Home | History | Annotate | Line # | Download | only in dev
sbmac.c revision 1.35
      1 /* $NetBSD: sbmac.c,v 1.35 2009/12/14 00:46:08 matt Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001, 2004
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
     19  *    used to endorse or promote products derived from this software
     20  *    without the prior written permission of Broadcom Corporation.
     21  *
     22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.35 2009/12/14 00:46:08 matt Exp $");
     37 
     38 #include "bpfilter.h"
     39 #include "opt_inet.h"
     40 #include "opt_ns.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/sockio.h>
     45 #include <sys/mbuf.h>
     46 #include <sys/malloc.h>
     47 #include <sys/kernel.h>
     48 #include <sys/socket.h>
     49 #include <sys/queue.h>
     50 #include <sys/device.h>
     51 
     52 #include <net/if.h>
     53 #include <net/if_arp.h>
     54 #include <net/if_ether.h>
     55 #include <net/if_dl.h>
     56 #include <net/if_media.h>
     57 
     58 #if NBPFILTER > 0
     59 #include <net/bpf.h>
     60 #endif
     61 
     62 #ifdef INET
     63 #include <netinet/in.h>
     64 #include <netinet/if_inarp.h>
     65 #endif
     66 
     67 #ifdef NS
     68 #include <netns/ns.h>
     69 #include <netns/ns_if.h>
     70 #endif
     71 
     72 #include <machine/locore.h>
     73 
     74 #include "sbobiovar.h"
     75 
     76 #include <dev/mii/mii.h>
     77 #include <dev/mii/miivar.h>
     78 #include <dev/mii/mii_bitbang.h>
     79 
     80 #include <mips/sibyte/include/sb1250_defs.h>
     81 #include <mips/sibyte/include/sb1250_regs.h>
     82 #include <mips/sibyte/include/sb1250_mac.h>
     83 #include <mips/sibyte/include/sb1250_dma.h>
     84 #include <mips/sibyte/include/sb1250_scd.h>
     85 
     86 /* Simple types */
     87 
     88 typedef u_long sbmac_port_t;
     89 typedef uint64_t sbmac_physaddr_t;
     90 typedef uint64_t sbmac_enetaddr_t;
     91 
     92 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     93 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     94 
     95 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     96 	       sbmac_duplex_full } sbmac_duplex_t;
     97 
     98 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
     99 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
    100 
    101 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
    102 	       sbmac_state_broken } sbmac_state_t;
    103 
    104 
    105 /* Macros */
    106 
    107 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
    108 
    109 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
    110 
    111 #define	CACHELINESIZE 32
    112 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
    113 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
    114 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
    115 
    116 #ifdef SBMACDEBUG
    117 #define	dprintf(x)	printf x
    118 #else
    119 #define	dprintf(x)
    120 #endif
    121 
    122 #define	SBMAC_READCSR(t) mips3_ld((volatile uint64_t *) (t))
    123 #define	SBMAC_WRITECSR(t, v) mips3_sd((volatile uint64_t *) (t), (v))
    124 
    125 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    126 
    127 /* These are limited to fit within one virtual page, and must be 2**N.  */
    128 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
    129 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
    130 
    131 #define	ETHER_ALIGN	2
    132 
    133 /* DMA Descriptor structure */
    134 
    135 typedef struct sbdmadscr_s {
    136 	uint64_t dscr_a;
    137 	uint64_t dscr_b;
    138 } sbdmadscr_t;
    139 
    140 
    141 /* DMA Controller structure */
    142 
    143 typedef struct sbmacdma_s {
    144 
    145 	/*
    146 	 * This stuff is used to identify the channel and the registers
    147 	 * associated with it.
    148 	 */
    149 
    150 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    151 	int		sbdma_channel;	/* channel number */
    152 	int		sbdma_txdir;	/* direction (1=transmit) */
    153 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    154 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    155 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    156 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    157 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
    158 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    159 
    160 	/*
    161 	 * This stuff is for maintenance of the ring
    162 	 */
    163 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    164 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    165 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
    166 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    167 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
    168 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
    169 } sbmacdma_t;
    170 
    171 
    172 /* Ethernet softc structure */
    173 
    174 struct sbmac_softc {
    175 
    176 	/*
    177 	 * NetBSD-specific things
    178 	 */
    179 	struct device	sc_dev;		/* base device (must be first) */
    180 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    181 	struct mii_data	sc_mii;
    182 	struct callout	sc_tick_ch;
    183 
    184 	int		sbm_if_flags;
    185 	void		*sbm_intrhand;
    186 
    187 	/*
    188 	 * Controller-specific things
    189 	 */
    190 
    191 	sbmac_port_t	sbm_base;	/* MAC's base address */
    192 	sbmac_state_t	sbm_state;	/* current state */
    193 
    194 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    195 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    196 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    197 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    198 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    199 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    200 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    201 
    202 	sbmac_speed_t	sbm_speed;	/* current speed */
    203 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    204 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    205 	int		sbm_rxflags;	/* received packet flags */
    206 
    207 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    208 
    209 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    210 	sbmacdma_t	sbm_rxdma;
    211 
    212 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    213 
    214 #ifdef SBMAC_EVENT_COUNTERS
    215 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
    216 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
    217 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
    218 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
    219 
    220 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
    221 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
    222 #endif
    223 };
    224 
    225 
    226 #ifdef SBMAC_EVENT_COUNTERS
    227 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
    228 #else
    229 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
    230 #endif
    231 
    232 /* Externs */
    233 
    234 extern paddr_t kvtophys(vaddr_t);
    235 
    236 /* Prototypes */
    237 
    238 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
    239     int txrx, int maxdescr);
    240 static void sbdma_channel_start(sbmacdma_t *d);
    241 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
    242 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
    243 static void sbdma_emptyring(sbmacdma_t *d);
    244 static void sbdma_fillring(sbmacdma_t *d);
    245 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    246 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    247 static void sbmac_initctx(struct sbmac_softc *s);
    248 static void sbmac_channel_start(struct sbmac_softc *s);
    249 static void sbmac_channel_stop(struct sbmac_softc *s);
    250 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    251     sbmac_state_t);
    252 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
    253 static void sbmac_init_and_start(struct sbmac_softc *sc);
    254 static uint64_t sbmac_addr2reg(u_char *ptr);
    255 static void sbmac_intr(void *xsc, uint32_t status, vaddr_t pc);
    256 static void sbmac_start(struct ifnet *ifp);
    257 static void sbmac_setmulti(struct sbmac_softc *sc);
    258 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data);
    259 static int sbmac_ioctl(struct ifnet *, u_long, void *);
    260 static void sbmac_watchdog(struct ifnet *ifp);
    261 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
    262 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
    263 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
    264 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
    265     sbmac_fc_t fc);
    266 static void sbmac_tick(void *arg);
    267 
    268 
    269 /* Globals */
    270 
    271 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
    272     sbmac_match, sbmac_attach, NULL, NULL);
    273 
    274 static uint32_t sbmac_mii_bitbang_read(struct device *self);
    275 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
    276 
    277 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    278 	sbmac_mii_bitbang_read,
    279 	sbmac_mii_bitbang_write,
    280 	{
    281 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    282 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    283 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    284 		0,				/* MII_BIT_DIR_HOST_PHY */
    285 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    286 	}
    287 };
    288 
    289 static uint32_t
    290 sbmac_mii_bitbang_read(struct device *self)
    291 {
    292 	struct sbmac_softc *sc = (void *) self;
    293 	sbmac_port_t reg;
    294 
    295 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    296 	return (uint32_t) SBMAC_READCSR(reg);
    297 }
    298 
    299 static void
    300 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
    301 {
    302 	struct sbmac_softc *sc = (void *) self;
    303 	sbmac_port_t reg;
    304 
    305 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    306 
    307 	SBMAC_WRITECSR(reg, (val &
    308 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
    309 }
    310 
    311 /*
    312  * Read an PHY register through the MII.
    313  */
    314 static int
    315 sbmac_mii_readreg(struct device *self, int phy, int reg)
    316 {
    317 
    318 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
    319 }
    320 
    321 /*
    322  * Write to a PHY register through the MII.
