Home | History | Annotate | Line # | Download | only in dev
sbmac.c revision 1.37
      1 /* $NetBSD: sbmac.c,v 1.37 2010/04/05 07:19:31 joerg Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001, 2004
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
     19  *    used to endorse or promote products derived from this software
     20  *    without the prior written permission of Broadcom Corporation.
     21  *
     22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.37 2010/04/05 07:19:31 joerg Exp $");
     37 
     38 #include "opt_inet.h"
     39 #include "opt_ns.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/queue.h>
     49 #include <sys/device.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_arp.h>
     53 #include <net/if_ether.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #ifdef INET
     60 #include <netinet/in.h>
     61 #include <netinet/if_inarp.h>
     62 #endif
     63 
     64 #ifdef NS
     65 #include <netns/ns.h>
     66 #include <netns/ns_if.h>
     67 #endif
     68 
     69 #include <machine/locore.h>
     70 
     71 #include "sbobiovar.h"
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 #include <dev/mii/mii_bitbang.h>
     76 
     77 #include <mips/sibyte/include/sb1250_defs.h>
     78 #include <mips/sibyte/include/sb1250_regs.h>
     79 #include <mips/sibyte/include/sb1250_mac.h>
     80 #include <mips/sibyte/include/sb1250_dma.h>
     81 #include <mips/sibyte/include/sb1250_scd.h>
     82 
     83 /* Simple types */
     84 
     85 typedef u_long sbmac_port_t;
     86 typedef uint64_t sbmac_physaddr_t;
     87 typedef uint64_t sbmac_enetaddr_t;
     88 
     89 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     90 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     91 
     92 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     93 	       sbmac_duplex_full } sbmac_duplex_t;
     94 
     95 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
     96 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
     97 
     98 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
     99 	       sbmac_state_broken } sbmac_state_t;
    100 
    101 
    102 /* Macros */
    103 
    104 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
    105 
    106 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
    107 
    108 #define	CACHELINESIZE 32
    109 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
    110 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
    111 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
    112 
    113 #ifdef SBMACDEBUG
    114 #define	dprintf(x)	printf x
    115 #else
    116 #define	dprintf(x)
    117 #endif
    118 
    119 #define	SBMAC_READCSR(t) mips3_ld((volatile uint64_t *) (t))
    120 #define	SBMAC_WRITECSR(t, v) mips3_sd((volatile uint64_t *) (t), (v))
    121 
    122 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    123 
    124 /* These are limited to fit within one virtual page, and must be 2**N.  */
    125 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
    126 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
    127 
    128 #define	ETHER_ALIGN	2
    129 
    130 /* DMA Descriptor structure */
    131 
    132 typedef struct sbdmadscr_s {
    133 	uint64_t dscr_a;
    134 	uint64_t dscr_b;
    135 } sbdmadscr_t;
    136 
    137 
    138 /* DMA Controller structure */
    139 
    140 typedef struct sbmacdma_s {
    141 
    142 	/*
    143 	 * This stuff is used to identify the channel and the registers
    144 	 * associated with it.
    145 	 */
    146 
    147 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    148 	int		sbdma_channel;	/* channel number */
    149 	int		sbdma_txdir;	/* direction (1=transmit) */
    150 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    151 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    152 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    153 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    154 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
    155 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    156 
    157 	/*
    158 	 * This stuff is for maintenance of the ring
    159 	 */
    160 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    161 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    162 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
    163 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    164 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
    165 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
    166 } sbmacdma_t;
    167 
    168 
    169 /* Ethernet softc structure */
    170 
    171 struct sbmac_softc {
    172 
    173 	/*
    174 	 * NetBSD-specific things
    175 	 */
    176 	struct device	sc_dev;		/* base device (must be first) */
    177 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    178 	struct mii_data	sc_mii;
    179 	struct callout	sc_tick_ch;
    180 
    181 	int		sbm_if_flags;
    182 	void		*sbm_intrhand;
    183 
    184 	/*
    185 	 * Controller-specific things
    186 	 */
    187 
    188 	sbmac_port_t	sbm_base;	/* MAC's base address */
    189 	sbmac_state_t	sbm_state;	/* current state */
    190 
    191 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    192 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    193 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    194 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    195 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    196 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    197 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    198 
    199 	sbmac_speed_t	sbm_speed;	/* current speed */
    200 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    201 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    202 	int		sbm_rxflags;	/* received packet flags */
    203 
    204 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    205 
    206 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    207 	sbmacdma_t	sbm_rxdma;
    208 
    209 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    210 
    211 #ifdef SBMAC_EVENT_COUNTERS
    212 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
    213 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
    214 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
    215 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
    216 
    217 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
    218 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
    219 #endif
    220 };
    221 
    222 
    223 #ifdef SBMAC_EVENT_COUNTERS
    224 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
    225 #else
    226 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
    227 #endif
    228 
    229 /* Externs */
    230 
    231 extern paddr_t kvtophys(vaddr_t);
    232 
    233 /* Prototypes */
    234 
    235 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
    236     int txrx, int maxdescr);
    237 static void sbdma_channel_start(sbmacdma_t *d);
    238 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
    239 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
    240 static void sbdma_emptyring(sbmacdma_t *d);
    241 static void sbdma_fillring(sbmacdma_t *d);
    242 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    243 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    244 static void sbmac_initctx(struct sbmac_softc *s);
    245 static void sbmac_channel_start(struct sbmac_softc *s);
    246 static void sbmac_channel_stop(struct sbmac_softc *s);
    247 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    248     sbmac_state_t);
    249 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
    250 static void sbmac_init_and_start(struct sbmac_softc *sc);
    251 static uint64_t sbmac_addr2reg(u_char *ptr);
    252 static void sbmac_intr(void *xsc, uint32_t status, vaddr_t pc);
    253 static void sbmac_start(struct ifnet *ifp);
    254 static void sbmac_setmulti(struct sbmac_softc *sc);
    255 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data);
    256 static int sbmac_ioctl(struct ifnet *, u_long, void *);
    257 static void sbmac_watchdog(struct ifnet *ifp);
    258 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
    259 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
    260 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
    261 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
    262     sbmac_fc_t fc);
    263 static void sbmac_tick(void *arg);
    264 
    265 
    266 /* Globals */
    267 
    268 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
    269     sbmac_match, sbmac_attach, NULL, NULL);
    270 
    271 static uint32_t sbmac_mii_bitbang_read(struct device *self);
    272 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
    273 
    274 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    275 	sbmac_mii_bitbang_read,
    276 	sbmac_mii_bitbang_write,
    277 	{
    278 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    279 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    280 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    281 		0,				/* MII_BIT_DIR_HOST_PHY */
    282 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    283 	}
    284 };
    285 
    286 static uint32_t
    287 sbmac_mii_bitbang_read(struct device *self)
    288 {
    289 	struct sbmac_softc *sc = (void *) self;
    290 	sbmac_port_t reg;
    291 
    292 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    293 	return (uint32_t) SBMAC_READCSR(reg);
    294 }
    295 
    296 static void
    297 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
    298 {
    299 	struct sbmac_softc *sc = (void *) self;
    300 	sbmac_port_t reg;
    301 
    302 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    303 
    304 	SBMAC_WRITECSR(reg, (val &
    305 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
    306 }
    307 
    308 /*
    309  * Read an PHY register through the MII.
    310  */
    311 static int
    312 sbmac_mii_readreg(struct device *self, int phy, int reg)
    313 {
    314 
    315 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
    316 }
    317 
    318 /*
    319  * Write to a PHY register through the MII.
    320  */
    321 static void
    322 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
    323 {
    324 
    325 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
    326 }
    327 
    328 static void
    329 sbmac_mii_statchg(struct device *self)
    330 {
    331 	struct sbmac_softc *sc = (struct sbmac_softc *)self;
    332 	sbmac_state_t oldstate;
    333 
    334 	/* Stop the MAC in preparation for changing all of the parameters. */
    335 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    336 
    337 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    338 	default:		/* if autonegotiation fails, assume 10Mbit */
    339 	case IF_Mbps(10):
    340 		sbmac_set_speed(sc, sbmac_speed_10);
    341 		break;
    342 
    343 	case IF_Mbps(100):
    344 		sbmac_set_speed(sc, sbmac_speed_100);
    345 		break;
    346 
    347 	case IF_Mbps(1000):
    348 		sbmac_set_speed(sc, sbmac_speed_1000);
    349 		break;
    350 	}
    351 
    352 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    353 		/* Configure for full-duplex */
    354 		/* XXX: is flow control right for 10, 100? */
    355 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    356 	} else {
    357 		/* Configure for half-duplex */
    358 		/* XXX: is flow control right? */
    359 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    360 	}
    361 
    362 	/* And put it back into its former state. */
    363 	sbmac_set_channel_state(sc, oldstate);
    364 }
    365 
    366 /*
    367  *  SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
    368  *
    369  *  Initialize a DMA channel context.  Since there are potentially
    370  *  eight DMA channels per MAC, it's nice to do this in a standard
    371  *  way.
