sbmac.c revision 1.18 1 /* $NetBSD: sbmac.c,v 1.18 2004/03/19 06:01:31 cgd Exp $ */
2
3 /*
4 * Copyright 2000, 2001
5 * Broadcom Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and copied only
8 * in accordance with the following terms and conditions. Subject to these
9 * conditions, you may download, copy, install, use, modify and distribute
10 * modified or unmodified copies of this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce and
14 * retain this copyright notice and list of conditions as they appear in
15 * the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Broadcom Corporation. The "Broadcom Corporation" name may not be
19 * used to endorse or promote products derived from this software
20 * without the prior written permission of Broadcom Corporation.
21 *
22 * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25 * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26 * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27 * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.18 2004/03/19 06:01:31 cgd Exp $");
37
38 #include "bpfilter.h"
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/queue.h>
50 #include <sys/device.h>
51
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_ether.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57
58 #if NBPFILTER > 0
59 #include <net/bpf.h>
60 #endif
61
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
65 #endif
66
67 #ifdef NS
68 #include <netns/ns.h>
69 #include <netns/ns_if.h>
70 #endif
71
72 #include <machine/locore.h>
73
74 #include "sbobiovar.h"
75
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
79
80 #include <mips/sibyte/include/sb1250_defs.h>
81 #include <mips/sibyte/include/sb1250_regs.h>
82 #include <mips/sibyte/include/sb1250_mac.h>
83 #include <mips/sibyte/include/sb1250_dma.h>
84 #include <mips/sibyte/include/sb1250_scd.h>
85
86 /* Simple types */
87
88 typedef u_long sbmac_port_t;
89 typedef uint64_t sbmac_physaddr_t;
90 typedef uint64_t sbmac_enetaddr_t;
91
92 typedef enum { sbmac_speed_auto, sbmac_speed_10,
93 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
94
95 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
96 sbmac_duplex_full } sbmac_duplex_t;
97
98 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
99 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
100
101 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
102 sbmac_state_broken } sbmac_state_t;
103
104
105 /* Macros */
106
107 #define SBMAC_EVENT_COUNTERS /* Include counters for various events */
108
109 #define SBDMA_NEXTBUF(d, f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
110 (d)->sbdma_dscrtable : (d)->f+1)
111
112
113 #define CACHELINESIZE 32
114 #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
115 #define KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
116 #define KVTOPHYS(x) kvtophys((vaddr_t)(x))
117
118 #ifdef SBMACDEBUG
119 #define dprintf(x) printf x
120 #else
121 #define dprintf(x)
122 #endif
123
124 #define SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
125 #define SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
126
127 #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
128
129 /* These are limited to fit within one virtual page. */
130 #define SBMAC_MAX_TXDESCR 256 /* should be 1024 */
131 #define SBMAC_MAX_RXDESCR 256 /* should be 512 */
132
133 #define ETHER_ALIGN 2
134
135 /* DMA Descriptor structure */
136
137 typedef struct sbdmadscr_s {
138 uint64_t dscr_a;
139 uint64_t dscr_b;
140 } sbdmadscr_t;
141
142
143 /* DMA Controller structure */
144
145 typedef struct sbmacdma_s {
146
147 /*
148 * This stuff is used to identify the channel and the registers
149 * associated with it.
150 */
151
152 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
153 int sbdma_channel; /* channel number */
154 int sbdma_txdir; /* direction (1=transmit) */
155 int sbdma_maxdescr; /* total # of descriptors in ring */
156 sbmac_port_t sbdma_config0; /* DMA config register 0 */
157 sbmac_port_t sbdma_config1; /* DMA config register 1 */
158 sbmac_port_t sbdma_dscrbase; /* Descriptor base address */
159 sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */
160 sbmac_port_t sbdma_curdscr; /* current descriptor address */
161
162 /*
163 * This stuff is for maintenance of the ring
164 */
165
166 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
167 sbdmadscr_t *sbdma_dscrtable_end; /* end of descriptor table */
168
169 struct mbuf **sbdma_ctxtable; /* context table, one per descr */
170
171 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
172 sbdmadscr_t *sbdma_addptr; /* next dscr for sw to add */
173 sbdmadscr_t *sbdma_remptr; /* next dscr for sw to remove */
174 } sbmacdma_t;
175
176
177 /* Ethernet softc structure */
178
179 struct sbmac_softc {
180
181 /*
182 * NetBSD-specific things
183 */
184 struct device sc_dev; /* base device (must be first) */
185 struct ethercom sc_ethercom; /* Ethernet common part */
186 struct mii_data sc_mii;
187 struct callout sc_tick_ch;
188
189 int sbm_if_flags;
190 void *sbm_intrhand;
191
192 /*
193 * Controller-specific things
194 */
195
196 sbmac_port_t sbm_base; /* MAC's base address */
197 sbmac_state_t sbm_state; /* current state */
198
199 sbmac_port_t sbm_macenable; /* MAC Enable Register */
200 sbmac_port_t sbm_maccfg; /* MAC Configuration Register */
201 sbmac_port_t sbm_fifocfg; /* FIFO configuration register */
202 sbmac_port_t sbm_framecfg; /* Frame configuration register */
203 sbmac_port_t sbm_rxfilter; /* receive filter register */
204 sbmac_port_t sbm_isr; /* Interrupt status register */
205 sbmac_port_t sbm_imr; /* Interrupt mask register */
206
207 sbmac_speed_t sbm_speed; /* current speed */
208 sbmac_duplex_t sbm_duplex; /* current duplex */
209 sbmac_fc_t sbm_fc; /* current flow control setting */
210 int sbm_rxflags; /* received packet flags */
211
212 u_char sbm_hwaddr[ETHER_ADDR_LEN];
213
214 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
215 sbmacdma_t sbm_rxdma;
216
217 int sbm_pass3_dma; /* chip has pass3 SOC DMA features */
218
219 #ifdef SBMAC_EVENT_COUNTERS
220 struct evcnt sbm_ev_rxintr; /* Rx interrupts */
221 struct evcnt sbm_ev_txintr; /* Tx interrupts */
222 struct evcnt sbm_ev_txdrop; /* Tx dropped due to no mbuf alloc failed */
223 struct evcnt sbm_ev_txstall; /* Tx stalled due to no descriptors free */
224
225 struct evcnt sbm_ev_txsplit; /* pass3 Tx split mbuf */
226 struct evcnt sbm_ev_txkeep; /* pass3 Tx didn't split mbuf */
227 #endif
228 };
229
230
231 #ifdef SBMAC_EVENT_COUNTERS
232 #define SBMAC_EVCNT_INCR(ev) (ev).ev_count++
233 #else
234 #define SBMAC_EVCNT_INCR(ev) do { /* nothing */ } while (0)
235 #endif
236
237 /* Externs */
238
239 extern paddr_t kvtophys(vaddr_t);
240
241 /* Prototypes */
242
243 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
244 int txrx, int maxdescr);
245 static void sbdma_channel_start(sbmacdma_t *d);
246 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
247 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
248 static void sbdma_emptyring(sbmacdma_t *d);
249 static void sbdma_fillring(sbmacdma_t *d);
250 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
251 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
252 static void sbmac_initctx(struct sbmac_softc *s);
253 static void sbmac_channel_start(struct sbmac_softc *s);
254 static void sbmac_channel_stop(struct sbmac_softc *s);
255 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
256 sbmac_state_t);
257 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
258 static void sbmac_init_and_start(struct sbmac_softc *sc);
259 static uint64_t sbmac_addr2reg(u_char *ptr);
260 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
261 static void sbmac_start(struct ifnet *ifp);
262 static void sbmac_setmulti(struct sbmac_softc *sc);
263 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
264 static int sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
265 static int sbmac_mediachange(struct ifnet *ifp);
266 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
267 static void sbmac_watchdog(struct ifnet *ifp);
268 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
269 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
270 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
271 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
272 sbmac_fc_t fc);
273 static void sbmac_tick(void *arg);
274
275
276 /* Globals */
277
278 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
279 sbmac_match, sbmac_attach, NULL, NULL);
280
281 static uint32_t sbmac_mii_bitbang_read(struct device *self);
282 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
283
284 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
285 sbmac_mii_bitbang_read,
286 sbmac_mii_bitbang_write,
287 {
288 (uint32_t)M_MAC_MDIO_OUT, /* MII_BIT_MDO */
289 (uint32_t)M_MAC_MDIO_IN, /* MII_BIT_MDI */
290 (uint32_t)M_MAC_MDC, /* MII_BIT_MDC */
291 0, /* MII_BIT_DIR_HOST_PHY */
292 (uint32_t)M_MAC_MDIO_DIR /* MII_BIT_DIR_PHY_HOST */
293 }
294 };
295
296 static uint32_t
297 sbmac_mii_bitbang_read(struct device *self)
298 {
299 struct sbmac_softc *sc = (void *) self;
300 sbmac_port_t reg;
301
302 reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
303 return (uint32_t) SBMAC_READCSR(reg);
304 }
305
306 static void
307 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
308 {
309 struct sbmac_softc *sc = (void *) self;
310 sbmac_port_t reg;
311
312 reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
313
314 SBMAC_WRITECSR(reg, (val &
315 (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
316 }
317
318 /*
319 * Read an PHY register through the MII.
