Home | History | Annotate | Line # | Download | only in dev
sbmac.c revision 1.24
      1 /* $NetBSD: sbmac.c,v 1.24 2007/03/07 17:24:38 christos Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001, 2004
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
     19  *    used to endorse or promote products derived from this software
     20  *    without the prior written permission of Broadcom Corporation.
     21  *
     22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.24 2007/03/07 17:24:38 christos Exp $");
     37 
     38 #include "bpfilter.h"
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/queue.h>
     50 #include <sys/device.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_ether.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_media.h>
     57 
     58 #if NBPFILTER > 0
     59 #include <net/bpf.h>
     60 #endif
     61 
     62 #ifdef INET
     63 #include <netinet/in.h>
     64 #include <netinet/if_inarp.h>
     65 #endif
     66 
     67 #ifdef NS
     68 #include <netns/ns.h>
     69 #include <netns/ns_if.h>
     70 #endif
     71 
     72 #include <machine/locore.h>
     73 
     74 #include "sbobiovar.h"
     75 
     76 #include <dev/mii/mii.h>
     77 #include <dev/mii/miivar.h>
     78 #include <dev/mii/mii_bitbang.h>
     79 
     80 #include <mips/sibyte/include/sb1250_defs.h>
     81 #include <mips/sibyte/include/sb1250_regs.h>
     82 #include <mips/sibyte/include/sb1250_mac.h>
     83 #include <mips/sibyte/include/sb1250_dma.h>
     84 #include <mips/sibyte/include/sb1250_scd.h>
     85 
     86 /* Simple types */
     87 
     88 typedef u_long sbmac_port_t;
     89 typedef uint64_t sbmac_physaddr_t;
     90 typedef uint64_t sbmac_enetaddr_t;
     91 
     92 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     93 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     94 
     95 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     96 	       sbmac_duplex_full } sbmac_duplex_t;
     97 
     98 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
     99 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
    100 
    101 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
    102 	       sbmac_state_broken } sbmac_state_t;
    103 
    104 
    105 /* Macros */
    106 
    107 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
    108 
    109 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
    110 
    111 #define	CACHELINESIZE 32
    112 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
    113 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
    114 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
    115 
    116 #ifdef SBMACDEBUG
    117 #define	dprintf(x)	printf x
    118 #else
    119 #define	dprintf(x)
    120 #endif
    121 
    122 #define	SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
    123 #define	SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
    124 
    125 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    126 
    127 /* These are limited to fit within one virtual page, and must be 2**N.  */
    128 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
    129 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
    130 
    131 #define	ETHER_ALIGN	2
    132 
    133 /* DMA Descriptor structure */
    134 
    135 typedef struct sbdmadscr_s {
    136 	uint64_t dscr_a;
    137 	uint64_t dscr_b;
    138 } sbdmadscr_t;
    139 
    140 
    141 /* DMA Controller structure */
    142 
    143 typedef struct sbmacdma_s {
    144 
    145 	/*
    146 	 * This stuff is used to identify the channel and the registers
    147 	 * associated with it.
    148 	 */
    149 
    150 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    151 	int		sbdma_channel;	/* channel number */
    152 	int		sbdma_txdir;	/* direction (1=transmit) */
    153 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    154 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    155 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    156 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    157 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
    158 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    159 
    160 	/*
    161 	 * This stuff is for maintenance of the ring
    162 	 */
    163 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    164 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    165 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
    166 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    167 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
    168 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
    169 } sbmacdma_t;
    170 
    171 
    172 /* Ethernet softc structure */
    173 
    174 struct sbmac_softc {
    175 
    176 	/*
    177 	 * NetBSD-specific things
    178 	 */
    179 	struct device	sc_dev;		/* base device (must be first) */
    180 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    181 	struct mii_data	sc_mii;
    182 	struct callout	sc_tick_ch;
    183 
    184 	int		sbm_if_flags;
    185 	void		*sbm_intrhand;
    186 
    187 	/*
    188 	 * Controller-specific things
    189 	 */
    190 
    191 	sbmac_port_t	sbm_base;	/* MAC's base address */
    192 	sbmac_state_t	sbm_state;	/* current state */
    193 
    194 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    195 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    196 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    197 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    198 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    199 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    200 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    201 
    202 	sbmac_speed_t	sbm_speed;	/* current speed */
    203 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    204 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    205 	int		sbm_rxflags;	/* received packet flags */
    206 
    207 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    208 
    209 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    210 	sbmacdma_t	sbm_rxdma;
    211 
    212 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    213 
    214 #ifdef SBMAC_EVENT_COUNTERS
    215 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
    216 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
    217 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
    218 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
    219 
    220 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
    221 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
    222 #endif
    223 };
    224 
    225 
    226 #ifdef SBMAC_EVENT_COUNTERS
    227 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
    228 #else
    229 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
    230 #endif
    231 
    232 /* Externs */
    233 
    234 extern paddr_t kvtophys(vaddr_t);
    235 
    236 /* Prototypes */
    237 
    238 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
    239     int txrx, int maxdescr);
    240 static void sbdma_channel_start(sbmacdma_t *d);
    241 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
    242 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
    243 static void sbdma_emptyring(sbmacdma_t *d);
    244 static void sbdma_fillring(sbmacdma_t *d);
    245 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    246 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    247 static void sbmac_initctx(struct sbmac_softc *s);
    248 static void sbmac_channel_start(struct sbmac_softc *s);
    249 static void sbmac_channel_stop(struct sbmac_softc *s);
    250 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    251     sbmac_state_t);
    252 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
    253 static void sbmac_init_and_start(struct sbmac_softc *sc);
    254 static uint64_t sbmac_addr2reg(u_char *ptr);
    255 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
    256 static void sbmac_start(struct ifnet *ifp);
    257 static void sbmac_setmulti(struct sbmac_softc *sc);
    258 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data);
    259 static int sbmac_ioctl(struct ifnet *ifp, u_long command, void *data);
    260 static int sbmac_mediachange(struct ifnet *ifp);
    261 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
    262 static void sbmac_watchdog(struct ifnet *ifp);
    263 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
    264 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
    265 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
    266 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
    267     sbmac_fc_t fc);
    268 static void sbmac_tick(void *arg);
    269 
    270 
    271 /* Globals */
    272 
    273 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
    274     sbmac_match, sbmac_attach, NULL, NULL);
    275 
    276 static uint32_t sbmac_mii_bitbang_read(struct device *self);
    277 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
    278 
    279 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    280 	sbmac_mii_bitbang_read,
    281 	sbmac_mii_bitbang_write,
    282 	{
    283 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    284 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    285 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    286 		0,				/* MII_BIT_DIR_HOST_PHY */
    287 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    288 	}
    289 };
    290 
    291 static uint32_t
    292 sbmac_mii_bitbang_read(struct device *self)
    293 {
    294 	struct sbmac_softc *sc = (void *) self;
    295 	sbmac_port_t reg;
    296 
    297 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    298 	return (uint32_t) SBMAC_READCSR(reg);
    299 }
    300 
    301 static void
    302 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
    303 {
    304 	struct sbmac_softc *sc = (void *) self;
    305 	sbmac_port_t reg;
    306 
    307 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    308 
    309 	SBMAC_WRITECSR(reg, (val &
    310 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
    311 }
    312 
    313 /*
    314  * Read an PHY register through the MII.
    315  */
    316 static int
    317 sbmac_mii_readreg(struct device *self, int phy, int reg)
    318 {
    319 
    320 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
    321 }
    322 
    323 /*
    324  * Write to a PHY register through the MII.
    325  */
    326 static void
    327 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
    328 {
    329 
    330 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
    331 }
    332 
    333 static void
    334 sbmac_mii_statchg(struct device *self)
    335 {
    336 	struct sbmac_softc *sc = (struct sbmac_softc *)self;
    337 	sbmac_state_t oldstate;
    338 
    339 	/* Stop the MAC in preparation for changing all of the parameters. */
    340 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    341 
    342 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    343 	default:		/* if autonegotiation fails, assume 10Mbit */
    344 	case IF_Mbps(10):
    345 		sbmac_set_speed(sc, sbmac_speed_10);
    346 		break;
    347 
    348 	case IF_Mbps(100):
    349 		sbmac_set_speed(sc, sbmac_speed_100);
    350 		break;
    351 
    352 	case IF_Mbps(1000):
    353 		sbmac_set_speed(sc, sbmac_speed_1000);
    354 		break;
    355 	}
    356 
    357 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    358 		/* Configure for full-duplex */
    359 		/* XXX: is flow control right for 10, 100? */
    360 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    361 	} else {
    362 		/* Configure for half-duplex */
    363 		/* XXX: is flow control right? */
    364 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    365 	}
    366 
    367 	/* And put it back into its former state. */
    368 	sbmac_set_channel_state(sc, oldstate);
    369 }
    370 
    371 /*
    372  *  SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
    373  *
    374  *  Initialize a DMA channel context.  Since there are potentially
    375  *  eight DMA channels per MAC, it's nice to do this in a standard
    376  *  way.
