    731 		/*
    732 		 * fill in the descriptor
    733 		 */
    734 
    735 		dsc->dscr_a = KVTOPHYS(mtod(m_new,caddr_t)) |
    736 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    737 		    M_DMA_DSCRA_INTERRUPT |
    738 		    M_DMA_ETHTX_SOP;
    739 
    740 		/* transmitting: set outbound options and length */
    741 		dsc->dscr_b =
    742 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    743 		    V_DMA_DSCRB_PKT_SIZE(length);
    744 
    745 		num_mbufs++;
    746 
    747 		/*
    748 		 * fill in the context
    749 		 */
    750 
    751 		d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
    752 
    753 		/*
    754 		 * point at next packet
    755 		 */
    756 		d->sbdma_addptr = nextdsc;
    757 	}
    758 
    759 	/*
    760 	 * Give the buffer to the DMA engine.
    761 	 */
    762 
    763 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    764 
    765 	return 0;					/* we did it */
    766 }
    767 
    768 /*
    769  *  SBDMA_EMPTYRING(d)
    770  *
    771  *  Free all allocated mbufs on the specified DMA channel;
    772  *
    773  *  Input parameters:
    774  *	d  - DMA channel
    775  *
    776  *  Return value:
    777  *	nothing
    778  */
    779 
    780 static void
    781 sbdma_emptyring(sbmacdma_t *d)
    782 {
    783 	int idx;
    784 	struct mbuf *m;
    785 
    786 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    787 		m = d->sbdma_ctxtable[idx];
    788 		if (m) {
    789 			m_freem(m);
    790 			d->sbdma_ctxtable[idx] = NULL;
    791 		}
    792 	}
    793 }
    794 
    795 /*
    796  *  SBDMA_FILLRING(d)
    797  *
    798  *  Fill the specified DMA channel (must be receive channel)
    799  *  with mbufs
    800  *
    801  *  Input parameters:
    802  *	d - DMA channel
    803  *
    804  *  Return value:
    805  *	nothing
    806  */
    807 
    808 static void
    809 sbdma_fillring(sbmacdma_t *d)
    810 {
    811 	int idx;
    812 
    813 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    814 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    815 			break;
    816 }
    817 
    818 /*
    819  *  SBDMA_RX_PROCESS(sc, d)
    820  *
    821  *  Process "completed" receive buffers on the specified DMA channel.
    822  *  Note that this isn't really ideal for priority channels, since
    823  *  it processes all of the packets on a given channel before
    824  *  returning.
    825  *
    826  *  Input parameters:
    827  *	sc - softc structure
    828  *	d - DMA channel context
    829  *
    830  *  Return value:
    831  *	nothing
    832  */
    833 
    834 static void
    835 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    836 {
    837 	int curidx;
    838 	int hwidx;
    839 	sbdmadscr_t *dsc;
    840 	struct mbuf *m;
    841 	int len;
    842 
    843 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    844 
    845 	for (;;) {
    846 		/*
    847 		 * figure out where we are (as an index) and where
    848 		 * the hardware is (also as an index)
    849 		 *
    850 		 * This could be done faster if (for example) the
    851 		 * descriptor table was page-aligned and contiguous in
    852 		 * both virtual and physical memory -- you could then
    853 		 * just compare the low-order bits of the virtual address
    854 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
    855 		 */
    856 
    857 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
    858 		hwidx = (int)
    859 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    860 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    861 
    862 		/*
    863 		 * If they're the same, that means we've processed all
    864 		 * of the descriptors up to (but not including) the one that
    865 		 * the hardware is working on right now.
    866 		 */
    867 
    868 		if (curidx == hwidx)
    869 			break;
    870 
    871 		/*
    872 		 * Otherwise, get the packet's mbuf ptr back
    873 		 */
    874 
    875 		dsc = &(d->sbdma_dscrtable[curidx]);
    876 		m = d->sbdma_ctxtable[curidx];
    877 		d->sbdma_ctxtable[curidx] = NULL;
    878 
    879 		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
    880 
    881 		/*
    882 		 * Check packet status.  If good, process it.
    883 		 * If not, silently drop it and put it back on the
    884 		 * receive ring.
    885 		 */
    886 
    887 		if (! (dsc->dscr_a & M_DMA_ETHRX_BAD)) {
    888 
    889 			/*
    890 			 * Set length into the packet
    891 			 * XXX do we remove the CRC here?
    892 			 */
    893 			m->m_pkthdr.len = m->m_len = len;
    894 
    895 			ifp->if_ipackets++;
    896 			m->m_pkthdr.rcvif = ifp;
    897 
    898 
    899 			/*
    900 			 * Add a new buffer to replace the old one.
    901 			 */
    902 			sbdma_add_rcvbuffer(d, NULL);
    903 
    904 #if (NBPFILTER > 0)
    905 			/*
    906 			 * Handle BPF listeners. Let the BPF user see the
    907 			 * packet, but don't pass it up to the ether_input()
    908 			 * layer unless it's a broadcast packet, multicast
    909 			 * packet, matches our ethernet address or the
    910 			 * interface is in promiscuous mode.
    911 			 */
    912 
    913 			if (ifp->if_bpf)
    914 				bpf_mtap(ifp->if_bpf, m);
    915 #endif
    916 			/*
    917 			 * Pass the buffer to the kernel
    918 			 */
    919 			(*ifp->if_input)(ifp, m);
    920 		} else {
    921 			/*
    922 			 * Packet was mangled somehow.  Just drop it and
    923 			 * put it back on the receive ring.
    924 			 */
    925 			sbdma_add_rcvbuffer(d, m);
    926 		}
    927 
    928 		/*
    929 		 * .. and advance to the next buffer.
    930 		 */
    931 
    932 		d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
    933 	}
    934 }
    935 
    936 /*
    937  *  SBDMA_TX_PROCESS(sc, d)
    938  *
    939  *  Process "completed" transmit buffers on the specified DMA channel.
    940  *  This is normally called within the interrupt service routine.