320 */
321 static int
322 sbmac_mii_readreg(struct device *self, int phy, int reg)
323 {
324
325 return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
326 }
327
328 /*
329 * Write to a PHY register through the MII.
330 */
331 static void
332 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
333 {
334
335 mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
336 }
337
338 static void
339 sbmac_mii_statchg(struct device *self)
340 {
341 struct sbmac_softc *sc = (struct sbmac_softc *)self;
342 sbmac_state_t oldstate;
343
344 /* Stop the MAC in preparation for changing all of the parameters. */
345 oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
346
347 switch (sc->sc_ethercom.ec_if.if_baudrate) {
348 default: /* if autonegotiation fails, assume 10Mbit */
349 case IF_Mbps(10):
350 sbmac_set_speed(sc, sbmac_speed_10);
351 break;
352
353 case IF_Mbps(100):
354 sbmac_set_speed(sc, sbmac_speed_100);
355 break;
356
357 case IF_Mbps(1000):
358 sbmac_set_speed(sc, sbmac_speed_1000);
359 break;
360 }
361
362 if (sc->sc_mii.mii_media_active & IFM_FDX) {
363 /* Configure for full-duplex */
364 /* XXX: is flow control right for 10, 100? */
365 sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
366 } else {
367 /* Configure for half-duplex */
368 /* XXX: is flow control right? */
369 sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
370 }
371
372 /* And put it back into its former state. */
373 sbmac_set_channel_state(sc, oldstate);
374 }
375
376 /*
377 * SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
378 *
379 * Initialize a DMA channel context. Since there are potentially
380 * eight DMA channels per MAC, it's nice to do this in a standard
381 * way.
382 *
383 * Input parameters:
384 * d - sbmacdma_t structure (DMA channel context)
385 * s - sbmac_softc structure (pointer to a MAC)
386 * chan - channel number (0..1 right now)
387 * txrx - Identifies DMA_TX or DMA_RX for channel direction
388 * maxdescr - number of descriptors
389 *
390 * Return value:
391 * nothing
392 */
393
394 static void
395 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
396 int maxdescr)
397 {
398 /*
399 * Save away interesting stuff in the structure
400 */
401
402 d->sbdma_eth = s;
403 d->sbdma_channel = chan;
404 d->sbdma_txdir = txrx;
405
406 /*
407 * initialize register pointers
408 */
409
410 d->sbdma_config0 = PKSEG1(s->sbm_base +
411 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
412 d->sbdma_config1 = PKSEG1(s->sbm_base +
413 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
414 d->sbdma_dscrbase = PKSEG1(s->sbm_base +
415 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
416 d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
417 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
418 d->sbdma_curdscr = PKSEG1(s->sbm_base +
419 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
420
421 /*
422 * Allocate memory for the ring
423 */
424
425 d->sbdma_maxdescr = maxdescr;
426
427 d->sbdma_dscrtable = (sbdmadscr_t *)
428 KMALLOC(d->sbdma_maxdescr*sizeof(sbdmadscr_t));
429
430 bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
431
432 d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
433
434 d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
435
436 /*
437 * And context table
438 */
439
440 d->sbdma_ctxtable = (struct mbuf **)
441 KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
442
443 bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
444 }
445
446 /*
447 * SBDMA_CHANNEL_START(d)
448 *
449 * Initialize the hardware registers for a DMA channel.
450 *
451 * Input parameters:
452 * d - DMA channel to init (context must be previously init'd
453 *
454 * Return value:
455 * nothing
456 */
457
458 static void
459 sbdma_channel_start(sbmacdma_t *d)
460 {
461 /*
462 * Turn on the DMA channel
463 */
464
465 SBMAC_WRITECSR(d->sbdma_config1, 0);
466
467 SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
468
469 SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
470
471 /*
472 * Initialize ring pointers
473 */
474
475 d->sbdma_addptr = d->sbdma_dscrtable;
476 d->sbdma_remptr = d->sbdma_dscrtable;
477 }
478
479 /*
480 * SBDMA_ADD_RCVBUFFER(d, m)
481 *
482 * Add a buffer to the specified DMA channel. For receive channels,
483 * this queues a buffer for inbound packets.
484 *
485 * Input parameters:
486 * d - DMA channel descriptor
487 * m - mbuf to add, or NULL if we should allocate one.
488 *
489 * Return value:
490 * 0 if buffer could not be added (ring is full)
491 * 1 if buffer added successfully
492 */
493
494 static int
495 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
496 {
497 sbdmadscr_t *dsc;
498 sbdmadscr_t *nextdsc;
499 struct mbuf *m_new = NULL;
500
501 /* get pointer to our current place in the ring */
502
503 dsc = d->sbdma_addptr;
504 nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
505
506 /*
507 * figure out if the ring is full - if the next descriptor
508 * is the same as the one that we're going to remove from
509 * the ring, the ring is full
510 */
511
512 if (nextdsc == d->sbdma_remptr)
513 return ENOSPC;
514
515 /*
516 * Allocate an mbuf if we don't already have one.
517 * If we do have an mbuf, reset it so that it's empty.
518 */
519
520 if (m == NULL) {
521 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
522 if (m_new == NULL) {
523 printf("%s: mbuf allocation failed\n",
524 d->sbdma_eth->sc_dev.dv_xname);
525 return ENOBUFS;
526 }
527
528 MCLGET(m_new, M_DONTWAIT);
529 if (!(m_new->m_flags & M_EXT)) {
530 printf("%s: mbuf cluster allocation failed\n",
531 d->sbdma_eth->sc_dev.dv_xname);
532 m_freem(m_new);
533 return ENOBUFS;
534 }
535
536 m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
537 m_adj(m_new, ETHER_ALIGN);
538 } else {
539 m_new = m;
540 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
541 m_new->m_data = m_new->m_ext.ext_buf;
542 m_adj(m_new, ETHER_ALIGN);
543 }
544
545 /*
546 * fill in the descriptor
547 */
548
549 dsc->dscr_a = KVTOPHYS(mtod(m_new, caddr_t)) |
550 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
551 M_DMA_DSCRA_INTERRUPT;
552
553 /* receiving: no options */
554 dsc->dscr_b = 0;
555
556 /*
557 * fill in the context
558 */
559
560 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
561
562 /*
563 * point at next packet
564 */
565
566 d->sbdma_addptr = nextdsc;
567
568 /*
569 * Give the buffer to the DMA engine.
570 */
571
572 SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
573
574 return 0; /* we did it */
575 }
576
577 /*
578 * SBDMA_ADD_TXBUFFER(d, m)
579 *
580 * Add a transmit buffer to the specified DMA channel, causing a
581 * transmit to start.