    323  */
    324 static void
    325 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
    326 {
    327 
    328 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
    329 }
    330 
    331 static void
    332 sbmac_mii_statchg(struct device *self)
    333 {
    334 	struct sbmac_softc *sc = (struct sbmac_softc *)self;
    335 	sbmac_state_t oldstate;
    336 
    337 	/* Stop the MAC in preparation for changing all of the parameters. */
    338 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    339 
    340 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    341 	default:		/* if autonegotiation fails, assume 10Mbit */
    342 	case IF_Mbps(10):
    343 		sbmac_set_speed(sc, sbmac_speed_10);
    344 		break;
    345 
    346 	case IF_Mbps(100):
    347 		sbmac_set_speed(sc, sbmac_speed_100);
    348 		break;
    349 
    350 	case IF_Mbps(1000):
    351 		sbmac_set_speed(sc, sbmac_speed_1000);
    352 		break;
    353 	}
    354 
    355 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    356 		/* Configure for full-duplex */
    357 		/* XXX: is flow control right for 10, 100? */
    358 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    359 	} else {
    360 		/* Configure for half-duplex */
    361 		/* XXX: is flow control right? */
    362 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    363 	}
    364 
    365 	/* And put it back into its former state. */
    366 	sbmac_set_channel_state(sc, oldstate);
    367 }
    368 
    369 /*
    370  *  SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
    371  *
    372  *  Initialize a DMA channel context.  Since there are potentially
    373  *  eight DMA channels per MAC, it's nice to do this in a standard
    374  *  way.
    375  *
    376  *  Input parameters:
    377  *	d - sbmacdma_t structure (DMA channel context)
    378  *	s - sbmac_softc structure (pointer to a MAC)
    379  *	chan - channel number (0..1 right now)
    380  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    381  *	maxdescr - number of descriptors
    382  *
    383  *  Return value:
    384  *	nothing
    385  */
    386 
    387 static void
    388 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
    389     int maxdescr)
    390 {
    391 	/*
    392 	 * Save away interesting stuff in the structure
    393 	 */
    394 
    395 	d->sbdma_eth = s;
    396 	d->sbdma_channel = chan;
    397 	d->sbdma_txdir = txrx;
    398 
    399 	/*
    400 	 * initialize register pointers
    401 	 */
    402 
    403 	d->sbdma_config0 = PKSEG1(s->sbm_base +
    404 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    405 	d->sbdma_config1 = PKSEG1(s->sbm_base +
    406 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    407 	d->sbdma_dscrbase = PKSEG1(s->sbm_base +
    408 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    409 	d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
    410 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    411 	d->sbdma_curdscr = PKSEG1(s->sbm_base +
    412 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    413 
    414 	/*
    415 	 * Allocate memory for the ring
    416 	 */
    417 
    418 	d->sbdma_maxdescr = maxdescr;
    419 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
    420 
    421 	d->sbdma_dscrtable = (sbdmadscr_t *)
    422 	    KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
    423 
    424 	memset(d->sbdma_dscrtable, 0, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    425 
    426 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    427 
    428 	/*
    429 	 * And context table
    430 	 */
    431 
    432 	d->sbdma_ctxtable = (struct mbuf **)
    433 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
    434 
    435 	memset(d->sbdma_ctxtable, 0, d->sbdma_maxdescr*sizeof(struct mbuf *));
    436 }
    437 
    438 /*
    439  *  SBDMA_CHANNEL_START(d)
    440  *
    441  *  Initialize the hardware registers for a DMA channel.
    442  *
    443  *  Input parameters:
    444  *	d - DMA channel to init (context must be previously init'd
    445  *
    446  *  Return value:
    447  *	nothing
    448  */
    449 
    450 static void
    451 sbdma_channel_start(sbmacdma_t *d)
    452 {
    453 	/*
    454 	 * Turn on the DMA channel
    455 	 */
    456 
    457 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    458 
    459 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    460 
    461 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    462 
    463 	/*
    464 	 * Initialize ring pointers
    465 	 */
    466 
    467 	d->sbdma_add_index = 0;
    468 	d->sbdma_rem_index = 0;
    469 }
    470 
    471 /*
    472  *  SBDMA_ADD_RCVBUFFER(d, m)
    473  *
    474  *  Add a buffer to the specified DMA channel.   For receive channels,
    475  *  this queues a buffer for inbound packets.
    476  *
    477  *  Input parameters:
    478  *	d - DMA channel descriptor
    479  *	m - mbuf to add, or NULL if we should allocate one.
    480  *
    481  *  Return value:
    482  *	0 if buffer could not be added (ring is full)
    483  *	1 if buffer added successfully
    484  */
    485 
    486 static int
    487 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    488 {
    489 	unsigned int dsc, nextdsc;
    490 	struct mbuf *m_new = NULL;
    491 
    492 	/* get pointer to our current place in the ring */
    493 
    494 	dsc = d->sbdma_add_index;
    495 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    496 
    497 	/*
    498 	 * figure out if the ring is full - if the next descriptor
    499 	 * is the same as the one that we're going to remove from
    500 	 * the ring, the ring is full
    501 	 */
    502 
    503 	if (nextdsc == d->sbdma_rem_index)
    504 		return ENOSPC;
    505 
    506 	/*
    507 	 * Allocate an mbuf if we don't already have one.
    508 	 * If we do have an mbuf, reset it so that it's empty.
    509 	 */
    510 
    511 	if (m == NULL) {
    512 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    513 		if (m_new == NULL) {
    514 			printf("%s: mbuf allocation failed\n",
    515 			    d->sbdma_eth->sc_dev.dv_xname);
    516 			return ENOBUFS;
    517 		}
    518 
    519 		MCLGET(m_new, M_DONTWAIT);
    520 		if (!(m_new->m_flags & M_EXT)) {
    521 			printf("%s: mbuf cluster allocation failed\n",
    522 			    d->sbdma_eth->sc_dev.dv_xname);
    523 			m_freem(m_new);
    524 			return ENOBUFS;
    525 		}
    526 
    527 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    528 		m_adj(m_new, ETHER_ALIGN);
    529 	} else {
    530 		m_new = m;
    531 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    532 		m_new->m_data = m_new->m_ext.ext_buf;
    533 		m_adj(m_new, ETHER_ALIGN);
    534 	}
    535 
    536 	/*
    537 	 * fill in the descriptor
    538 	 */
    539 
    540 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
    541 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    542 	    M_DMA_DSCRA_INTERRUPT;
    543 
    544 	/* receiving: no options */
    545 	d->sbdma_dscrtable[dsc].dscr_b = 0;
    546 
    547 	/*
    548 	 * fill in the context
    549 	 */
    550 
    551 	d->sbdma_ctxtable[dsc] = m_new;
    552 
    553 	/*
    554 	 * point at next packet
    555 	 */
    556 
    557 	d->sbdma_add_index = nextdsc;
    558 
    559 	/*
    560 	 * Give the buffer to the DMA engine.
    561 	 */
    562 
    563 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    564 
    565 	return 0;					/* we did it */
    566 }
    567 
    568 /*
    569  *  SBDMA_ADD_TXBUFFER(d, m)
    570  *
    571  *  Add a transmit buffer to the specified DMA channel, causing a
    572  *  transmit to start.
    573  *
    574  *  Input parameters:
    575  *	d - DMA channel descriptor
    576  *	m - mbuf to add
    577  *
    578  *  Return value:
    579  *	0 transmit queued successfully
    580  *	otherwise error code
    581  */
    582 
    583 static int
    584 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    585 {
    586         unsigned int dsc, nextdsc, prevdsc, origdesc;
    587 	int length;
    588 	int num_mbufs = 0;
    589 	struct sbmac_softc *sc = d->sbdma_eth;
    590 
    591 	/* get pointer to our current place in the ring */
    592 
    593 	dsc = d->sbdma_add_index;
    594 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    595 
    596 	/*
    597 	 * figure out if the ring is full - if the next descriptor
    598 	 * is the same as the one that we're going to remove from
    599 	 * the ring, the ring is full
    600 	 */
    601 
    602 	if (nextdsc == d->sbdma_rem_index) {
    603 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    604 		return ENOSPC;
    605 	}
    606 
    607 	/*
    608 	 * PASS3 parts do not have buffer alignment restriction.
    609 	 * No need to copy/coalesce to new mbuf.  Also has different
    610 	 * descriptor format
    611 	 */
    612 	if (sc->sbm_pass3_dma) {
    613 		struct mbuf *m_temp = NULL;
    614 
    615 		/*
    616 		 * Loop thru this mbuf record.
    617 		 * The head mbuf will have SOP set.
    618 		 */
    619 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
    620 		    M_DMA_ETHTX_SOP;
    621 
    622 		/*
    623 		 * transmitting: set outbound options,buffer A size(+ low 5
    624 		 * bits of start addr),and packet length.
