sbmac.c revision 1.24 1 /* $NetBSD: sbmac.c,v 1.24 2007/03/07 17:24:38 christos Exp $ */
2
3 /*
4 * Copyright 2000, 2001, 2004
5 * Broadcom Corporation. All rights reserved.
6 *
7 * This software is furnished under license and may be used and copied only
8 * in accordance with the following terms and conditions. Subject to these
9 * conditions, you may download, copy, install, use, modify and distribute
10 * modified or unmodified copies of this software in source and/or binary
11 * form. No title or ownership is transferred hereby.
12 *
13 * 1) Any source code used, modified or distributed must reproduce and
14 * retain this copyright notice and list of conditions as they appear in
15 * the source file.
16 *
17 * 2) No right is granted to use any trade name, trademark, or logo of
18 * Broadcom Corporation. The "Broadcom Corporation" name may not be
19 * used to endorse or promote products derived from this software
20 * without the prior written permission of Broadcom Corporation.
21 *
22 * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
25 * NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
26 * FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
27 * LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
30 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
31 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
32 * OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.24 2007/03/07 17:24:38 christos Exp $");
37
38 #include "bpfilter.h"
39 #include "opt_inet.h"
40 #include "opt_ns.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sockio.h>
45 #include <sys/mbuf.h>
46 #include <sys/malloc.h>
47 #include <sys/kernel.h>
48 #include <sys/socket.h>
49 #include <sys/queue.h>
50 #include <sys/device.h>
51
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_ether.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57
58 #if NBPFILTER > 0
59 #include <net/bpf.h>
60 #endif
61
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/if_inarp.h>
65 #endif
66
67 #ifdef NS
68 #include <netns/ns.h>
69 #include <netns/ns_if.h>
70 #endif
71
72 #include <machine/locore.h>
73
74 #include "sbobiovar.h"
75
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
79
80 #include <mips/sibyte/include/sb1250_defs.h>
81 #include <mips/sibyte/include/sb1250_regs.h>
82 #include <mips/sibyte/include/sb1250_mac.h>
83 #include <mips/sibyte/include/sb1250_dma.h>
84 #include <mips/sibyte/include/sb1250_scd.h>
85
86 /* Simple types */
87
88 typedef u_long sbmac_port_t;
89 typedef uint64_t sbmac_physaddr_t;
90 typedef uint64_t sbmac_enetaddr_t;
91
92 typedef enum { sbmac_speed_auto, sbmac_speed_10,
93 sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
94
95 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
96 sbmac_duplex_full } sbmac_duplex_t;
97
98 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
99 sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
100
101 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
102 sbmac_state_broken } sbmac_state_t;
103
104
105 /* Macros */
106
107 #define SBMAC_EVENT_COUNTERS /* Include counters for various events */
108
109 #define SBDMA_NEXTBUF(d, f) ((f + 1) & (d)->sbdma_dscr_mask)
110
111 #define CACHELINESIZE 32
112 #define NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
113 #define KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
114 #define KVTOPHYS(x) kvtophys((vaddr_t)(x))
115
116 #ifdef SBMACDEBUG
117 #define dprintf(x) printf x
118 #else
119 #define dprintf(x)
120 #endif
121
122 #define SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
123 #define SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
124
125 #define PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
126
127 /* These are limited to fit within one virtual page, and must be 2**N. */
128 #define SBMAC_MAX_TXDESCR 256 /* should be 1024 */
129 #define SBMAC_MAX_RXDESCR 256 /* should be 512 */
130
131 #define ETHER_ALIGN 2
132
133 /* DMA Descriptor structure */
134
135 typedef struct sbdmadscr_s {
136 uint64_t dscr_a;
137 uint64_t dscr_b;
138 } sbdmadscr_t;
139
140
141 /* DMA Controller structure */
142
143 typedef struct sbmacdma_s {
144
145 /*
146 * This stuff is used to identify the channel and the registers
147 * associated with it.
148 */
149
150 struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */
151 int sbdma_channel; /* channel number */
152 int sbdma_txdir; /* direction (1=transmit) */
153 int sbdma_maxdescr; /* total # of descriptors in ring */
154 sbmac_port_t sbdma_config0; /* DMA config register 0 */
155 sbmac_port_t sbdma_config1; /* DMA config register 1 */
156 sbmac_port_t sbdma_dscrbase; /* Descriptor base address */
157 sbmac_port_t sbdma_dscrcnt; /* Descriptor count register */
158 sbmac_port_t sbdma_curdscr; /* current descriptor address */
159
160 /*
161 * This stuff is for maintenance of the ring
162 */
163 sbdmadscr_t *sbdma_dscrtable; /* base of descriptor table */
164 struct mbuf **sbdma_ctxtable; /* context table, one per descr */
165 unsigned int sbdma_dscr_mask; /* sbdma_maxdescr - 1 */
166 paddr_t sbdma_dscrtable_phys; /* and also the phys addr */
167 unsigned int sbdma_add_index; /* next dscr for sw to add */
168 unsigned int sbdma_rem_index; /* next dscr for sw to remove */
169 } sbmacdma_t;
170
171
172 /* Ethernet softc structure */
173
174 struct sbmac_softc {
175
176 /*
177 * NetBSD-specific things
178 */
179 struct device sc_dev; /* base device (must be first) */
180 struct ethercom sc_ethercom; /* Ethernet common part */
181 struct mii_data sc_mii;
182 struct callout sc_tick_ch;
183
184 int sbm_if_flags;
185 void *sbm_intrhand;
186
187 /*
188 * Controller-specific things
189 */
190
191 sbmac_port_t sbm_base; /* MAC's base address */
192 sbmac_state_t sbm_state; /* current state */
193
194 sbmac_port_t sbm_macenable; /* MAC Enable Register */
195 sbmac_port_t sbm_maccfg; /* MAC Configuration Register */
196 sbmac_port_t sbm_fifocfg; /* FIFO configuration register */
197 sbmac_port_t sbm_framecfg; /* Frame configuration register */
198 sbmac_port_t sbm_rxfilter; /* receive filter register */
199 sbmac_port_t sbm_isr; /* Interrupt status register */
200 sbmac_port_t sbm_imr; /* Interrupt mask register */
201
202 sbmac_speed_t sbm_speed; /* current speed */
203 sbmac_duplex_t sbm_duplex; /* current duplex */
204 sbmac_fc_t sbm_fc; /* current flow control setting */
205 int sbm_rxflags; /* received packet flags */
206
207 u_char sbm_hwaddr[ETHER_ADDR_LEN];
208
209 sbmacdma_t sbm_txdma; /* for now, only use channel 0 */
210 sbmacdma_t sbm_rxdma;
211
212 int sbm_pass3_dma; /* chip has pass3 SOC DMA features */
213
214 #ifdef SBMAC_EVENT_COUNTERS
215 struct evcnt sbm_ev_rxintr; /* Rx interrupts */
216 struct evcnt sbm_ev_txintr; /* Tx interrupts */
217 struct evcnt sbm_ev_txdrop; /* Tx dropped due to no mbuf alloc failed */
218 struct evcnt sbm_ev_txstall; /* Tx stalled due to no descriptors free */
219
220 struct evcnt sbm_ev_txsplit; /* pass3 Tx split mbuf */
221 struct evcnt sbm_ev_txkeep; /* pass3 Tx didn't split mbuf */
222 #endif
223 };
224
225
226 #ifdef SBMAC_EVENT_COUNTERS
227 #define SBMAC_EVCNT_INCR(ev) (ev).ev_count++
228 #else
229 #define SBMAC_EVCNT_INCR(ev) do { /* nothing */ } while (0)
230 #endif
231
232 /* Externs */
233
234 extern paddr_t kvtophys(vaddr_t);
235
236 /* Prototypes */
237
238 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
239 int txrx, int maxdescr);
240 static void sbdma_channel_start(sbmacdma_t *d);
241 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
242 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
243 static void sbdma_emptyring(sbmacdma_t *d);
244 static void sbdma_fillring(sbmacdma_t *d);
245 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
246 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
247 static void sbmac_initctx(struct sbmac_softc *s);
248 static void sbmac_channel_start(struct sbmac_softc *s);
249 static void sbmac_channel_stop(struct sbmac_softc *s);
250 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
251 sbmac_state_t);
252 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
253 static void sbmac_init_and_start(struct sbmac_softc *sc);
254 static uint64_t sbmac_addr2reg(u_char *ptr);
255 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
256 static void sbmac_start(struct ifnet *ifp);
257 static void sbmac_setmulti(struct sbmac_softc *sc);
258 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data);
259 static int sbmac_ioctl(struct ifnet *ifp, u_long command, void *data);
260 static int sbmac_mediachange(struct ifnet *ifp);
261 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
262 static void sbmac_watchdog(struct ifnet *ifp);
263 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
264 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
265 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
266 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
267 sbmac_fc_t fc);
268 static void sbmac_tick(void *arg);
269
270
271 /* Globals */
272
273 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
274 sbmac_match, sbmac_attach, NULL, NULL);
275
276 static uint32_t sbmac_mii_bitbang_read(struct device *self);
277 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
278
279 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
280 sbmac_mii_bitbang_read,
281 sbmac_mii_bitbang_write,
282 {
283 (uint32_t)M_MAC_MDIO_OUT, /* MII_BIT_MDO */
284 (uint32_t)M_MAC_MDIO_IN, /* MII_BIT_MDI */
285 (uint32_t)M_MAC_MDC, /* MII_BIT_MDC */
286 0, /* MII_BIT_DIR_HOST_PHY */
287 (uint32_t)M_MAC_MDIO_DIR /* MII_BIT_DIR_PHY_HOST */
288 }
289 };
290
291 static uint32_t
292 sbmac_mii_bitbang_read(struct device *self)
293 {
294 struct sbmac_softc *sc = (void *) self;
295 sbmac_port_t reg;
296
297 reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
298 return (uint32_t) SBMAC_READCSR(reg);
299 }
300
301 static void
302 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
303 {
304 struct sbmac_softc *sc = (void *) self;
305 sbmac_port_t reg;
306
307 reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
308
309 SBMAC_WRITECSR(reg, (val &
310 (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
311 }
312
313 /*
314 * Read an PHY register through the MII.