    372  *
    373  *  Input parameters:
    374  *	d - sbmacdma_t structure (DMA channel context)
    375  *	s - sbmac_softc structure (pointer to a MAC)
    376  *	chan - channel number (0..1 right now)
    377  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    378  *	maxdescr - number of descriptors
    379  *
    380  *  Return value:
    381  *	nothing
    382  */
    383 
    384 static void
    385 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
    386     int maxdescr)
    387 {
    388 	/*
    389 	 * Save away interesting stuff in the structure
    390 	 */
    391 
    392 	d->sbdma_eth = s;
    393 	d->sbdma_channel = chan;
    394 	d->sbdma_txdir = txrx;
    395 
    396 	/*
    397 	 * initialize register pointers
    398 	 */
    399 
    400 	d->sbdma_config0 = PKSEG1(s->sbm_base +
    401 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    402 	d->sbdma_config1 = PKSEG1(s->sbm_base +
    403 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    404 	d->sbdma_dscrbase = PKSEG1(s->sbm_base +
    405 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    406 	d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
    407 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    408 	d->sbdma_curdscr = PKSEG1(s->sbm_base +
    409 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    410 
    411 	/*
    412 	 * Allocate memory for the ring
    413 	 */
    414 
    415 	d->sbdma_maxdescr = maxdescr;
    416 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
    417 
    418 	d->sbdma_dscrtable = (sbdmadscr_t *)
    419 	    KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
    420 
    421 	memset(d->sbdma_dscrtable, 0, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    422 
    423 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    424 
    425 	/*
    426 	 * And context table
    427 	 */
    428 
    429 	d->sbdma_ctxtable = (struct mbuf **)
    430 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
    431 
    432 	memset(d->sbdma_ctxtable, 0, d->sbdma_maxdescr*sizeof(struct mbuf *));
    433 }
    434 
    435 /*
    436  *  SBDMA_CHANNEL_START(d)
    437  *
    438  *  Initialize the hardware registers for a DMA channel.
    439  *
    440  *  Input parameters:
    441  *	d - DMA channel to init (context must be previously init'd
    442  *
    443  *  Return value:
    444  *	nothing
    445  */
    446 
    447 static void
    448 sbdma_channel_start(sbmacdma_t *d)
    449 {
    450 	/*
    451 	 * Turn on the DMA channel
    452 	 */
    453 
    454 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    455 
    456 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    457 
    458 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    459 
    460 	/*
    461 	 * Initialize ring pointers
    462 	 */
    463 
    464 	d->sbdma_add_index = 0;
    465 	d->sbdma_rem_index = 0;
    466 }
    467 
    468 /*
    469  *  SBDMA_ADD_RCVBUFFER(d, m)
    470  *
    471  *  Add a buffer to the specified DMA channel.   For receive channels,
    472  *  this queues a buffer for inbound packets.
    473  *
    474  *  Input parameters:
    475  *	d - DMA channel descriptor
    476  *	m - mbuf to add, or NULL if we should allocate one.
    477  *
    478  *  Return value:
    479  *	0 if buffer could not be added (ring is full)
    480  *	1 if buffer added successfully
    481  */
    482 
    483 static int
    484 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    485 {
    486 	unsigned int dsc, nextdsc;
    487 	struct mbuf *m_new = NULL;
    488 
    489 	/* get pointer to our current place in the ring */
    490 
    491 	dsc = d->sbdma_add_index;
    492 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    493 
    494 	/*
    495 	 * figure out if the ring is full - if the next descriptor
    496 	 * is the same as the one that we're going to remove from
    497 	 * the ring, the ring is full
    498 	 */
    499 
    500 	if (nextdsc == d->sbdma_rem_index)
    501 		return ENOSPC;
    502 
    503 	/*
    504 	 * Allocate an mbuf if we don't already have one.
    505 	 * If we do have an mbuf, reset it so that it's empty.
    506 	 */
    507 
    508 	if (m == NULL) {
    509 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    510 		if (m_new == NULL) {
    511 			printf("%s: mbuf allocation failed\n",
    512 			    d->sbdma_eth->sc_dev.dv_xname);
    513 			return ENOBUFS;
    514 		}
    515 
    516 		MCLGET(m_new, M_DONTWAIT);
    517 		if (!(m_new->m_flags & M_EXT)) {
    518 			printf("%s: mbuf cluster allocation failed\n",
    519 			    d->sbdma_eth->sc_dev.dv_xname);
    520 			m_freem(m_new);
    521 			return ENOBUFS;
    522 		}
    523 
    524 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    525 		m_adj(m_new, ETHER_ALIGN);
    526 	} else {
    527 		m_new = m;
    528 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    529 		m_new->m_data = m_new->m_ext.ext_buf;
    530 		m_adj(m_new, ETHER_ALIGN);
    531 	}
    532 
    533 	/*
    534 	 * fill in the descriptor
    535 	 */
    536 
    537 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
    538 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    539 	    M_DMA_DSCRA_INTERRUPT;
    540 
    541 	/* receiving: no options */
    542 	d->sbdma_dscrtable[dsc].dscr_b = 0;
    543 
    544 	/*
    545 	 * fill in the context
    546 	 */
    547 
    548 	d->sbdma_ctxtable[dsc] = m_new;
    549 
    550 	/*
    551 	 * point at next packet
    552 	 */
    553 
    554 	d->sbdma_add_index = nextdsc;
    555 
    556 	/*
    557 	 * Give the buffer to the DMA engine.
    558 	 */
    559 
    560 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    561 
    562 	return 0;					/* we did it */
    563 }
    564 
    565 /*
    566  *  SBDMA_ADD_TXBUFFER(d, m)
    567  *
    568  *  Add a transmit buffer to the specified DMA channel, causing a
    569  *  transmit to start.
    570  *
    571  *  Input parameters:
    572  *	d - DMA channel descriptor
    573  *	m - mbuf to add
    574  *
    575  *  Return value:
    576  *	0 transmit queued successfully
    577  *	otherwise error code
    578  */
    579 
    580 static int
    581 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    582 {
    583         unsigned int dsc, nextdsc, prevdsc, origdesc;
    584 	int length;
    585 	int num_mbufs = 0;
    586 	struct sbmac_softc *sc = d->sbdma_eth;
    587 
    588 	/* get pointer to our current place in the ring */
    589 
    590 	dsc = d->sbdma_add_index;
    591 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    592 
    593 	/*
    594 	 * figure out if the ring is full - if the next descriptor
    595 	 * is the same as the one that we're going to remove from
    596 	 * the ring, the ring is full
    597 	 */
    598 
    599 	if (nextdsc == d->sbdma_rem_index) {
    600 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    601 		return ENOSPC;
    602 	}
    603 
    604 	/*
    605 	 * PASS3 parts do not have buffer alignment restriction.
    606 	 * No need to copy/coalesce to new mbuf.  Also has different
    607 	 * descriptor format
    608 	 */
    609 	if (sc->sbm_pass3_dma) {
    610 		struct mbuf *m_temp = NULL;
    611 
    612 		/*
    613 		 * Loop thru this mbuf record.
    614 		 * The head mbuf will have SOP set.
    615 		 */
    616 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
    617 		    M_DMA_ETHTX_SOP;
    618 
    619 		/*
    620 		 * transmitting: set outbound options,buffer A size(+ low 5
    621 		 * bits of start addr),and packet length.
    622 		 */
    623 		d->sbdma_dscrtable[dsc].dscr_b =
    624 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    625 		    V_DMA_DSCRB_A_SIZE((m->m_len +
    626 		      (mtod(m,uintptr_t) & 0x0000001F))) |
    627 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
    628 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
    629 
    630 		d->sbdma_add_index = nextdsc;
    631 		origdesc = prevdsc = dsc;
    632 		dsc = d->sbdma_add_index;
    633 		num_mbufs++;
    634 
    635 		/* Start with first non-head mbuf */
    636 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    637 			int len, next_len;
    638 			uint64_t addr;
    639 
    640 			if (m_temp->m_len == 0)
    641 				continue;	/* Skip 0-length mbufs */
    642 
    643 			len = m_temp->m_len;
    644 			addr = KVTOPHYS(mtod(m_temp, void *));
    645 
    646 			/*
    647 			 * Check to see if the mbuf spans a page boundary.  If
    648 			 * it does, and the physical pages behind the virtual
    649 			 * pages are not contiguous, split it so that each
    650 			 * virtual page uses it's own Tx descriptor.