    625 		 */
    626 		d->sbdma_dscrtable[dsc].dscr_b =
    627 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    628 		    V_DMA_DSCRB_A_SIZE((m->m_len +
    629 		      (mtod(m,uintptr_t) & 0x0000001F))) |
    630 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
    631 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
    632 
    633 		d->sbdma_add_index = nextdsc;
    634 		origdesc = prevdsc = dsc;
    635 		dsc = d->sbdma_add_index;
    636 		num_mbufs++;
    637 
    638 		/* Start with first non-head mbuf */
    639 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    640 			int len, next_len;
    641 			uint64_t addr;
    642 
    643 			if (m_temp->m_len == 0)
    644 				continue;	/* Skip 0-length mbufs */
    645 
    646 			len = m_temp->m_len;
    647 			addr = KVTOPHYS(mtod(m_temp, void *));
    648 
    649 			/*
    650 			 * Check to see if the mbuf spans a page boundary.  If
    651 			 * it does, and the physical pages behind the virtual
    652 			 * pages are not contiguous, split it so that each
    653 			 * virtual page uses it's own Tx descriptor.
    654 			 */
    655 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
    656 				next_len = (addr + len) - trunc_page(addr + len);
    657 
    658 				len -= next_len;
    659 
    660 				if (addr + len ==
    661 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
    662 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
    663 					len += next_len;
    664 					next_len = 0;
    665 				} else {
    666 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
    667 				}
    668 			} else {
    669 				next_len = 0;
    670 			}
    671 
    672 again:
    673 			/*
    674 			 * fill in the descriptor
    675 			 */
    676 			d->sbdma_dscrtable[dsc].dscr_a = addr;
    677 
    678 			/*
    679 			 * transmitting: set outbound options,buffer A
    680 			 * size(+ low 5 bits of start addr)
    681 			 */
    682 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    683 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
    684 
    685 			d->sbdma_ctxtable[dsc] = NULL;
    686 
    687 			/*
    688 			 * point at next descriptor
    689 			 */
    690 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    691 			if (nextdsc == d->sbdma_rem_index) {
    692 				d->sbdma_add_index = origdesc;
    693 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    694 				return ENOSPC;
    695 			}
    696 			d->sbdma_add_index = nextdsc;
    697 
    698 			prevdsc = dsc;
    699 			dsc = d->sbdma_add_index;
    700 			num_mbufs++;
    701 
    702 			if (next_len != 0) {
    703 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
    704 				len = next_len;
    705 
    706 				next_len = 0;
    707 				goto again;
    708 			}
    709 
    710 		}
    711 		/* Set head mbuf to last context index */
    712 		d->sbdma_ctxtable[prevdsc] = m;
    713 
    714 		/* Interrupt on last dscr of packet.  */
    715 	        d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
    716 	} else {
    717 		struct mbuf *m_new = NULL;
    718 		/*
    719 		 * [BEGIN XXX]
    720 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
    721 		 * assume it will fit).  This is a temporary hack to get us
    722 		 * going.
    723 		 */
    724 
    725 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
    726 		if (m_new == NULL) {
    727 			printf("%s: mbuf allocation failed\n",
    728 			    d->sbdma_eth->sc_dev.dv_xname);
    729 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    730 			return ENOBUFS;
    731 		}
    732 
    733 		MCLGET(m_new,M_DONTWAIT);
    734 		if (!(m_new->m_flags & M_EXT)) {
    735 			printf("%s: mbuf cluster allocation failed\n",
    736 			    d->sbdma_eth->sc_dev.dv_xname);
    737 			m_freem(m_new);
    738 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    739 			return ENOBUFS;
    740 		}
    741 
    742 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    743 		/*m_adj(m_new,ETHER_ALIGN);*/
    744 
    745 		/*
    746 		 * XXX Don't forget to include the offset portion in the
    747 		 * XXX cache block calculation when this code is rewritten!
    748 		 */
    749 
    750 		/*
    751 		 * Copy data
    752 		 */
    753 
    754 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
    755 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    756 
    757 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    758 
    759 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    760 		// XXX: function succeeds.
    761 		// m_freem(m);
    762 		length = m_new->m_len;
    763 
    764 		/* [END XXX] */
    765 		/*
    766 		 * fill in the descriptor
    767 		 */
    768 
    769 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
    770 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    771 		    M_DMA_DSCRA_INTERRUPT |
    772 		    M_DMA_ETHTX_SOP;
    773 
    774 		/* transmitting: set outbound options and length */
    775 		d->sbdma_dscrtable[dsc].dscr_b =
    776 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    777 		    V_DMA_DSCRB_PKT_SIZE(length);
    778 
    779 		num_mbufs++;
    780 
    781 		/*
    782 		 * fill in the context
    783 		 */
    784 
    785 		d->sbdma_ctxtable[dsc] = m_new;
    786 
    787 		/*
    788 		 * point at next packet
    789 		 */
    790 		d->sbdma_add_index = nextdsc;
    791 	}
    792 
    793 	/*
    794 	 * Give the buffer to the DMA engine.
    795 	 */
    796 
    797 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    798 
    799 	return 0;					/* we did it */
    800 }
    801 
    802 /*
    803  *  SBDMA_EMPTYRING(d)
    804  *
    805  *  Free all allocated mbufs on the specified DMA channel;
    806  *
    807  *  Input parameters:
    808  *	d  - DMA channel
    809  *
    810  *  Return value:
    811  *	nothing
    812  */
    813 
    814 static void
    815 sbdma_emptyring(sbmacdma_t *d)
    816 {
    817 	int idx;
    818 	struct mbuf *m;
    819 
    820 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    821 		m = d->sbdma_ctxtable[idx];
    822 		if (m) {
    823 			m_freem(m);
    824 			d->sbdma_ctxtable[idx] = NULL;
    825 		}
    826 	}
    827 }
    828 
    829 /*
    830  *  SBDMA_FILLRING(d)
    831  *
    832  *  Fill the specified DMA channel (must be receive channel)
    833  *  with mbufs
    834  *
    835  *  Input parameters:
    836  *	d - DMA channel
    837  *
    838  *  Return value:
    839  *	nothing
    840  */
    841 
    842 static void
    843 sbdma_fillring(sbmacdma_t *d)
    844 {
    845 	int idx;
    846 
    847 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    848 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    849 			break;
    850 }
    851 
    852 /*
    853  *  SBDMA_RX_PROCESS(sc, d)
    854  *
    855  *  Process "completed" receive buffers on the specified DMA channel.
    856  *  Note that this isn't really ideal for priority channels, since
    857  *  it processes all of the packets on a given channel before
    858  *  returning.
    859  *
    860  *  Input parameters:
    861  *	sc - softc structure
    862  *	d - DMA channel context
    863  *
    864  *  Return value:
    865  *	nothing
    866  */
    867 
    868 static void
    869 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    870 {
    871 	int curidx;
    872 	int hwidx;
    873 	sbdmadscr_t *dscp;
    874 	struct mbuf *m;
    875 	int len;
    876 
    877 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    878 
    879 	for (;;) {
    880 		/*
    881 		 * figure out where we are (as an index) and where
    882 		 * the hardware is (also as an index)
    883 		 *
    884 		 * This could be done faster if (for example) the
    885 		 * descriptor table was page-aligned and contiguous in
    886 		 * both virtual and physical memory -- you could then
    887 		 * just compare the low-order bits of the virtual address
    888 		 * (sbdma_rem_index) and the physical address
    889 		 * (sbdma_curdscr CSR).
    890 		 */
    891 
    892 		curidx = d->sbdma_rem_index;
    893 		hwidx = (int)
    894 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    895 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    896 
    897 		/*
    898 		 * If they're the same, that means we've processed all
    899 		 * of the descriptors up to (but not including) the one that
    900 		 * the hardware is working on right now.
    901 		 */
    902 
    903 		if (curidx == hwidx)
    904 			break;
    905 
    906 		/*
    907 		 * Otherwise, get the packet's mbuf ptr back
    908 		 */
    909 
    910 		dscp = &(d->sbdma_dscrtable[curidx]);
    911 		m = d->sbdma_ctxtable[curidx];
    912 		d->sbdma_ctxtable[curidx] = NULL;
    913 
    914 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
    915 
    916 		/*
    917 		 * Check packet status.  If good, process it.
    918 		 * If not, silently drop it and put it back on the
    919 		 * receive ring.
    920 		 */
    921 
    922 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
    923 
    924 			/*
    925 			 * Set length into the packet
    926 			 * XXX do we remove the CRC here?
    927 			 */
    928 			m->m_pkthdr.len = m->m_len = len;
    929 
    930 			ifp->if_ipackets++;
    931 			m->m_pkthdr.rcvif = ifp;
    932 
    933 
    934 			/*
    935 			 * Add a new buffer to replace the old one.