315 */
316 static int
317 sbmac_mii_readreg(struct device *self, int phy, int reg)
318 {
319
320 return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
321 }
322
323 /*
324 * Write to a PHY register through the MII.
325 */
326 static void
327 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
328 {
329
330 mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
331 }
332
333 static void
334 sbmac_mii_statchg(struct device *self)
335 {
336 struct sbmac_softc *sc = (struct sbmac_softc *)self;
337 sbmac_state_t oldstate;
338
339 /* Stop the MAC in preparation for changing all of the parameters. */
340 oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
341
342 switch (sc->sc_ethercom.ec_if.if_baudrate) {
343 default: /* if autonegotiation fails, assume 10Mbit */
344 case IF_Mbps(10):
345 sbmac_set_speed(sc, sbmac_speed_10);
346 break;
347
348 case IF_Mbps(100):
349 sbmac_set_speed(sc, sbmac_speed_100);
350 break;
351
352 case IF_Mbps(1000):
353 sbmac_set_speed(sc, sbmac_speed_1000);
354 break;
355 }
356
357 if (sc->sc_mii.mii_media_active & IFM_FDX) {
358 /* Configure for full-duplex */
359 /* XXX: is flow control right for 10, 100? */
360 sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
361 } else {
362 /* Configure for half-duplex */
363 /* XXX: is flow control right? */
364 sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
365 }
366
367 /* And put it back into its former state. */
368 sbmac_set_channel_state(sc, oldstate);
369 }
370
371 /*
372 * SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
373 *
374 * Initialize a DMA channel context. Since there are potentially
375 * eight DMA channels per MAC, it's nice to do this in a standard
376 * way.
377 *
378 * Input parameters:
379 * d - sbmacdma_t structure (DMA channel context)
380 * s - sbmac_softc structure (pointer to a MAC)
381 * chan - channel number (0..1 right now)
382 * txrx - Identifies DMA_TX or DMA_RX for channel direction
383 * maxdescr - number of descriptors
384 *
385 * Return value:
386 * nothing
387 */
388
389 static void
390 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
391 int maxdescr)
392 {
393 /*
394 * Save away interesting stuff in the structure
395 */
396
397 d->sbdma_eth = s;
398 d->sbdma_channel = chan;
399 d->sbdma_txdir = txrx;
400
401 /*
402 * initialize register pointers
403 */
404
405 d->sbdma_config0 = PKSEG1(s->sbm_base +
406 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
407 d->sbdma_config1 = PKSEG1(s->sbm_base +
408 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
409 d->sbdma_dscrbase = PKSEG1(s->sbm_base +
410 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
411 d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
412 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
413 d->sbdma_curdscr = PKSEG1(s->sbm_base +
414 R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
415
416 /*
417 * Allocate memory for the ring
418 */
419
420 d->sbdma_maxdescr = maxdescr;
421 d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
422
423 d->sbdma_dscrtable = (sbdmadscr_t *)
424 KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
425
426 bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
427
428 d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
429
430 /*
431 * And context table
432 */
433
434 d->sbdma_ctxtable = (struct mbuf **)
435 KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
436
437 bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
438 }
439
440 /*
441 * SBDMA_CHANNEL_START(d)
442 *
443 * Initialize the hardware registers for a DMA channel.
444 *
445 * Input parameters:
446 * d - DMA channel to init (context must be previously init'd
447 *
448 * Return value:
449 * nothing
450 */
451
452 static void
453 sbdma_channel_start(sbmacdma_t *d)
454 {
455 /*
456 * Turn on the DMA channel
457 */
458
459 SBMAC_WRITECSR(d->sbdma_config1, 0);
460
461 SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
462
463 SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
464
465 /*
466 * Initialize ring pointers
467 */
468
469 d->sbdma_add_index = 0;
470 d->sbdma_rem_index = 0;
471 }
472
473 /*
474 * SBDMA_ADD_RCVBUFFER(d, m)
475 *
476 * Add a buffer to the specified DMA channel. For receive channels,
477 * this queues a buffer for inbound packets.
478 *
479 * Input parameters:
480 * d - DMA channel descriptor
481 * m - mbuf to add, or NULL if we should allocate one.
482 *
483 * Return value:
484 * 0 if buffer could not be added (ring is full)
485 * 1 if buffer added successfully
486 */
487
488 static int
489 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
490 {
491 unsigned int dsc, nextdsc;
492 struct mbuf *m_new = NULL;
493
494 /* get pointer to our current place in the ring */
495
496 dsc = d->sbdma_add_index;
497 nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
498
499 /*
500 * figure out if the ring is full - if the next descriptor
501 * is the same as the one that we're going to remove from
502 * the ring, the ring is full
503 */
504
505 if (nextdsc == d->sbdma_rem_index)
506 return ENOSPC;
507
508 /*
509 * Allocate an mbuf if we don't already have one.
510 * If we do have an mbuf, reset it so that it's empty.
511 */
512
513 if (m == NULL) {
514 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
515 if (m_new == NULL) {
516 printf("%s: mbuf allocation failed\n",
517 d->sbdma_eth->sc_dev.dv_xname);
518 return ENOBUFS;
519 }
520
521 MCLGET(m_new, M_DONTWAIT);
522 if (!(m_new->m_flags & M_EXT)) {
523 printf("%s: mbuf cluster allocation failed\n",
524 d->sbdma_eth->sc_dev.dv_xname);
525 m_freem(m_new);
526 return ENOBUFS;
527 }
528
529 m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
530 m_adj(m_new, ETHER_ALIGN);
531 } else {
532 m_new = m;
533 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
534 m_new->m_data = m_new->m_ext.ext_buf;
535 m_adj(m_new, ETHER_ALIGN);
536 }
537
538 /*
539 * fill in the descriptor
540 */
541
542 d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
543 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
544 M_DMA_DSCRA_INTERRUPT;
545
546 /* receiving: no options */
547 d->sbdma_dscrtable[dsc].dscr_b = 0;
548
549 /*
550 * fill in the context
551 */
552
553 d->sbdma_ctxtable[dsc] = m_new;
554
555 /*
556 * point at next packet
557 */
558
559 d->sbdma_add_index = nextdsc;
560
561 /*
562 * Give the buffer to the DMA engine.