582 *
583 * Input parameters:
584 * d - DMA channel descriptor
585 * m - mbuf to add
586 *
587 * Return value:
588 * 0 transmit queued successfully
589 * otherwise error code
590 */
591
592 static int
593 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
594 {
595 sbdmadscr_t *dsc;
596 sbdmadscr_t *nextdsc;
597 sbdmadscr_t *prevdsc;
598 sbdmadscr_t *origdesc;
599 int length;
600 int num_mbufs = 0;
601 struct sbmac_softc *sc = d->sbdma_eth;
602
603 /* get pointer to our current place in the ring */
604
605 dsc = d->sbdma_addptr;
606 nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
607
608 /*
609 * figure out if the ring is full - if the next descriptor
610 * is the same as the one that we're going to remove from
611 * the ring, the ring is full
612 */
613
614 if (nextdsc == d->sbdma_remptr) {
615 SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
616 return ENOSPC;
617 }
618
619 /*
620 * PASS3 parts do not have buffer alignment restriction.
621 * No need to copy/coalesce to new mbuf. Also has different
622 * descriptor format
623 */
624 if (sc->sbm_pass3_dma) {
625 struct mbuf *m_temp = NULL;
626
627 /*
628 * Loop thru this mbuf record.
629 * The head mbuf will have SOP set.
630 */
631 dsc->dscr_a = KVTOPHYS(mtod(m,caddr_t)) |
632 M_DMA_ETHTX_SOP;
633
634 /*
635 * transmitting: set outbound options,buffer A size(+ low 5
636 * bits of start addr),and packet length.
637 */
638 dsc->dscr_b =
639 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
640 V_DMA_DSCRB_A_SIZE((m->m_len +
641 (mtod(m,unsigned int) & 0x0000001F))) |
642 V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
643 V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
644
645 d->sbdma_addptr = nextdsc;
646 origdesc = prevdsc = dsc;
647 dsc = d->sbdma_addptr;
648 num_mbufs++;
649
650 /* Start with first non-head mbuf */
651 for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
652 int len, next_len;
653 uint64_t addr;
654
655 if (m_temp->m_len == 0)
656 continue; /* Skip 0-length mbufs */
657
658 len = m_temp->m_len;
659 addr = KVTOPHYS(mtod(m_temp, caddr_t));
660
661 /*
662 * Check to see if the mbuf spans a page boundary. If
663 * it does, and the physical pages behind the virtual
664 * pages are not contiguous, split it so that each
665 * virtual page uses it's own Tx descriptor.
666 */
667 if (trunc_page(addr) != trunc_page(addr + len - 1)) {
668 next_len = (addr + len) - trunc_page(addr + len);
669
670 len -= next_len;
671
672 if (addr + len ==
673 KVTOPHYS(mtod(m_temp, caddr_t) + len)) {
674 SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
675 len += next_len;
676 next_len = 0;
677 } else {
678 SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
679 }
680 } else {
681 next_len = 0;
682 }
683
684 again:
685 /*
686 * fill in the descriptor
687 */
688 dsc->dscr_a = addr;
689
690 /*
691 * transmitting: set outbound options,buffer A
692 * size(+ low 5 bits of start addr)
693 */
694 dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
695 V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
696
697 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = NULL;
698
699 /*
700 * point at next descriptor
701 */
702 nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
703 if (nextdsc == d->sbdma_remptr) {
704 d->sbdma_addptr = origdesc;
705 SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
706 return ENOSPC;
707 }
708 d->sbdma_addptr = nextdsc;
709
710 prevdsc = dsc;
711 dsc = d->sbdma_addptr;
712 num_mbufs++;
713
714 if (next_len != 0) {
715 addr = KVTOPHYS(mtod(m_temp, caddr_t) + len);
716 len = next_len;
717
718 next_len = 0;
719 goto again;
720 }
721
722 }
723 /* Set head mbuf to last context index */
724 d->sbdma_ctxtable[prevdsc-d->sbdma_dscrtable] = m;
725
726 /* Interrupt on last dscr of packet. */
727 prevdsc->dscr_a |= M_DMA_DSCRA_INTERRUPT;
728 } else {
729 struct mbuf *m_new = NULL;
730 /*
731 * [BEGIN XXX]
732 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
733 * assume it will fit). This is a temporary hack to get us
734 * going.
735 */
736
737 MGETHDR(m_new,M_DONTWAIT,MT_DATA);
738 if (m_new == NULL) {
739 printf("%s: mbuf allocation failed\n",
740 d->sbdma_eth->sc_dev.dv_xname);
741 SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
742 return ENOBUFS;
743 }
744
745 MCLGET(m_new,M_DONTWAIT);
746 if (!(m_new->m_flags & M_EXT)) {
747 printf("%s: mbuf cluster allocation failed\n",
748 d->sbdma_eth->sc_dev.dv_xname);
749 m_freem(m_new);
750 SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
751 return ENOBUFS;
752 }
753
754 m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
755 /*m_adj(m_new,ETHER_ALIGN);*/
756
757 /*
758 * XXX Don't forget to include the offset portion in the
759 * XXX cache block calculation when this code is rewritten!
760 */
761
762 /*
763 * Copy data
764 */
765
766 m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,caddr_t));
767 m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
768
769 /* Free old mbuf 'm', actual mbuf is now 'm_new' */
770
771 // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
772 // XXX: function succeeds.
773 // m_freem(m);
774 length = m_new->m_len;
775
776 /* [END XXX] */
777 /*
778 * fill in the descriptor
779 */
780
781 dsc->dscr_a = KVTOPHYS(mtod(m_new,caddr_t)) |
782 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
783 M_DMA_DSCRA_INTERRUPT |
784 M_DMA_ETHTX_SOP;
785
786 /* transmitting: set outbound options and length */
787 dsc->dscr_b =
788 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
789 V_DMA_DSCRB_PKT_SIZE(length);
790
791 num_mbufs++;
792
793 /*
794 * fill in the context
795 */
796
797 d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
798
799 /*
800 * point at next packet
801 */
802 d->sbdma_addptr = nextdsc;
803 }
804
805 /*
806 * Give the buffer to the DMA engine.
807 */
808
809 SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
810
811 return 0; /* we did it */
812 }
813
814 /*
815 * SBDMA_EMPTYRING(d)
816 *
817 * Free all allocated mbufs on the specified DMA channel;
818 *
819 * Input parameters:
820 * d - DMA channel
821 *
822 * Return value:
823 * nothing
824 */
825
826 static void
827 sbdma_emptyring(sbmacdma_t *d)
828 {
829 int idx;
830 struct mbuf *m;
831
832 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
833 m = d->sbdma_ctxtable[idx];
834 if (m) {
835 m_freem(m);
836 d->sbdma_ctxtable[idx] = NULL;
837 }
838 }
839 }
840
841 /*
842 * SBDMA_FILLRING(d)
843 *
844 * Fill the specified DMA channel (must be receive channel)
845 * with mbufs
846 *
847 * Input parameters:
848 * d - DMA channel
849 *
850 * Return value:
851 * nothing
852 */
853
854 static void
855 sbdma_fillring(sbmacdma_t *d)
856 {
857 int idx;
858
859 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
860 if (sbdma_add_rcvbuffer(d, NULL) != 0)
861 break;
862 }
863
864 /*
865 * SBDMA_RX_PROCESS(sc, d)
866 *
867 * Process "completed" receive buffers on the specified DMA channel.
868 * Note that this isn't really ideal for priority channels, since
869 * it processes all of the packets on a given channel before
870 * returning.
871 *
872 * Input parameters:
873 * sc - softc structure
874 * d - DMA channel context
875 *
876 * Return value:
877 * nothing
878 */
879
880 static void
881 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
882 {
883 int curidx;
884 int hwidx;
885 sbdmadscr_t *dsc;
886 struct mbuf *m;
887 int len;
888
889 struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
890
891 for (;;) {
892 /*
893 * figure out where we are (as an index) and where
894 * the hardware is (also as an index)
895 *
896 * This could be done faster if (for example) the
897 * descriptor table was page-aligned and contiguous in
898 * both virtual and physical memory -- you could then
899 * just compare the low-order bits of the virtual address
900 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
901 */
902
903 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
904 hwidx = (int)
905 (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
906 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
907
908 /*
909 * If they're the same, that means we've processed all
910 * of the descriptors up to (but not including) the one that
911 * the hardware is working on right now.
