Home | History | Annotate | Line # | Download | only in dev
sbmac.c revision 1.40
      1 /* $NetBSD: sbmac.c,v 1.40 2011/02/20 07:47:39 matt Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001, 2004
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
     19  *    used to endorse or promote products derived from this software
     20  *    without the prior written permission of Broadcom Corporation.
     21  *
     22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.40 2011/02/20 07:47:39 matt Exp $");
     37 
     38 #include "opt_inet.h"
     39 #include "opt_ns.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/queue.h>
     49 #include <sys/device.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_arp.h>
     53 #include <net/if_ether.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #ifdef INET
     60 #include <netinet/in.h>
     61 #include <netinet/if_inarp.h>
     62 #endif
     63 
     64 #ifdef NS
     65 #include <netns/ns.h>
     66 #include <netns/ns_if.h>
     67 #endif
     68 
     69 #include <machine/locore.h>
     70 
     71 #include "sbobiovar.h"
     72 
     73 #include <dev/mii/mii.h>
     74 #include <dev/mii/miivar.h>
     75 #include <dev/mii/mii_bitbang.h>
     76 
     77 #include <mips/sibyte/include/sb1250_defs.h>
     78 #include <mips/sibyte/include/sb1250_regs.h>
     79 #include <mips/sibyte/include/sb1250_mac.h>
     80 #include <mips/sibyte/include/sb1250_dma.h>
     81 #include <mips/sibyte/include/sb1250_scd.h>
     82 
     83 /* Simple types */
     84 
     85 typedef u_long sbmac_port_t;
     86 typedef uint64_t sbmac_physaddr_t;
     87 typedef uint64_t sbmac_enetaddr_t;
     88 
     89 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     90 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     91 
     92 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     93 	       sbmac_duplex_full } sbmac_duplex_t;
     94 
     95 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
     96 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
     97 
     98 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
     99 	       sbmac_state_broken } sbmac_state_t;
    100 
    101 
    102 /* Macros */
    103 
    104 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
    105 
    106 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
    107 
    108 #define	CACHELINESIZE 32
    109 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
    110 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
    111 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
    112 
    113 #ifdef SBMACDEBUG
    114 #define	dprintf(x)	printf x
    115 #else
    116 #define	dprintf(x)
    117 #endif
    118 
    119 #define	SBMAC_READCSR(t) mips3_ld((volatile uint64_t *) (t))
    120 #define	SBMAC_WRITECSR(t, v) mips3_sd((volatile uint64_t *) (t), (v))
    121 
    122 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    123 
    124 /* These are limited to fit within one virtual page, and must be 2**N.  */
    125 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
    126 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
    127 
    128 #define	ETHER_ALIGN	2
    129 
    130 /* DMA Descriptor structure */
    131 
    132 typedef struct sbdmadscr_s {
    133 	uint64_t dscr_a;
    134 	uint64_t dscr_b;
    135 } sbdmadscr_t;
    136 
    137 
    138 /* DMA Controller structure */
    139 
    140 typedef struct sbmacdma_s {
    141 
    142 	/*
    143 	 * This stuff is used to identify the channel and the registers
    144 	 * associated with it.
    145 	 */
    146 
    147 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    148 	int		sbdma_channel;	/* channel number */
    149 	int		sbdma_txdir;	/* direction (1=transmit) */
    150 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    151 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    152 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    153 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    154 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
    155 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    156 
    157 	/*
    158 	 * This stuff is for maintenance of the ring
    159 	 */
    160 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    161 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    162 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
    163 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    164 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
    165 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
    166 } sbmacdma_t;
    167 
    168 
    169 /* Ethernet softc structure */
    170 
    171 struct sbmac_softc {
    172 
    173 	/*
    174 	 * NetBSD-specific things
    175 	 */
    176 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    177 	struct mii_data	sc_mii;
    178 	struct callout	sc_tick_ch;
    179 
    180 	device_t	sc_dev;		/* device */
    181 	int		sbm_if_flags;
    182 	void		*sbm_intrhand;
    183 
    184 	/*
    185 	 * Controller-specific things
    186 	 */
    187 
    188 	sbmac_port_t	sbm_base;	/* MAC's base address */
    189 	sbmac_state_t	sbm_state;	/* current state */
    190 
    191 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    192 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    193 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    194 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    195 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    196 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    197 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    198 
    199 	sbmac_speed_t	sbm_speed;	/* current speed */
    200 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    201 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    202 	int		sbm_rxflags;	/* received packet flags */
    203 
    204 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    205 