    651 			 */
    652 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
    653 				next_len = (addr + len) - trunc_page(addr + len);
    654 
    655 				len -= next_len;
    656 
    657 				if (addr + len ==
    658 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
    659 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
    660 					len += next_len;
    661 					next_len = 0;
    662 				} else {
    663 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
    664 				}
    665 			} else {
    666 				next_len = 0;
    667 			}
    668 
    669 again:
    670 			/*
    671 			 * fill in the descriptor
    672 			 */
    673 			d->sbdma_dscrtable[dsc].dscr_a = addr;
    674 
    675 			/*
    676 			 * transmitting: set outbound options,buffer A
    677 			 * size(+ low 5 bits of start addr)
    678 			 */
    679 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    680 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
    681 
    682 			d->sbdma_ctxtable[dsc] = NULL;
    683 
    684 			/*
    685 			 * point at next descriptor
    686 			 */
    687 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    688 			if (nextdsc == d->sbdma_rem_index) {
    689 				d->sbdma_add_index = origdesc;
    690 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    691 				return ENOSPC;
    692 			}
    693 			d->sbdma_add_index = nextdsc;
    694 
    695 			prevdsc = dsc;
    696 			dsc = d->sbdma_add_index;
    697 			num_mbufs++;
    698 
    699 			if (next_len != 0) {
    700 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
    701 				len = next_len;
    702 
    703 				next_len = 0;
    704 				goto again;
    705 			}
    706 
    707 		}
    708 		/* Set head mbuf to last context index */
    709 		d->sbdma_ctxtable[prevdsc] = m;
    710 
    711 		/* Interrupt on last dscr of packet.  */
    712 	        d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
    713 	} else {
    714 		struct mbuf *m_new = NULL;
    715 		/*
    716 		 * [BEGIN XXX]
    717 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
    718 		 * assume it will fit).  This is a temporary hack to get us
    719 		 * going.
    720 		 */
    721 
    722 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
    723 		if (m_new == NULL) {
    724 			printf("%s: mbuf allocation failed\n",
    725 			    d->sbdma_eth->sc_dev.dv_xname);
    726 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    727 			return ENOBUFS;
    728 		}
    729 
    730 		MCLGET(m_new,M_DONTWAIT);
    731 		if (!(m_new->m_flags & M_EXT)) {
    732 			printf("%s: mbuf cluster allocation failed\n",
    733 			    d->sbdma_eth->sc_dev.dv_xname);
    734 			m_freem(m_new);
    735 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    736 			return ENOBUFS;
    737 		}
    738 
    739 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    740 		/*m_adj(m_new,ETHER_ALIGN);*/
    741 
    742 		/*
    743 		 * XXX Don't forget to include the offset portion in the
    744 		 * XXX cache block calculation when this code is rewritten!
    745 		 */
    746 
    747 		/*
    748 		 * Copy data
    749 		 */
    750 
    751 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
    752 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    753 
    754 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    755 
    756 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    757 		// XXX: function succeeds.
    758 		// m_freem(m);
    759 		length = m_new->m_len;
    760 
    761 		/* [END XXX] */
    762 		/*
    763 		 * fill in the descriptor
    764 		 */
    765 
    766 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
    767 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    768 		    M_DMA_DSCRA_INTERRUPT |
    769 		    M_DMA_ETHTX_SOP;
    770 
    771 		/* transmitting: set outbound options and length */
    772 		d->sbdma_dscrtable[dsc].dscr_b =
    773 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    774 		    V_DMA_DSCRB_PKT_SIZE(length);
    775 
    776 		num_mbufs++;
    777 
    778 		/*
    779 		 * fill in the context
    780 		 */
    781 
    782 		d->sbdma_ctxtable[dsc] = m_new;
    783 
    784 		/*
    785 		 * point at next packet
    786 		 */
    787 		d->sbdma_add_index = nextdsc;
    788 	}
    789 
    790 	/*
    791 	 * Give the buffer to the DMA engine.
    792 	 */
    793 
    794 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    795 
    796 	return 0;					/* we did it */
    797 }
    798 
    799 /*
    800  *  SBDMA_EMPTYRING(d)
    801  *
    802  *  Free all allocated mbufs on the specified DMA channel;
    803  *
    804  *  Input parameters:
    805  *	d  - DMA channel
    806  *
    807  *  Return value:
    808  *	nothing
    809  */
    810 
    811 static void
    812 sbdma_emptyring(sbmacdma_t *d)
    813 {
    814 	int idx;
    815 	struct mbuf *m;
    816 
    817 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    818 		m = d->sbdma_ctxtable[idx];
    819 		if (m) {
    820 			m_freem(m);
    821 			d->sbdma_ctxtable[idx] = NULL;
    822 		}
    823 	}
    824 }
    825 
    826 /*
    827  *  SBDMA_FILLRING(d)
    828  *
    829  *  Fill the specified DMA channel (must be receive channel)
    830  *  with mbufs
    831  *
    832  *  Input parameters:
    833  *	d - DMA channel
    834  *
    835  *  Return value:
    836  *	nothing
    837  */
    838 
    839 static void
    840 sbdma_fillring(sbmacdma_t *d)
    841 {
    842 	int idx;
    843 
    844 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    845 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    846 			break;
    847 }
    848 
    849 /*
    850  *  SBDMA_RX_PROCESS(sc, d)
    851  *
    852  *  Process "completed" receive buffers on the specified DMA channel.
    853  *  Note that this isn't really ideal for priority channels, since
    854  *  it processes all of the packets on a given channel before
    855  *  returning.
    856  *
    857  *  Input parameters:
    858  *	sc - softc structure
    859  *	d - DMA channel context
    860  *
    861  *  Return value:
    862  *	nothing
    863  */
    864 
    865 static void
    866 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    867 {
    868 	int curidx;
    869 	int hwidx;
    870 	sbdmadscr_t *dscp;
    871 	struct mbuf *m;
    872 	int len;
    873 
    874 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    875 
    876 	for (;;) {
    877 		/*
    878 		 * figure out where we are (as an index) and where
    879 		 * the hardware is (also as an index)
    880 		 *
    881 		 * This could be done faster if (for example) the
    882 		 * descriptor table was page-aligned and contiguous in
    883 		 * both virtual and physical memory -- you could then
    884 		 * just compare the low-order bits of the virtual address
    885 		 * (sbdma_rem_index) and the physical address
    886 		 * (sbdma_curdscr CSR).
    887 		 */
    888 
    889 		curidx = d->sbdma_rem_index;
    890 		hwidx = (int)
    891 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    892 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    893 
    894 		/*
    895 		 * If they're the same, that means we've processed all
    896 		 * of the descriptors up to (but not including) the one that
    897 		 * the hardware is working on right now.
    898 		 */
    899 
    900 		if (curidx == hwidx)
    901 			break;
    902 
    903 		/*
    904 		 * Otherwise, get the packet's mbuf ptr back
    905 		 */
    906 
    907 		dscp = &(d->sbdma_dscrtable[curidx]);
    908 		m = d->sbdma_ctxtable[curidx];
    909 		d->sbdma_ctxtable[curidx] = NULL;
    910 
    911 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
    912 
    913 		/*
    914 		 * Check packet status.  If good, process it.
    915 		 * If not, silently drop it and put it back on the
    916 		 * receive ring.
    917 		 */
    918 
    919 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
    920 
    921 			/*
    922 			 * Set length into the packet
    923 			 * XXX do we remove the CRC here?
    924 			 */
    925 			m->m_pkthdr.len = m->m_len = len;
    926 
    927 			ifp->if_ipackets++;
    928 			m->m_pkthdr.rcvif = ifp;
    929 
    930 
    931 			/*
    932 			 * Add a new buffer to replace the old one.
    933 			 */
    934 			sbdma_add_rcvbuffer(d, NULL);
    935 
    936 			/*
    937 			 * Handle BPF listeners. Let the BPF user see the
    938 			 * packet, but don't pass it up to the ether_input()
    939 			 * layer unless it's a broadcast packet, multicast
    940 			 * packet, matches our ethernet address or the
    941 			 * interface is in promiscuous mode.
    942 			 */
    943 
    944 			bpf_mtap(ifp, m);
    945 			/*
    946 			 * Pass the buffer to the kernel
    947 			 */
    948 			(*ifp->if_input)(ifp, m);
    949 		} else {
    950 			/*
    951 			 * Packet was mangled somehow.  Just drop it and
    952 			 * put it back on the receive ring.