    936 			 */
    937 			sbdma_add_rcvbuffer(d, NULL);
    938 
    939 #if (NBPFILTER > 0)
    940 			/*
    941 			 * Handle BPF listeners. Let the BPF user see the
    942 			 * packet, but don't pass it up to the ether_input()
    943 			 * layer unless it's a broadcast packet, multicast
    944 			 * packet, matches our ethernet address or the
    945 			 * interface is in promiscuous mode.
    946 			 */
    947 
    948 			if (ifp->if_bpf)
    949 				bpf_mtap(ifp->if_bpf, m);
    950 #endif
    951 			/*
    952 			 * Pass the buffer to the kernel
    953 			 */
    954 			(*ifp->if_input)(ifp, m);
    955 		} else {
    956 			/*
    957 			 * Packet was mangled somehow.  Just drop it and
    958 			 * put it back on the receive ring.
    959 			 */
    960 			sbdma_add_rcvbuffer(d, m);
    961 		}
    962 
    963 		/*
    964 		 * .. and advance to the next buffer.
    965 		 */
    966 
    967 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
    968 	}
    969 }
    970 
    971 /*
    972  *  SBDMA_TX_PROCESS(sc, d)
    973  *
    974  *  Process "completed" transmit buffers on the specified DMA channel.
    975  *  This is normally called within the interrupt service routine.
    976  *  Note that this isn't really ideal for priority channels, since
    977  *  it processes all of the packets on a given channel before
    978  *  returning.
    979  *
    980  *  Input parameters:
    981  *	sc - softc structure
    982  *	d - DMA channel context
    983  *
    984  *  Return value:
    985  *	nothing
    986  */
    987 
    988 static void
    989 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    990 {
    991 	int curidx;
    992 	int hwidx;
    993 	struct mbuf *m;
    994 
    995 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    996 
    997 	for (;;) {
    998 		/*
    999 		 * figure out where we are (as an index) and where
   1000 		 * the hardware is (also as an index)
   1001 		 *
   1002 		 * This could be done faster if (for example) the
   1003 		 * descriptor table was page-aligned and contiguous in
   1004 		 * both virtual and physical memory -- you could then
   1005 		 * just compare the low-order bits of the virtual address
   1006 		 * (sbdma_rem_index) and the physical address
   1007 		 * (sbdma_curdscr CSR).
   1008 		 */
   1009 
   1010 		curidx = d->sbdma_rem_index;
   1011 		hwidx = (int)
   1012 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
   1013 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
   1014 
   1015 		/*
   1016 		 * If they're the same, that means we've processed all
   1017 		 * of the descriptors up to (but not including) the one that
   1018 		 * the hardware is working on right now.
   1019 		 */
   1020 
   1021 		if (curidx == hwidx)
   1022 			break;
   1023 
   1024 		/*
   1025 		 * Otherwise, get the packet's mbuf ptr back
   1026 		 */
   1027 
   1028 		m = d->sbdma_ctxtable[curidx];
   1029 		d->sbdma_ctxtable[curidx] = NULL;
   1030 
   1031 		/*
   1032 		 * for transmits we just free buffers and count packets.
   1033 		 */
   1034 		ifp->if_opackets++;
   1035 		m_freem(m);
   1036 
   1037 		/*
   1038 		 * .. and advance to the next buffer.
   1039 		 */
   1040 
   1041 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
   1042 	}
   1043 
   1044 	/*
   1045 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
   1046 	 * It's supposed to reflect if the interface is actively
   1047 	 * transmitting, but that's really hard to do quickly.
   1048 	 */
   1049 
   1050 	ifp->if_flags &= ~IFF_OACTIVE;
   1051 }
   1052 
   1053 /*
   1054  *  SBMAC_INITCTX(s)
   1055  *
   1056  *  Initialize an Ethernet context structure - this is called
   1057  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1058  *  call it again from inside the ioctl routines that bring the
   1059  *  interface up/down
   1060  *
   1061  *  Input parameters:
   1062  *	s - sbmac context structure
   1063  *
   1064  *  Return value:
   1065  *	0
   1066  */
   1067 
   1068 static void
   1069 sbmac_initctx(struct sbmac_softc *s)
   1070 {
   1071 	uint64_t sysrev;
   1072 
   1073 	/*
   1074 	 * figure out the addresses of some ports
   1075 	 */
   1076 
   1077 	s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
   1078 	s->sbm_maccfg    = PKSEG1(s->sbm_base + R_MAC_CFG);
   1079 	s->sbm_fifocfg   = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
   1080 	s->sbm_framecfg  = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
   1081 	s->sbm_rxfilter  = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
   1082 	s->sbm_isr       = PKSEG1(s->sbm_base + R_MAC_STATUS);
   1083 	s->sbm_imr       = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
   1084 
   1085 	/*
   1086 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1087 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1088 	 */
   1089 
   1090 	sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1091 	sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1092 
   1093 	/*
   1094 	 * initial state is OFF
   1095 	 */
   1096 
   1097 	s->sbm_state = sbmac_state_off;
   1098 
   1099 	/*
   1100 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1101 	 */
   1102 
   1103 	s->sbm_speed = sbmac_speed_10;
   1104 	s->sbm_duplex = sbmac_duplex_half;
   1105 	s->sbm_fc = sbmac_fc_disabled;
   1106 
   1107 	/*
   1108 	 * Determine SOC type.  112x has Pass3 SOC features.
   1109 	 */
   1110 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1111 	s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1112 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1113 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1114 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1115 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
   1116 #ifdef SBMAC_EVENT_COUNTERS
   1117 	evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
   1118 	    NULL, s->sc_dev.dv_xname, "rxintr");
   1119 	evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
   1120 	    NULL, s->sc_dev.dv_xname, "txintr");
   1121 	evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
   1122 	    NULL, s->sc_dev.dv_xname, "txdrop");
   1123 	evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
   1124 	    NULL, s->sc_dev.dv_xname, "txstall");
   1125 	if (s->sbm_pass3_dma) {
   1126 		evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
   1127 		    NULL, s->sc_dev.dv_xname, "pass3tx-split");
   1128 		evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
   1129 		    NULL, s->sc_dev.dv_xname, "pass3tx-keep");
   1130 	}
   1131 #endif
   1132 }
   1133 
   1134 /*
   1135  *  SBMAC_CHANNEL_START(s)
   1136  *
   1137  *  Start packet processing on this MAC.
   1138  *
   1139  *  Input parameters:
   1140  *	s - sbmac structure
   1141  *
   1142  *  Return value:
   1143  *	nothing
   1144  */
   1145 
   1146 static void
   1147 sbmac_channel_start(struct sbmac_softc *s)
   1148 {
   1149 	uint64_t reg;
   1150 	sbmac_port_t port;
   1151 	uint64_t cfg, fifo, framecfg;
   1152 	int idx;
   1153 	uint64_t dma_cfg0, fifo_cfg;
   1154 	sbmacdma_t *txdma;
   1155 
   1156 	/*
   1157 	 * Don't do this if running
   1158 	 */
   1159 
   1160 	if (s->sbm_state == sbmac_state_on)
   1161 		return;
   1162 
   1163 	/*
   1164 	 * Bring the controller out of reset, but leave it off.
   1165 	 */
   1166 
   1167 	SBMAC_WRITECSR(s->sbm_macenable, 0);
   1168 
   1169 	/*
   1170 	 * Ignore all received packets
   1171 	 */
   1172 
   1173 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1174 
   1175 	/*
   1176 	 * Calculate values for various control registers.
   1177 	 */
   1178 
   1179 	cfg = M_MAC_RETRY_EN |
   1180 	      M_MAC_TX_HOLD_SOP_EN |
   1181 	      V_MAC_TX_PAUSE_CNT_16K |
   1182 	      M_MAC_AP_STAT_EN |
   1183 	      M_MAC_SS_EN |
   1184 	      0;
   1185 
   1186 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1187 	       V_MAC_TX_RD_THRSH(4) |
   1188 	       V_MAC_TX_RL_THRSH(4) |
   1189 	       V_MAC_RX_PL_THRSH(4) |
   1190 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1191 	       V_MAC_RX_PL_THRSH(4) |
   1192 	       V_MAC_RX_RL_THRSH(8) |
   1193 	       0;
   1194 
   1195 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1196 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1197 	    V_MAC_BACKOFF_SEL(1);
   1198 
   1199 	/*
   1200 	 * Clear out the hash address map
   1201 	 */
   1202 
   1203 	port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
   1204 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1205 		SBMAC_WRITECSR(port, 0);
   1206 		port += sizeof(uint64_t);
   1207 	}
   1208 
   1209 	/*
   1210 	 * Clear out the exact-match table
   1211 	 */
   1212 
   1213 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1214 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1215 		SBMAC_WRITECSR(port, 0);
   1216 		port += sizeof(uint64_t);
   1217 	}
   1218 
   1219 	/*
   1220 	 * Clear out the DMA Channel mapping table registers
   1221 	 */
   1222 
   1223 	port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
   1224 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1225 		SBMAC_WRITECSR(port, 0);
   1226 		port += sizeof(uint64_t);
   1227 	}
   1228 
   1229 	port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
   1230 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1231 		SBMAC_WRITECSR(port, 0);
   1232 		port += sizeof(uint64_t);
   1233 	}
   1234 
   1235 	/*
   1236 	 * Program the hardware address.  It goes into the hardware-address
   1237 	 * register as well as the first filter register.