563 */
564
565 SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
566
567 return 0; /* we did it */
568 }
569
570 /*
571 * SBDMA_ADD_TXBUFFER(d, m)
572 *
573 * Add a transmit buffer to the specified DMA channel, causing a
574 * transmit to start.
575 *
576 * Input parameters:
577 * d - DMA channel descriptor
578 * m - mbuf to add
579 *
580 * Return value:
581 * 0 transmit queued successfully
582 * otherwise error code
583 */
584
585 static int
586 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
587 {
588 unsigned int dsc, nextdsc, prevdsc, origdesc;
589 int length;
590 int num_mbufs = 0;
591 struct sbmac_softc *sc = d->sbdma_eth;
592
593 /* get pointer to our current place in the ring */
594
595 dsc = d->sbdma_add_index;
596 nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
597
598 /*
599 * figure out if the ring is full - if the next descriptor
600 * is the same as the one that we're going to remove from
601 * the ring, the ring is full
602 */
603
604 if (nextdsc == d->sbdma_rem_index) {
605 SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
606 return ENOSPC;
607 }
608
609 /*
610 * PASS3 parts do not have buffer alignment restriction.
611 * No need to copy/coalesce to new mbuf. Also has different
612 * descriptor format
613 */
614 if (sc->sbm_pass3_dma) {
615 struct mbuf *m_temp = NULL;
616
617 /*
618 * Loop thru this mbuf record.
619 * The head mbuf will have SOP set.
620 */
621 d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
622 M_DMA_ETHTX_SOP;
623
624 /*
625 * transmitting: set outbound options,buffer A size(+ low 5
626 * bits of start addr),and packet length.
627 */
628 d->sbdma_dscrtable[dsc].dscr_b =
629 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
630 V_DMA_DSCRB_A_SIZE((m->m_len +
631 (mtod(m,unsigned int) & 0x0000001F))) |
632 V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
633 V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
634
635 d->sbdma_add_index = nextdsc;
636 origdesc = prevdsc = dsc;
637 dsc = d->sbdma_add_index;
638 num_mbufs++;
639
640 /* Start with first non-head mbuf */
641 for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
642 int len, next_len;
643 uint64_t addr;
644
645 if (m_temp->m_len == 0)
646 continue; /* Skip 0-length mbufs */
647
648 len = m_temp->m_len;
649 addr = KVTOPHYS(mtod(m_temp, void *));
650
651 /*
652 * Check to see if the mbuf spans a page boundary. If
653 * it does, and the physical pages behind the virtual
654 * pages are not contiguous, split it so that each
655 * virtual page uses it's own Tx descriptor.
656 */
657 if (trunc_page(addr) != trunc_page(addr + len - 1)) {
658 next_len = (addr + len) - trunc_page(addr + len);
659
660 len -= next_len;
661
662 if (addr + len ==
663 KVTOPHYS(mtod(m_temp, char *) + len)) {
664 SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
665 len += next_len;
666 next_len = 0;
667 } else {
668 SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
669 }
670 } else {
671 next_len = 0;
672 }
673
674 again:
675 /*
676 * fill in the descriptor
677 */
678 d->sbdma_dscrtable[dsc].dscr_a = addr;
679
680 /*
681 * transmitting: set outbound options,buffer A
682 * size(+ low 5 bits of start addr)
683 */
684 d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
685 V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
686
687 d->sbdma_ctxtable[dsc] = NULL;
688
689 /*
690 * point at next descriptor
691 */
692 nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
693 if (nextdsc == d->sbdma_rem_index) {
694 d->sbdma_add_index = origdesc;
695 SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
696 return ENOSPC;
697 }
698 d->sbdma_add_index = nextdsc;
699
700 prevdsc = dsc;
701 dsc = d->sbdma_add_index;
702 num_mbufs++;
703
704 if (next_len != 0) {
705 addr = KVTOPHYS(mtod(m_temp, char *) + len);
706 len = next_len;
707
708 next_len = 0;
709 goto again;
710 }
711
712 }
713 /* Set head mbuf to last context index */
714 d->sbdma_ctxtable[prevdsc] = m;
715
716 /* Interrupt on last dscr of packet. */
717 d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
718 } else {
719 struct mbuf *m_new = NULL;
720 /*
721 * [BEGIN XXX]
722 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
723 * assume it will fit). This is a temporary hack to get us
724 * going.
725 */
726
727 MGETHDR(m_new,M_DONTWAIT,MT_DATA);
728 if (m_new == NULL) {
729 printf("%s: mbuf allocation failed\n",
730 d->sbdma_eth->sc_dev.dv_xname);
731 SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
732 return ENOBUFS;
733 }
734
735 MCLGET(m_new,M_DONTWAIT);
736 if (!(m_new->m_flags & M_EXT)) {
737 printf("%s: mbuf cluster allocation failed\n",
738 d->sbdma_eth->sc_dev.dv_xname);
739 m_freem(m_new);
740 SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
741 return ENOBUFS;
742 }
743
744 m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
745 /*m_adj(m_new,ETHER_ALIGN);*/
746
747 /*
748 * XXX Don't forget to include the offset portion in the
749 * XXX cache block calculation when this code is rewritten!
750 */
751
752 /*
753 * Copy data
754 */
755
756 m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
757 m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
758
759 /* Free old mbuf 'm', actual mbuf is now 'm_new' */
760
761 // XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
762 // XXX: function succeeds.
763 // m_freem(m);
764 length = m_new->m_len;
765
766 /* [END XXX] */
767 /*
768 * fill in the descriptor
769 */
770
771 d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
772 V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
773 M_DMA_DSCRA_INTERRUPT |
774 M_DMA_ETHTX_SOP;
775
776 /* transmitting: set outbound options and length */
777 d->sbdma_dscrtable[dsc].dscr_b =
778 V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
779 V_DMA_DSCRB_PKT_SIZE(length);
780
781 num_mbufs++;
782
783 /*
784 * fill in the context
785 */
786
787 d->sbdma_ctxtable[dsc] = m_new;
788
789 /*
790 * point at next packet
791 */
792 d->sbdma_add_index = nextdsc;
793 }
794
795 /*
796 * Give the buffer to the DMA engine.
797 */
798
799 SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
800
801 return 0; /* we did it */
802 }
803
804 /*
805 * SBDMA_EMPTYRING(d)
806 *
807 * Free all allocated mbufs on the specified DMA channel;
808 *
809 * Input parameters:
810 * d - DMA channel
811 *
812 * Return value:
813 * nothing
814 */
815
816 static void
817 sbdma_emptyring(sbmacdma_t *d)
818 {
819 int idx;
820 struct mbuf *m;
821
822 for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
823 m = d->sbdma_ctxtable[idx];
824 if (m) {
825 m_freem(m);
826 d->sbdma_ctxtable[idx] = NULL;
827 }
828 }
829 }
830
831 /*
832 * SBDMA_FILLRING(d)
833 *
834 * Fill the specified DMA channel (must be receive channel)
835 * with mbufs
836 *
837 * Input parameters:
838 * d - DMA channel
839 *
840 * Return value:
841 * nothing
842 */
843
844 static void
845 sbdma_fillring(sbmacdma_t *d)
846 {
847 int idx;
848
849 for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
850 if (sbdma_add_rcvbuffer(d, NULL) != 0)
851 break;
852 }
853
854 /*
855 * SBDMA_RX_PROCESS(sc, d)
856 *
857 * Process "completed" receive buffers on the specified DMA channel.
858 * Note that this isn't really ideal for priority channels, since
859 * it processes all of the packets on a given channel before
860 * returning.
861 *
862 * Input parameters:
863 * sc - softc structure
864 * d - DMA channel context
865 *
866 * Return value:
867 * nothing
868 */
869
870 static void
871 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
872 {
873 int curidx;
874 int hwidx;
875 sbdmadscr_t *dscp;
876 struct mbuf *m;
877 int len;
878
879 struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
880
881 for (;;) {
882 /*
883 * figure out where we are (as an index) and where
884 * the hardware is (also as an index)
885 *
886 * This could be done faster if (for example) the
887 * descriptor table was page-aligned and contiguous in
888 * both virtual and physical memory -- you could then
889 * just compare the low-order bits of the virtual address
890 * (sbdma_rem_index) and the physical address
891 * (sbdma_curdscr CSR).