    953 			 */
    954 			sbdma_add_rcvbuffer(d, m);
    955 		}
    956 
    957 		/*
    958 		 * .. and advance to the next buffer.
    959 		 */
    960 
    961 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
    962 	}
    963 }
    964 
    965 /*
    966  *  SBDMA_TX_PROCESS(sc, d)
    967  *
    968  *  Process "completed" transmit buffers on the specified DMA channel.
    969  *  This is normally called within the interrupt service routine.
    970  *  Note that this isn't really ideal for priority channels, since
    971  *  it processes all of the packets on a given channel before
    972  *  returning.
    973  *
    974  *  Input parameters:
    975  *	sc - softc structure
    976  *	d - DMA channel context
    977  *
    978  *  Return value:
    979  *	nothing
    980  */
    981 
    982 static void
    983 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    984 {
    985 	int curidx;
    986 	int hwidx;
    987 	struct mbuf *m;
    988 
    989 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    990 
    991 	for (;;) {
    992 		/*
    993 		 * figure out where we are (as an index) and where
    994 		 * the hardware is (also as an index)
    995 		 *
    996 		 * This could be done faster if (for example) the
    997 		 * descriptor table was page-aligned and contiguous in
    998 		 * both virtual and physical memory -- you could then
    999 		 * just compare the low-order bits of the virtual address
   1000 		 * (sbdma_rem_index) and the physical address
   1001 		 * (sbdma_curdscr CSR).
   1002 		 */
   1003 
   1004 		curidx = d->sbdma_rem_index;
   1005 		hwidx = (int)
   1006 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
   1007 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
   1008 
   1009 		/*
   1010 		 * If they're the same, that means we've processed all
   1011 		 * of the descriptors up to (but not including) the one that
   1012 		 * the hardware is working on right now.
   1013 		 */
   1014 
   1015 		if (curidx == hwidx)
   1016 			break;
   1017 
   1018 		/*
   1019 		 * Otherwise, get the packet's mbuf ptr back
   1020 		 */
   1021 
   1022 		m = d->sbdma_ctxtable[curidx];
   1023 		d->sbdma_ctxtable[curidx] = NULL;
   1024 
   1025 		/*
   1026 		 * for transmits we just free buffers and count packets.
   1027 		 */
   1028 		ifp->if_opackets++;
   1029 		m_freem(m);
   1030 
   1031 		/*
   1032 		 * .. and advance to the next buffer.
   1033 		 */
   1034 
   1035 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
   1036 	}
   1037 
   1038 	/*
   1039 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
   1040 	 * It's supposed to reflect if the interface is actively
   1041 	 * transmitting, but that's really hard to do quickly.
   1042 	 */
   1043 
   1044 	ifp->if_flags &= ~IFF_OACTIVE;
   1045 }
   1046 
   1047 /*
   1048  *  SBMAC_INITCTX(s)
   1049  *
   1050  *  Initialize an Ethernet context structure - this is called
   1051  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1052  *  call it again from inside the ioctl routines that bring the
   1053  *  interface up/down
   1054  *
   1055  *  Input parameters:
   1056  *	s - sbmac context structure
   1057  *
   1058  *  Return value:
   1059  *	0
   1060  */
   1061 
   1062 static void
   1063 sbmac_initctx(struct sbmac_softc *s)
   1064 {
   1065 	uint64_t sysrev;
   1066 
   1067 	/*
   1068 	 * figure out the addresses of some ports
   1069 	 */
   1070 
   1071 	s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
   1072 	s->sbm_maccfg    = PKSEG1(s->sbm_base + R_MAC_CFG);
   1073 	s->sbm_fifocfg   = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
   1074 	s->sbm_framecfg  = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
   1075 	s->sbm_rxfilter  = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
   1076 	s->sbm_isr       = PKSEG1(s->sbm_base + R_MAC_STATUS);
   1077 	s->sbm_imr       = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
   1078 
   1079 	/*
   1080 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1081 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1082 	 */
   1083 
   1084 	sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1085 	sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1086 
   1087 	/*
   1088 	 * initial state is OFF
   1089 	 */
   1090 
   1091 	s->sbm_state = sbmac_state_off;
   1092 
   1093 	/*
   1094 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1095 	 */
   1096 
   1097 	s->sbm_speed = sbmac_speed_10;
   1098 	s->sbm_duplex = sbmac_duplex_half;
   1099 	s->sbm_fc = sbmac_fc_disabled;
   1100 
   1101 	/*
   1102 	 * Determine SOC type.  112x has Pass3 SOC features.
   1103 	 */
   1104 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1105 	s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1106 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1107 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1108 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1109 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
   1110 #ifdef SBMAC_EVENT_COUNTERS
   1111 	evcnt_attach_dynamic(&s->sbm_ev_rxintr, EVCNT_TYPE_INTR,
   1112 	    NULL, s->sc_dev.dv_xname, "rxintr");
   1113 	evcnt_attach_dynamic(&s->sbm_ev_txintr, EVCNT_TYPE_INTR,
   1114 	    NULL, s->sc_dev.dv_xname, "txintr");
   1115 	evcnt_attach_dynamic(&s->sbm_ev_txdrop, EVCNT_TYPE_MISC,
   1116 	    NULL, s->sc_dev.dv_xname, "txdrop");
   1117 	evcnt_attach_dynamic(&s->sbm_ev_txstall, EVCNT_TYPE_MISC,
   1118 	    NULL, s->sc_dev.dv_xname, "txstall");
   1119 	if (s->sbm_pass3_dma) {
   1120 		evcnt_attach_dynamic(&s->sbm_ev_txsplit, EVCNT_TYPE_MISC,
   1121 		    NULL, s->sc_dev.dv_xname, "pass3tx-split");
   1122 		evcnt_attach_dynamic(&s->sbm_ev_txkeep, EVCNT_TYPE_MISC,
   1123 		    NULL, s->sc_dev.dv_xname, "pass3tx-keep");
   1124 	}
   1125 #endif
   1126 }
   1127 
   1128 /*
   1129  *  SBMAC_CHANNEL_START(s)
   1130  *
   1131  *  Start packet processing on this MAC.
   1132  *
   1133  *  Input parameters:
   1134  *	s - sbmac structure
   1135  *
   1136  *  Return value:
   1137  *	nothing
   1138  */
   1139 
   1140 static void
   1141 sbmac_channel_start(struct sbmac_softc *s)
   1142 {
   1143 	uint64_t reg;
   1144 	sbmac_port_t port;
   1145 	uint64_t cfg, fifo, framecfg;
   1146 	int idx;
   1147 	uint64_t dma_cfg0, fifo_cfg;
   1148 	sbmacdma_t *txdma;
   1149 
   1150 	/*
   1151 	 * Don't do this if running
   1152 	 */
   1153 
   1154 	if (s->sbm_state == sbmac_state_on)
   1155 		return;
   1156 
   1157 	/*
   1158 	 * Bring the controller out of reset, but leave it off.
   1159 	 */
   1160 
   1161 	SBMAC_WRITECSR(s->sbm_macenable, 0);
   1162 
   1163 	/*
   1164 	 * Ignore all received packets
   1165 	 */
   1166 
   1167 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1168 
   1169 	/*
   1170 	 * Calculate values for various control registers.
   1171 	 */
   1172 
   1173 	cfg = M_MAC_RETRY_EN |
   1174 	      M_MAC_TX_HOLD_SOP_EN |
   1175 	      V_MAC_TX_PAUSE_CNT_16K |
   1176 	      M_MAC_AP_STAT_EN |
   1177 	      M_MAC_SS_EN |
   1178 	      0;
   1179 
   1180 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1181 	       V_MAC_TX_RD_THRSH(4) |
   1182 	       V_MAC_TX_RL_THRSH(4) |
   1183 	       V_MAC_RX_PL_THRSH(4) |
   1184 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1185 	       V_MAC_RX_PL_THRSH(4) |
   1186 	       V_MAC_RX_RL_THRSH(8) |
   1187 	       0;
   1188 
   1189 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1190 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1191 	    V_MAC_BACKOFF_SEL(1);
   1192 
   1193 	/*
   1194 	 * Clear out the hash address map
   1195 	 */
   1196 
   1197 	port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
   1198 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1199 		SBMAC_WRITECSR(port, 0);
   1200 		port += sizeof(uint64_t);
   1201 	}
   1202 
   1203 	/*
   1204 	 * Clear out the exact-match table
   1205 	 */
   1206 
   1207 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1208 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1209 		SBMAC_WRITECSR(port, 0);
   1210 		port += sizeof(uint64_t);
   1211 	}
   1212 
   1213 	/*
   1214 	 * Clear out the DMA Channel mapping table registers
   1215 	 */
   1216 
   1217 	port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
   1218 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1219 		SBMAC_WRITECSR(port, 0);
   1220 		port += sizeof(uint64_t);
   1221 	}
   1222 
   1223 	port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
   1224 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1225 		SBMAC_WRITECSR(port, 0);
   1226 		port += sizeof(uint64_t);
   1227 	}
   1228 
   1229 	/*
   1230 	 * Program the hardware address.  It goes into the hardware-address
   1231 	 * register as well as the first filter register.