    941  *  Note that this isn't really ideal for priority channels, since
    942  *  it processes all of the packets on a given channel before
    943  *  returning.
    944  *
    945  *  Input parameters:
    946  *	sc - softc structure
    947  *	d - DMA channel context
    948  *
    949  *  Return value:
    950  *	nothing
    951  */
    952 
    953 static void
    954 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    955 {
    956 	int curidx;
    957 	int hwidx;
    958 	struct mbuf *m;
    959 
    960 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    961 
    962 	for (;;) {
    963 		/*
    964 		 * figure out where we are (as an index) and where
    965 		 * the hardware is (also as an index)
    966 		 *
    967 		 * This could be done faster if (for example) the
    968 		 * descriptor table was page-aligned and contiguous in
    969 		 * both virtual and physical memory -- you could then
    970 		 * just compare the low-order bits of the virtual address
    971 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
    972 		 */
    973 
    974 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
    975 		hwidx = (int)
    976 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    977 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    978 
    979 		/*
    980 		 * If they're the same, that means we've processed all
    981 		 * of the descriptors up to (but not including) the one that
    982 		 * the hardware is working on right now.
    983 		 */
    984 
    985 		if (curidx == hwidx)
    986 			break;
    987 
    988 		/*
    989 		 * Otherwise, get the packet's mbuf ptr back
    990 		 */
    991 
    992 		m = d->sbdma_ctxtable[curidx];
    993 		d->sbdma_ctxtable[curidx] = NULL;
    994 
    995 		/*
    996 		 * for transmits, we just free buffers.
    997 		 */
    998 
    999 		m_freem(m);
   1000 
   1001 		/*
   1002 		 * .. and advance to the next buffer.
   1003 		 */
   1004 
   1005 		d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
   1006 	}
   1007 
   1008 	/*
   1009 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
   1010 	 * It's supposed to reflect if the interface is actively
   1011 	 * transmitting, but that's really hard to do quickly.
   1012 	 */
   1013 
   1014 	ifp->if_flags &= ~IFF_OACTIVE;
   1015 }
   1016 
   1017 /*
   1018  *  SBMAC_INITCTX(s)
   1019  *
   1020  *  Initialize an Ethernet context structure - this is called
   1021  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1022  *  call it again from inside the ioctl routines that bring the
   1023  *  interface up/down
   1024  *
   1025  *  Input parameters:
   1026  *	s - sbmac context structure
   1027  *
   1028  *  Return value:
   1029  *	0
   1030  */
   1031 
   1032 static void
   1033 sbmac_initctx(struct sbmac_softc *s)
   1034 {
   1035 	uint64_t sysrev;
   1036 
   1037 	/*
   1038 	 * figure out the addresses of some ports
   1039 	 */
   1040 
   1041 	s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
   1042 	s->sbm_maccfg    = PKSEG1(s->sbm_base + R_MAC_CFG);
   1043 	s->sbm_fifocfg   = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
   1044 	s->sbm_framecfg  = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
   1045 	s->sbm_rxfilter  = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
   1046 	s->sbm_isr       = PKSEG1(s->sbm_base + R_MAC_STATUS);
   1047 	s->sbm_imr       = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
   1048 
   1049 	/*
   1050 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1051 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1052 	 */
   1053 
   1054 	sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1055 	sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1056 
   1057 	/*
   1058 	 * initial state is OFF
   1059 	 */
   1060 
   1061 	s->sbm_state = sbmac_state_off;
   1062 
   1063 	/*
   1064 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1065 	 */
   1066 
   1067 	s->sbm_speed = sbmac_speed_10;
   1068 	s->sbm_duplex = sbmac_duplex_half;
   1069 	s->sbm_fc = sbmac_fc_disabled;
   1070 
   1071 	/*
   1072 	 * Determine SOC type.  112x has Pass3 SOC features.
   1073 	 */
   1074 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1075 	s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1076 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1077 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1078 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1079 			     0));
   1080 	if (s->sbm_pass3_dma) {
   1081 		printf("\n");
   1082 		printf("%s: disabling unaligned tx DMA\n", s->sc_dev.dv_xname);
   1083 		printf("%s", s->sc_dev.dv_xname);
   1084 		s->sbm_pass3_dma = 0;
   1085 	}
   1086 }
   1087 
   1088 /*
   1089  *  SBMAC_CHANNEL_START(s)
   1090  *
   1091  *  Start packet processing on this MAC.
   1092  *
   1093  *  Input parameters:
   1094  *	s - sbmac structure
   1095  *
   1096  *  Return value:
   1097  *	nothing
   1098  */
   1099 
   1100 static void
   1101 sbmac_channel_start(struct sbmac_softc *s)
   1102 {
   1103 	uint64_t reg;
   1104 	sbmac_port_t port;
   1105 	uint64_t cfg, fifo, framecfg;
   1106 	int idx;
   1107 	uint64_t dma_cfg0, fifo_cfg;
   1108 	sbmacdma_t *txdma;
   1109 
   1110 	/*
   1111 	 * Don't do this if running
   1112 	 */
   1113 
   1114 	if (s->sbm_state == sbmac_state_on)
   1115 		return;
   1116 
   1117 	/*
   1118 	 * Bring the controller out of reset, but leave it off.
   1119 	 */
   1120 
   1121 	SBMAC_WRITECSR(s->sbm_macenable, 0);
   1122 
   1123 	/*
   1124 	 * Ignore all received packets
   1125 	 */
   1126 
   1127 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1128 
   1129 	/*
   1130 	 * Calculate values for various control registers.