892 */
893
894 curidx = d->sbdma_rem_index;
895 hwidx = (int)
896 (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
897 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
898
899 /*
900 * If they're the same, that means we've processed all
901 * of the descriptors up to (but not including) the one that
902 * the hardware is working on right now.
903 */
904
905 if (curidx == hwidx)
906 break;
907
908 /*
909 * Otherwise, get the packet's mbuf ptr back
910 */
911
912 dscp = &(d->sbdma_dscrtable[curidx]);
913 m = d->sbdma_ctxtable[curidx];
914 d->sbdma_ctxtable[curidx] = NULL;
915
916 len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
917
918 /*
919 * Check packet status. If good, process it.
920 * If not, silently drop it and put it back on the
921 * receive ring.
922 */
923
924 if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
925
926 /*
927 * Set length into the packet
928 * XXX do we remove the CRC here?
929 */
930 m->m_pkthdr.len = m->m_len = len;
931
932 ifp->if_ipackets++;
933 m->m_pkthdr.rcvif = ifp;
934
935
936 /*
937 * Add a new buffer to replace the old one.
938 */
939 sbdma_add_rcvbuffer(d, NULL);
940
941 #if (NBPFILTER > 0)
942 /*
943 * Handle BPF listeners. Let the BPF user see the
944 * packet, but don't pass it up to the ether_input()
945 * layer unless it's a broadcast packet, multicast
946 * packet, matches our ethernet address or the
947 * interface is in promiscuous mode.
948 */
949
950 if (ifp->if_bpf)
951 bpf_mtap(ifp->if_bpf, m);
952 #endif
953 /*
954 * Pass the buffer to the kernel
955 */
956 (*ifp->if_input)(ifp, m);
957 } else {
958 /*
959 * Packet was mangled somehow. Just drop it and
960 * put it back on the receive ring.
961 */
962 sbdma_add_rcvbuffer(d, m);
963 }
964
965 /*
966 * .. and advance to the next buffer.
967 */
968
969 d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
970 }
971 }
972
973 /*
974 * SBDMA_TX_PROCESS(sc, d)
975 *
976 * Process "completed" transmit buffers on the specified DMA channel.
977 * This is normally called within the interrupt service routine.
978 * Note that this isn't really ideal for priority channels, since
979 * it processes all of the packets on a given channel before
980 * returning.
981 *
982 * Input parameters:
983 * sc - softc structure
984 * d - DMA channel context
985 *
986 * Return value:
987 * nothing
988 */
989
990 static void
991 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
992 {
993 int curidx;
994 int hwidx;
995 struct mbuf *m;
996
997 struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
998
999 for (;;) {
1000 /*
1001 * figure out where we are (as an index) and where
1002 * the hardware is (also as an index)
1003 *
1004 * This could be done faster if (for example) the
1005 * descriptor table was page-aligned and contiguous in
1006 * both virtual and physical memory -- you could then
1007 * just compare the low-order bits of the virtual address
1008 * (sbdma_rem_index) and the physical address
1009 * (sbdma_curdscr CSR).
1010 */
1011
1012 curidx = d->sbdma_rem_index;
1013 hwidx = (int)
1014 (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1015 d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
1016
1017 /*
1018 * If they're the same, that means we've processed all
1019 * of the descriptors up to (but not including) the one that
1020 * the hardware is working on right now.
1021 */
1022
1023 if (curidx == hwidx)
1024 break;
1025
1026 /*
1027 * Otherwise, get the packet's mbuf ptr back
1028 */
1029
1030 m = d->sbdma_ctxtable[curidx];
1031 d->sbdma_ctxtable[curidx] = NULL;
1032
1033 /*
1034 * for transmits we just free buffers and count packets.
1035 */
1036 ifp->if_opackets++;
1037 m_freem(m);
1038
1039 /*
1040 * .. and advance to the next buffer.
1041 */
1042
1043 d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
1044 }
1045
1046 /*
1047 * Decide what to set the IFF_OACTIVE bit in the interface to.
1048 * It's supposed to reflect if the interface is actively
1049 * transmitting, but that's really hard to do quickly.
1050 */
1051
1052 ifp->if_flags &= ~IFF_OACTIVE;
1053 }
1054
1055 /*
1056 * SBMAC_INITCTX(s)
1057 *
1058 * Initialize an Ethernet context structure - this is called
1059 * once per MAC on the 1250. Memory is allocated here, so don't
1060 * call it again from inside the ioctl routines that bring the
1061 * interface up/down
1062 *
1063 * Input parameters:
1064 * s - sbmac context structure
1065 *
1066 * Return value:
1067 * 0
1068 */
1069
1070 static void
1071 sbmac_initctx(struct sbmac_softc *s)
1072 {
1073 uint64_t sysrev;
1074
1075 /*
1076 * figure out the addresses of some ports
1077 */
1078
1079 s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
1080 s->sbm_maccfg = PKSEG1(s->sbm_base + R_MAC_CFG);
1081 s->sbm_fifocfg = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
1082 s->sbm_framecfg = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
1083 s->sbm_rxfilter = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
1084 s->sbm_isr = PKSEG1(s->sbm_base + R_MAC_STATUS);
1085 s->sbm_imr = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
1086
1087 /*
1088 * Initialize the DMA channels. Right now, only one per MAC is used
1089 * Note: Only do this _once_, as it allocates memory from the kernel!
1090 */
1091
1092 sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
1093 sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
1094
1095 /*
1096 * initial state is OFF
1097 */
1098
1099 s->sbm_state = sbmac_state_off;
1100
1101 /*
1102 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
1103 */
1104
1105 s->sbm_speed = sbmac_speed_10;
1106 s->sbm_duplex = sbmac_duplex_half;
1107 s->sbm_fc = sbmac_fc_disabled;
1108
1109 /*
1110 * Determine SOC type. 112x has Pass3 SOC features.
1111 */
1112 sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
1113 s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
1114 SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
1115 SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
1116 (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
1117 G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
1118 #ifdef SBMAC_EVENT_COUNTERS
1119 evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
1120 NULL, s->sc_dev.dv_xname, "rxintr");
1121 evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
1122 NULL, s->sc_dev.dv_xname, "txintr");
1123 evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
1124 NULL, s->sc_dev.dv_xname, "txdrop");
1125 evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
1126 NULL, s->sc_dev.dv_xname, "txstall");
1127 if (s->sbm_pass3_dma) {
1128 evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
1129 NULL, s->sc_dev.dv_xname, "pass3tx-split");
1130 evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
1131 NULL, s->sc_dev.dv_xname, "pass3tx-keep");
1132 }
1133 #endif
1134 }
1135
1136 /*
1137 * SBMAC_CHANNEL_START(s)
1138 *
1139 * Start packet processing on this MAC.
1140 *
1141 * Input parameters:
1142 * s - sbmac structure
1143 *
1144 * Return value:
1145 * nothing
1146 */
1147
1148 static void
1149 sbmac_channel_start(struct sbmac_softc *s)
1150 {
1151 uint64_t reg;
1152 sbmac_port_t port;
1153 uint64_t cfg, fifo, framecfg;
1154 int idx;
1155 uint64_t dma_cfg0, fifo_cfg;
1156 sbmacdma_t *txdma;
1157
1158 /*
1159 * Don't do this if running
1160 */
1161
1162 if (s->sbm_state == sbmac_state_on)
1163 return;
1164
1165 /*
1166 * Bring the controller out of reset, but leave it off.
1167 */
1168
1169 SBMAC_WRITECSR(s->sbm_macenable, 0);
1170
1171 /*
1172 * Ignore all received packets
1173 */
1174
1175 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1176
1177 /*
1178 * Calculate values for various control registers.