    377  *
    378  *  Input parameters:
    379  *	d - sbmacdma_t structure (DMA channel context)
    380  *	s - sbmac_softc structure (pointer to a MAC)
    381  *	chan - channel number (0..1 right now)
    382  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    383  *	maxdescr - number of descriptors
    384  *
    385  *  Return value:
    386  *	nothing
    387  */
    388 
    389 static void
    390 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
    391     int maxdescr)
    392 {
    393 	/*
    394 	 * Save away interesting stuff in the structure
    395 	 */
    396 
    397 	d->sbdma_eth = s;
    398 	d->sbdma_channel = chan;
    399 	d->sbdma_txdir = txrx;
    400 
    401 	/*
    402 	 * initialize register pointers
    403 	 */
    404 
    405 	d->sbdma_config0 = PKSEG1(s->sbm_base +
    406 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    407 	d->sbdma_config1 = PKSEG1(s->sbm_base +
    408 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    409 	d->sbdma_dscrbase = PKSEG1(s->sbm_base +
    410 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    411 	d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
    412 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    413 	d->sbdma_curdscr = PKSEG1(s->sbm_base +
    414 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    415 
    416 	/*
    417 	 * Allocate memory for the ring
    418 	 */
    419 
    420 	d->sbdma_maxdescr = maxdescr;
    421 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
    422 
    423 	d->sbdma_dscrtable = (sbdmadscr_t *)
    424 	    KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
    425 
    426 	bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    427 
    428 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    429 
    430 	/*
    431 	 * And context table
    432 	 */
    433 
    434 	d->sbdma_ctxtable = (struct mbuf **)
    435 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
    436 
    437 	bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
    438 }
    439 
    440 /*
    441  *  SBDMA_CHANNEL_START(d)
    442  *
    443  *  Initialize the hardware registers for a DMA channel.
    444  *
    445  *  Input parameters:
    446  *	d - DMA channel to init (context must be previously init'd
    447  *
    448  *  Return value:
    449  *	nothing
    450  */
    451 
    452 static void
    453 sbdma_channel_start(sbmacdma_t *d)
    454 {
    455 	/*
    456 	 * Turn on the DMA channel
    457 	 */
    458 
    459 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    460 
    461 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    462 
    463 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    464 
    465 	/*
    466 	 * Initialize ring pointers
    467 	 */
    468 
    469 	d->sbdma_add_index = 0;
    470 	d->sbdma_rem_index = 0;
    471 }
    472 
    473 /*
    474  *  SBDMA_ADD_RCVBUFFER(d, m)
    475  *
    476  *  Add a buffer to the specified DMA channel.   For receive channels,
    477  *  this queues a buffer for inbound packets.
    478  *
    479  *  Input parameters:
    480  *	d - DMA channel descriptor
    481  *	m - mbuf to add, or NULL if we should allocate one.
    482  *
    483  *  Return value:
    484  *	0 if buffer could not be added (ring is full)
    485  *	1 if buffer added successfully
    486  */
    487 
    488 static int
    489 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    490 {
    491 	unsigned int dsc, nextdsc;
    492 	struct mbuf *m_new = NULL;
    493 
    494 	/* get pointer to our current place in the ring */
    495 
    496 	dsc = d->sbdma_add_index;
    497 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    498 
    499 	/*
    500 	 * figure out if the ring is full - if the next descriptor
    501 	 * is the same as the one that we're going to remove from
    502 	 * the ring, the ring is full
    503 	 */
    504 
    505 	if (nextdsc == d->sbdma_rem_index)
    506 		return ENOSPC;
    507 
    508 	/*
    509 	 * Allocate an mbuf if we don't already have one.
    510 	 * If we do have an mbuf, reset it so that it's empty.
    511 	 */
    512 
    513 	if (m == NULL) {
    514 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    515 		if (m_new == NULL) {
    516 			printf("%s: mbuf allocation failed\n",
    517 			    d->sbdma_eth->sc_dev.dv_xname);
    518 			return ENOBUFS;
    519 		}
    520 
    521 		MCLGET(m_new, M_DONTWAIT);
    522 		if (!(m_new->m_flags & M_EXT)) {
    523 			printf("%s: mbuf cluster allocation failed\n",
    524 			    d->sbdma_eth->sc_dev.dv_xname);
    525 			m_freem(m_new);
    526 			return ENOBUFS;
    527 		}
    528 
    529 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    530 		m_adj(m_new, ETHER_ALIGN);
    531 	} else {
    532 		m_new = m;
    533 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    534 		m_new->m_data = m_new->m_ext.ext_buf;
    535 		m_adj(m_new, ETHER_ALIGN);
    536 	}
    537 
    538 	/*
    539 	 * fill in the descriptor
    540 	 */
    541 
    542 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
    543 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    544 	    M_DMA_DSCRA_INTERRUPT;
    545 
    546 	/* receiving: no options */
    547 	d->sbdma_dscrtable[dsc].dscr_b = 0;
    548 
    549 	/*
    550 	 * fill in the context
    551 	 */
    552 
    553 	d->sbdma_ctxtable[dsc] = m_new;
    554 
    555 	/*
    556 	 * point at next packet
    557 	 */
    558 
    559 	d->sbdma_add_index = nextdsc;
    560 
    561 	/*
    562 	 * Give the buffer to the DMA engine.
    563 	 */
    564 
    565 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    566 
    567 	return 0;					/* we did it */
    568 }
    569 
    570 /*
    571  *  SBDMA_ADD_TXBUFFER(d, m)
    572  *
    573  *  Add a transmit buffer to the specified DMA channel, causing a
    574  *  transmit to start.
    575  *
    576  *  Input parameters:
    577  *	d - DMA channel descriptor
    578  *	m - mbuf to add
    579  *
    580  *  Return value:
    581  *	0 transmit queued successfully
    582  *	otherwise error code
    583  */
    584 
    585 static int
    586 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    587 {
    588         unsigned int dsc, nextdsc, prevdsc, origdesc;
    589 	int length;
    590 	int num_mbufs = 0;
    591 	struct sbmac_softc *sc = d->sbdma_eth;
    592 
    593 	/* get pointer to our current place in the ring */
    594 
    595 	dsc = d->sbdma_add_index;
    596 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    597 
    598 	/*
    599 	 * figure out if the ring is full - if the next descriptor
    600 	 * is the same as the one that we're going to remove from
    601 	 * the ring, the ring is full
    602 	 */
    603 
    604 	if (nextdsc == d->sbdma_rem_index) {
    605 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    606 		return ENOSPC;
    607 	}
    608 
    609 	/*
    610 	 * PASS3 parts do not have buffer alignment restriction.
    611 	 * No need to copy/coalesce to new mbuf.  Also has different
    612 	 * descriptor format
    613 	 */
    614 	if (sc->sbm_pass3_dma) {
    615 		struct mbuf *m_temp = NULL;
    616 
    617 		/*
    618 		 * Loop thru this mbuf record.
    619 		 * The head mbuf will have SOP set.
    620 		 */
    621 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
    622 		    M_DMA_ETHTX_SOP;
    623 
    624 		/*
    625 		 * transmitting: set outbound options,buffer A size(+ low 5
    626 		 * bits of start addr),and packet length.
    627 		 */
    628 		d->sbdma_dscrtable[dsc].dscr_b =
    629 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    630 		    V_DMA_DSCRB_A_SIZE((m->m_len +
    631 		      (mtod(m,unsigned int) & 0x0000001F))) |
    632 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
    633 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
    634 
    635 		d->sbdma_add_index = nextdsc;
    636 		origdesc = prevdsc = dsc;
    637 		dsc = d->sbdma_add_index;
    638 		num_mbufs++;
    639 
    640 		/* Start with first non-head mbuf */
    641 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    642 			int len, next_len;
    643 			uint64_t addr;
    644 
    645 			if (m_temp->m_len == 0)
    646 				continue;	/* Skip 0-length mbufs */
    647 
    648 			len = m_temp->m_len;
    649 			addr = KVTOPHYS(mtod(m_temp, void *));
    650 
    651 			/*
    652 			 * Check to see if the mbuf spans a page boundary.  If
    653 			 * it does, and the physical pages behind the virtual
    654 			 * pages are not contiguous, split it so that each
    655 			 * virtual page uses it's own Tx descriptor.
