sbmac.c revision 1.15 1 /* $NetBSD: sbmac.c,v 1.15 2004/03/18 05:57:58 simonb Exp $ */
2
3 /*
4 * Copyright 2000, 2001
5 * Broadcom Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and copied only
8 * in accordance with the following terms and conditions. Subject to these
9 * conditions, you may download, copy, install, use, modify and distribute
10 * modified or unmodified copies of this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce and
14 * retain this copyright notice and list of conditions as they appear in
15 * the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Broadcom Corporation. The "Broadcom Corporation" name may not be
19 * used to endorse or promote products derived from this software
20 * without the prior written permission of Broadcom Corporation.
21 *
22 * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25 * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26 * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27 * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.15 2004/03/18 05:57:58 simonb Exp $");
37
38 #include "bpfilter.h"
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/queue.h>
50 #include <sys/device.h>
51
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_ether.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57
58 #if NBPFILTER > 0
59 #include <net/bpf.h>
60 #endif
61
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
65 #endif
66
67 #ifdef NS
68 #include <netns/ns.h>
69 #include <netns/ns_if.h>
70 #endif
71
72 #include <machine/locore.h>
73
74 #include "sbobiovar.h"
75
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
79
80 #include <mips/sibyte/include/sb1250_defs.h>
81 #include <mips/sibyte/include/sb1250_regs.h>
82 #include <mips/sibyte/include/sb1250_mac.h>
83 #include <mips/sibyte/include/sb1250_dma.h>
84 #include <mips/sibyte/include/sb1250_scd.h>
85
86 /* Simple types */
87
88 typedef u_long sbmac_port_t;
89 typedef uint64_t sbmac_physaddr_t;
90 typedef uint64_t sbmac_enetaddr_t;
91
92 typedef enum { sbmac_speed_auto, sbmac_speed_10,
93 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
94
95 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
96 sbmac_duplex_full } sbmac_duplex_t;
97
98 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
99 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
100
101 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
102 sbmac_state_broken } sbmac_state_t;
103
104
105 /* Macros */
106
107 #define SBMAC_EVENT_COUNTERS /* Include counters for various events */
108
109 #define SBDMA_NEXTBUF(d, f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
110 (d)->sbdma_dscrtable : (d)->f+1)
111
112
113 #define CACHELINESIZE 32
114 #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
115 #define KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
116 #define KVTOPHYS(x) kvtophys((vaddr_t)(x))
117
118 #ifdef SBMACDEBUG
119 #define dprintf(x) printf x
120 #else
121 #define dprintf(x)
122 #endif
123
124 #define SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
125 #define SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
126
127 #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
128
129 #define SBMAC_MAX_TXDESCR 64
130 #define SBMAC_MAX_RXDESCR 64
131
132 #define ETHER_ALIGN 2
133
134 /* DMA Descriptor structure */
135
136 typedef struct sbdmadscr_s {
137 uint64_t dscr_a;
138 uint64_t dscr_b;
139 } sbdmadscr_t;
140
141
142 /* DMA Controller structure */
143
144 typedef struct sbmacdma_s {
145
146 /*
147 * This stuff is used to identify the channel and the registers
148 * associated with it.
149 */
150
151 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
152 int sbdma_channel; /* channel number */
153 int sbdma_txdir; /* direction (1=transmit) */
154 int sbdma_maxdescr; /* total # of descriptors in ring */
155 sbmac_port_t sbdma_config0; /* DMA config register 0 */
156 sbmac_port_t sbdma_config1; /* DMA config register 1 */
157 sbmac_port_t sbdma_dscrbase; /* Descriptor base address */
158 sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */
159 sbmac_port_t sbdma_curdscr; /* current descriptor address */
160
161 /*
162 * This stuff is for maintenance of the ring
163 */
164
165 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
166 sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
167
168 struct mbuf **sbdma_ctxtable; /* context table, one per descr */
169
170 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
171 sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
172 sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
173 } sbmacdma_t;
174
175
176 /* Ethernet softc structure */
177
178 struct sbmac_softc {
179
180 /*
181 * NetBSD-specific things
182 */
183 struct device sc_dev; /* base device (must be first) */
184 struct ethercom sc_ethercom; /* Ethernet common part */
185 struct mii_data sc_mii;
186 struct callout sc_tick_ch;
187
188 int sbm_if_flags;
189 void *sbm_intrhand;
190
191 /*
192 * Controller-specific things
193 */
194
195 sbmac_port_t sbm_base; /* MAC's base address */
196 sbmac_state_t sbm_state; /* current state */
197
198 sbmac_port_t sbm_macenable; /* MAC Enable Register */
199 sbmac_port_t sbm_maccfg; /* MAC Configuration Register */
200 sbmac_port_t sbm_fifocfg; /* FIFO configuration register */
201 sbmac_port_t sbm_framecfg; /* Frame configuration register */
202 sbmac_port_t sbm_rxfilter; /* receive filter register */
203 sbmac_port_t sbm_isr; /* Interrupt status register */
204 sbmac_port_t sbm_imr; /* Interrupt mask register */
205
206 sbmac_speed_t sbm_speed; /* current speed */
207 sbmac_duplex_t sbm_duplex; /* current duplex */
208 sbmac_fc_t sbm_fc; /* current flow control setting */
209 int sbm_rxflags; /* received packet flags */
210
211 u_char sbm_hwaddr[ETHER_ADDR_LEN];
212
213 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
214 sbmacdma_t sbm_rxdma;
215
216 int sbm_pass3_dma; /* chip has pass3 SOC DMA features */
217
218 #ifdef SBMAC_EVENT_COUNTERS
219 struct evcnt sbm_ev_rxintr; /* Rx interrupts */
220 struct evcnt sbm_ev_txintr; /* Tx interrupts */
221 struct evcnt sbm_ev_txdrop; /* Tx dropped due to no mbuf alloc failed */
222 struct evcnt sbm_ev_txstall; /* Tx stalled due to no descriptors free */
223
224 struct evcnt sbm_ev_txsplit; /* pass3 Tx split mbuf */
225 struct evcnt sbm_ev_txkeep; /* pass3 Tx didn't split mbuf */
226 #endif
227 };
228
229
230 #ifdef SBMAC_EVENT_COUNTERS
231 #define SBMAC_EVCNT_INCR(ev) (ev).ev_count++
232 #else
233 #define SBMAC_EVCNT_INCR(ev) do { /* nothing */ } while (0)
234 #endif
235
236 /* Externs */
237
238 extern paddr_t kvtophys(vaddr_t);
239
240 /* Prototypes */
241
242 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
243 int txrx, int maxdescr);
244 static void sbdma_channel_start(sbmacdma_t *d);
245 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
246 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
247 static void sbdma_emptyring(sbmacdma_t *d);
248 static void sbdma_fillring(sbmacdma_t *d);
249 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
250 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
251 static void sbmac_initctx(struct sbmac_softc *s);
252 static void sbmac_channel_start(struct sbmac_softc *s);
253 static void sbmac_channel_stop(struct sbmac_softc *s);
254 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
255 sbmac_state_t);
256 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
257 static void sbmac_init_and_start(struct sbmac_softc *sc);
258 static uint64_t sbmac_addr2reg(u_char *ptr);
259 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
260 static void sbmac_start(struct ifnet *ifp);
261 static void sbmac_setmulti(struct sbmac_softc *sc);
262 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
263 static int sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
264 static int sbmac_mediachange(struct ifnet *ifp);
265 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
266 static void sbmac_watchdog(struct ifnet *ifp);
267 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
268 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
269 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
270 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
271 sbmac_fc_t fc);
272 static void sbmac_tick(void *arg);
273
274
275 /* Globals */
276
277 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
278 sbmac_match, sbmac_attach, NULL, NULL);
279
280 static uint32_t sbmac_mii_bitbang_read(struct device *self);
281 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
282
283 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
284 sbmac_mii_bitbang_read,
285 sbmac_mii_bitbang_write,
286 {
287 (uint32_t)M_MAC_MDIO_OUT, /* MII_BIT_MDO */
288 (uint32_t)M_MAC_MDIO_IN, /* MII_BIT_MDI */
289 (uint32_t)M_MAC_MDC, /* MII_BIT_MDC */
290 0, /* MII_BIT_DIR_HOST_PHY */
291 (uint32_t)M_MAC_MDIO_DIR /* MII_BIT_DIR_PHY_HOST */
292 }
293 };
294
295 static uint32_t
296 sbmac_mii_bitbang_read(struct device *self)
297 {
298 struct sbmac_softc *sc = (void *) self;
299 sbmac_port_t reg;
300
301 reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
302 return (uint32_t) SBMAC_READCSR(reg);
303 }
304
305 static void
306 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
307 {
308 struct sbmac_softc *sc = (void *) self;
309 sbmac_port_t reg;
310
311 reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
312
313 SBMAC_WRITECSR(reg, (val &
314 (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
315 }
316
317 /*
318 * Read an PHY register through the MII.