   1232 	 */
   1233 
   1234 	reg = sbmac_addr2reg(s->sbm_hwaddr);
   1235 
   1236 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1237 	SBMAC_WRITECSR(port, reg);
   1238 	port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
   1239 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1240 
   1241 	/*
   1242 	 * Set the receive filter for no packets, and write values
   1243 	 * to the various config registers
   1244 	 */
   1245 
   1246 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1247 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1248 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1249 	SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
   1250 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1251 
   1252 	/*
   1253 	 * Initialize DMA channels (rings should be ok now)
   1254 	 */
   1255 
   1256 	sbdma_channel_start(&(s->sbm_rxdma));
   1257 	sbdma_channel_start(&(s->sbm_txdma));
   1258 
   1259 	/*
   1260 	 * Configure the speed, duplex, and flow control
   1261 	 */
   1262 
   1263 	sbmac_set_speed(s, s->sbm_speed);
   1264 	sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
   1265 
   1266 	/*
   1267 	 * Fill the receive ring
   1268 	 */
   1269 
   1270 	sbdma_fillring(&(s->sbm_rxdma));
   1271 
   1272 	/*
   1273 	 * Turn on the rest of the bits in the enable register
   1274 	 */
   1275 
   1276 	SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1277 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1278 
   1279 
   1280 	/*
   1281 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1282 	 */
   1283 	SBMAC_WRITECSR(s->sbm_imr,
   1284 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1285 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1286 
   1287 	/*
   1288 	 * Enable receiving unicasts and broadcasts
   1289 	 */
   1290 
   1291 	SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1292 
   1293 	/*
   1294 	 * On chips which support unaligned DMA features, set the descriptor
   1295 	 * ring for transmit channels to use the unaligned buffer format.
   1296 	 */
   1297 	txdma = &(s->sbm_txdma);
   1298 
   1299 	if (s->sbm_pass3_dma) {
   1300 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1301 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1302 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1303 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
   1304 
   1305 		fifo_cfg =  SBMAC_READCSR(s->sbm_fifocfg);
   1306 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1307 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1308 		SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
   1309 	}
   1310 
   1311 	/*
   1312 	 * we're running now.
   1313 	 */
   1314 
   1315 	s->sbm_state = sbmac_state_on;
   1316 	s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1317 
   1318 	/*
   1319 	 * Program multicast addresses
   1320 	 */
   1321 
   1322 	sbmac_setmulti(s);
   1323 
   1324 	/*
   1325 	 * If channel was in promiscuous mode before, turn that on
   1326 	 */
   1327 
   1328 	if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1329 		sbmac_promiscuous_mode(s, 1);
   1330 
   1331 	/*
   1332 	 * Turn on the once-per-second timer
   1333 	 */
   1334 
   1335 	callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
   1336 }
   1337 
   1338 /*
   1339  *  SBMAC_CHANNEL_STOP(s)
   1340  *
   1341  *  Stop packet processing on this MAC.
   1342  *
   1343  *  Input parameters:
   1344  *	s - sbmac structure
   1345  *
   1346  *  Return value:
   1347  *	nothing
   1348  */
   1349 
   1350 static void
   1351 sbmac_channel_stop(struct sbmac_softc *s)
   1352 {
   1353 	uint64_t ctl;
   1354 
   1355 	/* don't do this if already stopped */
   1356 
   1357 	if (s->sbm_state == sbmac_state_off)
   1358 		return;
   1359 
   1360 	/* don't accept any packets, disable all interrupts */
   1361 
   1362 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1363 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1364 
   1365 	/* Turn off ticker */
   1366 
   1367 	callout_stop(&(s->sc_tick_ch));
   1368 
   1369 	/* turn off receiver and transmitter */
   1370 
   1371 	ctl = SBMAC_READCSR(s->sbm_macenable);
   1372 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1373 	SBMAC_WRITECSR(s->sbm_macenable, ctl);
   1374 
   1375 	/* We're stopped now. */
   1376 
   1377 	s->sbm_state = sbmac_state_off;
   1378 	s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1379 
   1380 	/* Empty the receive and transmit rings */
   1381 
   1382 	sbdma_emptyring(&(s->sbm_rxdma));
   1383 	sbdma_emptyring(&(s->sbm_txdma));
   1384 }
   1385 
   1386 /*
   1387  *  SBMAC_SET_CHANNEL_STATE(state)
   1388  *
   1389  *  Set the channel's state ON or OFF
   1390  *
   1391  *  Input parameters:
   1392  *	state - new state
   1393  *
   1394  *  Return value:
   1395  *	old state
   1396  */
   1397 
   1398 static sbmac_state_t
   1399 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1400 {
   1401 	sbmac_state_t oldstate = sc->sbm_state;
   1402 
   1403 	/*
   1404 	 * If same as previous state, return
   1405 	 */
   1406 
   1407 	if (state == oldstate)
   1408 		return oldstate;
   1409 
   1410 	/*
   1411 	 * If new state is ON, turn channel on
   1412 	 */
   1413 
   1414 	if (state == sbmac_state_on)
   1415 		sbmac_channel_start(sc);
   1416 	else
   1417 		sbmac_channel_stop(sc);
   1418 
   1419 	/*
   1420 	 * Return previous state
   1421 	 */
   1422 
   1423 	return oldstate;
   1424 }
   1425 
   1426 /*
   1427  *  SBMAC_PROMISCUOUS_MODE(sc, onoff)
   1428  *
   1429  *  Turn on or off promiscuous mode
   1430  *
   1431  *  Input parameters:
   1432  *	sc - softc
   1433  *	onoff - 1 to turn on, 0 to turn off
   1434  *
   1435  *  Return value:
   1436  *	nothing
   1437  */
   1438 
   1439 static void
   1440 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
   1441 {
   1442 	uint64_t reg;
   1443 
   1444 	if (sc->sbm_state != sbmac_state_on)
   1445 		return;
   1446 
   1447 	if (onoff) {
   1448 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1449 		reg |= M_MAC_ALLPKT_EN;
   1450 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1451 	} else {
   1452 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1453 		reg &= ~M_MAC_ALLPKT_EN;
   1454 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1455 	}
   1456 }
   1457 
   1458 /*
   1459  *  SBMAC_INIT_AND_START(sc)
   1460  *
   1461  *  Stop the channel and restart it.  This is generally used
   1462  *  when we have to do something to the channel that requires
   1463  *  a swift kick.
   1464  *
   1465  *  Input parameters:
   1466  *	sc - softc
   1467  */
   1468 
   1469 static void
   1470 sbmac_init_and_start(struct sbmac_softc *sc)
   1471 {
   1472 	int s;
   1473 
   1474 	s = splnet();
   1475 
   1476 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
   1477 	sbmac_mii_statchg((struct device *) sc); /* set state to new speed */
   1478 	sbmac_set_channel_state(sc, sbmac_state_on);
   1479 
   1480 	splx(s);
   1481 }
   1482 
   1483 /*
   1484  *  SBMAC_ADDR2REG(ptr)
   1485  *
   1486  *  Convert six bytes into the 64-bit register value that
   1487  *  we typically write into the SBMAC's address/mcast registers
   1488  *
   1489  *  Input parameters:
   1490  *	ptr - pointer to 6 bytes
   1491  *
   1492  *  Return value:
   1493  *	register value
   1494  */
   1495 
   1496 static uint64_t
   1497 sbmac_addr2reg(u_char *ptr)
   1498 {
   1499 	uint64_t reg = 0;
   1500 
   1501 	ptr += 6;
   1502 
   1503 	reg |= (uint64_t) *(--ptr);
   1504 	reg <<= 8;
   1505 	reg |= (uint64_t) *(--ptr);
   1506 	reg <<= 8;
   1507 	reg |= (uint64_t) *(--ptr);
   1508 	reg <<= 8;
   1509 	reg |= (uint64_t) *(--ptr);
   1510 	reg <<= 8;
   1511 	reg |= (uint64_t) *(--ptr);
   1512 	reg <<= 8;
   1513 	reg |= (uint64_t) *(--ptr);
   1514 
   1515 	return reg;
   1516 }
   1517 
   1518 /*
   1519  *  SBMAC_SET_SPEED(s, speed)
   1520  *
   1521  *  Configure LAN speed for the specified MAC.