    206 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    207 	sbmacdma_t	sbm_rxdma;
    208 
    209 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    210 
    211 #ifdef SBMAC_EVENT_COUNTERS
    212 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
    213 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
    214 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
    215 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
    216 
    217 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
    218 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
    219 #endif
    220 };
    221 
    222 
    223 #ifdef SBMAC_EVENT_COUNTERS
    224 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
    225 #else
    226 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
    227 #endif
    228 
    229 /* Externs */
    230 
    231 extern paddr_t kvtophys(vaddr_t);
    232 
    233 /* Prototypes */
    234 
    235 static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int);
    236 static void sbdma_channel_start(sbmacdma_t *);
    237 static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *);
    238 static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *);
    239 static void sbdma_emptyring(sbmacdma_t *);
    240 static void sbdma_fillring(sbmacdma_t *);
    241 static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *);
    242 static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *);
    243 static void sbmac_initctx(struct sbmac_softc *);
    244 static void sbmac_channel_start(struct sbmac_softc *);
    245 static void sbmac_channel_stop(struct sbmac_softc *);
    246 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    247     sbmac_state_t);
    248 static void sbmac_promiscuous_mode(struct sbmac_softc *, bool);
    249 static void sbmac_init_and_start(struct sbmac_softc *);
    250 static uint64_t sbmac_addr2reg(u_char *);
    251 static void sbmac_intr(void *, uint32_t, vaddr_t);
    252 static void sbmac_start(struct ifnet *);
    253 static void sbmac_setmulti(struct sbmac_softc *);
    254 static int sbmac_ether_ioctl(struct ifnet *, u_long, void *);
    255 static int sbmac_ioctl(struct ifnet *, u_long, void *);
    256 static void sbmac_watchdog(struct ifnet *);
    257 static int sbmac_match(device_t, cfdata_t, void *);
    258 static void sbmac_attach(device_t, device_t, void *);
    259 static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t);
    260 static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t);
    261 static void sbmac_tick(void *);
    262 
    263 
    264 /* Globals */
    265 
    266 CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc),
    267     sbmac_match, sbmac_attach, NULL, NULL);
    268 
    269 static uint32_t sbmac_mii_bitbang_read(device_t self);
    270 static void sbmac_mii_bitbang_write(device_t self, uint32_t val);
    271 
    272 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    273 	sbmac_mii_bitbang_read,
    274 	sbmac_mii_bitbang_write,
    275 	{
    276 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    277 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    278 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    279 		0,				/* MII_BIT_DIR_HOST_PHY */
    280 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    281 	}
    282 };
    283 
    284 static uint32_t
    285 sbmac_mii_bitbang_read(device_t self)
    286 {
    287 	struct sbmac_softc *sc = device_private(self);
    288 	sbmac_port_t reg;
    289 
    290 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    291 	return (uint32_t) SBMAC_READCSR(reg);
    292 }
    293 
    294 static void
    295 sbmac_mii_bitbang_write(device_t self, uint32_t val)
    296 {
    297 	struct sbmac_softc *sc = device_private(self);
    298 	sbmac_port_t reg;
    299 
    300 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    301 
    302 	SBMAC_WRITECSR(reg, (val &
    303 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
    304 }
    305 
    306 /*
    307  * Read an PHY register through the MII.
    308  */
    309 static int
    310 sbmac_mii_readreg(device_t self, int phy, int reg)
    311 {
    312 
    313 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
    314 }
    315 
    316 /*
    317  * Write to a PHY register through the MII.
    318  */
    319 static void
    320 sbmac_mii_writereg(device_t self, int phy, int reg, int val)
    321 {
    322 
    323 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
    324 }
    325 
    326 static void
    327 sbmac_mii_statchg(device_t self)
    328 {
    329 	struct sbmac_softc *sc = device_private(self);
    330 	sbmac_state_t oldstate;
    331 
    332 	/* Stop the MAC in preparation for changing all of the parameters. */
    333 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    334 
    335 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    336 	default:		/* if autonegotiation fails, assume 10Mbit */
    337 	case IF_Mbps(10):
    338 		sbmac_set_speed(sc, sbmac_speed_10);
    339 		break;
    340 
    341 	case IF_Mbps(100):
    342 		sbmac_set_speed(sc, sbmac_speed_100);
    343 		break;
    344 
    345 	case IF_Mbps(1000):
    346 		sbmac_set_speed(sc, sbmac_speed_1000);
    347 		break;
    348 	}
    349 
    350 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    351 		/* Configure for full-duplex */
    352 		/* XXX: is flow control right for 10, 100? */
    353 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    354 	} else {
    355 		/* Configure for half-duplex */
    356 		/* XXX: is flow control right? */
    357 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    358 	}
    359 
    360 	/* And put it back into its former state. */
    361 	sbmac_set_channel_state(sc, oldstate);
    362 }
    363 
    364 /*
    365  *  SBDMA_INITCTX(d, sc, chan, txrx, maxdescr)
    366  *
    367  *  Initialize a DMA channel context.  Since there are potentially
    368  *  eight DMA channels per MAC, it's nice to do this in a standard
    369  *  way.