912 */
913
914 if (curidx == hwidx)
915 break;
916
917 /*
918 * Otherwise, get the packet's mbuf ptr back
919 */
920
921 dsc = &(d->sbdma_dscrtable[curidx]);
922 m = d->sbdma_ctxtable[curidx];
923 d->sbdma_ctxtable[curidx] = NULL;
924
925 len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
926
927 /*
928 * Check packet status. If good, process it.
929 * If not, silently drop it and put it back on the
930 * receive ring.
931 */
932
933 if (! (dsc->dscr_a & M_DMA_ETHRX_BAD)) {
934
935 /*
936 * Set length into the packet
937 * XXX do we remove the CRC here?
938 */
939 m->m_pkthdr.len = m->m_len = len;
940
941 ifp->if_ipackets++;
942 m->m_pkthdr.rcvif = ifp;
943
944
945 /*
946 * Add a new buffer to replace the old one.
947 */
948 sbdma_add_rcvbuffer(d, NULL);
949
950 #if (NBPFILTER > 0)
951 /*
952 * Handle BPF listeners. Let the BPF user see the
953 * packet, but don't pass it up to the ether_input()
954 * layer unless it's a broadcast packet, multicast
955 * packet, matches our ethernet address or the
956 * interface is in promiscuous mode.
957 */
958
959 if (ifp->if_bpf)
960 bpf_mtap(ifp->if_bpf, m);
961 #endif
962 /*
963 * Pass the buffer to the kernel
964 */
965 (*ifp->if_input)(ifp, m);
966 } else {
967 /*
968 * Packet was mangled somehow. Just drop it and
969 * put it back on the receive ring.
970 */
971 sbdma_add_rcvbuffer(d, m);
972 }
973
974 /*
975 * .. and advance to the next buffer.
976 */
977
978 d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
979 }
980 }
981
982 /*
983 * SBDMA_TX_PROCESS(sc, d)
984 *
985 * Process "completed" transmit buffers on the specified DMA channel.
986 * This is normally called within the interrupt service routine.
987 * Note that this isn't really ideal for priority channels, since
988 * it processes all of the packets on a given channel before
989 * returning.
990 *
991 * Input parameters:
992 * sc - softc structure
993 * d - DMA channel context
994 *
995 * Return value:
996 * nothing
997 */
998
999 static void
1000 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
1001 {
1002 int curidx;
1003 int hwidx;
1004 struct mbuf *m;
1005
1006 struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
1007
1008 for (;;) {
1009 /*
1010 * figure out where we are (as an index) and where
1011 * the hardware is (also as an index)
1012 *
1013 * This could be done faster if (for example) the
1014 * descriptor table was page-aligned and contiguous in
1015 * both virtual and physical memory -- you could then
1016 * just compare the low-order bits of the virtual address
1017 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1018 */
1019
1020 curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1021 hwidx = (int)
1022 (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1023 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1024
1025 /*
1026 * If they're the same, that means we've processed all
1027 * of the descriptors up to (but not including) the one that
1028 * the hardware is working on right now.
1029 */
1030
1031 if (curidx == hwidx)
1032 break;
1033
1034 /*
1035 * Otherwise, get the packet's mbuf ptr back
1036 */
1037
1038 m = d->sbdma_ctxtable[curidx];
1039 d->sbdma_ctxtable[curidx] = NULL;
1040
1041 /*
1042 * for transmits, we just free buffers.
1043 */
1044
1045 m_freem(m);
1046
1047 /*
1048 * .. and advance to the next buffer.
1049 */
1050
1051 d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
1052 }
1053
1054 /*
1055 * Decide what to set the IFF_OACTIVE bit in the interface to.
1056 * It's supposed to reflect if the interface is actively
1057 * transmitting, but that's really hard to do quickly.
1058 */
1059
1060 ifp->if_flags &= ~IFF_OACTIVE;
1061 }
1062
1063 /*
1064 * SBMAC_INITCTX(s)
1065 *
1066 * Initialize an Ethernet context structure - this is called
1067 * once per MAC on the 1250. Memory is allocated here, so don't
1068 * call it again from inside the ioctl routines that bring the
1069 * interface up/down
1070 *
1071 * Input parameters:
1072 * s - sbmac context structure
1073 *
1074 * Return value:
1075 * 0
1076 */
1077
1078 static void
1079 sbmac_initctx(struct sbmac_softc *s)
1080 {
1081 uint64_t sysrev;
1082
1083 /*
1084 * figure out the addresses of some ports
1085 */
1086
1087 s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
1088 s->sbm_maccfg = PKSEG1(s->sbm_base + R_MAC_CFG);
1089 s->sbm_fifocfg = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
1090 s->sbm_framecfg = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
1091 s->sbm_rxfilter = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
1092 s->sbm_isr = PKSEG1(s->sbm_base + R_MAC_STATUS);
1093 s->sbm_imr = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
1094
1095 /*
1096 * Initialize the DMA channels. Right now, only one per MAC is used
1097 * Note: Only do this _once_, as it allocates memory from the kernel!
1098 */
1099
1100 sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1101 sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1102
1103 /*
1104 * initial state is OFF
1105 */
1106
1107 s->sbm_state = sbmac_state_off;
1108
1109 /*
1110 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1111 */
1112
1113 s->sbm_speed = sbmac_speed_10;
1114 s->sbm_duplex = sbmac_duplex_half;
1115 s->sbm_fc = sbmac_fc_disabled;
1116
1117 /*
1118 * Determine SOC type. 112x has Pass3 SOC features.
1119 */
1120 sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1121 s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1122 SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1123 SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1124 (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1125 G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1126 #ifdef SBMAC_EVENT_COUNTERS
1127 evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1128 NULL, s->sc_dev.dv_xname, "rxintr");
1129 evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
1130 NULL, s->sc_dev.dv_xname, "txintr");
1131 evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1132 NULL, s->sc_dev.dv_xname, "txdrop");
1133 evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
1134 NULL, s->sc_dev.dv_xname, "txstall");
1135 if (s->sbm_pass3_dma) {
1136 evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1137 NULL, s->sc_dev.dv_xname, "pass3tx-split");
1138 evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1139 NULL, s->sc_dev.dv_xname, "pass3tx-keep");
1140 }
1141 #endif
1142 }
1143
1144 /*
1145 * SBMAC_CHANNEL_START(s)
1146 *
1147 * Start packet processing on this MAC.
1148 *
1149 * Input parameters:
1150 * s - sbmac structure
1151 *
1152 * Return value:
1153 * nothing
1154 */
1155
1156 static void
1157 sbmac_channel_start(struct sbmac_softc *s)
1158 {
1159 uint64_t reg;
1160 sbmac_port_t port;
1161 uint64_t cfg, fifo, framecfg;
1162 int idx;
1163 uint64_t dma_cfg0, fifo_cfg;
1164 sbmacdma_t *txdma;
1165
1166 /*
1167 * Don't do this if running
1168 */
1169
1170 if (s->sbm_state == sbmac_state_on)
1171 return;
1172
1173 /*
1174 * Bring the controller out of reset, but leave it off.
1175 */
1176
1177 SBMAC_WRITECSR(s->sbm_macenable, 0);
1178
1179 /*
1180 * Ignore all received packets
1181 */
1182
1183 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1184
1185 /*
1186 * Calculate values for various control registers.