   1522  *  Warning: must be called when MAC is off!
   1523  *
   1524  *  Input parameters:
   1525  *	s - sbmac structure
   1526  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1527  *
   1528  *  Return value:
   1529  *	1 if successful
   1530  *	0 indicates invalid parameters
   1531  */
   1532 
   1533 static int
   1534 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
   1535 {
   1536 	uint64_t cfg;
   1537 	uint64_t framecfg;
   1538 
   1539 	/*
   1540 	 * Save new current values
   1541 	 */
   1542 
   1543 	s->sbm_speed = speed;
   1544 
   1545 	if (s->sbm_state != sbmac_state_off)
   1546 		panic("sbmac_set_speed while MAC not off");
   1547 
   1548 	/*
   1549 	 * Read current register values
   1550 	 */
   1551 
   1552 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1553 	framecfg = SBMAC_READCSR(s->sbm_framecfg);
   1554 
   1555 	/*
   1556 	 * Mask out the stuff we want to change
   1557 	 */
   1558 
   1559 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1560 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1561 	    M_MAC_SLOT_SIZE);
   1562 
   1563 	/*
   1564 	 * Now add in the new bits
   1565 	 */
   1566 
   1567 	switch (speed) {
   1568 	case sbmac_speed_10:
   1569 		framecfg |= V_MAC_IFG_RX_10 |
   1570 		    V_MAC_IFG_TX_10 |
   1571 		    K_MAC_IFG_THRSH_10 |
   1572 		    V_MAC_SLOT_SIZE_10;
   1573 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1574 		break;
   1575 
   1576 	case sbmac_speed_100:
   1577 		framecfg |= V_MAC_IFG_RX_100 |
   1578 		    V_MAC_IFG_TX_100 |
   1579 		    V_MAC_IFG_THRSH_100 |
   1580 		    V_MAC_SLOT_SIZE_100;
   1581 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1582 		break;
   1583 
   1584 	case sbmac_speed_1000:
   1585 		framecfg |= V_MAC_IFG_RX_1000 |
   1586 		    V_MAC_IFG_TX_1000 |
   1587 		    V_MAC_IFG_THRSH_1000 |
   1588 		    V_MAC_SLOT_SIZE_1000;
   1589 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1590 		break;
   1591 
   1592 	case sbmac_speed_auto:		/* XXX not implemented */
   1593 		/* fall through */
   1594 	default:
   1595 		return 0;
   1596 	}
   1597 
   1598 	/*
   1599 	 * Send the bits back to the hardware
   1600 	 */
   1601 
   1602 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1603 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1604 
   1605 	return 1;
   1606 }
   1607 
   1608 /*
   1609  *  SBMAC_SET_DUPLEX(s, duplex, fc)
   1610  *
   1611  *  Set Ethernet duplex and flow control options for this MAC
   1612  *  Warning: must be called when MAC is off!
   1613  *
   1614  *  Input parameters:
   1615  *	s - sbmac structure
   1616  *	duplex - duplex setting (see sbmac_duplex_t)
   1617  *	fc - flow control setting (see sbmac_fc_t)
   1618  *
   1619  *  Return value:
   1620  *	1 if ok
   1621  *	0 if an invalid parameter combination was specified
   1622  */
   1623 
   1624 static int
   1625 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1626 {
   1627 	uint64_t cfg;
   1628 
   1629 	/*
   1630 	 * Save new current values
   1631 	 */
   1632 
   1633 	s->sbm_duplex = duplex;
   1634 	s->sbm_fc = fc;
   1635 
   1636 	if (s->sbm_state != sbmac_state_off)
   1637 		panic("sbmac_set_duplex while MAC not off");
   1638 
   1639 	/*
   1640 	 * Read current register values
   1641 	 */
   1642 
   1643 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1644 
   1645 	/*
   1646 	 * Mask off the stuff we're about to change
   1647 	 */
   1648 
   1649 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1650 
   1651 	switch (duplex) {
   1652 	case sbmac_duplex_half:
   1653 		switch (fc) {
   1654 		case sbmac_fc_disabled:
   1655 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1656 			break;
   1657 
   1658 		case sbmac_fc_collision:
   1659 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1660 			break;
   1661 
   1662 		case sbmac_fc_carrier:
   1663 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1664 			break;
   1665 
   1666 		case sbmac_fc_auto:		/* XXX not implemented */
   1667 			/* fall through */
   1668 		case sbmac_fc_frame:		/* not valid in half duplex */
   1669 		default:			/* invalid selection */
   1670 			panic("%s: invalid half duplex fc selection %d",
   1671 			    s->sc_dev.dv_xname, fc);
   1672 			return 0;
   1673 		}
   1674 		break;
   1675 
   1676 	case sbmac_duplex_full:
   1677 		switch (fc) {
   1678 		case sbmac_fc_disabled:
   1679 			cfg |= V_MAC_FC_CMD_DISABLED;
   1680 			break;
   1681 
   1682 		case sbmac_fc_frame:
   1683 			cfg |= V_MAC_FC_CMD_ENABLED;
   1684 			break;
   1685 
   1686 		case sbmac_fc_collision:	/* not valid in full duplex */
   1687 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1688 		case sbmac_fc_auto:		/* XXX not implemented */
   1689 			/* fall through */
   1690 		default:
   1691 			panic("%s: invalid full duplex fc selection %d",
   1692 			    s->sc_dev.dv_xname, fc);
   1693 			return 0;
   1694 		}
   1695 		break;
   1696 
   1697 	default:
   1698 		/* fall through */
   1699 	case sbmac_duplex_auto:
   1700 		panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
   1701 		/* XXX not implemented */
   1702 		break;
   1703 	}
   1704 
   1705 	/*
   1706 	 * Send the bits back to the hardware
   1707 	 */
   1708 
   1709 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1710 
   1711 	return 1;
   1712 }
   1713 
   1714 /*
   1715  *  SBMAC_INTR()
   1716  *
   1717  *  Interrupt handler for MAC interrupts
   1718  *
   1719  *  Input parameters:
   1720  *	MAC structure
   1721  *
   1722  *  Return value:
   1723  *	nothing
   1724  */
   1725 
   1726 /* ARGSUSED */
   1727 static void
   1728 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
   1729 {
   1730 	struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
   1731 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1732 	uint64_t isr;
   1733 
   1734 	for (;;) {
   1735 
   1736 		/*
   1737 		 * Read the ISR (this clears the bits in the real register)
   1738 		 */
   1739 
   1740 		isr = SBMAC_READCSR(sc->sbm_isr);
   1741 
   1742 		if (isr == 0)
   1743 			break;
   1744 
   1745 		/*
   1746 		 * Transmits on channel 0
   1747 		 */
   1748 
   1749 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
   1750 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1751 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
   1752 		}
   1753 
   1754 		/*
   1755 		 * Receives on channel 0
   1756 		 */
   1757 
   1758 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
   1759 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1760 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
   1761 		}
   1762 	}
   1763 
   1764 	/* try to get more packets going */
   1765 	sbmac_start(ifp);
   1766 }
   1767 
   1768 
   1769 /*
   1770  *  SBMAC_START(ifp)
   1771  *
   1772  *  Start output on the specified interface.  Basically, we
   1773  *  queue as many buffers as we can until the ring fills up, or
   1774  *  we run off the end of the queue, whichever comes first.
   1775  *
   1776  *  Input parameters:
   1777  *	ifp - interface
   1778  *
   1779  *  Return value:
   1780  *	nothing
   1781  */
   1782 
   1783 static void
   1784 sbmac_start(struct ifnet *ifp)
   1785 {
   1786 	struct sbmac_softc	*sc;
   1787 	struct mbuf		*m_head = NULL;
   1788 	int			rv;
   1789 
   1790 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1791 		return;
   1792 
   1793 	sc = ifp->if_softc;
   1794 
   1795 	for (;;) {
   1796 
   1797 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1798 		if (m_head == NULL)
   1799 		    break;
   1800 
   1801 		/*
   1802 		 * Put the buffer on the transmit ring.  If we
   1803 		 * don't have room, set the OACTIVE flag and wait
   1804 		 * for the NIC to drain the ring.