319 */
320 static int
321 sbmac_mii_readreg(struct device *self, int phy, int reg)
322 {
323
324 return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
325 }
326
327 /*
328 * Write to a PHY register through the MII.
329 */
330 static void
331 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
332 {
333
334 mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
335 }
336
337 static void
338 sbmac_mii_statchg(struct device *self)
339 {
340 struct sbmac_softc *sc = (struct sbmac_softc *)self;
341 sbmac_state_t oldstate;
342
343 /* Stop the MAC in preparation for changing all of the parameters. */
344 oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
345
346 switch (sc->sc_ethercom.ec_if.if_baudrate) {
347 default: /* if autonegotiation fails, assume 10Mbit */
348 case IF_Mbps(10):
349 sbmac_set_speed(sc, sbmac_speed_10);
350 break;
351
352 case IF_Mbps(100):
353 sbmac_set_speed(sc, sbmac_speed_100);
354 break;
355
356 case IF_Mbps(1000):
357 sbmac_set_speed(sc, sbmac_speed_1000);
358 break;
359 }
360
361 if (sc->sc_mii.mii_media_active & IFM_FDX) {
362 /* Configure for full-duplex */
363 /* XXX: is flow control right for 10, 100? */
364 sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
365 } else {
366 /* Configure for half-duplex */
367 /* XXX: is flow control right? */
368 sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
369 }
370
371 /* And put it back into its former state. */
372 sbmac_set_channel_state(sc, oldstate);
373 }
374
375 /*
376 * SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
377 *
378 * Initialize a DMA channel context. Since there are potentially
379 * eight DMA channels per MAC, it's nice to do this in a standard
380 * way.
381 *
382 * Input parameters:
383 * d - sbmacdma_t structure (DMA channel context)
384 * s - sbmac_softc structure (pointer to a MAC)
385 * chan - channel number (0..1 right now)
386 * txrx - Identifies DMA_TX or DMA_RX for channel direction
387 * maxdescr - number of descriptors
388 *
389 * Return value:
390 * nothing
391 */
392
393 static void
394 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
395 int maxdescr)
396 {
397 /*
398 * Save away interesting stuff in the structure
399 */
400
401 d->sbdma_eth = s;
402 d->sbdma_channel = chan;
403 d->sbdma_txdir = txrx;
404
405 /*
406 * initialize register pointers
407 */
408
409 d->sbdma_config0 = PKSEG1(s->sbm_base +
410 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
411 d->sbdma_config1 = PKSEG1(s->sbm_base +
412 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
413 d->sbdma_dscrbase = PKSEG1(s->sbm_base +
414 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
415 d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
416 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
417 d->sbdma_curdscr = PKSEG1(s->sbm_base +
418 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
419
420 /*
421 * Allocate memory for the ring
422 */
423
424 d->sbdma_maxdescr = maxdescr;
425
426 d->sbdma_dscrtable = (sbdmadscr_t *)
427 KMALLOC(d->sbdma_maxdescr*sizeof(sbdmadscr_t));
428
429 bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
430
431 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
432
433 d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
434
435 /*
436 * And context table
437 */
438
439 d->sbdma_ctxtable = (struct mbuf **)
440 KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
441
442 bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
443 }
444
445 /*
446 * SBDMA_CHANNEL_START(d)
447 *
448 * Initialize the hardware registers for a DMA channel.
449 *
450 * Input parameters:
451 * d - DMA channel to init (context must be previously init'd
452 *
453 * Return value:
454 * nothing
455 */
456
457 static void
458 sbdma_channel_start(sbmacdma_t *d)
459 {
460 /*
461 * Turn on the DMA channel
462 */
463
464 SBMAC_WRITECSR(d->sbdma_config1, 0);
465
466 SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
467
468 SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
469
470 /*
471 * Initialize ring pointers
472 */
473
474 d->sbdma_addptr = d->sbdma_dscrtable;
475 d->sbdma_remptr = d->sbdma_dscrtable;
476 }
477
478 /*
479 * SBDMA_ADD_RCVBUFFER(d, m)
480 *
481 * Add a buffer to the specified DMA channel. For receive channels,
482 * this queues a buffer for inbound packets.
483 *
484 * Input parameters:
485 * d - DMA channel descriptor
486 * m - mbuf to add, or NULL if we should allocate one.
487 *
488 * Return value:
489 * 0 if buffer could not be added (ring is full)
490 * 1 if buffer added successfully
491 */
492
493 static int
494 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
495 {
496 sbdmadscr_t *dsc;
497 sbdmadscr_t *nextdsc;
498 struct mbuf *m_new = NULL;
499
500 /* get pointer to our current place in the ring */
501
502 dsc = d->sbdma_addptr;
503 nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
504
505 /*
506 * figure out if the ring is full - if the next descriptor
507 * is the same as the one that we're going to remove from
508 * the ring, the ring is full
509 */
510
511 if (nextdsc == d->sbdma_remptr)
512 return ENOSPC;
513
514 /*
515 * Allocate an mbuf if we don't already have one.
516 * If we do have an mbuf, reset it so that it's empty.
517 */
518
519 if (m == NULL) {
520 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
521 if (m_new == NULL) {
522 printf("%s: mbuf allocation failed\n",
523 d->sbdma_eth->sc_dev.dv_xname);
524 return ENOBUFS;
525 }
526
527 MCLGET(m_new, M_DONTWAIT);
528 if (!(m_new->m_flags & M_EXT)) {
529 printf("%s: mbuf cluster allocation failed\n",
530 d->sbdma_eth->sc_dev.dv_xname);
531 m_freem(m_new);
532 return ENOBUFS;
533 }
534
535 m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
536 m_adj(m_new, ETHER_ALIGN);
537 } else {
538 m_new = m;
539 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
540 m_new->m_data = m_new->m_ext.ext_buf;
541 m_adj(m_new, ETHER_ALIGN);
542 }
543
544 /*
545 * fill in the descriptor
546 */
547
548 dsc->dscr_a = KVTOPHYS(mtod(m_new, caddr_t)) |
549 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
550 M_DMA_DSCRA_INTERRUPT;
551
552 /* receiving: no options */
553 dsc->dscr_b = 0;
554
555 /*
556 * fill in the context
557 */
558
559 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
560
561 /*
562 * point at next packet
563 */
564
565 d->sbdma_addptr = nextdsc;
566
567 /*
568 * Give the buffer to the DMA engine.
569 */
570
571 SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
572
573 return 0; /* we did it */
574 }
575
576 /*
577 * SBDMA_ADD_TXBUFFER(d, m)
578 *
579 * Add a transmit buffer to the specified DMA channel, causing a
580 * transmit to start.