    656 			 */
    657 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
    658 				next_len = (addr + len) - trunc_page(addr + len);
    659 
    660 				len -= next_len;
    661 
    662 				if (addr + len ==
    663 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
    664 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
    665 					len += next_len;
    666 					next_len = 0;
    667 				} else {
    668 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
    669 				}
    670 			} else {
    671 				next_len = 0;
    672 			}
    673 
    674 again:
    675 			/*
    676 			 * fill in the descriptor
    677 			 */
    678 			d->sbdma_dscrtable[dsc].dscr_a = addr;
    679 
    680 			/*
    681 			 * transmitting: set outbound options,buffer A
    682 			 * size(+ low 5 bits of start addr)
    683 			 */
    684 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    685 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
    686 
    687 			d->sbdma_ctxtable[dsc] = NULL;
    688 
    689 			/*
    690 			 * point at next descriptor
    691 			 */
    692 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    693 			if (nextdsc == d->sbdma_rem_index) {
    694 				d->sbdma_add_index = origdesc;
    695 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    696 				return ENOSPC;
    697 			}
    698 			d->sbdma_add_index = nextdsc;
    699 
    700 			prevdsc = dsc;
    701 			dsc = d->sbdma_add_index;
    702 			num_mbufs++;
    703 
    704 			if (next_len != 0) {
    705 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
    706 				len = next_len;
    707 
    708 				next_len = 0;
    709 				goto again;
    710 			}
    711 
    712 		}
    713 		/* Set head mbuf to last context index */
    714 		d->sbdma_ctxtable[prevdsc] = m;
    715 
    716 		/* Interrupt on last dscr of packet.  */
    717 	        d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
    718 	} else {
    719 		struct mbuf *m_new = NULL;
    720 		/*
    721 		 * [BEGIN XXX]
    722 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
    723 		 * assume it will fit).  This is a temporary hack to get us
    724 		 * going.
    725 		 */
    726 
    727 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
    728 		if (m_new == NULL) {
    729 			printf("%s: mbuf allocation failed\n",
    730 			    d->sbdma_eth->sc_dev.dv_xname);
    731 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    732 			return ENOBUFS;
    733 		}
    734 
    735 		MCLGET(m_new,M_DONTWAIT);
    736 		if (!(m_new->m_flags & M_EXT)) {
    737 			printf("%s: mbuf cluster allocation failed\n",
    738 			    d->sbdma_eth->sc_dev.dv_xname);
    739 			m_freem(m_new);
    740 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    741 			return ENOBUFS;
    742 		}
    743 
    744 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    745 		/*m_adj(m_new,ETHER_ALIGN);*/
    746 
    747 		/*
    748 		 * XXX Don't forget to include the offset portion in the
    749 		 * XXX cache block calculation when this code is rewritten!
    750 		 */
    751 
    752 		/*
    753 		 * Copy data
    754 		 */
    755 
    756 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
    757 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    758 
    759 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    760 
    761 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    762 		// XXX: function succeeds.
    763 		// m_freem(m);
    764 		length = m_new->m_len;
    765 
    766 		/* [END XXX] */
    767 		/*
    768 		 * fill in the descriptor
    769 		 */
    770 
    771 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
    772 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    773 		    M_DMA_DSCRA_INTERRUPT |
    774 		    M_DMA_ETHTX_SOP;
    775 
    776 		/* transmitting: set outbound options and length */
    777 		d->sbdma_dscrtable[dsc].dscr_b =
    778 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    779 		    V_DMA_DSCRB_PKT_SIZE(length);
    780 
    781 		num_mbufs++;
    782 
    783 		/*
    784 		 * fill in the context
    785 		 */
    786 
    787 		d->sbdma_ctxtable[dsc] = m_new;
    788 
    789 		/*
    790 		 * point at next packet
    791 		 */
    792 		d->sbdma_add_index = nextdsc;
    793 	}
    794 
    795 	/*
    796 	 * Give the buffer to the DMA engine.
    797 	 */
    798 
    799 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    800 
    801 	return 0;					/* we did it */
    802 }
    803 
    804 /*
    805  *  SBDMA_EMPTYRING(d)
    806  *
    807  *  Free all allocated mbufs on the specified DMA channel;
    808  *
    809  *  Input parameters:
    810  *	d  - DMA channel
    811  *
    812  *  Return value:
    813  *	nothing
    814  */
    815 
    816 static void
    817 sbdma_emptyring(sbmacdma_t *d)
    818 {
    819 	int idx;
    820 	struct mbuf *m;
    821 
    822 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    823 		m = d->sbdma_ctxtable[idx];
    824 		if (m) {
    825 			m_freem(m);
    826 			d->sbdma_ctxtable[idx] = NULL;
    827 		}
    828 	}
    829 }
    830 
    831 /*
    832  *  SBDMA_FILLRING(d)
    833  *
    834  *  Fill the specified DMA channel (must be receive channel)
    835  *  with mbufs
    836  *
    837  *  Input parameters:
    838  *	d - DMA channel
    839  *
    840  *  Return value:
    841  *	nothing
    842  */
    843 
    844 static void
    845 sbdma_fillring(sbmacdma_t *d)
    846 {
    847 	int idx;
    848 
    849 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    850 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    851 			break;
    852 }
    853 
    854 /*
    855  *  SBDMA_RX_PROCESS(sc, d)
    856  *
    857  *  Process "completed" receive buffers on the specified DMA channel.
    858  *  Note that this isn't really ideal for priority channels, since
    859  *  it processes all of the packets on a given channel before
    860  *  returning.
    861  *
    862  *  Input parameters:
    863  *	sc - softc structure
    864  *	d - DMA channel context
    865  *
    866  *  Return value:
    867  *	nothing
    868  */
    869 
    870 static void
    871 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    872 {
    873 	int curidx;
    874 	int hwidx;
    875 	sbdmadscr_t *dscp;
    876 	struct mbuf *m;
    877 	int len;
    878 
    879 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    880 
    881 	for (;;) {
    882 		/*
    883 		 * figure out where we are (as an index) and where
    884 		 * the hardware is (also as an index)
    885 		 *
    886 		 * This could be done faster if (for example) the
    887 		 * descriptor table was page-aligned and contiguous in
    888 		 * both virtual and physical memory -- you could then
    889 		 * just compare the low-order bits of the virtual address
    890 		 * (sbdma_rem_index) and the physical address
    891 		 * (sbdma_curdscr CSR).
    892 		 */
    893 
    894 		curidx = d->sbdma_rem_index;
    895 		hwidx = (int)
    896 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    897 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    898 
    899 		/*
    900 		 * If they're the same, that means we've processed all
    901 		 * of the descriptors up to (but not including) the one that
    902 		 * the hardware is working on right now.
    903 		 */
    904 
    905 		if (curidx == hwidx)
    906 			break;
    907 
    908 		/*
    909 		 * Otherwise, get the packet's mbuf ptr back
    910 		 */
    911 
    912 		dscp = &(d->sbdma_dscrtable[curidx]);
    913 		m = d->sbdma_ctxtable[curidx];
    914 		d->sbdma_ctxtable[curidx] = NULL;
    915 
    916 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
    917 
    918 		/*
    919 		 * Check packet status.  If good, process it.
    920 		 * If not, silently drop it and put it back on the
    921 		 * receive ring.
    922 		 */
    923 
    924 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
    925 
    926 			/*
    927 			 * Set length into the packet
    928 			 * XXX do we remove the CRC here?
    929 			 */
    930 			m->m_pkthdr.len = m->m_len = len;
    931 
    932 			ifp->if_ipackets++;
    933 			m->m_pkthdr.rcvif = ifp;
    934 
    935 
    936 			/*
    937 			 * Add a new buffer to replace the old one.
    938 			 */
    939 			sbdma_add_rcvbuffer(d, NULL);
    940 
    941 #if (NBPFILTER > 0)
    942 			/*
    943 			 * Handle BPF listeners. Let the BPF user see the
    944 			 * packet, but don't pass it up to the ether_input()
    945 			 * layer unless it's a broadcast packet, multicast
    946 			 * packet, matches our ethernet address or the
    947 			 * interface is in promiscuous mode.
    948 			 */
    949 
    950 			if (ifp->if_bpf)
    951 				bpf_mtap(ifp->if_bpf, m);
    952 #endif
    953 			/*
    954 			 * Pass the buffer to the kernel
    955 			 */
    956 			(*ifp->if_input)(ifp, m);
    957 		} else {
    958 			/*
    959 			 * Packet was mangled somehow.  Just drop it and
    960 			 * put it back on the receive ring.