   1238 	 */
   1239 
   1240 	reg = sbmac_addr2reg(s->sbm_hwaddr);
   1241 
   1242 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1243 	SBMAC_WRITECSR(port, reg);
   1244 	port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
   1245 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1246 
   1247 	/*
   1248 	 * Set the receive filter for no packets, and write values
   1249 	 * to the various config registers
   1250 	 */
   1251 
   1252 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1253 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1254 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1255 	SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
   1256 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1257 
   1258 	/*
   1259 	 * Initialize DMA channels (rings should be ok now)
   1260 	 */
   1261 
   1262 	sbdma_channel_start(&(s->sbm_rxdma));
   1263 	sbdma_channel_start(&(s->sbm_txdma));
   1264 
   1265 	/*
   1266 	 * Configure the speed, duplex, and flow control
   1267 	 */
   1268 
   1269 	sbmac_set_speed(s, s->sbm_speed);
   1270 	sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
   1271 
   1272 	/*
   1273 	 * Fill the receive ring
   1274 	 */
   1275 
   1276 	sbdma_fillring(&(s->sbm_rxdma));
   1277 
   1278 	/*
   1279 	 * Turn on the rest of the bits in the enable register
   1280 	 */
   1281 
   1282 	SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1283 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1284 
   1285 
   1286 	/*
   1287 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1288 	 */
   1289 	SBMAC_WRITECSR(s->sbm_imr,
   1290 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1291 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1292 
   1293 	/*
   1294 	 * Enable receiving unicasts and broadcasts
   1295 	 */
   1296 
   1297 	SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1298 
   1299 	/*
   1300 	 * On chips which support unaligned DMA features, set the descriptor
   1301 	 * ring for transmit channels to use the unaligned buffer format.
   1302 	 */
   1303 	txdma = &(s->sbm_txdma);
   1304 
   1305 	if (s->sbm_pass3_dma) {
   1306 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1307 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1308 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1309 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
   1310 
   1311 		fifo_cfg =  SBMAC_READCSR(s->sbm_fifocfg);
   1312 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1313 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1314 		SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
   1315 	}
   1316 
   1317 	/*
   1318 	 * we're running now.
   1319 	 */
   1320 
   1321 	s->sbm_state = sbmac_state_on;
   1322 	s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1323 
   1324 	/*
   1325 	 * Program multicast addresses
   1326 	 */
   1327 
   1328 	sbmac_setmulti(s);
   1329 
   1330 	/*
   1331 	 * If channel was in promiscuous mode before, turn that on
   1332 	 */
   1333 
   1334 	if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1335 		sbmac_promiscuous_mode(s, 1);
   1336 
   1337 	/*
   1338 	 * Turn on the once-per-second timer
   1339 	 */
   1340 
   1341 	callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
   1342 }
   1343 
   1344 /*
   1345  *  SBMAC_CHANNEL_STOP(s)
   1346  *
   1347  *  Stop packet processing on this MAC.
   1348  *
   1349  *  Input parameters:
   1350  *	s - sbmac structure
   1351  *
   1352  *  Return value:
   1353  *	nothing
   1354  */
   1355 
   1356 static void
   1357 sbmac_channel_stop(struct sbmac_softc *s)
   1358 {
   1359 	uint64_t ctl;
   1360 
   1361 	/* don't do this if already stopped */
   1362 
   1363 	if (s->sbm_state == sbmac_state_off)
   1364 		return;
   1365 
   1366 	/* don't accept any packets, disable all interrupts */
   1367 
   1368 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1369 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1370 
   1371 	/* Turn off ticker */
   1372 
   1373 	callout_stop(&(s->sc_tick_ch));
   1374 
   1375 	/* turn off receiver and transmitter */
   1376 
   1377 	ctl = SBMAC_READCSR(s->sbm_macenable);
   1378 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1379 	SBMAC_WRITECSR(s->sbm_macenable, ctl);
   1380 
   1381 	/* We're stopped now. */
   1382 
   1383 	s->sbm_state = sbmac_state_off;
   1384 	s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1385 
   1386 	/* Empty the receive and transmit rings */
   1387 
   1388 	sbdma_emptyring(&(s->sbm_rxdma));
   1389 	sbdma_emptyring(&(s->sbm_txdma));
   1390 }
   1391 
   1392 /*
   1393  *  SBMAC_SET_CHANNEL_STATE(state)
   1394  *
   1395  *  Set the channel's state ON or OFF
   1396  *
   1397  *  Input parameters:
   1398  *	state - new state
   1399  *
   1400  *  Return value:
   1401  *	old state
   1402  */
   1403 
   1404 static sbmac_state_t
   1405 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1406 {
   1407 	sbmac_state_t oldstate = sc->sbm_state;
   1408 
   1409 	/*
   1410 	 * If same as previous state, return
   1411 	 */
   1412 
   1413 	if (state == oldstate)
   1414 		return oldstate;
   1415 
   1416 	/*
   1417 	 * If new state is ON, turn channel on
   1418 	 */
   1419 
   1420 	if (state == sbmac_state_on)
   1421 		sbmac_channel_start(sc);
   1422 	else
   1423 		sbmac_channel_stop(sc);
   1424 
   1425 	/*
   1426 	 * Return previous state
   1427 	 */
   1428 
   1429 	return oldstate;
   1430 }
   1431 
   1432 /*
   1433  *  SBMAC_PROMISCUOUS_MODE(sc, onoff)
   1434  *
   1435  *  Turn on or off promiscuous mode
   1436  *
   1437  *  Input parameters:
   1438  *	sc - softc
   1439  *	onoff - 1 to turn on, 0 to turn off
   1440  *
   1441  *  Return value:
   1442  *	nothing
   1443  */
   1444 
   1445 static void
   1446 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
   1447 {
   1448 	uint64_t reg;
   1449 
   1450 	if (sc->sbm_state != sbmac_state_on)
   1451 		return;
   1452 
   1453 	if (onoff) {
   1454 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1455 		reg |= M_MAC_ALLPKT_EN;
   1456 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1457 	} else {
   1458 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1459 		reg &= ~M_MAC_ALLPKT_EN;
   1460 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1461 	}
   1462 }
   1463 
   1464 /*
   1465  *  SBMAC_INIT_AND_START(sc)
   1466  *
   1467  *  Stop the channel and restart it.  This is generally used
   1468  *  when we have to do something to the channel that requires
   1469  *  a swift kick.
   1470  *
   1471  *  Input parameters:
   1472  *	sc - softc
   1473  */
   1474 
   1475 static void
   1476 sbmac_init_and_start(struct sbmac_softc *sc)
   1477 {
   1478 	int s;
   1479 
   1480 	s = splnet();
   1481 
   1482 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
   1483 	sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
   1484 	sbmac_set_channel_state(sc, sbmac_state_on);
   1485 
   1486 	splx(s);
   1487 }
   1488 
   1489 /*
   1490  *  SBMAC_ADDR2REG(ptr)
   1491  *
   1492  *  Convert six bytes into the 64-bit register value that
   1493  *  we typically write into the SBMAC's address/mcast registers
   1494  *
   1495  *  Input parameters:
   1496  *	ptr - pointer to 6 bytes
   1497  *
   1498  *  Return value:
   1499  *	register value
   1500  */
   1501 
   1502 static uint64_t
   1503 sbmac_addr2reg(u_char *ptr)
   1504 {
   1505 	uint64_t reg = 0;
   1506 
   1507 	ptr += 6;
   1508 
   1509 	reg |= (uint64_t) *(--ptr);
   1510 	reg <<= 8;
   1511 	reg |= (uint64_t) *(--ptr);
   1512 	reg <<= 8;
   1513 	reg |= (uint64_t) *(--ptr);
   1514 	reg <<= 8;
   1515 	reg |= (uint64_t) *(--ptr);
   1516 	reg <<= 8;
   1517 	reg |= (uint64_t) *(--ptr);
   1518 	reg <<= 8;
   1519 	reg |= (uint64_t) *(--ptr);
   1520 
   1521 	return reg;
   1522 }
   1523 
   1524 /*
   1525  *  SBMAC_SET_SPEED(s, speed)
   1526  *
   1527  *  Configure LAN speed for the specified MAC.