581 *
582 * Input parameters:
583 * d - DMA channel descriptor
584 * m - mbuf to add
585 *
586 * Return value:
587 * 0 transmit queued successfully
588 * otherwise error code
589 */
590
591 static int
592 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
593 {
594 sbdmadscr_t *dsc;
595 sbdmadscr_t *nextdsc;
596 sbdmadscr_t *prevdsc;
597 sbdmadscr_t *origdesc;
598 int length;
599 int num_mbufs = 0;
600 struct sbmac_softc *sc = d->sbdma_eth;
601
602 /* get pointer to our current place in the ring */
603
604 dsc = d->sbdma_addptr;
605 nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
606
607 /*
608 * figure out if the ring is full - if the next descriptor
609 * is the same as the one that we're going to remove from
610 * the ring, the ring is full
611 */
612
613 if (nextdsc == d->sbdma_remptr) {
614 SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
615 return ENOSPC;
616 }
617
618 /*
619 * PASS3 parts do not have buffer alignment restriction.
620 * No need to copy/coalesce to new mbuf. Also has different
621 * descriptor format
622 */
623 if (sc->sbm_pass3_dma) {
624 struct mbuf *m_temp = NULL;
625
626 /*
627 * Loop thru this mbuf record.
628 * The head mbuf will have SOP set.
629 */
630 dsc->dscr_a = KVTOPHYS(mtod(m,caddr_t)) |
631 M_DMA_DSCRA_INTERRUPT |
632 M_DMA_ETHTX_SOP;
633
634 /*
635 * transmitting: set outbound options,buffer A size(+ low 5
636 * bits of start addr),and packet length.
637 */
638 dsc->dscr_b =
639 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
640 V_DMA_DSCRB_A_SIZE((m->m_len +
641 (mtod(m,unsigned int) & 0x0000001F))) |
642 V_DMA_DSCRB_PKT_SIZE_MSB( (m->m_pkthdr.len & 0xB000) ) |
643 V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len);
644
645 d->sbdma_addptr = nextdsc;
646 origdesc = prevdsc = dsc;
647 dsc = d->sbdma_addptr;
648 num_mbufs++;
649
650 /* Start with first non-head mbuf */
651 for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
652 int len, next_len;
653 uint64_t addr;
654
655 if (m_temp->m_len == 0)
656 continue; /* Skip 0-length mbufs */
657
658 len = m_temp->m_len;
659 addr = KVTOPHYS(mtod(m_temp, caddr_t));
660
661 /*
662 * Check to see if the mbuf spans a page boundary. If
663 * it does, and the physical pages behind the virtual
664 * pages are not contiguous, split it so that each
665 * virtual page uses it's own Tx descriptor.
666 */
667 if (trunc_page(addr) != trunc_page(addr + len - 1)) {
668 next_len = (addr + len) - trunc_page(addr + len);
669
670 len -= next_len;
671
672 if (addr + len ==
673 KVTOPHYS(mtod(m_temp, caddr_t) + len)) {
674 SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
675 len += next_len;
676 next_len = 0;
677 } else {
678 SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
679 }
680 } else {
681 next_len = 0;
682 }
683
684 again:
685 /*
686 * fill in the descriptor
687 */
688 dsc->dscr_a = addr | M_DMA_DSCRA_INTERRUPT;
689
690 /*
691 * transmitting: set outbound options,buffer A
692 * size(+ low 5 bits of start addr)
693 */
694 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
695 V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
696
697 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = NULL;
698
699 /*
700 * point at next descriptor
701 */
702 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
703 if (nextdsc == d->sbdma_remptr) {
704 d->sbdma_addptr = origdesc;
705 SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
706 return ENOSPC;
707 }
708 d->sbdma_addptr = nextdsc;
709
710 prevdsc = dsc;
711 dsc = d->sbdma_addptr;
712 num_mbufs++;
713
714 if (next_len != 0) {
715 addr = KVTOPHYS(mtod(m_temp, caddr_t) + len);
716 len = next_len;
717
718 next_len = 0;
719 goto again;
720 }
721
722 }
723 /*Set head mbuf to last context index*/
724 d->sbdma_ctxtable[prevdsc-d->sbdma_dscrtable] = m;
725 } else {
726 struct mbuf *m_new = NULL;
727 /*
728 * [BEGIN XXX]
729 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
730 * assume it will fit). This is a temporary hack to get us
731 * going.
732 */
733
734 MGETHDR(m_new,M_DONTWAIT,MT_DATA);
735 if (m_new == NULL) {
736 printf("%s: mbuf allocation failed\n",
737 d->sbdma_eth->sc_dev.dv_xname);
738 SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
739 return ENOBUFS;
740 }
741
742 MCLGET(m_new,M_DONTWAIT);
743 if (!(m_new->m_flags & M_EXT)) {
744 printf("%s: mbuf cluster allocation failed\n",
745 d->sbdma_eth->sc_dev.dv_xname);
746 m_freem(m_new);
747 SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
748 return ENOBUFS;
749 }
750
751 m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
752 /*m_adj(m_new,ETHER_ALIGN);*/
753
754 /*
755 * XXX Don't forget to include the offset portion in the
756 * XXX cache block calculation when this code is rewritten!
757 */
758
759 /*
760 * Copy data
761 */
762
763 m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,caddr_t));
764 m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
765
766 /* Free old mbuf 'm', actual mbuf is now 'm_new' */
767
768 // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
769 // XXX: function succeeds.
770 // m_freem(m);
771 length = m_new->m_len;
772
773 /* [END XXX] */
774 /*
775 * fill in the descriptor
776 */
777
778 dsc->dscr_a = KVTOPHYS(mtod(m_new,caddr_t)) |
779 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
780 M_DMA_DSCRA_INTERRUPT |
781 M_DMA_ETHTX_SOP;
782
783 /* transmitting: set outbound options and length */
784 dsc->dscr_b =
785 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
786 V_DMA_DSCRB_PKT_SIZE(length);
787
788 num_mbufs++;
789
790 /*
791 * fill in the context
792 */
793
794 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
795
796 /*
797 * point at next packet
798 */
799 d->sbdma_addptr = nextdsc;
800 }
801
802 /*
803 * Give the buffer to the DMA engine.
804 */
805
806 SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
807
808 return 0; /* we did it */
809 }
810
811 /*
812 * SBDMA_EMPTYRING(d)
813 *
814 * Free all allocated mbufs on the specified DMA channel;
815 *
816 * Input parameters:
817 * d - DMA channel
818 *
819 * Return value:
820 * nothing
821 */
822
823 static void
824 sbdma_emptyring(sbmacdma_t *d)
825 {
826 int idx;
827 struct mbuf *m;
828
829 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
830 m = d->sbdma_ctxtable[idx];
831 if (m) {
832 m_freem(m);
833 d->sbdma_ctxtable[idx] = NULL;
834 }
835 }
836 }
837
838 /*
839 * SBDMA_FILLRING(d)
840 *
841 * Fill the specified DMA channel (must be receive channel)
842 * with mbufs
843 *
844 * Input parameters:
845 * d - DMA channel
846 *
847 * Return value:
848 * nothing
849 */
850
851 static void
852 sbdma_fillring(sbmacdma_t *d)
853 {
854 int idx;
855
856 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
857 if (sbdma_add_rcvbuffer(d, NULL) != 0)
858 break;
859 }
860
861 /*
862 * SBDMA_RX_PROCESS(sc, d)
863 *
864 * Process "completed" receive buffers on the specified DMA channel.
865 * Note that this isn't really ideal for priority channels, since
866 * it processes all of the packets on a given channel before
867 * returning.
868 *
869 * Input parameters:
870 * sc - softc structure
871 * d - DMA channel context
872 *
873 * Return value:
874 * nothing
875 */
876
877 static void
878 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
879 {
880 int curidx;
881 int hwidx;
882 sbdmadscr_t *dsc;
883 struct mbuf *m;
884 int len;
885
886 struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
887
888 for (;;) {
889 /*
890 * figure out where we are (as an index) and where
891 * the hardware is (also as an index)
892 *
893 * This could be done faster if (for example) the
894 * descriptor table was page-aligned and contiguous in
895 * both virtual and physical memory -- you could then
896 * just compare the low-order bits of the virtual address
897 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
898 */
899
900 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
901 hwidx = (int)
902 (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
903 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
904
905 /*
906 * If they're the same, that means we've processed all
907 * of the descriptors up to (but not including) the one that
908 * the hardware is working on right now.