   1131 	 */
   1132 
   1133 	cfg = M_MAC_RETRY_EN |
   1134 	      M_MAC_TX_HOLD_SOP_EN |
   1135 	      V_MAC_TX_PAUSE_CNT_16K |
   1136 	      M_MAC_AP_STAT_EN |
   1137 	      M_MAC_SS_EN |
   1138 	      0;
   1139 
   1140 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1141 	       V_MAC_TX_RD_THRSH(4) |
   1142 	       V_MAC_TX_RL_THRSH(4) |
   1143 	       V_MAC_RX_PL_THRSH(4) |
   1144 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1145 	       V_MAC_RX_PL_THRSH(4) |
   1146 	       V_MAC_RX_RL_THRSH(8) |
   1147 	       0;
   1148 
   1149 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1150 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1151 	    V_MAC_BACKOFF_SEL(1);
   1152 
   1153 	/*
   1154 	 * Clear out the hash address map
   1155 	 */
   1156 
   1157 	port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
   1158 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1159 		SBMAC_WRITECSR(port, 0);
   1160 		port += sizeof(uint64_t);
   1161 	}
   1162 
   1163 	/*
   1164 	 * Clear out the exact-match table
   1165 	 */
   1166 
   1167 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1168 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1169 		SBMAC_WRITECSR(port, 0);
   1170 		port += sizeof(uint64_t);
   1171 	}
   1172 
   1173 	/*
   1174 	 * Clear out the DMA Channel mapping table registers
   1175 	 */
   1176 
   1177 	port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
   1178 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1179 		SBMAC_WRITECSR(port, 0);
   1180 		port += sizeof(uint64_t);
   1181 	}
   1182 
   1183 	port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
   1184 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1185 		SBMAC_WRITECSR(port, 0);
   1186 		port += sizeof(uint64_t);
   1187 	}
   1188 
   1189 	/*
   1190 	 * Program the hardware address.  It goes into the hardware-address
   1191 	 * register as well as the first filter register.
   1192 	 */
   1193 
   1194 	reg = sbmac_addr2reg(s->sbm_hwaddr);
   1195 
   1196 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1197 	SBMAC_WRITECSR(port, reg);
   1198 	port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
   1199 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1200 
   1201 	/*
   1202 	 * Set the receive filter for no packets, and write values
   1203 	 * to the various config registers
   1204 	 */
   1205 
   1206 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1207 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1208 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1209 	SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
   1210 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1211 
   1212 	/*
   1213 	 * Initialize DMA channels (rings should be ok now)
   1214 	 */
   1215 
   1216 	sbdma_channel_start(&(s->sbm_rxdma));
   1217 	sbdma_channel_start(&(s->sbm_txdma));
   1218 
   1219 	/*
   1220 	 * Configure the speed, duplex, and flow control
   1221 	 */
   1222 
   1223 	sbmac_set_speed(s, s->sbm_speed);
   1224 	sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
   1225 
   1226 	/*
   1227 	 * Fill the receive ring
   1228 	 */
   1229 
   1230 	sbdma_fillring(&(s->sbm_rxdma));
   1231 
   1232 	/*
   1233 	 * Turn on the rest of the bits in the enable register
   1234 	 */
   1235 
   1236 	SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1237 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1238 
   1239 
   1240 	/*
   1241 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1242 	 */
   1243 	SBMAC_WRITECSR(s->sbm_imr,
   1244 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1245 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1246 
   1247 	/*
   1248 	 * Enable receiving unicasts and broadcasts
   1249 	 */
   1250 
   1251 	SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1252 
   1253 	/*
   1254 	 * On chips which support unaligned DMA features, set the descriptor
   1255 	 * ring for transmit channels to use the unaligned buffer format.
   1256 	 */
   1257 	txdma = &(s->sbm_txdma);
   1258 
   1259 	if (s->sbm_pass3_dma) {
   1260 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1261 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1262 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1263 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
   1264 
   1265 		fifo_cfg =  SBMAC_READCSR(s->sbm_fifocfg);
   1266 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1267 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1268 		SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
   1269 	}
   1270 
   1271 	/*
   1272 	 * we're running now.
   1273 	 */
   1274 
   1275 	s->sbm_state = sbmac_state_on;
   1276 	s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1277 
   1278 	/*
   1279 	 * Program multicast addresses
   1280 	 */
   1281 
   1282 	sbmac_setmulti(s);
   1283 
   1284 	/*
   1285 	 * If channel was in promiscuous mode before, turn that on
   1286 	 */
   1287 
   1288 	if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1289 		sbmac_promiscuous_mode(s, 1);
   1290 
   1291 	/*
   1292 	 * Turn on the once-per-second timer
   1293 	 */
   1294 
   1295 	callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
   1296 }
   1297 
   1298 /*
   1299  *  SBMAC_CHANNEL_STOP(s)
   1300  *
   1301  *  Stop packet processing on this MAC.