    961 			 */
    962 			sbdma_add_rcvbuffer(d, m);
    963 		}
    964 
    965 		/*
    966 		 * .. and advance to the next buffer.
    967 		 */
    968 
    969 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
    970 	}
    971 }
    972 
    973 /*
    974  *  SBDMA_TX_PROCESS(sc, d)
    975  *
    976  *  Process "completed" transmit buffers on the specified DMA channel.
    977  *  This is normally called within the interrupt service routine.
    978  *  Note that this isn't really ideal for priority channels, since
    979  *  it processes all of the packets on a given channel before
    980  *  returning.
    981  *
    982  *  Input parameters:
    983  *	sc - softc structure
    984  *	d - DMA channel context
    985  *
    986  *  Return value:
    987  *	nothing
    988  */
    989 
    990 static void
    991 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    992 {
    993 	int curidx;
    994 	int hwidx;
    995 	struct mbuf *m;
    996 
    997 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    998 
    999 	for (;;) {
   1000 		/*
   1001 		 * figure out where we are (as an index) and where
   1002 		 * the hardware is (also as an index)
   1003 		 *
   1004 		 * This could be done faster if (for example) the
   1005 		 * descriptor table was page-aligned and contiguous in
   1006 		 * both virtual and physical memory -- you could then
   1007 		 * just compare the low-order bits of the virtual address
   1008 		 * (sbdma_rem_index) and the physical address
   1009 		 * (sbdma_curdscr CSR).
   1010 		 */
   1011 
   1012 		curidx = d->sbdma_rem_index;
   1013 		hwidx = (int)
   1014 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
   1015 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
   1016 
   1017 		/*
   1018 		 * If they're the same, that means we've processed all
   1019 		 * of the descriptors up to (but not including) the one that
   1020 		 * the hardware is working on right now.
   1021 		 */
   1022 
   1023 		if (curidx == hwidx)
   1024 			break;
   1025 
   1026 		/*
   1027 		 * Otherwise, get the packet's mbuf ptr back
   1028 		 */
   1029 
   1030 		m = d->sbdma_ctxtable[curidx];
   1031 		d->sbdma_ctxtable[curidx] = NULL;
   1032 
   1033 		/*
   1034 		 * for transmits we just free buffers and count packets.
   1035 		 */
   1036 		ifp->if_opackets++;
   1037 		m_freem(m);
   1038 
   1039 		/*
   1040 		 * .. and advance to the next buffer.
   1041 		 */
   1042 
   1043 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
   1044 	}
   1045 
   1046 	/*
   1047 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
   1048 	 * It's supposed to reflect if the interface is actively
   1049 	 * transmitting, but that's really hard to do quickly.
   1050 	 */
   1051 
   1052 	ifp->if_flags &= ~IFF_OACTIVE;
   1053 }
   1054 
   1055 /*
   1056  *  SBMAC_INITCTX(s)
   1057  *
   1058  *  Initialize an Ethernet context structure - this is called
   1059  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1060  *  call it again from inside the ioctl routines that bring the
   1061  *  interface up/down
   1062  *
   1063  *  Input parameters:
   1064  *	s - sbmac context structure
   1065  *
   1066  *  Return value:
   1067  *	0
   1068  */
   1069 
   1070 static void
   1071 sbmac_initctx(struct sbmac_softc *s)
   1072 {
   1073 	uint64_t sysrev;
   1074 
   1075 	/*
   1076 	 * figure out the addresses of some ports
   1077 	 */
   1078 
   1079 	s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
   1080 	s->sbm_maccfg    = PKSEG1(s->sbm_base + R_MAC_CFG);
   1081 	s->sbm_fifocfg   = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
   1082 	s->sbm_framecfg  = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
   1083 	s->sbm_rxfilter  = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
   1084 	s->sbm_isr       = PKSEG1(s->sbm_base + R_MAC_STATUS);
   1085 	s->sbm_imr       = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
   1086 
   1087 	/*
   1088 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1089 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1090 	 */
   1091 
   1092 	sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1093 	sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1094 
   1095 	/*
   1096 	 * initial state is OFF
   1097 	 */
   1098 
   1099 	s->sbm_state = sbmac_state_off;
   1100 
   1101 	/*
   1102 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1103 	 */
   1104 
   1105 	s->sbm_speed = sbmac_speed_10;
   1106 	s->sbm_duplex = sbmac_duplex_half;
   1107 	s->sbm_fc = sbmac_fc_disabled;
   1108 
   1109 	/*
   1110 	 * Determine SOC type.  112x has Pass3 SOC features.
   1111 	 */
   1112 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1113 	s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1114 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1115 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1116 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1117 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
   1118 #ifdef SBMAC_EVENT_COUNTERS
   1119 	evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
   1120 	    NULL, s->sc_dev.dv_xname, "rxintr");
   1121 	evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
   1122 	    NULL, s->sc_dev.dv_xname, "txintr");
   1123 	evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
   1124 	    NULL, s->sc_dev.dv_xname, "txdrop");
   1125 	evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
   1126 	    NULL, s->sc_dev.dv_xname, "txstall");
   1127 	if (s->sbm_pass3_dma) {
   1128 		evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
   1129 		    NULL, s->sc_dev.dv_xname, "pass3tx-split");
   1130 		evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
   1131 		    NULL, s->sc_dev.dv_xname, "pass3tx-keep");
   1132 	}
   1133 #endif
   1134 }
   1135 
   1136 /*
   1137  *  SBMAC_CHANNEL_START(s)
   1138  *
   1139  *  Start packet processing on this MAC.
   1140  *
   1141  *  Input parameters:
   1142  *	s - sbmac structure
   1143  *
   1144  *  Return value:
   1145  *	nothing
   1146  */
   1147 
   1148 static void
   1149 sbmac_channel_start(struct sbmac_softc *s)
   1150 {
   1151 	uint64_t reg;
   1152 	sbmac_port_t port;
   1153 	uint64_t cfg, fifo, framecfg;
   1154 	int idx;
   1155 	uint64_t dma_cfg0, fifo_cfg;
   1156 	sbmacdma_t *txdma;
   1157 
   1158 	/*
   1159 	 * Don't do this if running
   1160 	 */
   1161 
   1162 	if (s->sbm_state == sbmac_state_on)
   1163 		return;
   1164 
   1165 	/*
   1166 	 * Bring the controller out of reset, but leave it off.
   1167 	 */
   1168 
   1169 	SBMAC_WRITECSR(s->sbm_macenable, 0);
   1170 
   1171 	/*
   1172 	 * Ignore all received packets
   1173 	 */
   1174 
   1175 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1176 
   1177 	/*
   1178 	 * Calculate values for various control registers.
   1179 	 */
   1180 
   1181 	cfg = M_MAC_RETRY_EN |
   1182 	      M_MAC_TX_HOLD_SOP_EN |
   1183 	      V_MAC_TX_PAUSE_CNT_16K |
   1184 	      M_MAC_AP_STAT_EN |
   1185 	      M_MAC_SS_EN |
   1186 	      0;
   1187 
   1188 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1189 	       V_MAC_TX_RD_THRSH(4) |
   1190 	       V_MAC_TX_RL_THRSH(4) |
   1191 	       V_MAC_RX_PL_THRSH(4) |
   1192 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1193 	       V_MAC_RX_PL_THRSH(4) |
   1194 	       V_MAC_RX_RL_THRSH(8) |
   1195 	       0;
   1196 
   1197 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1198 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1199 	    V_MAC_BACKOFF_SEL(1);
   1200 
   1201 	/*
   1202 	 * Clear out the hash address map
   1203 	 */
   1204 
   1205 	port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
   1206 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1207 		SBMAC_WRITECSR(port, 0);
   1208 		port += sizeof(uint64_t);
   1209 	}
   1210 
   1211 	/*
   1212 	 * Clear out the exact-match table
   1213 	 */
   1214 
   1215 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1216 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1217 		SBMAC_WRITECSR(port, 0);
   1218 		port += sizeof(uint64_t);
   1219 	}
   1220 
   1221 	/*
   1222 	 * Clear out the DMA Channel mapping table registers
   1223 	 */
   1224 
   1225 	port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
   1226 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1227 		SBMAC_WRITECSR(port, 0);
   1228 		port += sizeof(uint64_t);
   1229 	}
   1230 
   1231 	port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
   1232 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1233 		SBMAC_WRITECSR(port, 0);
   1234 		port += sizeof(uint64_t);
   1235 	}
   1236 
   1237 	/*
   1238 	 * Program the hardware address.  It goes into the hardware-address
   1239 	 * register as well as the first filter register.