1179 */
1180
1181 cfg = M_MAC_RETRY_EN |
1182 M_MAC_TX_HOLD_SOP_EN |
1183 V_MAC_TX_PAUSE_CNT_16K |
1184 M_MAC_AP_STAT_EN |
1185 M_MAC_SS_EN |
1186 0;
1187
1188 fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */
1189 V_MAC_TX_RD_THRSH(4) |
1190 V_MAC_TX_RL_THRSH(4) |
1191 V_MAC_RX_PL_THRSH(4) |
1192 V_MAC_RX_RD_THRSH(4) | /* Must be '4' */
1193 V_MAC_RX_PL_THRSH(4) |
1194 V_MAC_RX_RL_THRSH(8) |
1195 0;
1196
1197 framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1198 V_MAC_MAX_FRAMESZ_DEFAULT |
1199 V_MAC_BACKOFF_SEL(1);
1200
1201 /*
1202 * Clear out the hash address map
1203 */
1204
1205 port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
1206 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1207 SBMAC_WRITECSR(port, 0);
1208 port += sizeof(uint64_t);
1209 }
1210
1211 /*
1212 * Clear out the exact-match table
1213 */
1214
1215 port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1216 for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1217 SBMAC_WRITECSR(port, 0);
1218 port += sizeof(uint64_t);
1219 }
1220
1221 /*
1222 * Clear out the DMA Channel mapping table registers
1223 */
1224
1225 port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
1226 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1227 SBMAC_WRITECSR(port, 0);
1228 port += sizeof(uint64_t);
1229 }
1230
1231 port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
1232 for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1233 SBMAC_WRITECSR(port, 0);
1234 port += sizeof(uint64_t);
1235 }
1236
1237 /*
1238 * Program the hardware address. It goes into the hardware-address
1239 * register as well as the first filter register.
1240 */
1241
1242 reg = sbmac_addr2reg(s->sbm_hwaddr);
1243
1244 port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
1245 SBMAC_WRITECSR(port, reg);
1246 port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
1247 SBMAC_WRITECSR(port, 0); // pass1 workaround
1248
1249 /*
1250 * Set the receive filter for no packets, and write values
1251 * to the various config registers
1252 */
1253
1254 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1255 SBMAC_WRITECSR(s->sbm_imr, 0);
1256 SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1257 SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
1258 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1259
1260 /*
1261 * Initialize DMA channels (rings should be ok now)
1262 */
1263
1264 sbdma_channel_start(&(s->sbm_rxdma));
1265 sbdma_channel_start(&(s->sbm_txdma));
1266
1267 /*
1268 * Configure the speed, duplex, and flow control
1269 */
1270
1271 sbmac_set_speed(s, s->sbm_speed);
1272 sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
1273
1274 /*
1275 * Fill the receive ring
1276 */
1277
1278 sbdma_fillring(&(s->sbm_rxdma));
1279
1280 /*
1281 * Turn on the rest of the bits in the enable register
1282 */
1283
1284 SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
1285 M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
1286
1287
1288 /*
1289 * Accept any kind of interrupt on TX and RX DMA channel 0
1290 */
1291 SBMAC_WRITECSR(s->sbm_imr,
1292 (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1293 (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
1294
1295 /*
1296 * Enable receiving unicasts and broadcasts
1297 */
1298
1299 SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
1300
1301 /*
1302 * On chips which support unaligned DMA features, set the descriptor
1303 * ring for transmit channels to use the unaligned buffer format.
1304 */
1305 txdma = &(s->sbm_txdma);
1306
1307 if (s->sbm_pass3_dma) {
1308 dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
1309 dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
1310 M_DMA_TBX_EN | M_DMA_TDX_EN;
1311 SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
1312
1313 fifo_cfg = SBMAC_READCSR(s->sbm_fifocfg);
1314 fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
1315 V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
1316 SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
1317 }
1318
1319 /*
1320 * we're running now.
1321 */
1322
1323 s->sbm_state = sbmac_state_on;
1324 s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
1325
1326 /*
1327 * Program multicast addresses
1328 */
1329
1330 sbmac_setmulti(s);
1331
1332 /*
1333 * If channel was in promiscuous mode before, turn that on
1334 */
1335
1336 if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
1337 sbmac_promiscuous_mode(s, 1);
1338
1339 /*
1340 * Turn on the once-per-second timer
1341 */
1342
1343 callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
1344 }
1345
1346 /*
1347 * SBMAC_CHANNEL_STOP(s)
1348 *
1349 * Stop packet processing on this MAC.
1350 *
1351 * Input parameters:
1352 * s - sbmac structure
1353 *
1354 * Return value:
1355 * nothing
1356 */
1357
1358 static void
1359 sbmac_channel_stop(struct sbmac_softc *s)
1360 {
1361 uint64_t ctl;
1362
1363 /* don't do this if already stopped */
1364
1365 if (s->sbm_state == sbmac_state_off)
1366 return;
1367
1368 /* don't accept any packets, disable all interrupts */
1369
1370 SBMAC_WRITECSR(s->sbm_rxfilter, 0);
1371 SBMAC_WRITECSR(s->sbm_imr, 0);
1372
1373 /* Turn off ticker */
1374
1375 callout_stop(&(s->sc_tick_ch));
1376
1377 /* turn off receiver and transmitter */
1378
1379 ctl = SBMAC_READCSR(s->sbm_macenable);
1380 ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
1381 SBMAC_WRITECSR(s->sbm_macenable, ctl);
1382
1383 /* We're stopped now. */
1384
1385 s->sbm_state = sbmac_state_off;
1386 s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
1387
1388 /* Empty the receive and transmit rings */
1389
1390 sbdma_emptyring(&(s->sbm_rxdma));
1391 sbdma_emptyring(&(s->sbm_txdma));
1392 }
1393
1394 /*
1395 * SBMAC_SET_CHANNEL_STATE(state)
1396 *
1397 * Set the channel's state ON or OFF
1398 *
1399 * Input parameters:
1400 * state - new state
1401 *
1402 * Return value:
1403 * old state
1404 */
1405
1406 static sbmac_state_t
1407 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
1408 {
1409 sbmac_state_t oldstate = sc->sbm_state;
1410
1411 /*
1412 * If same as previous state, return
1413 */
1414
1415 if (state == oldstate)
1416 return oldstate;
1417
1418 /*
1419 * If new state is ON, turn channel on
1420 */
1421
1422 if (state == sbmac_state_on)
1423 sbmac_channel_start(sc);
1424 else
1425 sbmac_channel_stop(sc);
1426
1427 /*
1428 * Return previous state
1429 */
1430
1431 return oldstate;
1432 }
1433
1434 /*
1435 * SBMAC_PROMISCUOUS_MODE(sc, onoff)
1436 *
1437 * Turn on or off promiscuous mode
1438 *
1439 * Input parameters:
1440 * sc - softc
1441 * onoff - 1 to turn on, 0 to turn off
1442 *
1443 * Return value:
1444 * nothing
1445 */
1446
1447 static void
1448 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
1449 {
1450 uint64_t reg;
1451
1452 if (sc->sbm_state != sbmac_state_on)
1453 return;
1454
1455 if (onoff) {
1456 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1457 reg |= M_MAC_ALLPKT_EN;
1458 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1459 } else {
1460 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1461 reg &= ~M_MAC_ALLPKT_EN;
1462 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1463 }
1464 }
1465
1466 /*
1467 * SBMAC_INIT_AND_START(sc)
1468 *
1469 * Stop the channel and restart it. This is generally used
1470 * when we have to do something to the channel that requires
1471 * a swift kick.
1472 *
1473 * Input parameters:
1474 * sc - softc
1475 */
1476
1477 static void
1478 sbmac_init_and_start(struct sbmac_softc *sc)
1479 {
1480 int s;
1481
1482 s = splnet();
1483
1484 mii_pollstat(&sc->sc_mii); /* poll phy for current speed */
1485 sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
1486 sbmac_set_channel_state(sc, sbmac_state_on);
1487
1488 splx(s);
1489 }
1490
1491 /*
1492 * SBMAC_ADDR2REG(ptr)
1493 *
1494 * Convert six bytes into the 64-bit register value that
1495 * we typically write into the SBMAC's address/mcast registers
1496 *
1497 * Input parameters:
1498 * ptr - pointer to 6 bytes
1499 *
1500 * Return value:
1501 * register value
1502 */
1503
1504 static uint64_t
1505 sbmac_addr2reg(u_char *ptr)
1506 {
1507 uint64_t reg = 0;
1508
1509 ptr += 6;
1510
1511 reg |= (uint64_t) *(--ptr);
1512 reg <<= 8;
1513 reg |= (uint64_t) *(--ptr);
1514 reg <<= 8;
1515 reg |= (uint64_t) *(--ptr);
1516 reg <<= 8;
1517 reg |= (uint64_t) *(--ptr);
1518 reg <<= 8;
1519 reg |= (uint64_t) *(--ptr);
1520 reg <<= 8;
1521 reg |= (uint64_t) *(--ptr);
1522
1523 return reg;
1524 }
1525
1526 /*
1527 * SBMAC_SET_SPEED(s, speed)
1528 *
1529 * Configure LAN speed for the specified MAC.