   1302  *
   1303  *  Input parameters:
   1304  *	s - sbmac structure
   1305  *
   1306  *  Return value:
   1307  *	nothing
   1308  */
   1309 
   1310 static void
   1311 sbmac_channel_stop(struct sbmac_softc *s)
   1312 {
   1313 	uint64_t ctl;
   1314 
   1315 	/* don't do this if already stopped */
   1316 
   1317 	if (s->sbm_state == sbmac_state_off)
   1318 		return;
   1319 
   1320 	/* don't accept any packets, disable all interrupts */
   1321 
   1322 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1323 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1324 
   1325 	/* Turn off ticker */
   1326 
   1327 	callout_stop(&(s->sc_tick_ch));
   1328 
   1329 	/* turn off receiver and transmitter */
   1330 
   1331 	ctl = SBMAC_READCSR(s->sbm_macenable);
   1332 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1333 	SBMAC_WRITECSR(s->sbm_macenable, ctl);
   1334 
   1335 	/* We're stopped now. */
   1336 
   1337 	s->sbm_state = sbmac_state_off;
   1338 	s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1339 
   1340 	/* Empty the receive and transmit rings */
   1341 
   1342 	sbdma_emptyring(&(s->sbm_rxdma));
   1343 	sbdma_emptyring(&(s->sbm_txdma));
   1344 }
   1345 
   1346 /*
   1347  *  SBMAC_SET_CHANNEL_STATE(state)
   1348  *
   1349  *  Set the channel's state ON or OFF
   1350  *
   1351  *  Input parameters:
   1352  *	state - new state
   1353  *
   1354  *  Return value:
   1355  *	old state
   1356  */
   1357 
   1358 static sbmac_state_t
   1359 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1360 {
   1361 	sbmac_state_t oldstate = sc->sbm_state;
   1362 
   1363 	/*
   1364 	 * If same as previous state, return
   1365 	 */
   1366 
   1367 	if (state == oldstate)
   1368 		return oldstate;
   1369 
   1370 	/*
   1371 	 * If new state is ON, turn channel on
   1372 	 */
   1373 
   1374 	if (state == sbmac_state_on)
   1375 		sbmac_channel_start(sc);
   1376 	else
   1377 		sbmac_channel_stop(sc);
   1378 
   1379 	/*
   1380 	 * Return previous state
   1381 	 */
   1382 
   1383 	return oldstate;
   1384 }
   1385 
   1386 /*
   1387  *  SBMAC_PROMISCUOUS_MODE(sc, onoff)
   1388  *
   1389  *  Turn on or off promiscuous mode
   1390  *
   1391  *  Input parameters:
   1392  *	sc - softc
   1393  *	onoff - 1 to turn on, 0 to turn off
   1394  *
   1395  *  Return value:
   1396  *	nothing
   1397  */
   1398 
   1399 static void
   1400 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
   1401 {
   1402 	uint64_t reg;
   1403 
   1404 	if (sc->sbm_state != sbmac_state_on)
   1405 		return;
   1406 
   1407 	if (onoff) {
   1408 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1409 		reg |= M_MAC_ALLPKT_EN;
   1410 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1411 	} else {
   1412 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1413 		reg &= ~M_MAC_ALLPKT_EN;
   1414 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1415 	}
   1416 }
   1417 
   1418 /*
   1419  *  SBMAC_INIT_AND_START(sc)
   1420  *
   1421  *  Stop the channel and restart it.  This is generally used
   1422  *  when we have to do something to the channel that requires
   1423  *  a swift kick.
   1424  *
   1425  *  Input parameters:
   1426  *	sc - softc
   1427  */
   1428 
   1429 static void
   1430 sbmac_init_and_start(struct sbmac_softc *sc)
   1431 {
   1432 	int s;
   1433 
   1434 	s = splnet();
   1435 
   1436 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
   1437 	sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
   1438 	sbmac_set_channel_state(sc, sbmac_state_on);
   1439 
   1440 	splx(s);
   1441 }
   1442 
   1443 /*
   1444  *  SBMAC_ADDR2REG(ptr)
   1445  *
   1446  *  Convert six bytes into the 64-bit register value that
   1447  *  we typically write into the SBMAC's address/mcast registers
   1448  *
   1449  *  Input parameters:
   1450  *	ptr - pointer to 6 bytes
   1451  *
   1452  *  Return value:
   1453  *	register value
   1454  */
   1455 
   1456 static uint64_t
   1457 sbmac_addr2reg(u_char *ptr)
   1458 {
   1459 	uint64_t reg = 0;
   1460 
   1461 	ptr += 6;
   1462 
   1463 	reg |= (uint64_t) *(--ptr);
   1464 	reg <<= 8;
   1465 	reg |= (uint64_t) *(--ptr);
   1466 	reg <<= 8;
   1467 	reg |= (uint64_t) *(--ptr);
   1468 	reg <<= 8;
   1469 	reg |= (uint64_t) *(--ptr);
   1470 	reg <<= 8;
   1471 	reg |= (uint64_t) *(--ptr);
   1472 	reg <<= 8;
   1473 	reg |= (uint64_t) *(--ptr);
   1474 
   1475 	return reg;
   1476 }
   1477 
   1478 /*
   1479  *  SBMAC_SET_SPEED(s, speed)
   1480  *
   1481  *  Configure LAN speed for the specified MAC.
   1482  *  Warning: must be called when MAC is off!
   1483  *
   1484  *  Input parameters:
   1485  *	s - sbmac structure
   1486  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1487  *
   1488  *  Return value:
   1489  *	1 if successful
   1490  *	0 indicates invalid parameters
   1491  */
   1492 
   1493 static int
   1494 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
   1495 {
   1496 	uint64_t cfg;
   1497 	uint64_t framecfg;
   1498 
   1499 	/*
   1500 	 * Save new current values
   1501 	 */
   1502 
   1503 	s->sbm_speed = speed;
   1504 
   1505 	if (s->sbm_state != sbmac_state_off)
   1506 		panic("sbmac_set_speed while MAC not off");
   1507 
   1508 	/*
   1509 	 * Read current register values
   1510 	 */
   1511 
   1512 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1513 	framecfg = SBMAC_READCSR(s->sbm_framecfg);
   1514 
   1515 	/*
   1516 	 * Mask out the stuff we want to change
   1517 	 */
   1518 
   1519 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1520 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1521 	    M_MAC_SLOT_SIZE);
   1522 
   1523 	/*
   1524 	 * Now add in the new bits
   1525 	 */
   1526 
   1527 	switch (speed) {
   1528 	case sbmac_speed_10:
   1529 		framecfg |= V_MAC_IFG_RX_10 |
   1530 		    V_MAC_IFG_TX_10 |
   1531 		    K_MAC_IFG_THRSH_10 |
   1532 		    V_MAC_SLOT_SIZE_10;
   1533 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1534 		break;
   1535 
   1536 	case sbmac_speed_100:
   1537 		framecfg |= V_MAC_IFG_RX_100 |
   1538 		    V_MAC_IFG_TX_100 |
   1539 		    V_MAC_IFG_THRSH_100 |
   1540 		    V_MAC_SLOT_SIZE_100;
   1541 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1542 		break;
   1543 
   1544 	case sbmac_speed_1000:
   1545 		framecfg |= V_MAC_IFG_RX_1000 |
   1546 		    V_MAC_IFG_TX_1000 |
   1547 		    V_MAC_IFG_THRSH_1000 |
   1548 		    V_MAC_SLOT_SIZE_1000;
   1549 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1550 		break;
   1551 
   1552 	case sbmac_speed_auto:		/* XXX not implemented */
   1553 		/* fall through */
   1554 	default:
   1555 		return 0;
   1556 	}
   1557 
   1558 	/*
   1559 	 * Send the bits back to the hardware
   1560 	 */
   1561 
   1562 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1563 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1564 
   1565 	return 1;
   1566 }
   1567 
   1568 /*
   1569  *  SBMAC_SET_DUPLEX(s, duplex, fc)
   1570  *
   1571  *  Set Ethernet duplex and flow control options for this MAC
   1572  *  Warning: must be called when MAC is off!