   1528  *  Warning: must be called when MAC is off!
   1529  *
   1530  *  Input parameters:
   1531  *	s - sbmac structure
   1532  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1533  *
   1534  *  Return value:
   1535  *	1 if successful
   1536  *	0 indicates invalid parameters
   1537  */
   1538 
   1539 static int
   1540 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
   1541 {
   1542 	uint64_t cfg;
   1543 	uint64_t framecfg;
   1544 
   1545 	/*
   1546 	 * Save new current values
   1547 	 */
   1548 
   1549 	s->sbm_speed = speed;
   1550 
   1551 	if (s->sbm_state != sbmac_state_off)
   1552 		panic("sbmac_set_speed while MAC not off");
   1553 
   1554 	/*
   1555 	 * Read current register values
   1556 	 */
   1557 
   1558 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1559 	framecfg = SBMAC_READCSR(s->sbm_framecfg);
   1560 
   1561 	/*
   1562 	 * Mask out the stuff we want to change
   1563 	 */
   1564 
   1565 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1566 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1567 	    M_MAC_SLOT_SIZE);
   1568 
   1569 	/*
   1570 	 * Now add in the new bits
   1571 	 */
   1572 
   1573 	switch (speed) {
   1574 	case sbmac_speed_10:
   1575 		framecfg |= V_MAC_IFG_RX_10 |
   1576 		    V_MAC_IFG_TX_10 |
   1577 		    K_MAC_IFG_THRSH_10 |
   1578 		    V_MAC_SLOT_SIZE_10;
   1579 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1580 		break;
   1581 
   1582 	case sbmac_speed_100:
   1583 		framecfg |= V_MAC_IFG_RX_100 |
   1584 		    V_MAC_IFG_TX_100 |
   1585 		    V_MAC_IFG_THRSH_100 |
   1586 		    V_MAC_SLOT_SIZE_100;
   1587 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1588 		break;
   1589 
   1590 	case sbmac_speed_1000:
   1591 		framecfg |= V_MAC_IFG_RX_1000 |
   1592 		    V_MAC_IFG_TX_1000 |
   1593 		    V_MAC_IFG_THRSH_1000 |
   1594 		    V_MAC_SLOT_SIZE_1000;
   1595 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1596 		break;
   1597 
   1598 	case sbmac_speed_auto:		/* XXX not implemented */
   1599 		/* fall through */
   1600 	default:
   1601 		return 0;
   1602 	}
   1603 
   1604 	/*
   1605 	 * Send the bits back to the hardware
   1606 	 */
   1607 
   1608 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1609 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1610 
   1611 	return 1;
   1612 }
   1613 
   1614 /*
   1615  *  SBMAC_SET_DUPLEX(s, duplex, fc)
   1616  *
   1617  *  Set Ethernet duplex and flow control options for this MAC
   1618  *  Warning: must be called when MAC is off!
   1619  *
   1620  *  Input parameters:
   1621  *	s - sbmac structure
   1622  *	duplex - duplex setting (see sbmac_duplex_t)
   1623  *	fc - flow control setting (see sbmac_fc_t)
   1624  *
   1625  *  Return value:
   1626  *	1 if ok
   1627  *	0 if an invalid parameter combination was specified
   1628  */
   1629 
   1630 static int
   1631 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1632 {
   1633 	uint64_t cfg;
   1634 
   1635 	/*
   1636 	 * Save new current values
   1637 	 */
   1638 
   1639 	s->sbm_duplex = duplex;
   1640 	s->sbm_fc = fc;
   1641 
   1642 	if (s->sbm_state != sbmac_state_off)
   1643 		panic("sbmac_set_duplex while MAC not off");
   1644 
   1645 	/*
   1646 	 * Read current register values
   1647 	 */
   1648 
   1649 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1650 
   1651 	/*
   1652 	 * Mask off the stuff we're about to change
   1653 	 */
   1654 
   1655 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1656 
   1657 	switch (duplex) {
   1658 	case sbmac_duplex_half:
   1659 		switch (fc) {
   1660 		case sbmac_fc_disabled:
   1661 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1662 			break;
   1663 
   1664 		case sbmac_fc_collision:
   1665 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1666 			break;
   1667 
   1668 		case sbmac_fc_carrier:
   1669 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1670 			break;
   1671 
   1672 		case sbmac_fc_auto:		/* XXX not implemented */
   1673 			/* fall through */
   1674 		case sbmac_fc_frame:		/* not valid in half duplex */
   1675 		default:			/* invalid selection */
   1676 			panic("%s: invalid half duplex fc selection %d",
   1677 			    s->sc_dev.dv_xname, fc);
   1678 			return 0;
   1679 		}
   1680 		break;
   1681 
   1682 	case sbmac_duplex_full:
   1683 		switch (fc) {
   1684 		case sbmac_fc_disabled:
   1685 			cfg |= V_MAC_FC_CMD_DISABLED;
   1686 			break;
   1687 
   1688 		case sbmac_fc_frame:
   1689 			cfg |= V_MAC_FC_CMD_ENABLED;
   1690 			break;
   1691 
   1692 		case sbmac_fc_collision:	/* not valid in full duplex */
   1693 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1694 		case sbmac_fc_auto:		/* XXX not implemented */
   1695 			/* fall through */
   1696 		default:
   1697 			panic("%s: invalid full duplex fc selection %d",
   1698 			    s->sc_dev.dv_xname, fc);
   1699 			return 0;
   1700 		}
   1701 		break;
   1702 
   1703 	default:
   1704 		/* fall through */
   1705 	case sbmac_duplex_auto:
   1706 		panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
   1707 		/* XXX not implemented */
   1708 		break;
   1709 	}
   1710 
   1711 	/*
   1712 	 * Send the bits back to the hardware
   1713 	 */
   1714 
   1715 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1716 
   1717 	return 1;
   1718 }
   1719 
   1720 /*
   1721  *  SBMAC_INTR()
   1722  *
   1723  *  Interrupt handler for MAC interrupts
   1724  *
   1725  *  Input parameters:
   1726  *	MAC structure
   1727  *
   1728  *  Return value:
   1729  *	nothing
   1730  */
   1731 
   1732 /* ARGSUSED */
   1733 static void
   1734 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
   1735 {
   1736 	struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
   1737 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1738 	uint64_t isr;
   1739 
   1740 	for (;;) {
   1741 
   1742 		/*
   1743 		 * Read the ISR (this clears the bits in the real register)
   1744 		 */
   1745 
   1746 		isr = SBMAC_READCSR(sc->sbm_isr);
   1747 
   1748 		if (isr == 0)
   1749 			break;
   1750 
   1751 		/*
   1752 		 * Transmits on channel 0
   1753 		 */
   1754 
   1755 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
   1756 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1757 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
   1758 		}
   1759 
   1760 		/*
   1761 		 * Receives on channel 0
   1762 		 */
   1763 
   1764 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
   1765 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1766 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
   1767 		}
   1768 	}
   1769 
   1770 	/* try to get more packets going */
   1771 	sbmac_start(ifp);
   1772 }
   1773 
   1774 
   1775 /*
   1776  *  SBMAC_START(ifp)
   1777  *
   1778  *  Start output on the specified interface.  Basically, we
   1779  *  queue as many buffers as we can until the ring fills up, or
   1780  *  we run off the end of the queue, whichever comes first.
   1781  *
   1782  *  Input parameters:
   1783  *	ifp - interface
   1784  *
   1785  *  Return value:
   1786  *	nothing
   1787  */
   1788 
   1789 static void
   1790 sbmac_start(struct ifnet *ifp)
   1791 {
   1792 	struct sbmac_softc	*sc;
   1793 	struct mbuf		*m_head = NULL;
   1794 	int			rv;
   1795 
   1796 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1797 		return;
   1798 
   1799 	sc = ifp->if_softc;
   1800 
   1801 	for (;;) {
   1802 
   1803 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1804 		if (m_head == NULL)
   1805 		    break;
   1806 
   1807 		/*
   1808 		 * Put the buffer on the transmit ring.  If we
   1809 		 * don't have room, set the OACTIVE flag and wait
   1810 		 * for the NIC to drain the ring.
   1811 		 */
   1812 
   1813 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1814 
   1815 		if (rv == 0) {
   1816 			/*
   1817 			 * If there's a BPF listener, bounce a copy of this
   1818 			 * frame to it.