   1805 		 */
   1806 
   1807 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1808 
   1809 		if (rv == 0) {
   1810 			/*
   1811 			 * If there's a BPF listener, bounce a copy of this
   1812 			 * frame to it.
   1813 			 */
   1814 			bpf_mtap(ifp, m_head);
   1815 			if (!sc->sbm_pass3_dma) {
   1816 				/*
   1817 				 * Don't free mbuf if we're not copying to new
   1818 				 * mbuf in sbdma_add_txbuffer.  It will be
   1819 				 * freed in sbdma_tx_process.
   1820 				 */
   1821 				m_freem(m_head);
   1822 			}
   1823 		} else {
   1824 		    IF_PREPEND(&ifp->if_snd, m_head);
   1825 		    ifp->if_flags |= IFF_OACTIVE;
   1826 		    break;
   1827 		}
   1828 	}
   1829 }
   1830 
   1831 /*
   1832  *  SBMAC_SETMULTI(sc)
   1833  *
   1834  *  Reprogram the multicast table into the hardware, given
   1835  *  the list of multicasts associated with the interface
   1836  *  structure.
   1837  *
   1838  *  Input parameters:
   1839  *	sc - softc
   1840  *
   1841  *  Return value:
   1842  *	nothing
   1843  */
   1844 
   1845 static void
   1846 sbmac_setmulti(struct sbmac_softc *sc)
   1847 {
   1848 	struct ifnet *ifp;
   1849 	uint64_t reg;
   1850 	sbmac_port_t port;
   1851 	int idx;
   1852 	struct ether_multi *enm;
   1853 	struct ether_multistep step;
   1854 
   1855 	ifp = &sc->sc_ethercom.ec_if;
   1856 
   1857 	/*
   1858 	 * Clear out entire multicast table.  We do this by nuking
   1859 	 * the entire hash table and all the direct matches except
   1860 	 * the first one, which is used for our station address
   1861 	 */
   1862 
   1863 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1864 		port = PKSEG1(sc->sbm_base +
   1865 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1866 		SBMAC_WRITECSR(port, 0);
   1867 	}
   1868 
   1869 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1870 		port = PKSEG1(sc->sbm_base +
   1871 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1872 		SBMAC_WRITECSR(port, 0);
   1873 	}
   1874 
   1875 	/*
   1876 	 * Clear the filter to say we don't want any multicasts.
   1877 	 */
   1878 
   1879 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1880 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1881 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1882 
   1883 	if (ifp->if_flags & IFF_ALLMULTI) {
   1884 		/*
   1885 		 * Enable ALL multicasts.  Do this by inverting the
   1886 		 * multicast enable bit.
   1887 		 */
   1888 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1889 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1890 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1891 		return;
   1892 	}
   1893 
   1894 	/*
   1895 	 * Progam new multicast entries.  For now, only use the
   1896 	 * perfect filter.  In the future we'll need to use the
   1897 	 * hash filter if the perfect filter overflows
   1898 	 */
   1899 
   1900 	/*
   1901 	 * XXX only using perfect filter for now, need to use hash
   1902 	 * XXX if the table overflows
   1903 	 */
   1904 
   1905 	idx = 1;		/* skip station address */
   1906 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1907 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1908 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1909 		port = PKSEG1(sc->sbm_base +
   1910 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1911 		SBMAC_WRITECSR(port, reg);
   1912 		idx++;
   1913 		ETHER_NEXT_MULTI(step, enm);
   1914 	}
   1915 
   1916 	/*
   1917 	 * Enable the "accept multicast bits" if we programmed at least one
   1918 	 * multicast.
   1919 	 */
   1920 
   1921 	if (idx > 1) {
   1922 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1923 	    reg |= M_MAC_MCAST_EN;
   1924 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1925 	}
   1926 }
   1927 
   1928 /*
   1929  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1930  *
   1931  *  Generic IOCTL requests for this interface.  The basic
   1932  *  stuff is handled here for bringing the interface up,
   1933  *  handling multicasts, etc.
   1934  *
   1935  *  Input parameters:
   1936  *	ifp - interface structure
   1937  *	cmd - command code
   1938  *	data - pointer to data
   1939  *
   1940  *  Return value:
   1941  *	return value (0 is success)
   1942  */
   1943 
   1944 static int
   1945 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1946 {
   1947 	struct ifaddr *ifa = (struct ifaddr *) data;
   1948 	struct sbmac_softc *sc = ifp->if_softc;
   1949 
   1950 	switch (cmd) {
   1951 	case SIOCINITIFADDR:
   1952 		ifp->if_flags |= IFF_UP;
   1953 
   1954 		switch (ifa->ifa_addr->sa_family) {
   1955 #ifdef INET
   1956 		case AF_INET:
   1957 			sbmac_init_and_start(sc);
   1958 			arp_ifinit(ifp, ifa);
   1959 			break;
   1960 #endif
   1961 #ifdef NS
   1962 		case AF_NS:
   1963 		{
   1964 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1965 
   1966 			if (ns_nullhost(*ina))
   1967 				ina->x_host =
   1968 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1969 			else
   1970 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
   1971 				    ifp->if_addrlen);
   1972 			/* Set new address. */
   1973 			sbmac_init_and_start(sc);
   1974 			break;
   1975 		}
   1976 #endif
   1977 		default:
   1978 			sbmac_init_and_start(sc);
   1979 			break;
   1980 		}
   1981 		break;
   1982 
   1983 	default:
   1984 		return ENOTTY;
   1985 	}
   1986 
   1987 	return (0);
   1988 }
   1989 
   1990 /*
   1991  *  SBMAC_IOCTL(ifp, cmd, data)
   1992  *
   1993  *  Main IOCTL handler - dispatches to other IOCTLs for various
   1994  *  types of requests.
   1995  *
   1996  *  Input parameters:
   1997  *	ifp - interface pointer
   1998  *	cmd - command code
   1999  *	data - pointer to argument data
   2000  *
   2001  *  Return value:
   2002  *	0 if ok
   2003  *	else error code
   2004  */
   2005 
   2006 static int
   2007 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2008 {
   2009 	struct sbmac_softc *sc = ifp->if_softc;
   2010 	struct ifreq *ifr = (struct ifreq *) data;
   2011 	int s, error = 0;
   2012 
   2013 	s = splnet();
   2014 
   2015 	switch (cmd) {
   2016 	case SIOCINITIFADDR:
   2017 		error = sbmac_ether_ioctl(ifp, cmd, data);
   2018 		break;
   2019 	case SIOCSIFMTU:
   2020 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
   2021 			error = EINVAL;
   2022 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   2023 			/* XXX Program new MTU here */
   2024 			error = 0;
   2025 		break;
   2026 	case SIOCSIFFLAGS:
   2027 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2028 			break;
   2029 		if (ifp->if_flags & IFF_UP) {
   2030 			/*
   2031 			 * If only the state of the PROMISC flag changed,
   2032 			 * just tweak the hardware registers.
   2033 			 */
   2034 			if ((ifp->if_flags & IFF_RUNNING) &&
   2035 			    (ifp->if_flags & IFF_PROMISC)) {
   2036 				/* turn on promiscuous mode */
   2037 				sbmac_promiscuous_mode(sc, 1);
   2038 			} else if (ifp->if_flags & IFF_RUNNING &&
   2039 			    !(ifp->if_flags & IFF_PROMISC)) {
   2040 			    /* turn off promiscuous mode */
   2041 			    sbmac_promiscuous_mode(sc, 0);
   2042 			} else
   2043 			    sbmac_set_channel_state(sc, sbmac_state_on);
   2044 		} else {
   2045 			if (ifp->if_flags & IFF_RUNNING)
   2046 				sbmac_set_channel_state(sc, sbmac_state_off);
   2047 		}
   2048 
   2049 		sc->sbm_if_flags = ifp->if_flags;
   2050 		error = 0;
   2051 		break;
   2052 
   2053 	case SIOCADDMULTI:
   2054 	case SIOCDELMULTI:
   2055 	case SIOCSIFMEDIA:
   2056 	case SIOCGIFMEDIA:
   2057 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2058 			error = 0;
   2059 			if (ifp->if_flags & IFF_RUNNING)
   2060 				sbmac_setmulti(sc);
   2061 		}
   2062 		break;
   2063 	default:
   2064 		error = ether_ioctl(ifp, cmd, data);
   2065 		break;
   2066 	}
   2067 
   2068 	(void)splx(s);
   2069 
   2070 	return(error);
   2071 }
   2072 
   2073 /*
   2074  *  SBMAC_IFMEDIA_UPD(ifp)
   2075  *
   2076  *  Configure an appropriate media type for this interface,
   2077  *  given the data in the interface structure
   2078  *
   2079  *  Input parameters:
   2080  *	ifp - interface
   2081  *
   2082  *  Return value:
   2083  *	0 if ok
   2084  *	else error code
   2085  */
   2086 
   2087 /*
   2088  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2089  *
   2090  *  Report current media status (used by ifconfig, for example)
   2091  *
   2092  *  Input parameters:
   2093  *	ifp - interface structure
   2094  *	ifmr - media request structure
   2095  *
   2096  *  Return value:
   2097  *	nothing
   2098  */
   2099 
   2100 /*
   2101  *  SBMAC_WATCHDOG(ifp)
   2102  *
   2103  *  Called periodically to make sure we're still happy.