   1573  *
   1574  *  Input parameters:
   1575  *	s - sbmac structure
   1576  *	duplex - duplex setting (see sbmac_duplex_t)
   1577  *	fc - flow control setting (see sbmac_fc_t)
   1578  *
   1579  *  Return value:
   1580  *	1 if ok
   1581  *	0 if an invalid parameter combination was specified
   1582  */
   1583 
   1584 static int
   1585 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1586 {
   1587 	uint64_t cfg;
   1588 
   1589 	/*
   1590 	 * Save new current values
   1591 	 */
   1592 
   1593 	s->sbm_duplex = duplex;
   1594 	s->sbm_fc = fc;
   1595 
   1596 	if (s->sbm_state != sbmac_state_off)
   1597 		panic("sbmac_set_duplex while MAC not off");
   1598 
   1599 	/*
   1600 	 * Read current register values
   1601 	 */
   1602 
   1603 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1604 
   1605 	/*
   1606 	 * Mask off the stuff we're about to change
   1607 	 */
   1608 
   1609 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1610 
   1611 	switch (duplex) {
   1612 	case sbmac_duplex_half:
   1613 		switch (fc) {
   1614 		case sbmac_fc_disabled:
   1615 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1616 			break;
   1617 
   1618 		case sbmac_fc_collision:
   1619 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1620 			break;
   1621 
   1622 		case sbmac_fc_carrier:
   1623 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1624 			break;
   1625 
   1626 		case sbmac_fc_auto:		/* XXX not implemented */
   1627 			/* fall through */
   1628 		case sbmac_fc_frame:		/* not valid in half duplex */
   1629 		default:			/* invalid selection */
   1630 			panic("%s: invalid half duplex fc selection %d",
   1631 			    s->sc_dev.dv_xname, fc);
   1632 			return 0;
   1633 		}
   1634 		break;
   1635 
   1636 	case sbmac_duplex_full:
   1637 		switch (fc) {
   1638 		case sbmac_fc_disabled:
   1639 			cfg |= V_MAC_FC_CMD_DISABLED;
   1640 			break;
   1641 
   1642 		case sbmac_fc_frame:
   1643 			cfg |= V_MAC_FC_CMD_ENABLED;
   1644 			break;
   1645 
   1646 		case sbmac_fc_collision:	/* not valid in full duplex */
   1647 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1648 		case sbmac_fc_auto:		/* XXX not implemented */
   1649 			/* fall through */
   1650 		default:
   1651 			panic("%s: invalid full duplex fc selection %d",
   1652 			    s->sc_dev.dv_xname, fc);
   1653 			return 0;
   1654 		}
   1655 		break;
   1656 
   1657 	default:
   1658 		/* fall through */
   1659 	case sbmac_duplex_auto:
   1660 		panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
   1661 		/* XXX not implemented */
   1662 		break;
   1663 	}
   1664 
   1665 	/*
   1666 	 * Send the bits back to the hardware
   1667 	 */
   1668 
   1669 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1670 
   1671 	return 1;
   1672 }
   1673 
   1674 /*
   1675  *  SBMAC_INTR()
   1676  *
   1677  *  Interrupt handler for MAC interrupts
   1678  *
   1679  *  Input parameters:
   1680  *	MAC structure
   1681  *
   1682  *  Return value:
   1683  *	nothing
   1684  */
   1685 
   1686 /* ARGSUSED */
   1687 static void
   1688 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
   1689 {
   1690 	struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
   1691 	uint64_t isr;
   1692 
   1693 	for (;;) {
   1694 
   1695 		/*
   1696 		 * Read the ISR (this clears the bits in the real register)
   1697 		 */
   1698 
   1699 		isr = SBMAC_READCSR(sc->sbm_isr);
   1700 
   1701 		if (isr == 0)
   1702 			break;
   1703 
   1704 		/*
   1705 		 * Transmits on channel 0
   1706 		 */
   1707 
   1708 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
   1709 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1710 
   1711 		/*
   1712 		 * Receives on channel 0
   1713 		 */
   1714 
   1715 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0))
   1716 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1717 	}
   1718 }
   1719 
   1720 
   1721 /*
   1722  *  SBMAC_START(ifp)
   1723  *
   1724  *  Start output on the specified interface.  Basically, we
   1725  *  queue as many buffers as we can until the ring fills up, or
   1726  *  we run off the end of the queue, whichever comes first.
   1727  *
   1728  *  Input parameters:
   1729  *	ifp - interface
   1730  *
   1731  *  Return value:
   1732  *	nothing
   1733  */
   1734 
   1735 static void
   1736 sbmac_start(struct ifnet *ifp)
   1737 {
   1738 	struct sbmac_softc	*sc;
   1739 	struct mbuf		*m_head = NULL;
   1740 	int			rv;
   1741 
   1742 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1743 		return;
   1744 
   1745 	sc = ifp->if_softc;
   1746 
   1747 	for (;;) {
   1748 
   1749 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1750 		if (m_head == NULL)
   1751 		    break;
   1752 
   1753 		/*
   1754 		 * Put the buffer on the transmit ring.  If we
   1755 		 * don't have room, set the OACTIVE flag and wait
   1756 		 * for the NIC to drain the ring.
   1757 		 */
   1758 
   1759 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1760 
   1761 		if (rv == 0) {
   1762 			/*
   1763 			 * If there's a BPF listener, bounce a copy of this
   1764 			 * frame to it.