909 */
910
911 if (curidx == hwidx)
912 break;
913
914 /*
915 * Otherwise, get the packet's mbuf ptr back
916 */
917
918 dsc = &(d->sbdma_dscrtable[curidx]);
919 m = d->sbdma_ctxtable[curidx];
920 d->sbdma_ctxtable[curidx] = NULL;
921
922 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
923
924 /*
925 * Check packet status. If good, process it.
926 * If not, silently drop it and put it back on the
927 * receive ring.
928 */
929
930 if (! (dsc->dscr_a & M_DMA_ETHRX_BAD)) {
931
932 /*
933 * Set length into the packet
934 * XXX do we remove the CRC here?
935 */
936 m->m_pkthdr.len = m->m_len = len;
937
938 ifp->if_ipackets++;
939 m->m_pkthdr.rcvif = ifp;
940
941
942 /*
943 * Add a new buffer to replace the old one.
944 */
945 sbdma_add_rcvbuffer(d, NULL);
946
947 #if (NBPFILTER > 0)
948 /*
949 * Handle BPF listeners. Let the BPF user see the
950 * packet, but don't pass it up to the ether_input()
951 * layer unless it's a broadcast packet, multicast
952 * packet, matches our ethernet address or the
953 * interface is in promiscuous mode.
954 */
955
956 if (ifp->if_bpf)
957 bpf_mtap(ifp->if_bpf, m);
958 #endif
959 /*
960 * Pass the buffer to the kernel
961 */
962 (*ifp->if_input)(ifp, m);
963 } else {
964 /*
965 * Packet was mangled somehow. Just drop it and
966 * put it back on the receive ring.
967 */
968 sbdma_add_rcvbuffer(d, m);
969 }
970
971 /*
972 * .. and advance to the next buffer.
973 */
974
975 d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
976 }
977 }
978
979 /*
980 * SBDMA_TX_PROCESS(sc, d)
981 *
982 * Process "completed" transmit buffers on the specified DMA channel.
983 * This is normally called within the interrupt service routine.
984 * Note that this isn't really ideal for priority channels, since
985 * it processes all of the packets on a given channel before
986 * returning.
987 *
988 * Input parameters:
989 * sc - softc structure
990 * d - DMA channel context
991 *
992 * Return value:
993 * nothing
994 */
995
996 static void
997 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
998 {
999 int curidx;
1000 int hwidx;
1001 struct mbuf *m;
1002
1003 struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
1004
1005 for (;;) {
1006 /*
1007 * figure out where we are (as an index) and where
1008 * the hardware is (also as an index)
1009 *
1010 * This could be done faster if (for example) the
1011 * descriptor table was page-aligned and contiguous in
1012 * both virtual and physical memory -- you could then
1013 * just compare the low-order bits of the virtual address
1014 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1015 */
1016
1017 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1018 hwidx = (int)
1019 (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1020 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1021
1022 /*
1023 * If they're the same, that means we've processed all
1024 * of the descriptors up to (but not including) the one that
1025 * the hardware is working on right now.
1026 */
1027
1028 if (curidx == hwidx)
1029 break;
1030
1031 /*
1032 * Otherwise, get the packet's mbuf ptr back
1033 */
1034
1035 m = d->sbdma_ctxtable[curidx];
1036 d->sbdma_ctxtable[curidx] = NULL;
1037
1038 /*
1039 * for transmits, we just free buffers.
1040 */
1041
1042 m_freem(m);
1043
1044 /*
1045 * .. and advance to the next buffer.
1046 */
1047
1048 d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
1049 }
1050
1051 /*
1052 * Decide what to set the IFF_OACTIVE bit in the interface to.
1053 * It's supposed to reflect if the interface is actively
1054 * transmitting, but that's really hard to do quickly.
1055 */
1056
1057 ifp->if_flags &= ~IFF_OACTIVE;
1058 }
1059
1060 /*
1061 * SBMAC_INITCTX(s)
1062 *
1063 * Initialize an Ethernet context structure - this is called
1064 * once per MAC on the 1250. Memory is allocated here, so don't
1065 * call it again from inside the ioctl routines that bring the
1066 * interface up/down
1067 *
1068 * Input parameters:
1069 * s - sbmac context structure
1070 *
1071 * Return value:
1072 * 0
1073 */
1074
1075 static void
1076 sbmac_initctx(struct sbmac_softc *s)
1077 {
1078 uint64_t sysrev;
1079
1080 /*
1081 * figure out the addresses of some ports
1082 */
1083
1084 s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
1085 s->sbm_maccfg = PKSEG1(s->sbm_base + R_MAC_CFG);
1086 s->sbm_fifocfg = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
1087 s->sbm_framecfg = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
1088 s->sbm_rxfilter = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
1089 s->sbm_isr = PKSEG1(s->sbm_base + R_MAC_STATUS);
1090 s->sbm_imr = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
1091
1092 /*
1093 * Initialize the DMA channels. Right now, only one per MAC is used
1094 * Note: Only do this _once_, as it allocates memory from the kernel!
1095 */
1096
1097 sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1098 sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1099
1100 /*
1101 * initial state is OFF
1102 */
1103
1104 s->sbm_state = sbmac_state_off;
1105
1106 /*
1107 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1108 */
1109
1110 s->sbm_speed = sbmac_speed_10;
1111 s->sbm_duplex = sbmac_duplex_half;
1112 s->sbm_fc = sbmac_fc_disabled;
1113
1114 /*
1115 * Determine SOC type. 112x has Pass3 SOC features.
1116 */
1117 sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1118 s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1119 SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1120 SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1121 (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1122 0));
1123 #ifdef SBMAC_EVENT_COUNTERS
1124 evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1125 NULL, s->sc_dev.dv_xname, "rxintr");
1126 evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
1127 NULL, s->sc_dev.dv_xname, "txintr");
1128 evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1129 NULL, s->sc_dev.dv_xname, "txdrop");
1130 evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
1131 NULL, s->sc_dev.dv_xname, "txstall");
1132 if (s->sbm_pass3_dma) {
1133 evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1134 NULL, s->sc_dev.dv_xname, "pass3tx-split");
1135 evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1136 NULL, s->sc_dev.dv_xname, "pass3tx-keep");
1137 }
1138 #endif
1139 }
1140
1141 /*
1142 * SBMAC_CHANNEL_START(s)
1143 *
1144 * Start packet processing on this MAC.
1145 *
1146 * Input parameters:
1147 * s - sbmac structure
1148 *
1149 * Return value:
1150 * nothing
1151 */
1152
1153 static void
1154 sbmac_channel_start(struct sbmac_softc *s)
1155 {
1156 uint64_t reg;
1157 sbmac_port_t port;
1158 uint64_t cfg, fifo, framecfg;
1159 int idx;
1160 uint64_t dma_cfg0, fifo_cfg;
1161 sbmacdma_t *txdma;
1162
1163 /*
1164 * Don't do this if running
1165 */
1166
1167 if (s->sbm_state == sbmac_state_on)
1168 return;
1169
1170 /*
1171 * Bring the controller out of reset, but leave it off.
1172 */
1173
1174 SBMAC_WRITECSR(s->sbm_macenable, 0);
1175
1176 /*
1177 * Ignore all received packets
1178 */
1179
1180 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1181
1182 /*
1183 * Calculate values for various control registers.