   1819 			 */
   1820 #if (NBPFILTER > 0)
   1821 			if (ifp->if_bpf)
   1822 				bpf_mtap(ifp->if_bpf, m_head);
   1823 #endif
   1824 			if (!sc->sbm_pass3_dma) {
   1825 				/*
   1826 				 * Don't free mbuf if we're not copying to new
   1827 				 * mbuf in sbdma_add_txbuffer.  It will be
   1828 				 * freed in sbdma_tx_process.
   1829 				 */
   1830 				m_freem(m_head);
   1831 			}
   1832 		} else {
   1833 		    IF_PREPEND(&ifp->if_snd, m_head);
   1834 		    ifp->if_flags |= IFF_OACTIVE;
   1835 		    break;
   1836 		}
   1837 	}
   1838 }
   1839 
   1840 /*
   1841  *  SBMAC_SETMULTI(sc)
   1842  *
   1843  *  Reprogram the multicast table into the hardware, given
   1844  *  the list of multicasts associated with the interface
   1845  *  structure.
   1846  *
   1847  *  Input parameters:
   1848  *	sc - softc
   1849  *
   1850  *  Return value:
   1851  *	nothing
   1852  */
   1853 
   1854 static void
   1855 sbmac_setmulti(struct sbmac_softc *sc)
   1856 {
   1857 	struct ifnet *ifp;
   1858 	uint64_t reg;
   1859 	sbmac_port_t port;
   1860 	int idx;
   1861 	struct ether_multi *enm;
   1862 	struct ether_multistep step;
   1863 
   1864 	ifp = &sc->sc_ethercom.ec_if;
   1865 
   1866 	/*
   1867 	 * Clear out entire multicast table.  We do this by nuking
   1868 	 * the entire hash table and all the direct matches except
   1869 	 * the first one, which is used for our station address
   1870 	 */
   1871 
   1872 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1873 		port = PKSEG1(sc->sbm_base +
   1874 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1875 		SBMAC_WRITECSR(port, 0);
   1876 	}
   1877 
   1878 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1879 		port = PKSEG1(sc->sbm_base +
   1880 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1881 		SBMAC_WRITECSR(port, 0);
   1882 	}
   1883 
   1884 	/*
   1885 	 * Clear the filter to say we don't want any multicasts.
   1886 	 */
   1887 
   1888 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1889 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1890 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1891 
   1892 	if (ifp->if_flags & IFF_ALLMULTI) {
   1893 		/*
   1894 		 * Enable ALL multicasts.  Do this by inverting the
   1895 		 * multicast enable bit.
   1896 		 */
   1897 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1898 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1899 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1900 		return;
   1901 	}
   1902 
   1903 	/*
   1904 	 * Progam new multicast entries.  For now, only use the
   1905 	 * perfect filter.  In the future we'll need to use the
   1906 	 * hash filter if the perfect filter overflows
   1907 	 */
   1908 
   1909 	/*
   1910 	 * XXX only using perfect filter for now, need to use hash
   1911 	 * XXX if the table overflows
   1912 	 */
   1913 
   1914 	idx = 1;		/* skip station address */
   1915 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1916 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1917 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1918 		port = PKSEG1(sc->sbm_base +
   1919 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1920 		SBMAC_WRITECSR(port, reg);
   1921 		idx++;
   1922 		ETHER_NEXT_MULTI(step, enm);
   1923 	}
   1924 
   1925 	/*
   1926 	 * Enable the "accept multicast bits" if we programmed at least one
   1927 	 * multicast.
   1928 	 */
   1929 
   1930 	if (idx > 1) {
   1931 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1932 	    reg |= M_MAC_MCAST_EN;
   1933 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1934 	}
   1935 }
   1936 
   1937 /*
   1938  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1939  *
   1940  *  Generic IOCTL requests for this interface.  The basic
   1941  *  stuff is handled here for bringing the interface up,
   1942  *  handling multicasts, etc.
   1943  *
   1944  *  Input parameters:
   1945  *	ifp - interface structure
   1946  *	cmd - command code
   1947  *	data - pointer to data
   1948  *
   1949  *  Return value:
   1950  *	return value (0 is success)
   1951  */
   1952 
   1953 static int
   1954 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1955 {
   1956 	struct ifaddr *ifa = (struct ifaddr *) data;
   1957 	struct sbmac_softc *sc = ifp->if_softc;
   1958 
   1959 	switch (cmd) {
   1960 	case SIOCINITIFADDR:
   1961 		ifp->if_flags |= IFF_UP;
   1962 
   1963 		switch (ifa->ifa_addr->sa_family) {
   1964 #ifdef INET
   1965 		case AF_INET:
   1966 			sbmac_init_and_start(sc);
   1967 			arp_ifinit(ifp, ifa);
   1968 			break;
   1969 #endif
   1970 #ifdef NS
   1971 		case AF_NS:
   1972 		{
   1973 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1974 
   1975 			if (ns_nullhost(*ina))
   1976 				ina->x_host =
   1977 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1978 			else
   1979 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
   1980 				    ifp->if_addrlen);
   1981 			/* Set new address. */
   1982 			sbmac_init_and_start(sc);
   1983 			break;
   1984 		}
   1985 #endif
   1986 		default:
   1987 			sbmac_init_and_start(sc);
   1988 			break;
   1989 		}
   1990 		break;
   1991 
   1992 	default:
   1993 		return ENOTTY;
   1994 	}
   1995 
   1996 	return (0);
   1997 }
   1998 
   1999 /*
   2000  *  SBMAC_IOCTL(ifp, cmd, data)
   2001  *
   2002  *  Main IOCTL handler - dispatches to other IOCTLs for various
   2003  *  types of requests.
   2004  *
   2005  *  Input parameters:
   2006  *	ifp - interface pointer
   2007  *	cmd - command code
   2008  *	data - pointer to argument data
   2009  *
   2010  *  Return value:
   2011  *	0 if ok
   2012  *	else error code
   2013  */
   2014 
   2015 static int
   2016 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2017 {
   2018 	struct sbmac_softc *sc = ifp->if_softc;
   2019 	struct ifreq *ifr = (struct ifreq *) data;
   2020 	int s, error = 0;
   2021 
   2022 	s = splnet();
   2023 
   2024 	switch (cmd) {
   2025 	case SIOCINITIFADDR:
   2026 		error = sbmac_ether_ioctl(ifp, cmd, data);
   2027 		break;
   2028 	case SIOCSIFMTU:
   2029 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
   2030 			error = EINVAL;
   2031 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   2032 			/* XXX Program new MTU here */
   2033 			error = 0;
   2034 		break;
   2035 	case SIOCSIFFLAGS:
   2036 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2037 			break;
   2038 		if (ifp->if_flags & IFF_UP) {
   2039 			/*
   2040 			 * If only the state of the PROMISC flag changed,
   2041 			 * just tweak the hardware registers.
   2042 			 */
   2043 			if ((ifp->if_flags & IFF_RUNNING) &&
   2044 			    (ifp->if_flags & IFF_PROMISC)) {
   2045 				/* turn on promiscuous mode */
   2046 				sbmac_promiscuous_mode(sc, 1);
   2047 			} else if (ifp->if_flags & IFF_RUNNING &&
   2048 			    !(ifp->if_flags & IFF_PROMISC)) {
   2049 			    /* turn off promiscuous mode */
   2050 			    sbmac_promiscuous_mode(sc, 0);
   2051 			} else
   2052 			    sbmac_set_channel_state(sc, sbmac_state_on);
   2053 		} else {
   2054 			if (ifp->if_flags & IFF_RUNNING)
   2055 				sbmac_set_channel_state(sc, sbmac_state_off);
   2056 		}
   2057 
   2058 		sc->sbm_if_flags = ifp->if_flags;
   2059 		error = 0;
   2060 		break;
   2061 
   2062 	case SIOCADDMULTI:
   2063 	case SIOCDELMULTI:
   2064 	case SIOCSIFMEDIA:
   2065 	case SIOCGIFMEDIA:
   2066 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2067 			error = 0;
   2068 			if (ifp->if_flags & IFF_RUNNING)
   2069 				sbmac_setmulti(sc);
   2070 		}
   2071 		break;
   2072 	default:
   2073 		error = ether_ioctl(ifp, cmd, data);
   2074 		break;
   2075 	}
   2076 
   2077 	(void)splx(s);
   2078 
   2079 	return(error);
   2080 }
   2081 
   2082 /*
   2083  *  SBMAC_IFMEDIA_UPD(ifp)
   2084  *
   2085  *  Configure an appropriate media type for this interface,
   2086  *  given the data in the interface structure
   2087  *
   2088  *  Input parameters:
   2089  *	ifp - interface
   2090  *
   2091  *  Return value:
   2092  *	0 if ok
   2093  *	else error code
   2094  */
   2095 
   2096 /*
   2097  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2098  *
   2099  *  Report current media status (used by ifconfig, for example)
   2100  *
   2101  *  Input parameters:
   2102  *	ifp - interface structure
   2103  *	ifmr - media request structure
   2104  *
   2105  *  Return value:
   2106  *	nothing
   2107  */
   2108 
   2109 /*
   2110  *  SBMAC_WATCHDOG(ifp)
   2111  *
   2112  *  Called periodically to make sure we're still happy.