1530 * Warning: must be called when MAC is off!
1531 *
1532 * Input parameters:
1533 * s - sbmac structure
1534 * speed - speed to set MAC to (see sbmac_speed_t enum)
1535 *
1536 * Return value:
1537 * 1 if successful
1538 * 0 indicates invalid parameters
1539 */
1540
1541 static int
1542 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
1543 {
1544 uint64_t cfg;
1545 uint64_t framecfg;
1546
1547 /*
1548 * Save new current values
1549 */
1550
1551 s->sbm_speed = speed;
1552
1553 if (s->sbm_state != sbmac_state_off)
1554 panic("sbmac_set_speed while MAC not off");
1555
1556 /*
1557 * Read current register values
1558 */
1559
1560 cfg = SBMAC_READCSR(s->sbm_maccfg);
1561 framecfg = SBMAC_READCSR(s->sbm_framecfg);
1562
1563 /*
1564 * Mask out the stuff we want to change
1565 */
1566
1567 cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1568 framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1569 M_MAC_SLOT_SIZE);
1570
1571 /*
1572 * Now add in the new bits
1573 */
1574
1575 switch (speed) {
1576 case sbmac_speed_10:
1577 framecfg |= V_MAC_IFG_RX_10 |
1578 V_MAC_IFG_TX_10 |
1579 K_MAC_IFG_THRSH_10 |
1580 V_MAC_SLOT_SIZE_10;
1581 cfg |= V_MAC_SPEED_SEL_10MBPS;
1582 break;
1583
1584 case sbmac_speed_100:
1585 framecfg |= V_MAC_IFG_RX_100 |
1586 V_MAC_IFG_TX_100 |
1587 V_MAC_IFG_THRSH_100 |
1588 V_MAC_SLOT_SIZE_100;
1589 cfg |= V_MAC_SPEED_SEL_100MBPS ;
1590 break;
1591
1592 case sbmac_speed_1000:
1593 framecfg |= V_MAC_IFG_RX_1000 |
1594 V_MAC_IFG_TX_1000 |
1595 V_MAC_IFG_THRSH_1000 |
1596 V_MAC_SLOT_SIZE_1000;
1597 cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1598 break;
1599
1600 case sbmac_speed_auto: /* XXX not implemented */
1601 /* fall through */
1602 default:
1603 return 0;
1604 }
1605
1606 /*
1607 * Send the bits back to the hardware
1608 */
1609
1610 SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
1611 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1612
1613 return 1;
1614 }
1615
1616 /*
1617 * SBMAC_SET_DUPLEX(s, duplex, fc)
1618 *
1619 * Set Ethernet duplex and flow control options for this MAC
1620 * Warning: must be called when MAC is off!
1621 *
1622 * Input parameters:
1623 * s - sbmac structure
1624 * duplex - duplex setting (see sbmac_duplex_t)
1625 * fc - flow control setting (see sbmac_fc_t)
1626 *
1627 * Return value:
1628 * 1 if ok
1629 * 0 if an invalid parameter combination was specified
1630 */
1631
1632 static int
1633 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
1634 {
1635 uint64_t cfg;
1636
1637 /*
1638 * Save new current values
1639 */
1640
1641 s->sbm_duplex = duplex;
1642 s->sbm_fc = fc;
1643
1644 if (s->sbm_state != sbmac_state_off)
1645 panic("sbmac_set_duplex while MAC not off");
1646
1647 /*
1648 * Read current register values
1649 */
1650
1651 cfg = SBMAC_READCSR(s->sbm_maccfg);
1652
1653 /*
1654 * Mask off the stuff we're about to change
1655 */
1656
1657 cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1658
1659 switch (duplex) {
1660 case sbmac_duplex_half:
1661 switch (fc) {
1662 case sbmac_fc_disabled:
1663 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1664 break;
1665
1666 case sbmac_fc_collision:
1667 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1668 break;
1669
1670 case sbmac_fc_carrier:
1671 cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1672 break;
1673
1674 case sbmac_fc_auto: /* XXX not implemented */
1675 /* fall through */
1676 case sbmac_fc_frame: /* not valid in half duplex */
1677 default: /* invalid selection */
1678 panic("%s: invalid half duplex fc selection %d",
1679 s->sc_dev.dv_xname, fc);
1680 return 0;
1681 }
1682 break;
1683
1684 case sbmac_duplex_full:
1685 switch (fc) {
1686 case sbmac_fc_disabled:
1687 cfg |= V_MAC_FC_CMD_DISABLED;
1688 break;
1689
1690 case sbmac_fc_frame:
1691 cfg |= V_MAC_FC_CMD_ENABLED;
1692 break;
1693
1694 case sbmac_fc_collision: /* not valid in full duplex */
1695 case sbmac_fc_carrier: /* not valid in full duplex */
1696 case sbmac_fc_auto: /* XXX not implemented */
1697 /* fall through */
1698 default:
1699 panic("%s: invalid full duplex fc selection %d",
1700 s->sc_dev.dv_xname, fc);
1701 return 0;
1702 }
1703 break;
1704
1705 default:
1706 /* fall through */
1707 case sbmac_duplex_auto:
1708 panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
1709 /* XXX not implemented */
1710 break;
1711 }
1712
1713 /*
1714 * Send the bits back to the hardware
1715 */
1716
1717 SBMAC_WRITECSR(s->sbm_maccfg, cfg);
1718
1719 return 1;
1720 }
1721
1722 /*
1723 * SBMAC_INTR()
1724 *
1725 * Interrupt handler for MAC interrupts
1726 *
1727 * Input parameters:
1728 * MAC structure
1729 *
1730 * Return value:
1731 * nothing
1732 */
1733
1734 /* ARGSUSED */
1735 static void
1736 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
1737 {
1738 struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
1739 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1740 uint64_t isr;
1741
1742 for (;;) {
1743
1744 /*
1745 * Read the ISR (this clears the bits in the real register)
1746 */
1747
1748 isr = SBMAC_READCSR(sc->sbm_isr);
1749
1750 if (isr == 0)
1751 break;
1752
1753 /*
1754 * Transmits on channel 0
1755 */
1756
1757 if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
1758 sbdma_tx_process(sc, &(sc->sbm_txdma));
1759 SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
1760 }
1761
1762 /*
1763 * Receives on channel 0
1764 */
1765
1766 if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
1767 sbdma_rx_process(sc, &(sc->sbm_rxdma));
1768 SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
1769 }
1770 }
1771
1772 /* try to get more packets going */
1773 sbmac_start(ifp);
1774 }
1775
1776
1777 /*
1778 * SBMAC_START(ifp)
1779 *
1780 * Start output on the specified interface. Basically, we
1781 * queue as many buffers as we can until the ring fills up, or
1782 * we run off the end of the queue, whichever comes first.
1783 *
1784 * Input parameters:
1785 * ifp - interface
1786 *
1787 * Return value:
1788 * nothing
1789 */
1790
1791 static void
1792 sbmac_start(struct ifnet *ifp)
1793 {
1794 struct sbmac_softc *sc;
1795 struct mbuf *m_head = NULL;
1796 int rv;
1797
1798 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1799 return;
1800
1801 sc = ifp->if_softc;
1802
1803 for (;;) {
1804
1805 IF_DEQUEUE(&ifp->if_snd, m_head);
1806 if (m_head == NULL)
1807 break;
1808
1809 /*
1810 * Put the buffer on the transmit ring. If we
1811 * don't have room, set the OACTIVE flag and wait
1812 * for the NIC to drain the ring.