1184 */
1185
1186 cfg = M_MAC_RETRY_EN |
1187 M_MAC_TX_HOLD_SOP_EN |
1188 V_MAC_TX_PAUSE_CNT_16K |
1189 M_MAC_AP_STAT_EN |
1190 M_MAC_SS_EN |
1191 0;
1192
1193 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1194 V_MAC_TX_RD_THRSH(4) |
1195 V_MAC_TX_RL_THRSH(4) |
1196 V_MAC_RX_PL_THRSH(4) |
1197 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1198 V_MAC_RX_PL_THRSH(4) |
1199 V_MAC_RX_RL_THRSH(8) |
1200 0;
1201
1202 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1203 V_MAC_MAX_FRAMESZ_DEFAULT |
1204 V_MAC_BACKOFF_SEL(1);
1205
1206 /*
1207 * Clear out the hash address map
1208 */
1209
1210 port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
1211 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1212 SBMAC_WRITECSR(port, 0);
1213 port += sizeof(uint64_t);
1214 }
1215
1216 /*
1217 * Clear out the exact-match table
1218 */
1219
1220 port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1221 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1222 SBMAC_WRITECSR(port, 0);
1223 port += sizeof(uint64_t);
1224 }
1225
1226 /*
1227 * Clear out the DMA Channel mapping table registers
1228 */
1229
1230 port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
1231 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1232 SBMAC_WRITECSR(port, 0);
1233 port += sizeof(uint64_t);
1234 }
1235
1236 port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
1237 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1238 SBMAC_WRITECSR(port, 0);
1239 port += sizeof(uint64_t);
1240 }
1241
1242 /*
1243 * Program the hardware address. It goes into the hardware-address
1244 * register as well as the first filter register.
1245 */
1246
1247 reg = sbmac_addr2reg(s->sbm_hwaddr);
1248
1249 port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1250 SBMAC_WRITECSR(port, reg);
1251 port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
1252 SBMAC_WRITECSR(port, 0); // pass1 workaround
1253
1254 /*
1255 * Set the receive filter for no packets, and write values
1256 * to the various config registers
1257 */
1258
1259 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1260 SBMAC_WRITECSR(s->sbm_imr, 0);
1261 SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1262 SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
1263 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1264
1265 /*
1266 * Initialize DMA channels (rings should be ok now)
1267 */
1268
1269 sbdma_channel_start(&(s->sbm_rxdma));
1270 sbdma_channel_start(&(s->sbm_txdma));
1271
1272 /*
1273 * Configure the speed, duplex, and flow control
1274 */
1275
1276 sbmac_set_speed(s, s->sbm_speed);
1277 sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
1278
1279 /*
1280 * Fill the receive ring
1281 */
1282
1283 sbdma_fillring(&(s->sbm_rxdma));
1284
1285 /*
1286 * Turn on the rest of the bits in the enable register
1287 */
1288
1289 SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1290 M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1291
1292
1293 /*
1294 * Accept any kind of interrupt on TX and RX DMA channel 0
1295 */
1296 SBMAC_WRITECSR(s->sbm_imr,
1297 (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1298 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1299
1300 /*
1301 * Enable receiving unicasts and broadcasts
1302 */
1303
1304 SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1305
1306 /*
1307 * On chips which support unaligned DMA features, set the descriptor
1308 * ring for transmit channels to use the unaligned buffer format.
1309 */
1310 txdma = &(s->sbm_txdma);
1311
1312 if (s->sbm_pass3_dma) {
1313 dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1314 dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1315 M_DMA_TBX_EN | M_DMA_TDX_EN;
1316 SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1317
1318 fifo_cfg = SBMAC_READCSR(s->sbm_fifocfg);
1319 fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1320 V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1321 SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
1322 }
1323
1324 /*
1325 * we're running now.
1326 */
1327
1328 s->sbm_state = sbmac_state_on;
1329 s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1330
1331 /*
1332 * Program multicast addresses
1333 */
1334
1335 sbmac_setmulti(s);
1336
1337 /*
1338 * If channel was in promiscuous mode before, turn that on
1339 */
1340
1341 if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1342 sbmac_promiscuous_mode(s, 1);
1343
1344 /*
1345 * Turn on the once-per-second timer
1346 */
1347
1348 callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
1349 }
1350
1351 /*
1352 * SBMAC_CHANNEL_STOP(s)
1353 *
1354 * Stop packet processing on this MAC.
1355 *
1356 * Input parameters:
1357 * s - sbmac structure
1358 *
1359 * Return value:
1360 * nothing
1361 */
1362
1363 static void
1364 sbmac_channel_stop(struct sbmac_softc *s)
1365 {
1366 uint64_t ctl;
1367
1368 /* don't do this if already stopped */
1369
1370 if (s->sbm_state == sbmac_state_off)
1371 return;
1372
1373 /* don't accept any packets, disable all interrupts */
1374
1375 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1376 SBMAC_WRITECSR(s->sbm_imr, 0);
1377
1378 /* Turn off ticker */
1379
1380 callout_stop(&(s->sc_tick_ch));
1381
1382 /* turn off receiver and transmitter */
1383
1384 ctl = SBMAC_READCSR(s->sbm_macenable);
1385 ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1386 SBMAC_WRITECSR(s->sbm_macenable, ctl);
1387
1388 /* We're stopped now. */
1389
1390 s->sbm_state = sbmac_state_off;
1391 s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1392
1393 /* Empty the receive and transmit rings */
1394
1395 sbdma_emptyring(&(s->sbm_rxdma));
1396 sbdma_emptyring(&(s->sbm_txdma));
1397 }
1398
1399 /*
1400 * SBMAC_SET_CHANNEL_STATE(state)
1401 *
1402 * Set the channel's state ON or OFF
1403 *
1404 * Input parameters:
1405 * state - new state
1406 *
1407 * Return value:
1408 * old state
1409 */
1410
1411 static sbmac_state_t
1412 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1413 {
1414 sbmac_state_t oldstate = sc->sbm_state;
1415
1416 /*
1417 * If same as previous state, return
1418 */
1419
1420 if (state == oldstate)
1421 return oldstate;
1422
1423 /*
1424 * If new state is ON, turn channel on
1425 */
1426
1427 if (state == sbmac_state_on)
1428 sbmac_channel_start(sc);
1429 else
1430 sbmac_channel_stop(sc);
1431
1432 /*
1433 * Return previous state
1434 */
1435
1436 return oldstate;
1437 }
1438
1439 /*
1440 * SBMAC_PROMISCUOUS_MODE(sc, onoff)
1441 *
1442 * Turn on or off promiscuous mode
1443 *
1444 * Input parameters:
1445 * sc - softc
1446 * onoff - 1 to turn on, 0 to turn off
1447 *
1448 * Return value:
1449 * nothing
1450 */
1451
1452 static void
1453 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
1454 {
1455 uint64_t reg;
1456
1457 if (sc->sbm_state != sbmac_state_on)
1458 return;
1459
1460 if (onoff) {
1461 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1462 reg |= M_MAC_ALLPKT_EN;
1463 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1464 } else {
1465 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1466 reg &= ~M_MAC_ALLPKT_EN;
1467 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1468 }
1469 }
1470
1471 /*
1472 * SBMAC_INIT_AND_START(sc)
1473 *
1474 * Stop the channel and restart it. This is generally used
1475 * when we have to do something to the channel that requires
1476 * a swift kick.
1477 *
1478 * Input parameters:
1479 * sc - softc
1480 */
1481
1482 static void
1483 sbmac_init_and_start(struct sbmac_softc *sc)
1484 {
1485 int s;
1486
1487 s = splnet();
1488
1489 mii_pollstat(&sc->sc_mii); /* poll phy for current speed */
1490 sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
1491 sbmac_set_channel_state(sc, sbmac_state_on);
1492
1493 splx(s);
1494 }
1495
1496 /*
1497 * SBMAC_ADDR2REG(ptr)
1498 *
1499 * Convert six bytes into the 64-bit register value that
1500 * we typically write into the SBMAC's address/mcast registers
1501 *
1502 * Input parameters:
1503 * ptr - pointer to 6 bytes
1504 *
1505 * Return value:
1506 * register value
1507 */
1508
1509 static uint64_t
1510 sbmac_addr2reg(u_char *ptr)
1511 {
1512 uint64_t reg = 0;
1513
1514 ptr += 6;
1515
1516 reg |= (uint64_t) *(--ptr);
1517 reg <<= 8;
1518 reg |= (uint64_t) *(--ptr);
1519 reg <<= 8;
1520 reg |= (uint64_t) *(--ptr);
1521 reg <<= 8;
1522 reg |= (uint64_t) *(--ptr);
1523 reg <<= 8;
1524 reg |= (uint64_t) *(--ptr);
1525 reg <<= 8;
1526 reg |= (uint64_t) *(--ptr);
1527
1528 return reg;
1529 }
1530
1531 /*
1532 * SBMAC_SET_SPEED(s, speed)
1533 *
1534 * Configure LAN speed for the specified MAC.