   1765 			 */
   1766 #if (NBPFILTER > 0)
   1767 			if (ifp->if_bpf)
   1768 				bpf_mtap(ifp->if_bpf, m_head);
   1769 #endif
   1770 			if (!sc->sbm_pass3_dma) {
   1771 				/*
   1772 				 * Don't free mbuf if we're not copying to new
   1773 				 * mbuf in sbdma_add_txbuffer.  It will be
   1774 				 * freed in sbdma_tx_process.
   1775 				 */
   1776 				m_freem(m_head);
   1777 			}
   1778 		} else {
   1779 		    IF_PREPEND(&ifp->if_snd, m_head);
   1780 		    ifp->if_flags |= IFF_OACTIVE;
   1781 		    break;
   1782 		}
   1783 	}
   1784 }
   1785 
   1786 /*
   1787  *  SBMAC_SETMULTI(sc)
   1788  *
   1789  *  Reprogram the multicast table into the hardware, given
   1790  *  the list of multicasts associated with the interface
   1791  *  structure.
   1792  *
   1793  *  Input parameters:
   1794  *	sc - softc
   1795  *
   1796  *  Return value:
   1797  *	nothing
   1798  */
   1799 
   1800 static void
   1801 sbmac_setmulti(struct sbmac_softc *sc)
   1802 {
   1803 	struct ifnet *ifp;
   1804 	uint64_t reg;
   1805 	sbmac_port_t port;
   1806 	int idx;
   1807 	struct ether_multi *enm;
   1808 	struct ether_multistep step;
   1809 
   1810 	ifp = &sc->sc_ethercom.ec_if;
   1811 
   1812 	/*
   1813 	 * Clear out entire multicast table.  We do this by nuking
   1814 	 * the entire hash table and all the direct matches except
   1815 	 * the first one, which is used for our station address
   1816 	 */
   1817 
   1818 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1819 		port = PKSEG1(sc->sbm_base +
   1820 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1821 		SBMAC_WRITECSR(port, 0);
   1822 	}
   1823 
   1824 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1825 		port = PKSEG1(sc->sbm_base +
   1826 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1827 		SBMAC_WRITECSR(port, 0);
   1828 	}
   1829 
   1830 	/*
   1831 	 * Clear the filter to say we don't want any multicasts.
   1832 	 */
   1833 
   1834 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1835 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1836 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1837 
   1838 	if (ifp->if_flags & IFF_ALLMULTI) {
   1839 		/*
   1840 		 * Enable ALL multicasts.  Do this by inverting the
   1841 		 * multicast enable bit.
   1842 		 */
   1843 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1844 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1845 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1846 		return;
   1847 	}
   1848 
   1849 	/*
   1850 	 * Progam new multicast entries.  For now, only use the
   1851 	 * perfect filter.  In the future we'll need to use the
   1852 	 * hash filter if the perfect filter overflows
   1853 	 */
   1854 
   1855 	/*
   1856 	 * XXX only using perfect filter for now, need to use hash
   1857 	 * XXX if the table overflows
   1858 	 */
   1859 
   1860 	idx = 1;		/* skip station address */
   1861 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1862 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1863 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1864 		port = PKSEG1(sc->sbm_base +
   1865 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1866 		SBMAC_WRITECSR(port, reg);
   1867 		idx++;
   1868 		ETHER_NEXT_MULTI(step, enm);
   1869 	}
   1870 
   1871 	/*
   1872 	 * Enable the "accept multicast bits" if we programmed at least one
   1873 	 * multicast.
   1874 	 */
   1875 
   1876 	if (idx > 1) {
   1877 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1878 	    reg |= M_MAC_MCAST_EN;
   1879 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1880 	}
   1881 }
   1882 
   1883 /*
   1884  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1885  *
   1886  *  Generic IOCTL requests for this interface.  The basic
   1887  *  stuff is handled here for bringing the interface up,
   1888  *  handling multicasts, etc.
   1889  *
   1890  *  Input parameters:
   1891  *	ifp - interface structure
   1892  *	cmd - command code
   1893  *	data - pointer to data
   1894  *
   1895  *  Return value:
   1896  *	return value (0 is success)
   1897  */
   1898 
   1899 static int
   1900 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1901 {
   1902 	struct ifaddr *ifa = (struct ifaddr *) data;
   1903 	struct sbmac_softc *sc = ifp->if_softc;
   1904 
   1905 	switch (cmd) {
   1906 	case SIOCSIFADDR:
   1907 		ifp->if_flags |= IFF_UP;
   1908 
   1909 		switch (ifa->ifa_addr->sa_family) {
   1910 #ifdef INET
   1911 		case AF_INET:
   1912 			sbmac_init_and_start(sc);
   1913 			arp_ifinit(ifp, ifa);
   1914 			break;
   1915 #endif
   1916 #ifdef NS
   1917 		case AF_NS:
   1918 		{
   1919 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1920 
   1921 			if (ns_nullhost(*ina))
   1922 				ina->x_host =
   1923 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1924 			else
   1925 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
   1926 				    ifp->if_addrlen);
   1927 			/* Set new address. */
   1928 			sbmac_init_and_start(sc);
   1929 			break;
   1930 		}
   1931 #endif
   1932 		default:
   1933 			sbmac_init_and_start(sc);
   1934 			break;
   1935 		}
   1936 		break;
   1937 
   1938 	default:
   1939 		return (EINVAL);
   1940 	}
   1941 
   1942 	return (0);
   1943 }
   1944 
   1945 /*
   1946  *  SBMAC_IOCTL(ifp, command, data)
   1947  *
   1948  *  Main IOCTL handler - dispatches to other IOCTLs for various
   1949  *  types of requests.