   2104  *
   2105  *  Input parameters:
   2106  *	ifp - interface structure
   2107  *
   2108  *  Return value:
   2109  *	nothing
   2110  */
   2111 
   2112 static void
   2113 sbmac_watchdog(struct ifnet *ifp)
   2114 {
   2115 
   2116 	/* XXX do something */
   2117 }
   2118 
   2119 /*
   2120  * One second timer, used to tick MII.
   2121  */
   2122 static void
   2123 sbmac_tick(void *arg)
   2124 {
   2125 	struct sbmac_softc *sc = arg;
   2126 	int s;
   2127 
   2128 	s = splnet();
   2129 	mii_tick(&sc->sc_mii);
   2130 	splx(s);
   2131 
   2132 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2133 }
   2134 
   2135 
   2136 /*
   2137  *  SBMAC_MATCH(parent, match, aux)
   2138  *
   2139  *  Part of the config process - see if this device matches the
   2140  *  info about what we expect to find on the bus.
   2141  *
   2142  *  Input parameters:
   2143  *	parent - parent bus structure
   2144  *	match -
   2145  *	aux - bus-specific args
   2146  *
   2147  *  Return value:
   2148  *	1 if we match
   2149  *	0 if we don't match
   2150  */
   2151 
   2152 static int
   2153 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
   2154 {
   2155 	struct sbobio_attach_args *sap = aux;
   2156 
   2157 	/*
   2158 	 * Make sure it's a MAC
   2159 	 */
   2160 
   2161 	if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2162 		return 0;
   2163 
   2164 	/*
   2165 	 * Yup, it is.
   2166 	 */
   2167 
   2168 	return 1;
   2169 }
   2170 
   2171 /*
   2172  *  SBMAC_PARSE_XDIGIT(str)
   2173  *
   2174  *  Parse a hex digit, returning its value
   2175  *
   2176  *  Input parameters:
   2177  *	str - character
   2178  *
   2179  *  Return value:
   2180  *	hex value, or -1 if invalid
   2181  */
   2182 
   2183 static int
   2184 sbmac_parse_xdigit(char str)
   2185 {
   2186 	int digit;
   2187 
   2188 	if ((str >= '0') && (str <= '9'))
   2189 		digit = str - '0';
   2190 	else if ((str >= 'a') && (str <= 'f'))
   2191 		digit = str - 'a' + 10;
   2192 	else if ((str >= 'A') && (str <= 'F'))
   2193 		digit = str - 'A' + 10;
   2194 	else
   2195 		digit = -1;
   2196 
   2197 	return digit;
   2198 }
   2199 
   2200 /*
   2201  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2202  *
   2203  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2204  *  Ethernet address.
   2205  *
   2206  *  Input parameters:
   2207  *	str - string
   2208  *	hwaddr - pointer to hardware address
   2209  *
   2210  *  Return value:
   2211  *	0 if ok, else -1
   2212  */
   2213 
   2214 static int
   2215 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
   2216 {
   2217 	int digit1, digit2;
   2218 	int idx = 6;
   2219 
   2220 	while (*str && (idx > 0)) {
   2221 		digit1 = sbmac_parse_xdigit(*str);
   2222 		if (digit1 < 0)
   2223 			return -1;
   2224 		str++;
   2225 		if (!*str)
   2226 			return -1;
   2227 
   2228 		if ((*str == ':') || (*str == '-')) {
   2229 			digit2 = digit1;
   2230 			digit1 = 0;
   2231 		} else {
   2232 			digit2 = sbmac_parse_xdigit(*str);
   2233 			if (digit2 < 0)
   2234 				return -1;
   2235 			str++;
   2236 		}
   2237 
   2238 		*hwaddr++ = (digit1 << 4) | digit2;
   2239 		idx--;
   2240 
   2241 		if (*str == '-')
   2242 			str++;
   2243 		if (*str == ':')
   2244 			str++;
   2245 	}
   2246 	return 0;
   2247 }
   2248 
   2249 /*
   2250  *  SBMAC_ATTACH(parent, self, aux)
   2251  *
   2252  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2253  *
   2254  *  Input parameters:
   2255  *	parent - parent bus device
   2256  *	self - our softc
   2257  *	aux - attach data
   2258  *
   2259  *  Return value:
   2260  *	nothing
   2261  */
   2262 
   2263 static void
   2264 sbmac_attach(struct device *parent, struct device *self, void *aux)
   2265 {
   2266 	struct ifnet *ifp;
   2267 	struct sbmac_softc *sc;
   2268 	struct sbobio_attach_args *sap = aux;
   2269 	u_char *eaddr;
   2270 	static int unit = 0;	/* XXX */
   2271 	uint64_t ea_reg;
   2272 	int idx;
   2273 
   2274 	sc = (struct sbmac_softc *)self;
   2275 
   2276 	/* Determine controller base address */
   2277 
   2278 	sc->sbm_base = sap->sa_locs.sa_addr;
   2279 
   2280 	eaddr = sc->sbm_hwaddr;
   2281 
   2282 	/*
   2283 	 * Initialize context (get pointers to registers and stuff), then
   2284 	 * allocate the memory for the descriptor tables.
   2285 	 */
   2286 
   2287 	sbmac_initctx(sc);
   2288 
   2289 	callout_init(&(sc->sc_tick_ch), 0);
   2290 
   2291 	/*
   2292 	 * Read the ethernet address.  The firwmare left this programmed
   2293 	 * for us in the ethernet address register for each mac.
   2294 	 */
   2295 
   2296 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2297 	for (idx = 0; idx < 6; idx++) {
   2298 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2299 		ea_reg >>= 8;
   2300 	}
   2301 
   2302 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2303 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2304 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2305 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2306 		eaddr[5] = unit;
   2307 	}
   2308 
   2309 #ifdef SBMAC_ETH0_HWADDR
   2310 	if (unit == 0)
   2311 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2312 #endif
   2313 #ifdef SBMAC_ETH1_HWADDR
   2314 	if (unit == 1)
   2315 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2316 #endif
   2317 #ifdef SBMAC_ETH2_HWADDR
   2318 	if (unit == 2)
   2319 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2320 #endif
   2321 	unit++;
   2322 
   2323 	/*
   2324 	 * Display Ethernet address (this is called during the config process
   2325 	 * so we need to finish off the config message that was being displayed)
   2326 	 */
   2327 	printf(": Ethernet%s\n",
   2328 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2329 	printf("%s: Ethernet address: %s\n", self->dv_xname,
   2330 	    ether_sprintf(eaddr));
   2331 
   2332 
   2333 	/*
   2334 	 * Set up ifnet structure
   2335 	 */
   2336 
   2337 	ifp = &sc->sc_ethercom.ec_if;
   2338 	ifp->if_softc = sc;
   2339 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
   2340 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
   2341 	    IFF_NOTRAILERS;
   2342 	ifp->if_ioctl = sbmac_ioctl;
   2343 	ifp->if_start = sbmac_start;
   2344 	ifp->if_watchdog = sbmac_watchdog;
   2345 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2346 
   2347 	/*
   2348 	 * Set up ifmedia support.
   2349 	 */
   2350 
   2351 	/*
   2352 	 * Initialize MII/media info.
   2353 	 */
   2354 	sc->sc_mii.mii_ifp      = ifp;
   2355 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
   2356 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
   2357 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
   2358 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   2359 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
   2360 	    ether_mediastatus);
   2361 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2362 	    MII_OFFSET_ANY, 0);
   2363 
   2364 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2365 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2366 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2367 	} else {
   2368 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2369 	}
   2370 
   2371 
   2372 	/*
   2373 	 * map/route interrupt
   2374 	 */
   2375 
   2376 	sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
   2377 	    sbmac_intr, sc);
   2378 
   2379 	/*
   2380 	 * Call MI attach routines.
   2381 	 */
   2382 	if_attach(ifp);
   2383 	ether_ifattach(ifp, eaddr);
   2384 }
   2385