1535 * Warning: must be called when MAC is off!
1536 *
1537 * Input parameters:
1538 * s - sbmac structure
1539 * speed - speed to set MAC to (see sbmac_speed_t enum)
1540 *
1541 * Return value:
1542 * 1 if successful
1543 * 0 indicates invalid parameters
1544 */
1545
1546 static int
1547 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
1548 {
1549 uint64_t cfg;
1550 uint64_t framecfg;
1551
1552 /*
1553 * Save new current values
1554 */
1555
1556 s->sbm_speed = speed;
1557
1558 if (s->sbm_state != sbmac_state_off)
1559 panic("sbmac_set_speed while MAC not off");
1560
1561 /*
1562 * Read current register values
1563 */
1564
1565 cfg = SBMAC_READCSR(s->sbm_maccfg);
1566 framecfg = SBMAC_READCSR(s->sbm_framecfg);
1567
1568 /*
1569 * Mask out the stuff we want to change
1570 */
1571
1572 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1573 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1574 M_MAC_SLOT_SIZE);
1575
1576 /*
1577 * Now add in the new bits
1578 */
1579
1580 switch (speed) {
1581 case sbmac_speed_10:
1582 framecfg |= V_MAC_IFG_RX_10 |
1583 V_MAC_IFG_TX_10 |
1584 K_MAC_IFG_THRSH_10 |
1585 V_MAC_SLOT_SIZE_10;
1586 cfg |= V_MAC_SPEED_SEL_10MBPS;
1587 break;
1588
1589 case sbmac_speed_100:
1590 framecfg |= V_MAC_IFG_RX_100 |
1591 V_MAC_IFG_TX_100 |
1592 V_MAC_IFG_THRSH_100 |
1593 V_MAC_SLOT_SIZE_100;
1594 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1595 break;
1596
1597 case sbmac_speed_1000:
1598 framecfg |= V_MAC_IFG_RX_1000 |
1599 V_MAC_IFG_TX_1000 |
1600 V_MAC_IFG_THRSH_1000 |
1601 V_MAC_SLOT_SIZE_1000;
1602 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1603 break;
1604
1605 case sbmac_speed_auto: /* XXX not implemented */
1606 /* fall through */
1607 default:
1608 return 0;
1609 }
1610
1611 /*
1612 * Send the bits back to the hardware
1613 */
1614
1615 SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1616 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1617
1618 return 1;
1619 }
1620
1621 /*
1622 * SBMAC_SET_DUPLEX(s, duplex, fc)
1623 *
1624 * Set Ethernet duplex and flow control options for this MAC
1625 * Warning: must be called when MAC is off!
1626 *
1627 * Input parameters:
1628 * s - sbmac structure
1629 * duplex - duplex setting (see sbmac_duplex_t)
1630 * fc - flow control setting (see sbmac_fc_t)
1631 *
1632 * Return value:
1633 * 1 if ok
1634 * 0 if an invalid parameter combination was specified
1635 */
1636
1637 static int
1638 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
1639 {
1640 uint64_t cfg;
1641
1642 /*
1643 * Save new current values
1644 */
1645
1646 s->sbm_duplex = duplex;
1647 s->sbm_fc = fc;
1648
1649 if (s->sbm_state != sbmac_state_off)
1650 panic("sbmac_set_duplex while MAC not off");
1651
1652 /*
1653 * Read current register values
1654 */
1655
1656 cfg = SBMAC_READCSR(s->sbm_maccfg);
1657
1658 /*
1659 * Mask off the stuff we're about to change
1660 */
1661
1662 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1663
1664 switch (duplex) {
1665 case sbmac_duplex_half:
1666 switch (fc) {
1667 case sbmac_fc_disabled:
1668 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1669 break;
1670
1671 case sbmac_fc_collision:
1672 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1673 break;
1674
1675 case sbmac_fc_carrier:
1676 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1677 break;
1678
1679 case sbmac_fc_auto: /* XXX not implemented */
1680 /* fall through */
1681 case sbmac_fc_frame: /* not valid in half duplex */
1682 default: /* invalid selection */
1683 panic("%s: invalid half duplex fc selection %d",
1684 s->sc_dev.dv_xname, fc);
1685 return 0;
1686 }
1687 break;
1688
1689 case sbmac_duplex_full:
1690 switch (fc) {
1691 case sbmac_fc_disabled:
1692 cfg |= V_MAC_FC_CMD_DISABLED;
1693 break;
1694
1695 case sbmac_fc_frame:
1696 cfg |= V_MAC_FC_CMD_ENABLED;
1697 break;
1698
1699 case sbmac_fc_collision: /* not valid in full duplex */
1700 case sbmac_fc_carrier: /* not valid in full duplex */
1701 case sbmac_fc_auto: /* XXX not implemented */
1702 /* fall through */
1703 default:
1704 panic("%s: invalid full duplex fc selection %d",
1705 s->sc_dev.dv_xname, fc);
1706 return 0;
1707 }
1708 break;
1709
1710 default:
1711 /* fall through */
1712 case sbmac_duplex_auto:
1713 panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
1714 /* XXX not implemented */
1715 break;
1716 }
1717
1718 /*
1719 * Send the bits back to the hardware
1720 */
1721
1722 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1723
1724 return 1;
1725 }
1726
1727 /*
1728 * SBMAC_INTR()
1729 *
1730 * Interrupt handler for MAC interrupts
1731 *
1732 * Input parameters:
1733 * MAC structure
1734 *
1735 * Return value:
1736 * nothing
1737 */
1738
1739 /* ARGSUSED */
1740 static void
1741 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
1742 {
1743 struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
1744 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1745 uint64_t isr;
1746
1747 for (;;) {
1748
1749 /*
1750 * Read the ISR (this clears the bits in the real register)
1751 */
1752
1753 isr = SBMAC_READCSR(sc->sbm_isr);
1754
1755 if (isr == 0)
1756 break;
1757
1758 /*
1759 * Transmits on channel 0
1760 */
1761
1762 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1763 sbdma_tx_process(sc, &(sc->sbm_txdma));
1764 SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1765 }
1766
1767 /*
1768 * Receives on channel 0
1769 */
1770
1771 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1772 sbdma_rx_process(sc, &(sc->sbm_rxdma));
1773 SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1774 }
1775 }
1776
1777 /* try to get more packets going */
1778 sbmac_start(ifp);
1779 }
1780
1781
1782 /*
1783 * SBMAC_START(ifp)
1784 *
1785 * Start output on the specified interface. Basically, we
1786 * queue as many buffers as we can until the ring fills up, or
1787 * we run off the end of the queue, whichever comes first.
1788 *
1789 * Input parameters:
1790 * ifp - interface
1791 *
1792 * Return value:
1793 * nothing
1794 */
1795
1796 static void
1797 sbmac_start(struct ifnet *ifp)
1798 {
1799 struct sbmac_softc *sc;
1800 struct mbuf *m_head = NULL;
1801 int rv;
1802
1803 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1804 return;
1805
1806 sc = ifp->if_softc;
1807
1808 for (;;) {
1809
1810 IF_DEQUEUE(&ifp->if_snd, m_head);
1811 if (m_head == NULL)
1812 break;
1813
1814 /*
1815 * Put the buffer on the transmit ring. If we
1816 * don't have room, set the OACTIVE flag and wait
1817 * for the NIC to drain the ring.
1818 */
1819
1820 rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1821
1822 if (rv == 0) {
1823 /*
1824 * If there's a BPF listener, bounce a copy of this
1825 * frame to it.