   1950  *
   1951  *  Input parameters:
   1952  *	ifp - interface pointer
   1953  *	command - command code
   1954  *	data - pointer to argument data
   1955  *
   1956  *  Return value:
   1957  *	0 if ok
   1958  *	else error code
   1959  */
   1960 
   1961 static int
   1962 sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1963 {
   1964 	struct sbmac_softc *sc = ifp->if_softc;
   1965 	struct ifreq *ifr = (struct ifreq *) data;
   1966 	int s, error = 0;
   1967 
   1968 	s = splnet();
   1969 
   1970 	switch(command) {
   1971 	case SIOCSIFADDR:
   1972 	case SIOCGIFADDR:
   1973 		error = sbmac_ether_ioctl(ifp, command, data);
   1974 		break;
   1975 	case SIOCSIFMTU:
   1976 		if (ifr->ifr_mtu > ETHER_MAX_LEN)
   1977 			error = EINVAL;
   1978 		else {
   1979 			ifp->if_mtu = ifr->ifr_mtu;
   1980 			/* XXX Program new MTU here */
   1981 		}
   1982 		break;
   1983 	case SIOCSIFFLAGS:
   1984 		if (ifp->if_flags & IFF_UP) {
   1985 			/*
   1986 			 * If only the state of the PROMISC flag changed,
   1987 			 * just tweak the hardware registers.
   1988 			 */
   1989 			if ((ifp->if_flags & IFF_RUNNING) &&
   1990 			    (ifp->if_flags & IFF_PROMISC)) {
   1991 				/* turn on promiscuous mode */
   1992 				sbmac_promiscuous_mode(sc, 1);
   1993 			} else if (ifp->if_flags & IFF_RUNNING &&
   1994 			    !(ifp->if_flags & IFF_PROMISC)) {
   1995 			    /* turn off promiscuous mode */
   1996 			    sbmac_promiscuous_mode(sc, 0);
   1997 			} else
   1998 			    sbmac_set_channel_state(sc, sbmac_state_on);
   1999 		} else {
   2000 			if (ifp->if_flags & IFF_RUNNING)
   2001 				sbmac_set_channel_state(sc, sbmac_state_off);
   2002 		}
   2003 
   2004 		sc->sbm_if_flags = ifp->if_flags;
   2005 		error = 0;
   2006 		break;
   2007 
   2008 	case SIOCADDMULTI:
   2009 	case SIOCDELMULTI:
   2010 		if (ifp->if_flags & IFF_RUNNING) {
   2011 			sbmac_setmulti(sc);
   2012 			error = 0;
   2013 		}
   2014 		break;
   2015 	case SIOCSIFMEDIA:
   2016 	case SIOCGIFMEDIA:
   2017 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
   2018 		break;
   2019 	default:
   2020 		error = EINVAL;
   2021 		break;
   2022 	}
   2023 
   2024 	(void)splx(s);
   2025 
   2026 	return(error);
   2027 }
   2028 
   2029 /*
   2030  *  SBMAC_IFMEDIA_UPD(ifp)
   2031  *
   2032  *  Configure an appropriate media type for this interface,
   2033  *  given the data in the interface structure
   2034  *
   2035  *  Input parameters:
   2036  *	ifp - interface
   2037  *
   2038  *  Return value:
   2039  *	0 if ok
   2040  *	else error code
   2041  */
   2042 
   2043 static int
   2044 sbmac_mediachange(struct ifnet *ifp)
   2045 {
   2046 	struct sbmac_softc *sc = ifp->if_softc;
   2047 
   2048 	if (ifp->if_flags & IFF_UP)
   2049 		mii_mediachg(&sc->sc_mii);
   2050 	return(0);
   2051 }
   2052 
   2053 /*
   2054  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2055  *
   2056  *  Report current media status (used by ifconfig, for example)
   2057  *
   2058  *  Input parameters:
   2059  *	ifp - interface structure
   2060  *	ifmr - media request structure
   2061  *
   2062  *  Return value:
   2063  *	nothing
   2064  */
   2065 
   2066 static void
   2067 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
   2068 {
   2069 	struct sbmac_softc	*sc = ifp->if_softc;
   2070 
   2071   	mii_pollstat(&sc->sc_mii);
   2072 	req->ifm_status = sc->sc_mii.mii_media_status;
   2073 	req->ifm_active = sc->sc_mii.mii_media_active;
   2074 }
   2075 
   2076 /*
   2077  *  SBMAC_WATCHDOG(ifp)
   2078  *
   2079  *  Called periodically to make sure we're still happy.
   2080  *
   2081  *  Input parameters:
   2082  *	ifp - interface structure
   2083  *
   2084  *  Return value:
   2085  *	nothing
   2086  */
   2087 
   2088 static void
   2089 sbmac_watchdog(struct ifnet *ifp)
   2090 {
   2091 
   2092 	/* XXX do something */
   2093 }
   2094 
   2095 /*
   2096  * One second timer, used to tick MII.
   2097  */
   2098 static void
   2099 sbmac_tick(void *arg)
   2100 {
   2101 	struct sbmac_softc *sc = arg;
   2102 	int s;
   2103 
   2104 	s = splnet();
   2105 	mii_tick(&sc->sc_mii);
   2106 	splx(s);
   2107 
   2108 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2109 }
   2110 
   2111 
   2112 /*
   2113  *  SBMAC_MATCH(parent, match, aux)
   2114  *
   2115  *  Part of the config process - see if this device matches the
   2116  *  info about what we expect to find on the bus.
   2117  *
   2118  *  Input parameters:
   2119  *	parent - parent bus structure
   2120  *	match -
   2121  *	aux - bus-specific args
   2122  *
   2123  *  Return value:
   2124  *	1 if we match
   2125  *	0 if we don't match
   2126  */
   2127 
   2128 static int
   2129 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
   2130 {
   2131 	struct sbobio_attach_args *sap = aux;
   2132 
   2133 	/*
   2134 	 * Make sure it's a MAC
   2135 	 */
   2136 
   2137 	if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2138 		return 0;
   2139 
   2140 	/*
   2141 	 * Yup, it is.