   2113  *
   2114  *  Input parameters:
   2115  *	ifp - interface structure
   2116  *
   2117  *  Return value:
   2118  *	nothing
   2119  */
   2120 
   2121 static void
   2122 sbmac_watchdog(struct ifnet *ifp)
   2123 {
   2124 
   2125 	/* XXX do something */
   2126 }
   2127 
   2128 /*
   2129  * One second timer, used to tick MII.
   2130  */
   2131 static void
   2132 sbmac_tick(void *arg)
   2133 {
   2134 	struct sbmac_softc *sc = arg;
   2135 	int s;
   2136 
   2137 	s = splnet();
   2138 	mii_tick(&sc->sc_mii);
   2139 	splx(s);
   2140 
   2141 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2142 }
   2143 
   2144 
   2145 /*
   2146  *  SBMAC_MATCH(parent, match, aux)
   2147  *
   2148  *  Part of the config process - see if this device matches the
   2149  *  info about what we expect to find on the bus.
   2150  *
   2151  *  Input parameters:
   2152  *	parent - parent bus structure
   2153  *	match -
   2154  *	aux - bus-specific args
   2155  *
   2156  *  Return value:
   2157  *	1 if we match
   2158  *	0 if we don't match
   2159  */
   2160 
   2161 static int
   2162 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
   2163 {
   2164 	struct sbobio_attach_args *sap = aux;
   2165 
   2166 	/*
   2167 	 * Make sure it's a MAC
   2168 	 */
   2169 
   2170 	if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2171 		return 0;
   2172 
   2173 	/*
   2174 	 * Yup, it is.
   2175 	 */
   2176 
   2177 	return 1;
   2178 }
   2179 
   2180 /*
   2181  *  SBMAC_PARSE_XDIGIT(str)
   2182  *
   2183  *  Parse a hex digit, returning its value
   2184  *
   2185  *  Input parameters:
   2186  *	str - character
   2187  *
   2188  *  Return value:
   2189  *	hex value, or -1 if invalid
   2190  */
   2191 
   2192 static int
   2193 sbmac_parse_xdigit(char str)
   2194 {
   2195 	int digit;
   2196 
   2197 	if ((str >= '0') && (str <= '9'))
   2198 		digit = str - '0';
   2199 	else if ((str >= 'a') && (str <= 'f'))
   2200 		digit = str - 'a' + 10;
   2201 	else if ((str >= 'A') && (str <= 'F'))
   2202 		digit = str - 'A' + 10;
   2203 	else
   2204 		digit = -1;
   2205 
   2206 	return digit;
   2207 }
   2208 
   2209 /*
   2210  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2211  *
   2212  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2213  *  Ethernet address.
   2214  *
   2215  *  Input parameters:
   2216  *	str - string
   2217  *	hwaddr - pointer to hardware address
   2218  *
   2219  *  Return value:
   2220  *	0 if ok, else -1
   2221  */
   2222 
   2223 static int
   2224 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
   2225 {
   2226 	int digit1, digit2;
   2227 	int idx = 6;
   2228 
   2229 	while (*str && (idx > 0)) {
   2230 		digit1 = sbmac_parse_xdigit(*str);
   2231 		if (digit1 < 0)
   2232 			return -1;
   2233 		str++;
   2234 		if (!*str)
   2235 			return -1;
   2236 
   2237 		if ((*str == ':') || (*str == '-')) {
   2238 			digit2 = digit1;
   2239 			digit1 = 0;
   2240 		} else {
   2241 			digit2 = sbmac_parse_xdigit(*str);
   2242 			if (digit2 < 0)
   2243 				return -1;
   2244 			str++;
   2245 		}
   2246 
   2247 		*hwaddr++ = (digit1 << 4) | digit2;
   2248 		idx--;
   2249 
   2250 		if (*str == '-')
   2251 			str++;
   2252 		if (*str == ':')
   2253 			str++;
   2254 	}
   2255 	return 0;
   2256 }
   2257 
   2258 /*
   2259  *  SBMAC_ATTACH(parent, self, aux)
   2260  *
   2261  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2262  *
   2263  *  Input parameters:
   2264  *	parent - parent bus device
   2265  *	self - our softc
   2266  *	aux - attach data
   2267  *
   2268  *  Return value:
   2269  *	nothing
   2270  */
   2271 
   2272 static void
   2273 sbmac_attach(struct device *parent, struct device *self, void *aux)
   2274 {
   2275 	struct ifnet *ifp;
   2276 	struct sbmac_softc *sc;
   2277 	struct sbobio_attach_args *sap = aux;
   2278 	u_char *eaddr;
   2279 	static int unit = 0;	/* XXX */
   2280 	uint64_t ea_reg;
   2281 	int idx;
   2282 
   2283 	sc = (struct sbmac_softc *)self;
   2284 
   2285 	/* Determine controller base address */
   2286 
   2287 	sc->sbm_base = sap->sa_locs.sa_addr;
   2288 
   2289 	eaddr = sc->sbm_hwaddr;
   2290 
   2291 	/*
   2292 	 * Initialize context (get pointers to registers and stuff), then
   2293 	 * allocate the memory for the descriptor tables.
   2294 	 */
   2295 
   2296 	sbmac_initctx(sc);
   2297 
   2298 	callout_init(&(sc->sc_tick_ch), 0);
   2299 
   2300 	/*
   2301 	 * Read the ethernet address.  The firwmare left this programmed
   2302 	 * for us in the ethernet address register for each mac.
   2303 	 */
   2304 
   2305 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2306 	for (idx = 0; idx < 6; idx++) {
   2307 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2308 		ea_reg >>= 8;
   2309 	}
   2310 
   2311 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2312 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2313 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2314 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2315 		eaddr[5] = unit;
   2316 	}
   2317 
   2318 #ifdef SBMAC_ETH0_HWADDR
   2319 	if (unit == 0)
   2320 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2321 #endif
   2322 #ifdef SBMAC_ETH1_HWADDR
   2323 	if (unit == 1)
   2324 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2325 #endif
   2326 #ifdef SBMAC_ETH2_HWADDR
   2327 	if (unit == 2)
   2328 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2329 #endif
   2330 	unit++;
   2331 
   2332 	/*
   2333 	 * Display Ethernet address (this is called during the config process
   2334 	 * so we need to finish off the config message that was being displayed)
   2335 	 */
   2336 	printf(": Ethernet%s\n",
   2337 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2338 	printf("%s: Ethernet address: %s\n", self->dv_xname,
   2339 	    ether_sprintf(eaddr));
   2340 
   2341 
   2342 	/*
   2343 	 * Set up ifnet structure
   2344 	 */
   2345 
   2346 	ifp = &sc->sc_ethercom.ec_if;
   2347 	ifp->if_softc = sc;
   2348 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
   2349 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
   2350 	    IFF_NOTRAILERS;
   2351 	ifp->if_ioctl = sbmac_ioctl;
   2352 	ifp->if_start = sbmac_start;
   2353 	ifp->if_watchdog = sbmac_watchdog;
   2354 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2355 
   2356 	/*
   2357 	 * Set up ifmedia support.
   2358 	 */
   2359 
   2360 	/*
   2361 	 * Initialize MII/media info.
   2362 	 */
   2363 	sc->sc_mii.mii_ifp      = ifp;
   2364 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
   2365 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
   2366 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
   2367 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   2368 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
   2369 	    ether_mediastatus);
   2370 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2371 	    MII_OFFSET_ANY, 0);
   2372 
   2373 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2374 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2375 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2376 	} else {
   2377 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2378 	}
   2379 
   2380 
   2381 	/*
   2382 	 * map/route interrupt
   2383 	 */
   2384 
   2385 	sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
   2386 	    sbmac_intr, sc);
   2387 
   2388 	/*
   2389 	 * Call MI attach routines.
   2390 	 */
   2391 	if_attach(ifp);
   2392 	ether_ifattach(ifp, eaddr);
   2393 }
   2394