1813 */
1814
1815 rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
1816
1817 if (rv == 0) {
1818 /*
1819 * If there's a BPF listener, bounce a copy of this
1820 * frame to it.
1821 */
1822 #if (NBPFILTER > 0)
1823 if (ifp->if_bpf)
1824 bpf_mtap(ifp->if_bpf, m_head);
1825 #endif
1826 if (!sc->sbm_pass3_dma) {
1827 /*
1828 * Don't free mbuf if we're not copying to new
1829 * mbuf in sbdma_add_txbuffer. It will be
1830 * freed in sbdma_tx_process.
1831 */
1832 m_freem(m_head);
1833 }
1834 } else {
1835 IF_PREPEND(&ifp->if_snd, m_head);
1836 ifp->if_flags |= IFF_OACTIVE;
1837 break;
1838 }
1839 }
1840 }
1841
1842 /*
1843 * SBMAC_SETMULTI(sc)
1844 *
1845 * Reprogram the multicast table into the hardware, given
1846 * the list of multicasts associated with the interface
1847 * structure.
1848 *
1849 * Input parameters:
1850 * sc - softc
1851 *
1852 * Return value:
1853 * nothing
1854 */
1855
1856 static void
1857 sbmac_setmulti(struct sbmac_softc *sc)
1858 {
1859 struct ifnet *ifp;
1860 uint64_t reg;
1861 sbmac_port_t port;
1862 int idx;
1863 struct ether_multi *enm;
1864 struct ether_multistep step;
1865
1866 ifp = &sc->sc_ethercom.ec_if;
1867
1868 /*
1869 * Clear out entire multicast table. We do this by nuking
1870 * the entire hash table and all the direct matches except
1871 * the first one, which is used for our station address
1872 */
1873
1874 for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
1875 port = PKSEG1(sc->sbm_base +
1876 R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1877 SBMAC_WRITECSR(port, 0);
1878 }
1879
1880 for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1881 port = PKSEG1(sc->sbm_base +
1882 R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
1883 SBMAC_WRITECSR(port, 0);
1884 }
1885
1886 /*
1887 * Clear the filter to say we don't want any multicasts.
1888 */
1889
1890 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1891 reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1892 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1893
1894 if (ifp->if_flags & IFF_ALLMULTI) {
1895 /*
1896 * Enable ALL multicasts. Do this by inverting the
1897 * multicast enable bit.
1898 */
1899 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1900 reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
1901 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1902 return;
1903 }
1904
1905 /*
1906 * Progam new multicast entries. For now, only use the
1907 * perfect filter. In the future we'll need to use the
1908 * hash filter if the perfect filter overflows
1909 */
1910
1911 /*
1912 * XXX only using perfect filter for now, need to use hash
1913 * XXX if the table overflows
1914 */
1915
1916 idx = 1; /* skip station address */
1917 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
1918 while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
1919 reg = sbmac_addr2reg(enm->enm_addrlo);
1920 port = PKSEG1(sc->sbm_base +
1921 R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
1922 SBMAC_WRITECSR(port, reg);
1923 idx++;
1924 ETHER_NEXT_MULTI(step, enm);
1925 }
1926
1927 /*
1928 * Enable the "accept multicast bits" if we programmed at least one
1929 * multicast.
1930 */
1931
1932 if (idx > 1) {
1933 reg = SBMAC_READCSR(sc->sbm_rxfilter);
1934 reg |= M_MAC_MCAST_EN;
1935 SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
1936 }
1937 }
1938
1939 /*
1940 * SBMAC_ETHER_IOCTL(ifp, cmd, data)
1941 *
1942 * Generic IOCTL requests for this interface. The basic
1943 * stuff is handled here for bringing the interface up,
1944 * handling multicasts, etc.
1945 *
1946 * Input parameters:
1947 * ifp - interface structure
1948 * cmd - command code
1949 * data - pointer to data
1950 *
1951 * Return value:
1952 * return value (0 is success)
1953 */
1954
1955 static int
1956 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1957 {
1958 struct ifaddr *ifa = (struct ifaddr *) data;
1959 struct sbmac_softc *sc = ifp->if_softc;
1960
1961 switch (cmd) {
1962 case SIOCSIFADDR:
1963 ifp->if_flags |= IFF_UP;
1964
1965 switch (ifa->ifa_addr->sa_family) {
1966 #ifdef INET
1967 case AF_INET:
1968 sbmac_init_and_start(sc);
1969 arp_ifinit(ifp, ifa);
1970 break;
1971 #endif
1972 #ifdef NS
1973 case AF_NS:
1974 {
1975 struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1976
1977 if (ns_nullhost(*ina))
1978 ina->x_host =
1979 *(union ns_host *)LLADDR(ifp->if_sadl);
1980 else
1981 bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1982 ifp->if_addrlen);
1983 /* Set new address. */
1984 sbmac_init_and_start(sc);
1985 break;
1986 }
1987 #endif
1988 default:
1989 sbmac_init_and_start(sc);
1990 break;
1991 }
1992 break;
1993
1994 default:
1995 return (EINVAL);
1996 }
1997
1998 return (0);
1999 }
2000
2001 /*
2002 * SBMAC_IOCTL(ifp, command, data)
2003 *
2004 * Main IOCTL handler - dispatches to other IOCTLs for various
2005 * types of requests.
2006 *
2007 * Input parameters:
2008 * ifp - interface pointer
2009 * command - command code
2010 * data - pointer to argument data
2011 *
2012 * Return value:
2013 * 0 if ok
2014 * else error code
2015 */
2016
2017 static int
2018 sbmac_ioctl(struct ifnet *ifp, u_long command, void *data)
2019 {
2020 struct sbmac_softc *sc = ifp->if_softc;
2021 struct ifreq *ifr = (struct ifreq *) data;
2022 int s, error = 0;
2023
2024 s = splnet();
2025
2026 switch(command) {
2027 case SIOCSIFADDR:
2028 case SIOCGIFADDR:
2029 error = sbmac_ether_ioctl(ifp, command, data);
2030 break;
2031 case SIOCSIFMTU:
2032 if (ifr->ifr_mtu > ETHER_MAX_LEN)
2033 error = EINVAL;
2034 else {
2035 ifp->if_mtu = ifr->ifr_mtu;
2036 /* XXX Program new MTU here */
2037 }
2038 break;
2039 case SIOCSIFFLAGS:
2040 if (ifp->if_flags & IFF_UP) {
2041 /*
2042 * If only the state of the PROMISC flag changed,
2043 * just tweak the hardware registers.
2044 */
2045 if ((ifp->if_flags & IFF_RUNNING) &&
2046 (ifp->if_flags & IFF_PROMISC)) {
2047 /* turn on promiscuous mode */
2048 sbmac_promiscuous_mode(sc, 1);
2049 } else if (ifp->if_flags & IFF_RUNNING &&
2050 !(ifp->if_flags & IFF_PROMISC)) {
2051 /* turn off promiscuous mode */
2052 sbmac_promiscuous_mode(sc, 0);
2053 } else
2054 sbmac_set_channel_state(sc, sbmac_state_on);
2055 } else {
2056 if (ifp->if_flags & IFF_RUNNING)
2057 sbmac_set_channel_state(sc, sbmac_state_off);
2058 }
2059
2060 sc->sbm_if_flags = ifp->if_flags;
2061 error = 0;
2062 break;
2063
2064 case SIOCADDMULTI:
2065 case SIOCDELMULTI:
2066 if (ifp->if_flags & IFF_RUNNING) {
2067 sbmac_setmulti(sc);
2068 error = 0;
2069 }
2070 break;
2071 case SIOCSIFMEDIA:
2072 case SIOCGIFMEDIA:
2073 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
2074 break;
2075 default:
2076 error = EINVAL;
2077 break;
2078 }
2079
2080 (void)splx(s);
2081
2082 return(error);
2083 }
2084
2085 /*
2086 * SBMAC_IFMEDIA_UPD(ifp)
2087 *
2088 * Configure an appropriate media type for this interface,
2089 * given the data in the interface structure
2090 *
2091 * Input parameters:
2092 * ifp - interface
2093 *
2094 * Return value:
2095 * 0 if ok
2096 * else error code
2097 */
2098
2099 static int
2100 sbmac_mediachange(struct ifnet *ifp)
2101 {
2102 struct sbmac_softc *sc = ifp->if_softc;
2103
2104 if (ifp->if_flags & IFF_UP)
2105 mii_mediachg(&sc->sc_mii);
2106 return(0);
2107 }
2108
2109 /*
2110 * SBMAC_IFMEDIA_STS(ifp, ifmr)
2111 *
2112 * Report current media status (used by ifconfig, for example)
2113 *
2114 * Input parameters:
2115 * ifp - interface structure
2116 * ifmr - media request structure
2117 *
2118 * Return value:
2119 * nothing
2120 */
2121
2122 static void
2123 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
2124 {
2125 struct sbmac_softc *sc = ifp->if_softc;
2126
2127 mii_pollstat(&sc->sc_mii);
2128 req->ifm_status = sc->sc_mii.mii_media_status;
2129 req->ifm_active = sc->sc_mii.mii_media_active;
2130 }
2131
2132 /*
2133 * SBMAC_WATCHDOG(ifp)
2134 *
2135 * Called periodically to make sure we're still happy.