   2142 	 */
   2143 
   2144 	return 1;
   2145 }
   2146 
   2147 /*
   2148  *  SBMAC_PARSE_XDIGIT(str)
   2149  *
   2150  *  Parse a hex digit, returning its value
   2151  *
   2152  *  Input parameters:
   2153  *	str - character
   2154  *
   2155  *  Return value:
   2156  *	hex value, or -1 if invalid
   2157  */
   2158 
   2159 static int
   2160 sbmac_parse_xdigit(char str)
   2161 {
   2162 	int digit;
   2163 
   2164 	if ((str >= '0') && (str <= '9'))
   2165 		digit = str - '0';
   2166 	else if ((str >= 'a') && (str <= 'f'))
   2167 		digit = str - 'a' + 10;
   2168 	else if ((str >= 'A') && (str <= 'F'))
   2169 		digit = str - 'A' + 10;
   2170 	else
   2171 		digit = -1;
   2172 
   2173 	return digit;
   2174 }
   2175 
   2176 /*
   2177  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2178  *
   2179  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2180  *  Ethernet address.
   2181  *
   2182  *  Input parameters:
   2183  *	str - string
   2184  *	hwaddr - pointer to hardware address
   2185  *
   2186  *  Return value:
   2187  *	0 if ok, else -1
   2188  */
   2189 
   2190 static int
   2191 sbmac_parse_hwaddr(char *str, u_char *hwaddr)
   2192 {
   2193 	int digit1, digit2;
   2194 	int idx = 6;
   2195 
   2196 	while (*str && (idx > 0)) {
   2197 		digit1 = sbmac_parse_xdigit(*str);
   2198 		if (digit1 < 0)
   2199 			return -1;
   2200 		str++;
   2201 		if (!*str)
   2202 			return -1;
   2203 
   2204 		if ((*str == ':') || (*str == '-')) {
   2205 			digit2 = digit1;
   2206 			digit1 = 0;
   2207 		} else {
   2208 			digit2 = sbmac_parse_xdigit(*str);
   2209 			if (digit2 < 0)
   2210 				return -1;
   2211 			str++;
   2212 		}
   2213 
   2214 		*hwaddr++ = (digit1 << 4) | digit2;
   2215 		idx--;
   2216 
   2217 		if (*str == '-')
   2218 			str++;
   2219 		if (*str == ':')
   2220 			str++;
   2221 	}
   2222 	return 0;
   2223 }
   2224 
   2225 /*
   2226  *  SBMAC_ATTACH(parent, self, aux)
   2227  *
   2228  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2229  *
   2230  *  Input parameters:
   2231  *	parent - parent bus device
   2232  *	self - our softc
   2233  *	aux - attach data
   2234  *
   2235  *  Return value:
   2236  *	nothing
   2237  */
   2238 
   2239 static void
   2240 sbmac_attach(struct device *parent, struct device *self, void *aux)
   2241 {
   2242 	struct ifnet *ifp;
   2243 	struct sbmac_softc *sc;
   2244 	struct sbobio_attach_args *sap = aux;
   2245 	u_char *eaddr;
   2246 	static int unit = 0;	/* XXX */
   2247 	uint64_t ea_reg;
   2248 	int idx;
   2249 
   2250 	sc = (struct sbmac_softc *)self;
   2251 
   2252 	/* Determine controller base address */
   2253 
   2254 	sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
   2255 
   2256 	eaddr = sc->sbm_hwaddr;
   2257 
   2258 	/*
   2259 	 * Initialize context (get pointers to registers and stuff), then
   2260 	 * allocate the memory for the descriptor tables.
   2261 	 */
   2262 
   2263 	sbmac_initctx(sc);
   2264 
   2265 	callout_init(&(sc->sc_tick_ch));
   2266 
   2267 	/*
   2268 	 * Read the ethernet address.  The firwmare left this programmed
   2269 	 * for us in the ethernet address register for each mac.
   2270 	 */
   2271 
   2272 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2273 	for (idx = 0; idx < 6; idx++) {
   2274 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2275 		ea_reg >>= 8;
   2276 	}
   2277 
   2278 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2279 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2280 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2281 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2282 		eaddr[5] = unit;
   2283 	}
   2284 
   2285 #ifdef SBMAC_ETH0_HWADDR
   2286 	if (unit == 0)
   2287 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2288 #endif
   2289 #ifdef SBMAC_ETH1_HWADDR
   2290 	if (unit == 1)
   2291 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2292 #endif
   2293 #ifdef SBMAC_ETH2_HWADDR
   2294 	if (unit == 2)
   2295 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2296 #endif
   2297 	unit++;
   2298 
   2299 	/*
   2300 	 * Display Ethernet address (this is called during the config process
   2301 	 * so we need to finish off the config message that was being displayed)
   2302 	 */
   2303 	printf(": Ethernet%s\n",
   2304 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2305 	printf("%s: Ethernet address: %s\n", self->dv_xname,
   2306 	    ether_sprintf(eaddr));
   2307 
   2308 
   2309 	/*
   2310 	 * Set up ifnet structure
   2311 	 */
   2312 
   2313 	ifp = &sc->sc_ethercom.ec_if;
   2314 	ifp->if_softc = sc;
   2315 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   2316 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
   2317 	    IFF_NOTRAILERS;
   2318 	ifp->if_ioctl = sbmac_ioctl;
   2319 	ifp->if_start = sbmac_start;
   2320 	ifp->if_watchdog = sbmac_watchdog;
   2321 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2322 
   2323 	/*
   2324 	 * Set up ifmedia support.
   2325 	 */
   2326 
   2327 	/*
   2328 	 * Initialize MII/media info.
   2329 	 */
   2330 	sc->sc_mii.mii_ifp      = ifp;
   2331 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
   2332 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
   2333 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
   2334 	ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
   2335 	    sbmac_mediastatus);
   2336 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2337 	    MII_OFFSET_ANY, 0);
   2338 
   2339 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2340 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2341 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2342 	} else {
   2343 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2344 	}
   2345 
   2346 
   2347 	/*
   2348 	 * map/route interrupt
   2349 	 */
   2350 
   2351 	sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
   2352 	    sbmac_intr, sc);
   2353 
   2354 	/*
   2355 	 * Call MI attach routines.
   2356 	 */
   2357 	if_attach(ifp);
   2358 	ether_ifattach(ifp, eaddr);
   2359 }
   2360