1826 */
1827 #if (NBPFILTER > 0)
1828 if (ifp->if_bpf)
1829 bpf_mtap(ifp->if_bpf, m_head);
1830 #endif
1831 if (!sc->sbm_pass3_dma) {
1832 /*
1833 * Don't free mbuf if we're not copying to new
1834 * mbuf in sbdma_add_txbuffer. It will be
1835 * freed in sbdma_tx_process.
1836 */
1837 m_freem(m_head);
1838 }
1839 } else {
1840 IF_PREPEND(&ifp->if_snd, m_head);
1841 ifp->if_flags |= IFF_OACTIVE;
1842 break;
1843 }
1844 }
1845 }
1846
1847 /*
1848 * SBMAC_SETMULTI(sc)
1849 *
1850 * Reprogram the multicast table into the hardware, given
1851 * the list of multicasts associated with the interface
1852 * structure.
1853 *
1854 * Input parameters:
1855 * sc - softc
1856 *
1857 * Return value:
1858 * nothing
1859 */
1860
1861 static void
1862 sbmac_setmulti(struct sbmac_softc *sc)
1863 {
1864 struct ifnet *ifp;
1865 uint64_t reg;
1866 sbmac_port_t port;
1867 int idx;
1868 struct ether_multi *enm;
1869 struct ether_multistep step;
1870
1871 ifp = &sc->sc_ethercom.ec_if;
1872
1873 /*
1874 * Clear out entire multicast table. We do this by nuking
1875 * the entire hash table and all the direct matches except
1876 * the first one, which is used for our station address
1877 */
1878
1879 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1880 port = PKSEG1(sc->sbm_base +
1881 R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1882 SBMAC_WRITECSR(port, 0);
1883 }
1884
1885 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1886 port = PKSEG1(sc->sbm_base +
1887 R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1888 SBMAC_WRITECSR(port, 0);
1889 }
1890
1891 /*
1892 * Clear the filter to say we don't want any multicasts.
1893 */
1894
1895 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1896 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1897 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1898
1899 if (ifp->if_flags & IFF_ALLMULTI) {
1900 /*
1901 * Enable ALL multicasts. Do this by inverting the
1902 * multicast enable bit.
1903 */
1904 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1905 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1906 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1907 return;
1908 }
1909
1910 /*
1911 * Progam new multicast entries. For now, only use the
1912 * perfect filter. In the future we'll need to use the
1913 * hash filter if the perfect filter overflows
1914 */
1915
1916 /*
1917 * XXX only using perfect filter for now, need to use hash
1918 * XXX if the table overflows
1919 */
1920
1921 idx = 1; /* skip station address */
1922 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1923 while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1924 reg = sbmac_addr2reg(enm->enm_addrlo);
1925 port = PKSEG1(sc->sbm_base +
1926 R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1927 SBMAC_WRITECSR(port, reg);
1928 idx++;
1929 ETHER_NEXT_MULTI(step, enm);
1930 }
1931
1932 /*
1933 * Enable the "accept multicast bits" if we programmed at least one
1934 * multicast.
1935 */
1936
1937 if (idx > 1) {
1938 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1939 reg |= M_MAC_MCAST_EN;
1940 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1941 }
1942 }
1943
1944 /*
1945 * SBMAC_ETHER_IOCTL(ifp, cmd, data)
1946 *
1947 * Generic IOCTL requests for this interface. The basic
1948 * stuff is handled here for bringing the interface up,
1949 * handling multicasts, etc.
1950 *
1951 * Input parameters:
1952 * ifp - interface structure
1953 * cmd - command code
1954 * data - pointer to data
1955 *
1956 * Return value:
1957 * return value (0 is success)
1958 */
1959
1960 static int
1961 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1962 {
1963 struct ifaddr *ifa = (struct ifaddr *) data;
1964 struct sbmac_softc *sc = ifp->if_softc;
1965
1966 switch (cmd) {
1967 case SIOCSIFADDR:
1968 ifp->if_flags |= IFF_UP;
1969
1970 switch (ifa->ifa_addr->sa_family) {
1971 #ifdef INET
1972 case AF_INET:
1973 sbmac_init_and_start(sc);
1974 arp_ifinit(ifp, ifa);
1975 break;
1976 #endif
1977 #ifdef NS
1978 case AF_NS:
1979 {
1980 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1981
1982 if (ns_nullhost(*ina))
1983 ina->x_host =
1984 *(union ns_host *)LLADDR(ifp->if_sadl);
1985 else
1986 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1987 ifp->if_addrlen);
1988 /* Set new address. */
1989 sbmac_init_and_start(sc);
1990 break;
1991 }
1992 #endif
1993 default:
1994 sbmac_init_and_start(sc);
1995 break;
1996 }
1997 break;
1998
1999 default:
2000 return (EINVAL);
2001 }
2002
2003 return (0);
2004 }
2005
2006 /*
2007 * SBMAC_IOCTL(ifp, command, data)
2008 *
2009 * Main IOCTL handler - dispatches to other IOCTLs for various
2010 * types of requests.
2011 *
2012 * Input parameters:
2013 * ifp - interface pointer
2014 * command - command code
2015 * data - pointer to argument data
2016 *
2017 * Return value:
2018 * 0 if ok
2019 * else error code
2020 */
2021
2022 static int
2023 sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2024 {
2025 struct sbmac_softc *sc = ifp->if_softc;
2026 struct ifreq *ifr = (struct ifreq *) data;
2027 int s, error = 0;
2028
2029 s = splnet();
2030
2031 switch(command) {
2032 case SIOCSIFADDR:
2033 case SIOCGIFADDR:
2034 error = sbmac_ether_ioctl(ifp, command, data);
2035 break;
2036 case SIOCSIFMTU:
2037 if (ifr->ifr_mtu > ETHER_MAX_LEN)
2038 error = EINVAL;
2039 else {
2040 ifp->if_mtu = ifr->ifr_mtu;
2041 /* XXX Program new MTU here */
2042 }
2043 break;
2044 case SIOCSIFFLAGS:
2045 if (ifp->if_flags & IFF_UP) {
2046 /*
2047 * If only the state of the PROMISC flag changed,
2048 * just tweak the hardware registers.
2049 */
2050 if ((ifp->if_flags & IFF_RUNNING) &&
2051 (ifp->if_flags & IFF_PROMISC)) {
2052 /* turn on promiscuous mode */
2053 sbmac_promiscuous_mode(sc, 1);
2054 } else if (ifp->if_flags & IFF_RUNNING &&
2055 !(ifp->if_flags & IFF_PROMISC)) {
2056 /* turn off promiscuous mode */
2057 sbmac_promiscuous_mode(sc, 0);
2058 } else
2059 sbmac_set_channel_state(sc, sbmac_state_on);
2060 } else {
2061 if (ifp->if_flags & IFF_RUNNING)
2062 sbmac_set_channel_state(sc, sbmac_state_off);
2063 }
2064
2065 sc->sbm_if_flags = ifp->if_flags;
2066 error = 0;
2067 break;
2068
2069 case SIOCADDMULTI:
2070 case SIOCDELMULTI:
2071 if (ifp->if_flags & IFF_RUNNING) {
2072 sbmac_setmulti(sc);
2073 error = 0;
2074 }
2075 break;
2076 case SIOCSIFMEDIA:
2077 case SIOCGIFMEDIA:
2078 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2079 break;
2080 default:
2081 error = EINVAL;
2082 break;
2083 }
2084
2085 (void)splx(s);
2086
2087 return(error);
2088 }
2089
2090 /*
2091 * SBMAC_IFMEDIA_UPD(ifp)
2092 *
2093 * Configure an appropriate media type for this interface,
2094 * given the data in the interface structure
2095 *
2096 * Input parameters:
2097 * ifp - interface
2098 *
2099 * Return value:
2100 * 0 if ok
2101 * else error code
2102 */
2103
2104 static int
2105 sbmac_mediachange(struct ifnet *ifp)
2106 {
2107 struct sbmac_softc *sc = ifp->if_softc;
2108
2109 if (ifp->if_flags & IFF_UP)
2110 mii_mediachg(&sc->sc_mii);
2111 return(0);
2112 }
2113
2114 /*
2115 * SBMAC_IFMEDIA_STS(ifp, ifmr)
2116 *
2117 * Report current media status (used by ifconfig, for example)
2118 *
2119 * Input parameters:
2120 * ifp - interface structure
2121 * ifmr - media request structure
2122 *
2123 * Return value:
2124 * nothing
2125 */
2126
2127 static void
2128 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
2129 {
2130 struct sbmac_softc *sc = ifp->if_softc;
2131
2132 mii_pollstat(&sc->sc_mii);
2133 req->ifm_status = sc->sc_mii.mii_media_status;
2134 req->ifm_active = sc->sc_mii.mii_media_active;
2135 }
2136
2137 /*
2138 * SBMAC_WATCHDOG(ifp)
2139 *
2140 * Called periodically to make sure we're still happy.