1187 */
1188
1189 cfg = M_MAC_RETRY_EN |
1190 M_MAC_TX_HOLD_SOP_EN |
1191 V_MAC_TX_PAUSE_CNT_16K |
1192 M_MAC_AP_STAT_EN |
1193 M_MAC_SS_EN |
1194 0;
1195
1196 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1197 V_MAC_TX_RD_THRSH(4) |
1198 V_MAC_TX_RL_THRSH(4) |
1199 V_MAC_RX_PL_THRSH(4) |
1200 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1201 V_MAC_RX_PL_THRSH(4) |
1202 V_MAC_RX_RL_THRSH(8) |
1203 0;
1204
1205 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1206 V_MAC_MAX_FRAMESZ_DEFAULT |
1207 V_MAC_BACKOFF_SEL(1);
1208
1209 /*
1210 * Clear out the hash address map
1211 */
1212
1213 port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
1214 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1215 SBMAC_WRITECSR(port, 0);
1216 port += sizeof(uint64_t);
1217 }
1218
1219 /*
1220 * Clear out the exact-match table
1221 */
1222
1223 port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1224 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1225 SBMAC_WRITECSR(port, 0);
1226 port += sizeof(uint64_t);
1227 }
1228
1229 /*
1230 * Clear out the DMA Channel mapping table registers
1231 */
1232
1233 port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
1234 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1235 SBMAC_WRITECSR(port, 0);
1236 port += sizeof(uint64_t);
1237 }
1238
1239 port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
1240 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1241 SBMAC_WRITECSR(port, 0);
1242 port += sizeof(uint64_t);
1243 }
1244
1245 /*
1246 * Program the hardware address. It goes into the hardware-address
1247 * register as well as the first filter register.
1248 */
1249
1250 reg = sbmac_addr2reg(s->sbm_hwaddr);
1251
1252 port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1253 SBMAC_WRITECSR(port, reg);
1254 port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
1255 SBMAC_WRITECSR(port, 0); // pass1 workaround
1256
1257 /*
1258 * Set the receive filter for no packets, and write values
1259 * to the various config registers
1260 */
1261
1262 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1263 SBMAC_WRITECSR(s->sbm_imr, 0);
1264 SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1265 SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
1266 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1267
1268 /*
1269 * Initialize DMA channels (rings should be ok now)
1270 */
1271
1272 sbdma_channel_start(&(s->sbm_rxdma));
1273 sbdma_channel_start(&(s->sbm_txdma));
1274
1275 /*
1276 * Configure the speed, duplex, and flow control
1277 */
1278
1279 sbmac_set_speed(s, s->sbm_speed);
1280 sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
1281
1282 /*
1283 * Fill the receive ring
1284 */
1285
1286 sbdma_fillring(&(s->sbm_rxdma));
1287
1288 /*
1289 * Turn on the rest of the bits in the enable register
1290 */
1291
1292 SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1293 M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1294
1295
1296 /*
1297 * Accept any kind of interrupt on TX and RX DMA channel 0
1298 */
1299 SBMAC_WRITECSR(s->sbm_imr,
1300 (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1301 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1302
1303 /*
1304 * Enable receiving unicasts and broadcasts
1305 */
1306
1307 SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1308
1309 /*
1310 * On chips which support unaligned DMA features, set the descriptor
1311 * ring for transmit channels to use the unaligned buffer format.
1312 */
1313 txdma = &(s->sbm_txdma);
1314
1315 if (s->sbm_pass3_dma) {
1316 dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1317 dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1318 M_DMA_TBX_EN | M_DMA_TDX_EN;
1319 SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1320
1321 fifo_cfg = SBMAC_READCSR(s->sbm_fifocfg);
1322 fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1323 V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1324 SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
1325 }
1326
1327 /*
1328 * we're running now.
1329 */
1330
1331 s->sbm_state = sbmac_state_on;
1332 s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1333
1334 /*
1335 * Program multicast addresses
1336 */
1337
1338 sbmac_setmulti(s);
1339
1340 /*
1341 * If channel was in promiscuous mode before, turn that on
1342 */
1343
1344 if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1345 sbmac_promiscuous_mode(s, 1);
1346
1347 /*
1348 * Turn on the once-per-second timer
1349 */
1350
1351 callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
1352 }
1353
1354 /*
1355 * SBMAC_CHANNEL_STOP(s)
1356 *
1357 * Stop packet processing on this MAC.
1358 *
1359 * Input parameters:
1360 * s - sbmac structure
1361 *
1362 * Return value:
1363 * nothing
1364 */
1365
1366 static void
1367 sbmac_channel_stop(struct sbmac_softc *s)
1368 {
1369 uint64_t ctl;
1370
1371 /* don't do this if already stopped */
1372
1373 if (s->sbm_state == sbmac_state_off)
1374 return;
1375
1376 /* don't accept any packets, disable all interrupts */
1377
1378 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1379 SBMAC_WRITECSR(s->sbm_imr, 0);
1380
1381 /* Turn off ticker */
1382
1383 callout_stop(&(s->sc_tick_ch));
1384
1385 /* turn off receiver and transmitter */
1386
1387 ctl = SBMAC_READCSR(s->sbm_macenable);
1388 ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1389 SBMAC_WRITECSR(s->sbm_macenable, ctl);
1390
1391 /* We're stopped now. */
1392
1393 s->sbm_state = sbmac_state_off;
1394 s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1395
1396 /* Empty the receive and transmit rings */
1397
1398 sbdma_emptyring(&(s->sbm_rxdma));
1399 sbdma_emptyring(&(s->sbm_txdma));
1400 }
1401
1402 /*
1403 * SBMAC_SET_CHANNEL_STATE(state)
1404 *
1405 * Set the channel's state ON or OFF
1406 *
1407 * Input parameters:
1408 * state - new state
1409 *
1410 * Return value:
1411 * old state
1412 */
1413
1414 static sbmac_state_t
1415 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1416 {
1417 sbmac_state_t oldstate = sc->sbm_state;
1418
1419 /*
1420 * If same as previous state, return
1421 */
1422
1423 if (state == oldstate)
1424 return oldstate;
1425
1426 /*
1427 * If new state is ON, turn channel on
1428 */
1429
1430 if (state == sbmac_state_on)
1431 sbmac_channel_start(sc);
1432 else
1433 sbmac_channel_stop(sc);
1434
1435 /*
1436 * Return previous state
1437 */
1438
1439 return oldstate;
1440 }
1441
1442 /*
1443 * SBMAC_PROMISCUOUS_MODE(sc, onoff)
1444 *
1445 * Turn on or off promiscuous mode
1446 *
1447 * Input parameters:
1448 * sc - softc
1449 * onoff - 1 to turn on, 0 to turn off
1450 *
1451 * Return value:
1452 * nothing
1453 */
1454
1455 static void
1456 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
1457 {
1458 uint64_t reg;
1459
1460 if (sc->sbm_state != sbmac_state_on)
1461 return;
1462
1463 if (onoff) {
1464 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1465 reg |= M_MAC_ALLPKT_EN;
1466 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1467 } else {
1468 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1469 reg &= ~M_MAC_ALLPKT_EN;
1470 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1471 }
1472 }
1473
1474 /*
1475 * SBMAC_INIT_AND_START(sc)
1476 *
1477 * Stop the channel and restart it. This is generally used
1478 * when we have to do something to the channel that requires
1479 * a swift kick.
1480 *
1481 * Input parameters:
1482 * sc - softc
1483 */
1484
1485 static void
1486 sbmac_init_and_start(struct sbmac_softc *sc)
1487 {
1488 int s;
1489
1490 s = splnet();
1491
1492 mii_pollstat(&sc->sc_mii); /* poll phy for current speed */
1493 sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
1494 sbmac_set_channel_state(sc, sbmac_state_on);
1495
1496 splx(s);
1497 }
1498
1499 /*
1500 * SBMAC_ADDR2REG(ptr)
1501 *
1502 * Convert six bytes into the 64-bit register value that
1503 * we typically write into the SBMAC's address/mcast registers
1504 *
1505 * Input parameters:
1506 * ptr - pointer to 6 bytes
1507 *
1508 * Return value:
1509 * register value
1510 */
1511
1512 static uint64_t
1513 sbmac_addr2reg(u_char *ptr)
1514 {
1515 uint64_t reg = 0;
1516
1517 ptr += 6;
1518
1519 reg |= (uint64_t) *(--ptr);
1520 reg <<= 8;
1521 reg |= (uint64_t) *(--ptr);
1522 reg <<= 8;
1523 reg |= (uint64_t) *(--ptr);
1524 reg <<= 8;
1525 reg |= (uint64_t) *(--ptr);
1526 reg <<= 8;
1527 reg |= (uint64_t) *(--ptr);
1528 reg <<= 8;
1529 reg |= (uint64_t) *(--ptr);
1530
1531 return reg;
1532 }
1533
1534 /*
1535 * SBMAC_SET_SPEED(s, speed)
1536 *
1537 * Configure LAN speed for the specified MAC.