   1240 	 */
   1241 
   1242 	reg = sbmac_addr2reg(s->sbm_hwaddr);
   1243 
   1244 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1245 	SBMAC_WRITECSR(port, reg);
   1246 	port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
   1247 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1248 
   1249 	/*
   1250 	 * Set the receive filter for no packets, and write values
   1251 	 * to the various config registers
   1252 	 */
   1253 
   1254 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1255 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1256 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1257 	SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
   1258 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1259 
   1260 	/*
   1261 	 * Initialize DMA channels (rings should be ok now)
   1262 	 */
   1263 
   1264 	sbdma_channel_start(&(s->sbm_rxdma));
   1265 	sbdma_channel_start(&(s->sbm_txdma));
   1266 
   1267 	/*
   1268 	 * Configure the speed, duplex, and flow control
   1269 	 */
   1270 
   1271 	sbmac_set_speed(s, s->sbm_speed);
   1272 	sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
   1273 
   1274 	/*
   1275 	 * Fill the receive ring
   1276 	 */
   1277 
   1278 	sbdma_fillring(&(s->sbm_rxdma));
   1279 
   1280 	/*
   1281 	 * Turn on the rest of the bits in the enable register
   1282 	 */
   1283 
   1284 	SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1285 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1286 
   1287 
   1288 	/*
   1289 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1290 	 */
   1291 	SBMAC_WRITECSR(s->sbm_imr,
   1292 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1293 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1294 
   1295 	/*
   1296 	 * Enable receiving unicasts and broadcasts
   1297 	 */
   1298 
   1299 	SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1300 
   1301 	/*
   1302 	 * On chips which support unaligned DMA features, set the descriptor
   1303 	 * ring for transmit channels to use the unaligned buffer format.
   1304 	 */
   1305 	txdma = &(s->sbm_txdma);
   1306 
   1307 	if (s->sbm_pass3_dma) {
   1308 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1309 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1310 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1311 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
   1312 
   1313 		fifo_cfg =  SBMAC_READCSR(s->sbm_fifocfg);
   1314 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1315 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1316 		SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
   1317 	}
   1318 
   1319 	/*
   1320 	 * we're running now.
   1321 	 */
   1322 
   1323 	s->sbm_state = sbmac_state_on;
   1324 	s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1325 
   1326 	/*
   1327 	 * Program multicast addresses
   1328 	 */
   1329 
   1330 	sbmac_setmulti(s);
   1331 
   1332 	/*
   1333 	 * If channel was in promiscuous mode before, turn that on
   1334 	 */
   1335 
   1336 	if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1337 		sbmac_promiscuous_mode(s, 1);
   1338 
   1339 	/*
   1340 	 * Turn on the once-per-second timer
   1341 	 */
   1342 
   1343 	callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
   1344 }
   1345 
   1346 /*
   1347  *  SBMAC_CHANNEL_STOP(s)
   1348  *
   1349  *  Stop packet processing on this MAC.
   1350  *
   1351  *  Input parameters:
   1352  *	s - sbmac structure
   1353  *
   1354  *  Return value:
   1355  *	nothing
   1356  */
   1357 
   1358 static void
   1359 sbmac_channel_stop(struct sbmac_softc *s)
   1360 {
   1361 	uint64_t ctl;
   1362 
   1363 	/* don't do this if already stopped */
   1364 
   1365 	if (s->sbm_state == sbmac_state_off)
   1366 		return;
   1367 
   1368 	/* don't accept any packets, disable all interrupts */
   1369 
   1370 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1371 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1372 
   1373 	/* Turn off ticker */
   1374 
   1375 	callout_stop(&(s->sc_tick_ch));
   1376 
   1377 	/* turn off receiver and transmitter */
   1378 
   1379 	ctl = SBMAC_READCSR(s->sbm_macenable);
   1380 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1381 	SBMAC_WRITECSR(s->sbm_macenable, ctl);
   1382 
   1383 	/* We're stopped now. */
   1384 
   1385 	s->sbm_state = sbmac_state_off;
   1386 	s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1387 
   1388 	/* Empty the receive and transmit rings */
   1389 
   1390 	sbdma_emptyring(&(s->sbm_rxdma));
   1391 	sbdma_emptyring(&(s->sbm_txdma));
   1392 }
   1393 
   1394 /*
   1395  *  SBMAC_SET_CHANNEL_STATE(state)
   1396  *
   1397  *  Set the channel's state ON or OFF
   1398  *
   1399  *  Input parameters:
   1400  *	state - new state
   1401  *
   1402  *  Return value:
   1403  *	old state
   1404  */
   1405 
   1406 static sbmac_state_t
   1407 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1408 {
   1409 	sbmac_state_t oldstate = sc->sbm_state;
   1410 
   1411 	/*
   1412 	 * If same as previous state, return
   1413 	 */
   1414 
   1415 	if (state == oldstate)
   1416 		return oldstate;
   1417 
   1418 	/*
   1419 	 * If new state is ON, turn channel on
   1420 	 */
   1421 
   1422 	if (state == sbmac_state_on)
   1423 		sbmac_channel_start(sc);
   1424 	else
   1425 		sbmac_channel_stop(sc);
   1426 
   1427 	/*
   1428 	 * Return previous state
   1429 	 */
   1430 
   1431 	return oldstate;
   1432 }
   1433 
   1434 /*
   1435  *  SBMAC_PROMISCUOUS_MODE(sc, onoff)
   1436  *
   1437  *  Turn on or off promiscuous mode
   1438  *
   1439  *  Input parameters:
   1440  *	sc - softc
   1441  *	onoff - 1 to turn on, 0 to turn off
   1442  *
   1443  *  Return value:
   1444  *	nothing
   1445  */
   1446 
   1447 static void
   1448 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
   1449 {
   1450 	uint64_t reg;
   1451 
   1452 	if (sc->sbm_state != sbmac_state_on)
   1453 		return;
   1454 
   1455 	if (onoff) {
   1456 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1457 		reg |= M_MAC_ALLPKT_EN;
   1458 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1459 	} else {
   1460 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1461 		reg &= ~M_MAC_ALLPKT_EN;
   1462 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1463 	}
   1464 }
   1465 
   1466 /*
   1467  *  SBMAC_INIT_AND_START(sc)
   1468  *
   1469  *  Stop the channel and restart it.  This is generally used
   1470  *  when we have to do something to the channel that requires
   1471  *  a swift kick.
   1472  *
   1473  *  Input parameters:
   1474  *	sc - softc
   1475  */
   1476 
   1477 static void
   1478 sbmac_init_and_start(struct sbmac_softc *sc)
   1479 {
   1480 	int s;
   1481 
   1482 	s = splnet();
   1483 
   1484 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
   1485 	sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
   1486 	sbmac_set_channel_state(sc, sbmac_state_on);
   1487 
   1488 	splx(s);
   1489 }
   1490 
   1491 /*
   1492  *  SBMAC_ADDR2REG(ptr)
   1493  *
   1494  *  Convert six bytes into the 64-bit register value that
   1495  *  we typically write into the SBMAC's address/mcast registers
   1496  *
   1497  *  Input parameters:
   1498  *	ptr - pointer to 6 bytes
   1499  *
   1500  *  Return value:
   1501  *	register value
   1502  */
   1503 
   1504 static uint64_t
   1505 sbmac_addr2reg(u_char *ptr)
   1506 {
   1507 	uint64_t reg = 0;
   1508 
   1509 	ptr += 6;
   1510 
   1511 	reg |= (uint64_t) *(--ptr);
   1512 	reg <<= 8;
   1513 	reg |= (uint64_t) *(--ptr);
   1514 	reg <<= 8;
   1515 	reg |= (uint64_t) *(--ptr);
   1516 	reg <<= 8;
   1517 	reg |= (uint64_t) *(--ptr);
   1518 	reg <<= 8;
   1519 	reg |= (uint64_t) *(--ptr);
   1520 	reg <<= 8;
   1521 	reg |= (uint64_t) *(--ptr);
   1522 
   1523 	return reg;
   1524 }
   1525 
   1526 /*
   1527  *  SBMAC_SET_SPEED(s, speed)
   1528  *
   1529  *  Configure LAN speed for the specified MAC.
   1530  *  Warning: must be called when MAC is off!