2136 *
2137 * Input parameters:
2138 * ifp - interface structure
2139 *
2140 * Return value:
2141 * nothing
2142 */
2143
2144 static void
2145 sbmac_watchdog(struct ifnet *ifp)
2146 {
2147
2148 /* XXX do something */
2149 }
2150
2151 /*
2152 * One second timer, used to tick MII.
2153 */
2154 static void
2155 sbmac_tick(void *arg)
2156 {
2157 struct sbmac_softc *sc = arg;
2158 int s;
2159
2160 s = splnet();
2161 mii_tick(&sc->sc_mii);
2162 splx(s);
2163
2164 callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
2165 }
2166
2167
2168 /*
2169 * SBMAC_MATCH(parent, match, aux)
2170 *
2171 * Part of the config process - see if this device matches the
2172 * info about what we expect to find on the bus.
2173 *
2174 * Input parameters:
2175 * parent - parent bus structure
2176 * match -
2177 * aux - bus-specific args
2178 *
2179 * Return value:
2180 * 1 if we match
2181 * 0 if we don't match
2182 */
2183
2184 static int
2185 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
2186 {
2187 struct sbobio_attach_args *sap = aux;
2188
2189 /*
2190 * Make sure it's a MAC
2191 */
2192
2193 if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
2194 return 0;
2195
2196 /*
2197 * Yup, it is.
2198 */
2199
2200 return 1;
2201 }
2202
2203 /*
2204 * SBMAC_PARSE_XDIGIT(str)
2205 *
2206 * Parse a hex digit, returning its value
2207 *
2208 * Input parameters:
2209 * str - character
2210 *
2211 * Return value:
2212 * hex value, or -1 if invalid
2213 */
2214
2215 static int
2216 sbmac_parse_xdigit(char str)
2217 {
2218 int digit;
2219
2220 if ((str >= '0') && (str <= '9'))
2221 digit = str - '0';
2222 else if ((str >= 'a') && (str <= 'f'))
2223 digit = str - 'a' + 10;
2224 else if ((str >= 'A') && (str <= 'F'))
2225 digit = str - 'A' + 10;
2226 else
2227 digit = -1;
2228
2229 return digit;
2230 }
2231
2232 /*
2233 * SBMAC_PARSE_HWADDR(str, hwaddr)
2234 *
2235 * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
2236 * Ethernet address.
2237 *
2238 * Input parameters:
2239 * str - string
2240 * hwaddr - pointer to hardware address
2241 *
2242 * Return value:
2243 * 0 if ok, else -1
2244 */
2245
2246 static int
2247 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
2248 {
2249 int digit1, digit2;
2250 int idx = 6;
2251
2252 while (*str && (idx > 0)) {
2253 digit1 = sbmac_parse_xdigit(*str);
2254 if (digit1 < 0)
2255 return -1;
2256 str++;
2257 if (!*str)
2258 return -1;
2259
2260 if ((*str == ':') || (*str == '-')) {
2261 digit2 = digit1;
2262 digit1 = 0;
2263 } else {
2264 digit2 = sbmac_parse_xdigit(*str);
2265 if (digit2 < 0)
2266 return -1;
2267 str++;
2268 }
2269
2270 *hwaddr++ = (digit1 << 4) | digit2;
2271 idx--;
2272
2273 if (*str == '-')
2274 str++;
2275 if (*str == ':')
2276 str++;
2277 }
2278 return 0;
2279 }
2280
2281 /*
2282 * SBMAC_ATTACH(parent, self, aux)
2283 *
2284 * Attach routine - init hardware and hook ourselves into NetBSD.
2285 *
2286 * Input parameters:
2287 * parent - parent bus device
2288 * self - our softc
2289 * aux - attach data
2290 *
2291 * Return value:
2292 * nothing
2293 */
2294
2295 static void
2296 sbmac_attach(struct device *parent, struct device *self, void *aux)
2297 {
2298 struct ifnet *ifp;
2299 struct sbmac_softc *sc;
2300 struct sbobio_attach_args *sap = aux;
2301 u_char *eaddr;
2302 static int unit = 0; /* XXX */
2303 uint64_t ea_reg;
2304 int idx;
2305
2306 sc = (struct sbmac_softc *)self;
2307
2308 /* Determine controller base address */
2309
2310 sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
2311
2312 eaddr = sc->sbm_hwaddr;
2313
2314 /*
2315 * Initialize context (get pointers to registers and stuff), then
2316 * allocate the memory for the descriptor tables.
2317 */
2318
2319 sbmac_initctx(sc);
2320
2321 callout_init(&(sc->sc_tick_ch));
2322
2323 /*
2324 * Read the ethernet address. The firwmare left this programmed
2325 * for us in the ethernet address register for each mac.
2326 */
2327
2328 ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
2329 for (idx = 0; idx < 6; idx++) {
2330 eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
2331 ea_reg >>= 8;
2332 }
2333
2334 #define SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
2335 if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
2336 eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
2337 sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
2338 eaddr[5] = unit;
2339 }
2340
2341 #ifdef SBMAC_ETH0_HWADDR
2342 if (unit == 0)
2343 sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
2344 #endif
2345 #ifdef SBMAC_ETH1_HWADDR
2346 if (unit == 1)
2347 sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
2348 #endif
2349 #ifdef SBMAC_ETH2_HWADDR
2350 if (unit == 2)
2351 sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
2352 #endif
2353 unit++;
2354
2355 /*
2356 * Display Ethernet address (this is called during the config process
2357 * so we need to finish off the config message that was being displayed)
2358 */
2359 printf(": Ethernet%s\n",
2360 sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
2361 printf("%s: Ethernet address: %s\n", self->dv_xname,
2362 ether_sprintf(eaddr));
2363
2364
2365 /*
2366 * Set up ifnet structure
2367 */
2368
2369 ifp = &sc->sc_ethercom.ec_if;
2370 ifp->if_softc = sc;
2371 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
2372 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
2373 IFF_NOTRAILERS;
2374 ifp->if_ioctl = sbmac_ioctl;
2375 ifp->if_start = sbmac_start;
2376 ifp->if_watchdog = sbmac_watchdog;
2377 ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
2378
2379 /*
2380 * Set up ifmedia support.
2381 */
2382
2383 /*
2384 * Initialize MII/media info.
2385 */
2386 sc->sc_mii.mii_ifp = ifp;
2387 sc->sc_mii.mii_readreg = sbmac_mii_readreg;
2388 sc->sc_mii.mii_writereg = sbmac_mii_writereg;
2389 sc->sc_mii.mii_statchg = sbmac_mii_statchg;
2390 ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
2391 sbmac_mediastatus);
2392 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2393 MII_OFFSET_ANY, 0);
2394
2395 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2396 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2397 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2398 } else {
2399 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2400 }
2401
2402
2403 /*
2404 * map/route interrupt
2405 */
2406
2407 sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
2408 sbmac_intr, sc);
2409
2410 /*
2411 * Call MI attach routines.
2412 */
2413 if_attach(ifp);
2414 ether_ifattach(ifp, eaddr);
2415 }
2416