1538 * Warning: must be called when MAC is off!
1539 *
1540 * Input parameters:
1541 * s - sbmac structure
1542 * speed - speed to set MAC to (see sbmac_speed_t enum)
1543 *
1544 * Return value:
1545 * 1 if successful
1546 * 0 indicates invalid parameters
1547 */
1548
1549 static int
1550 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
1551 {
1552 uint64_t cfg;
1553 uint64_t framecfg;
1554
1555 /*
1556 * Save new current values
1557 */
1558
1559 s->sbm_speed = speed;
1560
1561 if (s->sbm_state != sbmac_state_off)
1562 panic("sbmac_set_speed while MAC not off");
1563
1564 /*
1565 * Read current register values
1566 */
1567
1568 cfg = SBMAC_READCSR(s->sbm_maccfg);
1569 framecfg = SBMAC_READCSR(s->sbm_framecfg);
1570
1571 /*
1572 * Mask out the stuff we want to change
1573 */
1574
1575 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1576 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1577 M_MAC_SLOT_SIZE);
1578
1579 /*
1580 * Now add in the new bits
1581 */
1582
1583 switch (speed) {
1584 case sbmac_speed_10:
1585 framecfg |= V_MAC_IFG_RX_10 |
1586 V_MAC_IFG_TX_10 |
1587 K_MAC_IFG_THRSH_10 |
1588 V_MAC_SLOT_SIZE_10;
1589 cfg |= V_MAC_SPEED_SEL_10MBPS;
1590 break;
1591
1592 case sbmac_speed_100:
1593 framecfg |= V_MAC_IFG_RX_100 |
1594 V_MAC_IFG_TX_100 |
1595 V_MAC_IFG_THRSH_100 |
1596 V_MAC_SLOT_SIZE_100;
1597 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1598 break;
1599
1600 case sbmac_speed_1000:
1601 framecfg |= V_MAC_IFG_RX_1000 |
1602 V_MAC_IFG_TX_1000 |
1603 V_MAC_IFG_THRSH_1000 |
1604 V_MAC_SLOT_SIZE_1000;
1605 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1606 break;
1607
1608 case sbmac_speed_auto: /* XXX not implemented */
1609 /* fall through */
1610 default:
1611 return 0;
1612 }
1613
1614 /*
1615 * Send the bits back to the hardware
1616 */
1617
1618 SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1619 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1620
1621 return 1;
1622 }
1623
1624 /*
1625 * SBMAC_SET_DUPLEX(s, duplex, fc)
1626 *
1627 * Set Ethernet duplex and flow control options for this MAC
1628 * Warning: must be called when MAC is off!
1629 *
1630 * Input parameters:
1631 * s - sbmac structure
1632 * duplex - duplex setting (see sbmac_duplex_t)
1633 * fc - flow control setting (see sbmac_fc_t)
1634 *
1635 * Return value:
1636 * 1 if ok
1637 * 0 if an invalid parameter combination was specified
1638 */
1639
1640 static int
1641 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
1642 {
1643 uint64_t cfg;
1644
1645 /*
1646 * Save new current values
1647 */
1648
1649 s->sbm_duplex = duplex;
1650 s->sbm_fc = fc;
1651
1652 if (s->sbm_state != sbmac_state_off)
1653 panic("sbmac_set_duplex while MAC not off");
1654
1655 /*
1656 * Read current register values
1657 */
1658
1659 cfg = SBMAC_READCSR(s->sbm_maccfg);
1660
1661 /*
1662 * Mask off the stuff we're about to change
1663 */
1664
1665 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1666
1667 switch (duplex) {
1668 case sbmac_duplex_half:
1669 switch (fc) {
1670 case sbmac_fc_disabled:
1671 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1672 break;
1673
1674 case sbmac_fc_collision:
1675 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1676 break;
1677
1678 case sbmac_fc_carrier:
1679 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1680 break;
1681
1682 case sbmac_fc_auto: /* XXX not implemented */
1683 /* fall through */
1684 case sbmac_fc_frame: /* not valid in half duplex */
1685 default: /* invalid selection */
1686 panic("%s: invalid half duplex fc selection %d",
1687 s->sc_dev.dv_xname, fc);
1688 return 0;
1689 }
1690 break;
1691
1692 case sbmac_duplex_full:
1693 switch (fc) {
1694 case sbmac_fc_disabled:
1695 cfg |= V_MAC_FC_CMD_DISABLED;
1696 break;
1697
1698 case sbmac_fc_frame:
1699 cfg |= V_MAC_FC_CMD_ENABLED;
1700 break;
1701
1702 case sbmac_fc_collision: /* not valid in full duplex */
1703 case sbmac_fc_carrier: /* not valid in full duplex */
1704 case sbmac_fc_auto: /* XXX not implemented */
1705 /* fall through */
1706 default:
1707 panic("%s: invalid full duplex fc selection %d",
1708 s->sc_dev.dv_xname, fc);
1709 return 0;
1710 }
1711 break;
1712
1713 default:
1714 /* fall through */
1715 case sbmac_duplex_auto:
1716 panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
1717 /* XXX not implemented */
1718 break;
1719 }
1720
1721 /*
1722 * Send the bits back to the hardware
1723 */
1724
1725 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1726
1727 return 1;
1728 }
1729
1730 /*
1731 * SBMAC_INTR()
1732 *
1733 * Interrupt handler for MAC interrupts
1734 *
1735 * Input parameters:
1736 * MAC structure
1737 *
1738 * Return value:
1739 * nothing
1740 */
1741
1742 /* ARGSUSED */
1743 static void
1744 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
1745 {
1746 struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
1747 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1748 uint64_t isr;
1749
1750 for (;;) {
1751
1752 /*
1753 * Read the ISR (this clears the bits in the real register)
1754 */
1755
1756 isr = SBMAC_READCSR(sc->sbm_isr);
1757
1758 if (isr == 0)
1759 break;
1760
1761 /*
1762 * Transmits on channel 0
1763 */
1764
1765 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1766 sbdma_tx_process(sc, &(sc->sbm_txdma));
1767 SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1768 }
1769
1770 /*
1771 * Receives on channel 0
1772 */
1773
1774 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1775 sbdma_rx_process(sc, &(sc->sbm_rxdma));
1776 SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1777 }
1778 }
1779
1780 /* try to get more packets going */
1781 sbmac_start(ifp);
1782 }
1783
1784
1785 /*
1786 * SBMAC_START(ifp)
1787 *
1788 * Start output on the specified interface. Basically, we
1789 * queue as many buffers as we can until the ring fills up, or
1790 * we run off the end of the queue, whichever comes first.
1791 *
1792 * Input parameters:
1793 * ifp - interface
1794 *
1795 * Return value:
1796 * nothing
1797 */
1798
1799 static void
1800 sbmac_start(struct ifnet *ifp)
1801 {
1802 struct sbmac_softc *sc;
1803 struct mbuf *m_head = NULL;
1804 int rv;
1805
1806 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1807 return;
1808
1809 sc = ifp->if_softc;
1810
1811 for (;;) {
1812
1813 IF_DEQUEUE(&ifp->if_snd, m_head);
1814 if (m_head == NULL)
1815 break;
1816
1817 /*
1818 * Put the buffer on the transmit ring. If we
1819 * don't have room, set the OACTIVE flag and wait
1820 * for the NIC to drain the ring.
1821 */
1822
1823 rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1824
1825 if (rv == 0) {
1826 /*
1827 * If there's a BPF listener, bounce a copy of this
1828 * frame to it.