   1531  *
   1532  *  Input parameters:
   1533  *	s - sbmac structure
   1534  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1535  *
   1536  *  Return value:
   1537  *	1 if successful
   1538  *	0 indicates invalid parameters
   1539  */
   1540 
   1541 static int
   1542 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
   1543 {
   1544 	uint64_t cfg;
   1545 	uint64_t framecfg;
   1546 
   1547 	/*
   1548 	 * Save new current values
   1549 	 */
   1550 
   1551 	s->sbm_speed = speed;
   1552 
   1553 	if (s->sbm_state != sbmac_state_off)
   1554 		panic("sbmac_set_speed while MAC not off");
   1555 
   1556 	/*
   1557 	 * Read current register values
   1558 	 */
   1559 
   1560 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1561 	framecfg = SBMAC_READCSR(s->sbm_framecfg);
   1562 
   1563 	/*
   1564 	 * Mask out the stuff we want to change
   1565 	 */
   1566 
   1567 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1568 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1569 	    M_MAC_SLOT_SIZE);
   1570 
   1571 	/*
   1572 	 * Now add in the new bits
   1573 	 */
   1574 
   1575 	switch (speed) {
   1576 	case sbmac_speed_10:
   1577 		framecfg |= V_MAC_IFG_RX_10 |
   1578 		    V_MAC_IFG_TX_10 |
   1579 		    K_MAC_IFG_THRSH_10 |
   1580 		    V_MAC_SLOT_SIZE_10;
   1581 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1582 		break;
   1583 
   1584 	case sbmac_speed_100:
   1585 		framecfg |= V_MAC_IFG_RX_100 |
   1586 		    V_MAC_IFG_TX_100 |
   1587 		    V_MAC_IFG_THRSH_100 |
   1588 		    V_MAC_SLOT_SIZE_100;
   1589 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1590 		break;
   1591 
   1592 	case sbmac_speed_1000:
   1593 		framecfg |= V_MAC_IFG_RX_1000 |
   1594 		    V_MAC_IFG_TX_1000 |
   1595 		    V_MAC_IFG_THRSH_1000 |
   1596 		    V_MAC_SLOT_SIZE_1000;
   1597 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1598 		break;
   1599 
   1600 	case sbmac_speed_auto:		/* XXX not implemented */
   1601 		/* fall through */
   1602 	default:
   1603 		return 0;
   1604 	}
   1605 
   1606 	/*
   1607 	 * Send the bits back to the hardware
   1608 	 */
   1609 
   1610 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1611 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1612 
   1613 	return 1;
   1614 }
   1615 
   1616 /*
   1617  *  SBMAC_SET_DUPLEX(s, duplex, fc)
   1618  *
   1619  *  Set Ethernet duplex and flow control options for this MAC
   1620  *  Warning: must be called when MAC is off!
   1621  *
   1622  *  Input parameters:
   1623  *	s - sbmac structure
   1624  *	duplex - duplex setting (see sbmac_duplex_t)
   1625  *	fc - flow control setting (see sbmac_fc_t)
   1626  *
   1627  *  Return value:
   1628  *	1 if ok
   1629  *	0 if an invalid parameter combination was specified
   1630  */
   1631 
   1632 static int
   1633 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1634 {
   1635 	uint64_t cfg;
   1636 
   1637 	/*
   1638 	 * Save new current values
   1639 	 */
   1640 
   1641 	s->sbm_duplex = duplex;
   1642 	s->sbm_fc = fc;
   1643 
   1644 	if (s->sbm_state != sbmac_state_off)
   1645 		panic("sbmac_set_duplex while MAC not off");
   1646 
   1647 	/*
   1648 	 * Read current register values
   1649 	 */
   1650 
   1651 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1652 
   1653 	/*
   1654 	 * Mask off the stuff we're about to change
   1655 	 */
   1656 
   1657 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1658 
   1659 	switch (duplex) {
   1660 	case sbmac_duplex_half:
   1661 		switch (fc) {
   1662 		case sbmac_fc_disabled:
   1663 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1664 			break;
   1665 
   1666 		case sbmac_fc_collision:
   1667 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1668 			break;
   1669 
   1670 		case sbmac_fc_carrier:
   1671 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1672 			break;
   1673 
   1674 		case sbmac_fc_auto:		/* XXX not implemented */
   1675 			/* fall through */
   1676 		case sbmac_fc_frame:		/* not valid in half duplex */
   1677 		default:			/* invalid selection */
   1678 			panic("%s: invalid half duplex fc selection %d",
   1679 			    s->sc_dev.dv_xname, fc);
   1680 			return 0;
   1681 		}
   1682 		break;
   1683 
   1684 	case sbmac_duplex_full:
   1685 		switch (fc) {
   1686 		case sbmac_fc_disabled:
   1687 			cfg |= V_MAC_FC_CMD_DISABLED;
   1688 			break;
   1689 
   1690 		case sbmac_fc_frame:
   1691 			cfg |= V_MAC_FC_CMD_ENABLED;
   1692 			break;
   1693 
   1694 		case sbmac_fc_collision:	/* not valid in full duplex */
   1695 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1696 		case sbmac_fc_auto:		/* XXX not implemented */
   1697 			/* fall through */
   1698 		default:
   1699 			panic("%s: invalid full duplex fc selection %d",
   1700 			    s->sc_dev.dv_xname, fc);
   1701 			return 0;
   1702 		}
   1703 		break;
   1704 
   1705 	default:
   1706 		/* fall through */
   1707 	case sbmac_duplex_auto:
   1708 		panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
   1709 		/* XXX not implemented */
   1710 		break;
   1711 	}
   1712 
   1713 	/*
   1714 	 * Send the bits back to the hardware
   1715 	 */
   1716 
   1717 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1718 
   1719 	return 1;
   1720 }
   1721 
   1722 /*
   1723  *  SBMAC_INTR()
   1724  *
   1725  *  Interrupt handler for MAC interrupts
   1726  *
   1727  *  Input parameters:
   1728  *	MAC structure
   1729  *
   1730  *  Return value:
   1731  *	nothing
   1732  */
   1733 
   1734 /* ARGSUSED */
   1735 static void
   1736 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
   1737 {
   1738 	struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
   1739 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1740 	uint64_t isr;
   1741 
   1742 	for (;;) {
   1743 
   1744 		/*
   1745 		 * Read the ISR (this clears the bits in the real register)
   1746 		 */
   1747 
   1748 		isr = SBMAC_READCSR(sc->sbm_isr);
   1749 
   1750 		if (isr == 0)
   1751 			break;
   1752 
   1753 		/*
   1754 		 * Transmits on channel 0
   1755 		 */
   1756 
   1757 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
   1758 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1759 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
   1760 		}
   1761 
   1762 		/*
   1763 		 * Receives on channel 0
   1764 		 */
   1765 
   1766 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
   1767 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1768 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
   1769 		}
   1770 	}
   1771 
   1772 	/* try to get more packets going */
   1773 	sbmac_start(ifp);
   1774 }
   1775 
   1776 
   1777 /*
   1778  *  SBMAC_START(ifp)
   1779  *
   1780  *  Start output on the specified interface.  Basically, we
   1781  *  queue as many buffers as we can until the ring fills up, or
   1782  *  we run off the end of the queue, whichever comes first.
   1783  *
   1784  *  Input parameters:
   1785  *	ifp - interface
   1786  *
   1787  *  Return value:
   1788  *	nothing
   1789  */
   1790 
   1791 static void
   1792 sbmac_start(struct ifnet *ifp)
   1793 {
   1794 	struct sbmac_softc	*sc;
   1795 	struct mbuf		*m_head = NULL;
   1796 	int			rv;
   1797 
   1798 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1799 		return;
   1800 
   1801 	sc = ifp->if_softc;
   1802 
   1803 	for (;;) {
   1804 
   1805 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1806 		if (m_head == NULL)
   1807 		    break;
   1808 
   1809 		/*
   1810 		 * Put the buffer on the transmit ring.  If we
   1811 		 * don't have room, set the OACTIVE flag and wait
   1812 		 * for the NIC to drain the ring.
   1813 		 */
   1814 
   1815 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1816 
   1817 		if (rv == 0) {
   1818 			/*
   1819 			 * If there's a BPF listener, bounce a copy of this
   1820 			 * frame to it.
   1821 			 */
   1822 #if (NBPFILTER > 0)
   1823 			if (ifp->if_bpf)
   1824 				bpf_mtap(ifp->if_bpf, m_head);
   1825 #endif
   1826 			if (!sc->sbm_pass3_dma) {
   1827 				/*
   1828 				 * Don't free mbuf if we're not copying to new
   1829 				 * mbuf in sbdma_add_txbuffer.  It will be
   1830 				 * freed in sbdma_tx_process.
   1831 				 */
   1832 				m_freem(m_head);
   1833 			}
   1834 		} else {
   1835 		    IF_PREPEND(&ifp->if_snd, m_head);
   1836 		    ifp->if_flags |= IFF_OACTIVE;
   1837 		    break;
   1838 		}
   1839 	}
   1840 }
   1841 
   1842 /*
   1843  *  SBMAC_SETMULTI(sc)
   1844  *
   1845  *  Reprogram the multicast table into the hardware, given
   1846  *  the list of multicasts associated with the interface
   1847  *  structure.