2141 *
2142 * Input parameters:
2143 * ifp - interface structure
2144 *
2145 * Return value:
2146 * nothing
2147 */
2148
2149 static void
2150 sbmac_watchdog(struct ifnet *ifp)
2151 {
2152
2153 /* XXX do something */
2154 }
2155
2156 /*
2157 * One second timer, used to tick MII.
2158 */
2159 static void
2160 sbmac_tick(void *arg)
2161 {
2162 struct sbmac_softc *sc = arg;
2163 int s;
2164
2165 s = splnet();
2166 mii_tick(&sc->sc_mii);
2167 splx(s);
2168
2169 callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2170 }
2171
2172
2173 /*
2174 * SBMAC_MATCH(parent, match, aux)
2175 *
2176 * Part of the config process - see if this device matches the
2177 * info about what we expect to find on the bus.
2178 *
2179 * Input parameters:
2180 * parent - parent bus structure
2181 * match -
2182 * aux - bus-specific args
2183 *
2184 * Return value:
2185 * 1 if we match
2186 * 0 if we don't match
2187 */
2188
2189 static int
2190 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
2191 {
2192 struct sbobio_attach_args *sap = aux;
2193
2194 /*
2195 * Make sure it's a MAC
2196 */
2197
2198 if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2199 return 0;
2200
2201 /*
2202 * Yup, it is.
2203 */
2204
2205 return 1;
2206 }
2207
2208 /*
2209 * SBMAC_PARSE_XDIGIT(str)
2210 *
2211 * Parse a hex digit, returning its value
2212 *
2213 * Input parameters:
2214 * str - character
2215 *
2216 * Return value:
2217 * hex value, or -1 if invalid
2218 */
2219
2220 static int
2221 sbmac_parse_xdigit(char str)
2222 {
2223 int digit;
2224
2225 if ((str >= '0') && (str <= '9'))
2226 digit = str - '0';
2227 else if ((str >= 'a') && (str <= 'f'))
2228 digit = str - 'a' + 10;
2229 else if ((str >= 'A') && (str <= 'F'))
2230 digit = str - 'A' + 10;
2231 else
2232 digit = -1;
2233
2234 return digit;
2235 }
2236
2237 /*
2238 * SBMAC_PARSE_HWADDR(str, hwaddr)
2239 *
2240 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2241 * Ethernet address.
2242 *
2243 * Input parameters:
2244 * str - string
2245 * hwaddr - pointer to hardware address
2246 *
2247 * Return value:
2248 * 0 if ok, else -1
2249 */
2250
2251 static int
2252 sbmac_parse_hwaddr(char *str, u_char *hwaddr)
2253 {
2254 int digit1, digit2;
2255 int idx = 6;
2256
2257 while (*str && (idx > 0)) {
2258 digit1 = sbmac_parse_xdigit(*str);
2259 if (digit1 < 0)
2260 return -1;
2261 str++;
2262 if (!*str)
2263 return -1;
2264
2265 if ((*str == ':') || (*str == '-')) {
2266 digit2 = digit1;
2267 digit1 = 0;
2268 } else {
2269 digit2 = sbmac_parse_xdigit(*str);
2270 if (digit2 < 0)
2271 return -1;
2272 str++;
2273 }
2274
2275 *hwaddr++ = (digit1 << 4) | digit2;
2276 idx--;
2277
2278 if (*str == '-')
2279 str++;
2280 if (*str == ':')
2281 str++;
2282 }
2283 return 0;
2284 }
2285
2286 /*
2287 * SBMAC_ATTACH(parent, self, aux)
2288 *
2289 * Attach routine - init hardware and hook ourselves into NetBSD.
2290 *
2291 * Input parameters:
2292 * parent - parent bus device
2293 * self - our softc
2294 * aux - attach data
2295 *
2296 * Return value:
2297 * nothing
2298 */
2299
2300 static void
2301 sbmac_attach(struct device *parent, struct device *self, void *aux)
2302 {
2303 struct ifnet *ifp;
2304 struct sbmac_softc *sc;
2305 struct sbobio_attach_args *sap = aux;
2306 u_char *eaddr;
2307 static int unit = 0; /* XXX */
2308 uint64_t ea_reg;
2309 int idx;
2310
2311 sc = (struct sbmac_softc *)self;
2312
2313 /* Determine controller base address */
2314
2315 sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
2316
2317 eaddr = sc->sbm_hwaddr;
2318
2319 /*
2320 * Initialize context (get pointers to registers and stuff), then
2321 * allocate the memory for the descriptor tables.
2322 */
2323
2324 sbmac_initctx(sc);
2325
2326 callout_init(&(sc->sc_tick_ch));
2327
2328 /*
2329 * Read the ethernet address. The firwmare left this programmed
2330 * for us in the ethernet address register for each mac.
2331 */
2332
2333 ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2334 for (idx = 0; idx < 6; idx++) {
2335 eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2336 ea_reg >>= 8;
2337 }
2338
2339 #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2340 if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2341 eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2342 sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2343 eaddr[5] = unit;
2344 }
2345
2346 #ifdef SBMAC_ETH0_HWADDR
2347 if (unit == 0)
2348 sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2349 #endif
2350 #ifdef SBMAC_ETH1_HWADDR
2351 if (unit == 1)
2352 sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2353 #endif
2354 #ifdef SBMAC_ETH2_HWADDR
2355 if (unit == 2)
2356 sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2357 #endif
2358 unit++;
2359
2360 /*
2361 * Display Ethernet address (this is called during the config process
2362 * so we need to finish off the config message that was being displayed)
2363 */
2364 printf(": Ethernet%s\n",
2365 sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2366 printf("%s: Ethernet address: %s\n", self->dv_xname,
2367 ether_sprintf(eaddr));
2368
2369
2370 /*
2371 * Set up ifnet structure
2372 */
2373
2374 ifp = &sc->sc_ethercom.ec_if;
2375 ifp->if_softc = sc;
2376 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2377 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2378 IFF_NOTRAILERS;
2379 ifp->if_ioctl = sbmac_ioctl;
2380 ifp->if_start = sbmac_start;
2381 ifp->if_watchdog = sbmac_watchdog;
2382 ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2383
2384 /*
2385 * Set up ifmedia support.
2386 */
2387
2388 /*
2389 * Initialize MII/media info.
2390 */
2391 sc->sc_mii.mii_ifp = ifp;
2392 sc->sc_mii.mii_readreg = sbmac_mii_readreg;
2393 sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2394 sc->sc_mii.mii_statchg = sbmac_mii_statchg;
2395 ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
2396 sbmac_mediastatus);
2397 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2398 MII_OFFSET_ANY, 0);
2399
2400 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2401 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2402 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2403 } else {
2404 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2405 }
2406
2407
2408 /*
2409 * map/route interrupt
2410 */
2411
2412 sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
2413 sbmac_intr, sc);
2414
2415 /*
2416 * Call MI attach routines.
2417 */
2418 if_attach(ifp);
2419 ether_ifattach(ifp, eaddr);
2420 }
2421