1829 */
1830 #if (NBPFILTER > 0)
1831 if (ifp->if_bpf)
1832 bpf_mtap(ifp->if_bpf, m_head);
1833 #endif
1834 if (!sc->sbm_pass3_dma) {
1835 /*
1836 * Don't free mbuf if we're not copying to new
1837 * mbuf in sbdma_add_txbuffer. It will be
1838 * freed in sbdma_tx_process.
1839 */
1840 m_freem(m_head);
1841 }
1842 } else {
1843 IF_PREPEND(&ifp->if_snd, m_head);
1844 ifp->if_flags |= IFF_OACTIVE;
1845 break;
1846 }
1847 }
1848 }
1849
1850 /*
1851 * SBMAC_SETMULTI(sc)
1852 *
1853 * Reprogram the multicast table into the hardware, given
1854 * the list of multicasts associated with the interface
1855 * structure.
1856 *
1857 * Input parameters:
1858 * sc - softc
1859 *
1860 * Return value:
1861 * nothing
1862 */
1863
1864 static void
1865 sbmac_setmulti(struct sbmac_softc *sc)
1866 {
1867 struct ifnet *ifp;
1868 uint64_t reg;
1869 sbmac_port_t port;
1870 int idx;
1871 struct ether_multi *enm;
1872 struct ether_multistep step;
1873
1874 ifp = &sc->sc_ethercom.ec_if;
1875
1876 /*
1877 * Clear out entire multicast table. We do this by nuking
1878 * the entire hash table and all the direct matches except
1879 * the first one, which is used for our station address
1880 */
1881
1882 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1883 port = PKSEG1(sc->sbm_base +
1884 R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1885 SBMAC_WRITECSR(port, 0);
1886 }
1887
1888 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1889 port = PKSEG1(sc->sbm_base +
1890 R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1891 SBMAC_WRITECSR(port, 0);
1892 }
1893
1894 /*
1895 * Clear the filter to say we don't want any multicasts.
1896 */
1897
1898 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1899 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1900 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1901
1902 if (ifp->if_flags & IFF_ALLMULTI) {
1903 /*
1904 * Enable ALL multicasts. Do this by inverting the
1905 * multicast enable bit.
1906 */
1907 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1908 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1909 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1910 return;
1911 }
1912
1913 /*
1914 * Progam new multicast entries. For now, only use the
1915 * perfect filter. In the future we'll need to use the
1916 * hash filter if the perfect filter overflows
1917 */
1918
1919 /*
1920 * XXX only using perfect filter for now, need to use hash
1921 * XXX if the table overflows
1922 */
1923
1924 idx = 1; /* skip station address */
1925 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1926 while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1927 reg = sbmac_addr2reg(enm->enm_addrlo);
1928 port = PKSEG1(sc->sbm_base +
1929 R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1930 SBMAC_WRITECSR(port, reg);
1931 idx++;
1932 ETHER_NEXT_MULTI(step, enm);
1933 }
1934
1935 /*
1936 * Enable the "accept multicast bits" if we programmed at least one
1937 * multicast.
1938 */
1939
1940 if (idx > 1) {
1941 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1942 reg |= M_MAC_MCAST_EN;
1943 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1944 }
1945 }
1946
1947 /*
1948 * SBMAC_ETHER_IOCTL(ifp, cmd, data)
1949 *
1950 * Generic IOCTL requests for this interface. The basic
1951 * stuff is handled here for bringing the interface up,
1952 * handling multicasts, etc.
1953 *
1954 * Input parameters:
1955 * ifp - interface structure
1956 * cmd - command code
1957 * data - pointer to data
1958 *
1959 * Return value:
1960 * return value (0 is success)
1961 */
1962
1963 static int
1964 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1965 {
1966 struct ifaddr *ifa = (struct ifaddr *) data;
1967 struct sbmac_softc *sc = ifp->if_softc;
1968
1969 switch (cmd) {
1970 case SIOCSIFADDR:
1971 ifp->if_flags |= IFF_UP;
1972
1973 switch (ifa->ifa_addr->sa_family) {
1974 #ifdef INET
1975 case AF_INET:
1976 sbmac_init_and_start(sc);
1977 arp_ifinit(ifp, ifa);
1978 break;
1979 #endif
1980 #ifdef NS
1981 case AF_NS:
1982 {
1983 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1984
1985 if (ns_nullhost(*ina))
1986 ina->x_host =
1987 *(union ns_host *)LLADDR(ifp->if_sadl);
1988 else
1989 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1990 ifp->if_addrlen);
1991 /* Set new address. */
1992 sbmac_init_and_start(sc);
1993 break;
1994 }
1995 #endif
1996 default:
1997 sbmac_init_and_start(sc);
1998 break;
1999 }
2000 break;
2001
2002 default:
2003 return (EINVAL);
2004 }
2005
2006 return (0);
2007 }
2008
2009 /*
2010 * SBMAC_IOCTL(ifp, command, data)
2011 *
2012 * Main IOCTL handler - dispatches to other IOCTLs for various
2013 * types of requests.
2014 *
2015 * Input parameters:
2016 * ifp - interface pointer
2017 * command - command code
2018 * data - pointer to argument data
2019 *
2020 * Return value:
2021 * 0 if ok
2022 * else error code
2023 */
2024
2025 static int
2026 sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2027 {
2028 struct sbmac_softc *sc = ifp->if_softc;
2029 struct ifreq *ifr = (struct ifreq *) data;
2030 int s, error = 0;
2031
2032 s = splnet();
2033
2034 switch(command) {
2035 case SIOCSIFADDR:
2036 case SIOCGIFADDR:
2037 error = sbmac_ether_ioctl(ifp, command, data);
2038 break;
2039 case SIOCSIFMTU:
2040 if (ifr->ifr_mtu > ETHER_MAX_LEN)
2041 error = EINVAL;
2042 else {
2043 ifp->if_mtu = ifr->ifr_mtu;
2044 /* XXX Program new MTU here */
2045 }
2046 break;
2047 case SIOCSIFFLAGS:
2048 if (ifp->if_flags & IFF_UP) {
2049 /*
2050 * If only the state of the PROMISC flag changed,
2051 * just tweak the hardware registers.
2052 */
2053 if ((ifp->if_flags & IFF_RUNNING) &&
2054 (ifp->if_flags & IFF_PROMISC)) {
2055 /* turn on promiscuous mode */
2056 sbmac_promiscuous_mode(sc, 1);
2057 } else if (ifp->if_flags & IFF_RUNNING &&
2058 !(ifp->if_flags & IFF_PROMISC)) {
2059 /* turn off promiscuous mode */
2060 sbmac_promiscuous_mode(sc, 0);
2061 } else
2062 sbmac_set_channel_state(sc, sbmac_state_on);
2063 } else {
2064 if (ifp->if_flags & IFF_RUNNING)
2065 sbmac_set_channel_state(sc, sbmac_state_off);
2066 }
2067
2068 sc->sbm_if_flags = ifp->if_flags;
2069 error = 0;
2070 break;
2071
2072 case SIOCADDMULTI:
2073 case SIOCDELMULTI:
2074 if (ifp->if_flags & IFF_RUNNING) {
2075 sbmac_setmulti(sc);
2076 error = 0;
2077 }
2078 break;
2079 case SIOCSIFMEDIA:
2080 case SIOCGIFMEDIA:
2081 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2082 break;
2083 default:
2084 error = EINVAL;
2085 break;
2086 }
2087
2088 (void)splx(s);
2089
2090 return(error);
2091 }
2092
2093 /*
2094 * SBMAC_IFMEDIA_UPD(ifp)
2095 *
2096 * Configure an appropriate media type for this interface,
2097 * given the data in the interface structure
2098 *
2099 * Input parameters:
2100 * ifp - interface
2101 *
2102 * Return value:
2103 * 0 if ok
2104 * else error code
2105 */
2106
2107 static int
2108 sbmac_mediachange(struct ifnet *ifp)
2109 {
2110 struct sbmac_softc *sc = ifp->if_softc;
2111
2112 if (ifp->if_flags & IFF_UP)
2113 mii_mediachg(&sc->sc_mii);
2114 return(0);
2115 }
2116
2117 /*
2118 * SBMAC_IFMEDIA_STS(ifp, ifmr)
2119 *
2120 * Report current media status (used by ifconfig, for example)
2121 *
2122 * Input parameters:
2123 * ifp - interface structure
2124 * ifmr - media request structure
2125 *
2126 * Return value:
2127 * nothing
2128 */
2129
2130 static void
2131 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
2132 {
2133 struct sbmac_softc *sc = ifp->if_softc;
2134
2135 mii_pollstat(&sc->sc_mii);
2136 req->ifm_status = sc->sc_mii.mii_media_status;
2137 req->ifm_active = sc->sc_mii.mii_media_active;
2138 }
2139
2140 /*
2141 * SBMAC_WATCHDOG(ifp)
2142 *
2143 * Called periodically to make sure we're still happy.