   1848  *
   1849  *  Input parameters:
   1850  *	sc - softc
   1851  *
   1852  *  Return value:
   1853  *	nothing
   1854  */
   1855 
   1856 static void
   1857 sbmac_setmulti(struct sbmac_softc *sc)
   1858 {
   1859 	struct ifnet *ifp;
   1860 	uint64_t reg;
   1861 	sbmac_port_t port;
   1862 	int idx;
   1863 	struct ether_multi *enm;
   1864 	struct ether_multistep step;
   1865 
   1866 	ifp = &sc->sc_ethercom.ec_if;
   1867 
   1868 	/*
   1869 	 * Clear out entire multicast table.  We do this by nuking
   1870 	 * the entire hash table and all the direct matches except
   1871 	 * the first one, which is used for our station address
   1872 	 */
   1873 
   1874 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1875 		port = PKSEG1(sc->sbm_base +
   1876 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1877 		SBMAC_WRITECSR(port, 0);
   1878 	}
   1879 
   1880 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1881 		port = PKSEG1(sc->sbm_base +
   1882 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1883 		SBMAC_WRITECSR(port, 0);
   1884 	}
   1885 
   1886 	/*
   1887 	 * Clear the filter to say we don't want any multicasts.
   1888 	 */
   1889 
   1890 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1891 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1892 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1893 
   1894 	if (ifp->if_flags & IFF_ALLMULTI) {
   1895 		/*
   1896 		 * Enable ALL multicasts.  Do this by inverting the
   1897 		 * multicast enable bit.
   1898 		 */
   1899 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1900 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1901 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1902 		return;
   1903 	}
   1904 
   1905 	/*
   1906 	 * Progam new multicast entries.  For now, only use the
   1907 	 * perfect filter.  In the future we'll need to use the
   1908 	 * hash filter if the perfect filter overflows
   1909 	 */
   1910 
   1911 	/*
   1912 	 * XXX only using perfect filter for now, need to use hash
   1913 	 * XXX if the table overflows
   1914 	 */
   1915 
   1916 	idx = 1;		/* skip station address */
   1917 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1918 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1919 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1920 		port = PKSEG1(sc->sbm_base +
   1921 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1922 		SBMAC_WRITECSR(port, reg);
   1923 		idx++;
   1924 		ETHER_NEXT_MULTI(step, enm);
   1925 	}
   1926 
   1927 	/*
   1928 	 * Enable the "accept multicast bits" if we programmed at least one
   1929 	 * multicast.
   1930 	 */
   1931 
   1932 	if (idx > 1) {
   1933 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1934 	    reg |= M_MAC_MCAST_EN;
   1935 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1936 	}
   1937 }
   1938 
   1939 /*
   1940  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1941  *
   1942  *  Generic IOCTL requests for this interface.  The basic
   1943  *  stuff is handled here for bringing the interface up,
   1944  *  handling multicasts, etc.
   1945  *
   1946  *  Input parameters:
   1947  *	ifp - interface structure
   1948  *	cmd - command code
   1949  *	data - pointer to data
   1950  *
   1951  *  Return value:
   1952  *	return value (0 is success)
   1953  */
   1954 
   1955 static int
   1956 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1957 {
   1958 	struct ifaddr *ifa = (struct ifaddr *) data;
   1959 	struct sbmac_softc *sc = ifp->if_softc;
   1960 
   1961 	switch (cmd) {
   1962 	case SIOCSIFADDR:
   1963 		ifp->if_flags |= IFF_UP;
   1964 
   1965 		switch (ifa->ifa_addr->sa_family) {
   1966 #ifdef INET
   1967 		case AF_INET:
   1968 			sbmac_init_and_start(sc);
   1969 			arp_ifinit(ifp, ifa);
   1970 			break;
   1971 #endif
   1972 #ifdef NS
   1973 		case AF_NS:
   1974 		{
   1975 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1976 
   1977 			if (ns_nullhost(*ina))
   1978 				ina->x_host =
   1979 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1980 			else
   1981 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
   1982 				    ifp->if_addrlen);
   1983 			/* Set new address. */
   1984 			sbmac_init_and_start(sc);
   1985 			break;
   1986 		}
   1987 #endif
   1988 		default:
   1989 			sbmac_init_and_start(sc);
   1990 			break;
   1991 		}
   1992 		break;
   1993 
   1994 	default:
   1995 		return (EINVAL);
   1996 	}
   1997 
   1998 	return (0);
   1999 }
   2000 
   2001 /*
   2002  *  SBMAC_IOCTL(ifp, command, data)
   2003  *
   2004  *  Main IOCTL handler - dispatches to other IOCTLs for various
   2005  *  types of requests.
   2006  *
   2007  *  Input parameters:
   2008  *	ifp - interface pointer
   2009  *	command - command code
   2010  *	data - pointer to argument data
   2011  *
   2012  *  Return value:
   2013  *	0 if ok
   2014  *	else error code
   2015  */
   2016 
   2017 static int
   2018 sbmac_ioctl(struct ifnet *ifp, u_long command, void *data)
   2019 {
   2020 	struct sbmac_softc *sc = ifp->if_softc;
   2021 	struct ifreq *ifr = (struct ifreq *) data;
   2022 	int s, error = 0;
   2023 
   2024 	s = splnet();
   2025 
   2026 	switch(command) {
   2027 	case SIOCSIFADDR:
   2028 	case SIOCGIFADDR:
   2029 		error = sbmac_ether_ioctl(ifp, command, data);
   2030 		break;
   2031 	case SIOCSIFMTU:
   2032 		if (ifr->ifr_mtu > ETHER_MAX_LEN)
   2033 			error = EINVAL;
   2034 		else {
   2035 			ifp->if_mtu = ifr->ifr_mtu;
   2036 			/* XXX Program new MTU here */
   2037 		}
   2038 		break;
   2039 	case SIOCSIFFLAGS:
   2040 		if (ifp->if_flags & IFF_UP) {
   2041 			/*
   2042 			 * If only the state of the PROMISC flag changed,
   2043 			 * just tweak the hardware registers.
   2044 			 */
   2045 			if ((ifp->if_flags & IFF_RUNNING) &&
   2046 			    (ifp->if_flags & IFF_PROMISC)) {
   2047 				/* turn on promiscuous mode */
   2048 				sbmac_promiscuous_mode(sc, 1);
   2049 			} else if (ifp->if_flags & IFF_RUNNING &&
   2050 			    !(ifp->if_flags & IFF_PROMISC)) {
   2051 			    /* turn off promiscuous mode */
   2052 			    sbmac_promiscuous_mode(sc, 0);
   2053 			} else
   2054 			    sbmac_set_channel_state(sc, sbmac_state_on);
   2055 		} else {
   2056 			if (ifp->if_flags & IFF_RUNNING)
   2057 				sbmac_set_channel_state(sc, sbmac_state_off);
   2058 		}
   2059 
   2060 		sc->sbm_if_flags = ifp->if_flags;
   2061 		error = 0;
   2062 		break;
   2063 
   2064 	case SIOCADDMULTI:
   2065 	case SIOCDELMULTI:
   2066 		if (ifp->if_flags & IFF_RUNNING) {
   2067 			sbmac_setmulti(sc);
   2068 			error = 0;
   2069 		}
   2070 		break;
   2071 	case SIOCSIFMEDIA:
   2072 	case SIOCGIFMEDIA:
   2073 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
   2074 		break;
   2075 	default:
   2076 		error = EINVAL;
   2077 		break;
   2078 	}
   2079 
   2080 	(void)splx(s);
   2081 
   2082 	return(error);
   2083 }
   2084 
   2085 /*
   2086  *  SBMAC_IFMEDIA_UPD(ifp)
   2087  *
   2088  *  Configure an appropriate media type for this interface,
   2089  *  given the data in the interface structure
   2090  *
   2091  *  Input parameters:
   2092  *	ifp - interface
   2093  *
   2094  *  Return value:
   2095  *	0 if ok
   2096  *	else error code
   2097  */
   2098 
   2099 static int
   2100 sbmac_mediachange(struct ifnet *ifp)
   2101 {
   2102 	struct sbmac_softc *sc = ifp->if_softc;
   2103 
   2104 	if (ifp->if_flags & IFF_UP)
   2105 		mii_mediachg(&sc->sc_mii);
   2106 	return(0);
   2107 }
   2108 
   2109 /*
   2110  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2111  *
   2112  *  Report current media status (used by ifconfig, for example)
   2113  *
   2114  *  Input parameters:
   2115  *	ifp - interface structure
   2116  *	ifmr - media request structure
   2117  *
   2118  *  Return value:
   2119  *	nothing
   2120  */
   2121 
   2122 static void
   2123 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
   2124 {
   2125 	struct sbmac_softc	*sc = ifp->if_softc;
   2126 
   2127   	mii_pollstat(&sc->sc_mii);
   2128 	req->ifm_status = sc->sc_mii.mii_media_status;
   2129 	req->ifm_active = sc->sc_mii.mii_media_active;
   2130 }
   2131 
   2132 /*
   2133  *  SBMAC_WATCHDOG(ifp)
   2134  *
   2135  *  Called periodically to make sure we're still happy.