2144 *
2145 * Input parameters:
2146 * ifp - interface structure
2147 *
2148 * Return value:
2149 * nothing
2150 */
2151
2152 static void
2153 sbmac_watchdog(struct ifnet *ifp)
2154 {
2155
2156 /* XXX do something */
2157 }
2158
2159 /*
2160 * One second timer, used to tick MII.
2161 */
2162 static void
2163 sbmac_tick(void *arg)
2164 {
2165 struct sbmac_softc *sc = arg;
2166 int s;
2167
2168 s = splnet();
2169 mii_tick(&sc->sc_mii);
2170 splx(s);
2171
2172 callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2173 }
2174
2175
2176 /*
2177 * SBMAC_MATCH(parent, match, aux)
2178 *
2179 * Part of the config process - see if this device matches the
2180 * info about what we expect to find on the bus.
2181 *
2182 * Input parameters:
2183 * parent - parent bus structure
2184 * match -
2185 * aux - bus-specific args
2186 *
2187 * Return value:
2188 * 1 if we match
2189 * 0 if we don't match
2190 */
2191
2192 static int
2193 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
2194 {
2195 struct sbobio_attach_args *sap = aux;
2196
2197 /*
2198 * Make sure it's a MAC
2199 */
2200
2201 if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2202 return 0;
2203
2204 /*
2205 * Yup, it is.
2206 */
2207
2208 return 1;
2209 }
2210
2211 /*
2212 * SBMAC_PARSE_XDIGIT(str)
2213 *
2214 * Parse a hex digit, returning its value
2215 *
2216 * Input parameters:
2217 * str - character
2218 *
2219 * Return value:
2220 * hex value, or -1 if invalid
2221 */
2222
2223 static int
2224 sbmac_parse_xdigit(char str)
2225 {
2226 int digit;
2227
2228 if ((str >= '0') && (str <= '9'))
2229 digit = str - '0';
2230 else if ((str >= 'a') && (str <= 'f'))
2231 digit = str - 'a' + 10;
2232 else if ((str >= 'A') && (str <= 'F'))
2233 digit = str - 'A' + 10;
2234 else
2235 digit = -1;
2236
2237 return digit;
2238 }
2239
2240 /*
2241 * SBMAC_PARSE_HWADDR(str, hwaddr)
2242 *
2243 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2244 * Ethernet address.
2245 *
2246 * Input parameters:
2247 * str - string
2248 * hwaddr - pointer to hardware address
2249 *
2250 * Return value:
2251 * 0 if ok, else -1
2252 */
2253
2254 static int
2255 sbmac_parse_hwaddr(char *str, u_char *hwaddr)
2256 {
2257 int digit1, digit2;
2258 int idx = 6;
2259
2260 while (*str && (idx > 0)) {
2261 digit1 = sbmac_parse_xdigit(*str);
2262 if (digit1 < 0)
2263 return -1;
2264 str++;
2265 if (!*str)
2266 return -1;
2267
2268 if ((*str == ':') || (*str == '-')) {
2269 digit2 = digit1;
2270 digit1 = 0;
2271 } else {
2272 digit2 = sbmac_parse_xdigit(*str);
2273 if (digit2 < 0)
2274 return -1;
2275 str++;
2276 }
2277
2278 *hwaddr++ = (digit1 << 4) | digit2;
2279 idx--;
2280
2281 if (*str == '-')
2282 str++;
2283 if (*str == ':')
2284 str++;
2285 }
2286 return 0;
2287 }
2288
2289 /*
2290 * SBMAC_ATTACH(parent, self, aux)
2291 *
2292 * Attach routine - init hardware and hook ourselves into NetBSD.
2293 *
2294 * Input parameters:
2295 * parent - parent bus device
2296 * self - our softc
2297 * aux - attach data
2298 *
2299 * Return value:
2300 * nothing
2301 */
2302
2303 static void
2304 sbmac_attach(struct device *parent, struct device *self, void *aux)
2305 {
2306 struct ifnet *ifp;
2307 struct sbmac_softc *sc;
2308 struct sbobio_attach_args *sap = aux;
2309 u_char *eaddr;
2310 static int unit = 0; /* XXX */
2311 uint64_t ea_reg;
2312 int idx;
2313
2314 sc = (struct sbmac_softc *)self;
2315
2316 /* Determine controller base address */
2317
2318 sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
2319
2320 eaddr = sc->sbm_hwaddr;
2321
2322 /*
2323 * Initialize context (get pointers to registers and stuff), then
2324 * allocate the memory for the descriptor tables.
2325 */
2326
2327 sbmac_initctx(sc);
2328
2329 callout_init(&(sc->sc_tick_ch));
2330
2331 /*
2332 * Read the ethernet address. The firwmare left this programmed
2333 * for us in the ethernet address register for each mac.
2334 */
2335
2336 ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2337 for (idx = 0; idx < 6; idx++) {
2338 eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2339 ea_reg >>= 8;
2340 }
2341
2342 #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2343 if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2344 eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2345 sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2346 eaddr[5] = unit;
2347 }
2348
2349 #ifdef SBMAC_ETH0_HWADDR
2350 if (unit == 0)
2351 sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2352 #endif
2353 #ifdef SBMAC_ETH1_HWADDR
2354 if (unit == 1)
2355 sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2356 #endif
2357 #ifdef SBMAC_ETH2_HWADDR
2358 if (unit == 2)
2359 sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2360 #endif
2361 unit++;
2362
2363 /*
2364 * Display Ethernet address (this is called during the config process
2365 * so we need to finish off the config message that was being displayed)
2366 */
2367 printf(": Ethernet%s\n",
2368 sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2369 printf("%s: Ethernet address: %s\n", self->dv_xname,
2370 ether_sprintf(eaddr));
2371
2372
2373 /*
2374 * Set up ifnet structure
2375 */
2376
2377 ifp = &sc->sc_ethercom.ec_if;
2378 ifp->if_softc = sc;
2379 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2380 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2381 IFF_NOTRAILERS;
2382 ifp->if_ioctl = sbmac_ioctl;
2383 ifp->if_start = sbmac_start;
2384 ifp->if_watchdog = sbmac_watchdog;
2385 ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2386
2387 /*
2388 * Set up ifmedia support.
2389 */
2390
2391 /*
2392 * Initialize MII/media info.
2393 */
2394 sc->sc_mii.mii_ifp = ifp;
2395 sc->sc_mii.mii_readreg = sbmac_mii_readreg;
2396 sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2397 sc->sc_mii.mii_statchg = sbmac_mii_statchg;
2398 ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
2399 sbmac_mediastatus);
2400 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2401 MII_OFFSET_ANY, 0);
2402
2403 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2404 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2405 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2406 } else {
2407 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2408 }
2409
2410
2411 /*
2412 * map/route interrupt
2413 */
2414
2415 sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
2416 sbmac_intr, sc);
2417
2418 /*
2419 * Call MI attach routines.
2420 */
2421 if_attach(ifp);
2422 ether_ifattach(ifp, eaddr);
2423 }
2424