   2136  *
   2137  *  Input parameters:
   2138  *	ifp - interface structure
   2139  *
   2140  *  Return value:
   2141  *	nothing
   2142  */
   2143 
   2144 static void
   2145 sbmac_watchdog(struct ifnet *ifp)
   2146 {
   2147 
   2148 	/* XXX do something */
   2149 }
   2150 
   2151 /*
   2152  * One second timer, used to tick MII.
   2153  */
   2154 static void
   2155 sbmac_tick(void *arg)
   2156 {
   2157 	struct sbmac_softc *sc = arg;
   2158 	int s;
   2159 
   2160 	s = splnet();
   2161 	mii_tick(&sc->sc_mii);
   2162 	splx(s);
   2163 
   2164 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2165 }
   2166 
   2167 
   2168 /*
   2169  *  SBMAC_MATCH(parent, match, aux)
   2170  *
   2171  *  Part of the config process - see if this device matches the
   2172  *  info about what we expect to find on the bus.
   2173  *
   2174  *  Input parameters:
   2175  *	parent - parent bus structure
   2176  *	match -
   2177  *	aux - bus-specific args
   2178  *
   2179  *  Return value:
   2180  *	1 if we match
   2181  *	0 if we don't match
   2182  */
   2183 
   2184 static int
   2185 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
   2186 {
   2187 	struct sbobio_attach_args *sap = aux;
   2188 
   2189 	/*
   2190 	 * Make sure it's a MAC
   2191 	 */
   2192 
   2193 	if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2194 		return 0;
   2195 
   2196 	/*
   2197 	 * Yup, it is.
   2198 	 */
   2199 
   2200 	return 1;
   2201 }
   2202 
   2203 /*
   2204  *  SBMAC_PARSE_XDIGIT(str)
   2205  *
   2206  *  Parse a hex digit, returning its value
   2207  *
   2208  *  Input parameters:
   2209  *	str - character
   2210  *
   2211  *  Return value:
   2212  *	hex value, or -1 if invalid
   2213  */
   2214 
   2215 static int
   2216 sbmac_parse_xdigit(char str)
   2217 {
   2218 	int digit;
   2219 
   2220 	if ((str >= '0') && (str <= '9'))
   2221 		digit = str - '0';
   2222 	else if ((str >= 'a') && (str <= 'f'))
   2223 		digit = str - 'a' + 10;
   2224 	else if ((str >= 'A') && (str <= 'F'))
   2225 		digit = str - 'A' + 10;
   2226 	else
   2227 		digit = -1;
   2228 
   2229 	return digit;
   2230 }
   2231 
   2232 /*
   2233  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2234  *
   2235  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2236  *  Ethernet address.
   2237  *
   2238  *  Input parameters:
   2239  *	str - string
   2240  *	hwaddr - pointer to hardware address
   2241  *
   2242  *  Return value:
   2243  *	0 if ok, else -1
   2244  */
   2245 
   2246 static int
   2247 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
   2248 {
   2249 	int digit1, digit2;
   2250 	int idx = 6;
   2251 
   2252 	while (*str && (idx > 0)) {
   2253 		digit1 = sbmac_parse_xdigit(*str);
   2254 		if (digit1 < 0)
   2255 			return -1;
   2256 		str++;
   2257 		if (!*str)
   2258 			return -1;
   2259 
   2260 		if ((*str == ':') || (*str == '-')) {
   2261 			digit2 = digit1;
   2262 			digit1 = 0;
   2263 		} else {
   2264 			digit2 = sbmac_parse_xdigit(*str);
   2265 			if (digit2 < 0)
   2266 				return -1;
   2267 			str++;
   2268 		}
   2269 
   2270 		*hwaddr++ = (digit1 << 4) | digit2;
   2271 		idx--;
   2272 
   2273 		if (*str == '-')
   2274 			str++;
   2275 		if (*str == ':')
   2276 			str++;
   2277 	}
   2278 	return 0;
   2279 }
   2280 
   2281 /*
   2282  *  SBMAC_ATTACH(parent, self, aux)
   2283  *
   2284  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2285  *
   2286  *  Input parameters:
   2287  *	parent - parent bus device
   2288  *	self - our softc
   2289  *	aux - attach data
   2290  *
   2291  *  Return value:
   2292  *	nothing
   2293  */
   2294 
   2295 static void
   2296 sbmac_attach(struct device *parent, struct device *self, void *aux)
   2297 {
   2298 	struct ifnet *ifp;
   2299 	struct sbmac_softc *sc;
   2300 	struct sbobio_attach_args *sap = aux;
   2301 	u_char *eaddr;
   2302 	static int unit = 0;	/* XXX */
   2303 	uint64_t ea_reg;
   2304 	int idx;
   2305 
   2306 	sc = (struct sbmac_softc *)self;
   2307 
   2308 	/* Determine controller base address */
   2309 
   2310 	sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
   2311 
   2312 	eaddr = sc->sbm_hwaddr;
   2313 
   2314 	/*
   2315 	 * Initialize context (get pointers to registers and stuff), then
   2316 	 * allocate the memory for the descriptor tables.
   2317 	 */
   2318 
   2319 	sbmac_initctx(sc);
   2320 
   2321 	callout_init(&(sc->sc_tick_ch));
   2322 
   2323 	/*
   2324 	 * Read the ethernet address.  The firwmare left this programmed
   2325 	 * for us in the ethernet address register for each mac.
   2326 	 */
   2327 
   2328 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2329 	for (idx = 0; idx < 6; idx++) {
   2330 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2331 		ea_reg >>= 8;
   2332 	}
   2333 
   2334 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2335 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2336 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2337 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2338 		eaddr[5] = unit;
   2339 	}
   2340 
   2341 #ifdef SBMAC_ETH0_HWADDR
   2342 	if (unit == 0)
   2343 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2344 #endif
   2345 #ifdef SBMAC_ETH1_HWADDR
   2346 	if (unit == 1)
   2347 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2348 #endif
   2349 #ifdef SBMAC_ETH2_HWADDR
   2350 	if (unit == 2)
   2351 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2352 #endif
   2353 	unit++;
   2354 
   2355 	/*
   2356 	 * Display Ethernet address (this is called during the config process
   2357 	 * so we need to finish off the config message that was being displayed)
   2358 	 */
   2359 	printf(": Ethernet%s\n",
   2360 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2361 	printf("%s: Ethernet address: %s\n", self->dv_xname,
   2362 	    ether_sprintf(eaddr));
   2363 
   2364 
   2365 	/*
   2366 	 * Set up ifnet structure
   2367 	 */
   2368 
   2369 	ifp = &sc->sc_ethercom.ec_if;
   2370 	ifp->if_softc = sc;
   2371 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   2372 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
   2373 	    IFF_NOTRAILERS;
   2374 	ifp->if_ioctl = sbmac_ioctl;
   2375 	ifp->if_start = sbmac_start;
   2376 	ifp->if_watchdog = sbmac_watchdog;
   2377 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2378 
   2379 	/*
   2380 	 * Set up ifmedia support.
   2381 	 */
   2382 
   2383 	/*
   2384 	 * Initialize MII/media info.
   2385 	 */
   2386 	sc->sc_mii.mii_ifp      = ifp;
   2387 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
   2388 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
   2389 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
   2390 	ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
   2391 	    sbmac_mediastatus);
   2392 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2393 	    MII_OFFSET_ANY, 0);
   2394 
   2395 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2396 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2397 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2398 	} else {
   2399 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2400 	}
   2401 
   2402 
   2403 	/*
   2404 	 * map/route interrupt
   2405 	 */
   2406 
   2407 	sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
   2408 	    sbmac_intr, sc);
   2409 
   2410 	/*
   2411 	 * Call MI attach routines.
   2412 	 */
   2413 	if_attach(ifp);
   2414 	ether_ifattach(ifp, eaddr);
   2415 }
   2416