    370  *
    371  *  Input parameters:
    372  *	d - sbmacdma_t structure (DMA channel context)
    373  *	sc - sbmac_softc structure (pointer to a MAC)
    374  *	chan - channel number (0..1 right now)
    375  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    376  *	maxdescr - number of descriptors
    377  *
    378  *  Return value:
    379  *	nothing
    380  */
    381 
    382 static void
    383 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx,
    384     int maxdescr)
    385 {
    386 	/*
    387 	 * Save away interesting stuff in the structure
    388 	 */
    389 
    390 	d->sbdma_eth = sc;
    391 	d->sbdma_channel = chan;
    392 	d->sbdma_txdir = txrx;
    393 
    394 	/*
    395 	 * initialize register pointers
    396 	 */
    397 
    398 	d->sbdma_config0 = PKSEG1(sc->sbm_base +
    399 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    400 	d->sbdma_config1 = PKSEG1(sc->sbm_base +
    401 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    402 	d->sbdma_dscrbase = PKSEG1(sc->sbm_base +
    403 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    404 	d->sbdma_dscrcnt = PKSEG1(sc->sbm_base +
    405 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    406 	d->sbdma_curdscr = PKSEG1(sc->sbm_base +
    407 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    408 
    409 	/*
    410 	 * Allocate memory for the ring
    411 	 */
    412 
    413 	d->sbdma_maxdescr = maxdescr;
    414 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
    415 
    416 	d->sbdma_dscrtable = (sbdmadscr_t *)
    417 	    KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
    418 
    419 	memset(d->sbdma_dscrtable, 0, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    420 
    421 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    422 
    423 	/*
    424 	 * And context table
    425 	 */
    426 
    427 	d->sbdma_ctxtable = (struct mbuf **)
    428 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
    429 
    430 	memset(d->sbdma_ctxtable, 0, d->sbdma_maxdescr*sizeof(struct mbuf *));
    431 }
    432 
    433 /*
    434  *  SBDMA_CHANNEL_START(d)
    435  *
    436  *  Initialize the hardware registers for a DMA channel.
    437  *
    438  *  Input parameters:
    439  *	d - DMA channel to init (context must be previously init'd
    440  *
    441  *  Return value:
    442  *	nothing
    443  */
    444 
    445 static void
    446 sbdma_channel_start(sbmacdma_t *d)
    447 {
    448 	/*
    449 	 * Turn on the DMA channel
    450 	 */
    451 
    452 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    453 
    454 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    455 
    456 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    457 
    458 	/*
    459 	 * Initialize ring pointers
    460 	 */
    461 
    462 	d->sbdma_add_index = 0;
    463 	d->sbdma_rem_index = 0;
    464 }
    465 
    466 /*
    467  *  SBDMA_ADD_RCVBUFFER(d, m)
    468  *
    469  *  Add a buffer to the specified DMA channel.   For receive channels,
    470  *  this queues a buffer for inbound packets.
    471  *
    472  *  Input parameters:
    473  *	d - DMA channel descriptor
    474  *	m - mbuf to add, or NULL if we should allocate one.
    475  *
    476  *  Return value:
    477  *	0 if buffer could not be added (ring is full)
    478  *	1 if buffer added successfully
    479  */
    480 
    481 static int
    482 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    483 {
    484 	unsigned int dsc, nextdsc;
    485 	struct mbuf *m_new = NULL;
    486 
    487 	/* get pointer to our current place in the ring */
    488 
    489 	dsc = d->sbdma_add_index;
    490 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    491 
    492 	/*
    493 	 * figure out if the ring is full - if the next descriptor
    494 	 * is the same as the one that we're going to remove from
    495 	 * the ring, the ring is full
    496 	 */
    497 
    498 	if (nextdsc == d->sbdma_rem_index)
    499 		return ENOSPC;
    500 
    501 	/*
    502 	 * Allocate an mbuf if we don't already have one.
    503 	 * If we do have an mbuf, reset it so that it's empty.
    504 	 */
    505 
    506 	if (m == NULL) {
    507 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    508 		if (m_new == NULL) {
    509 			aprint_error_dev(d->sbdma_eth->sc_dev,
    510 			    "mbuf allocation failed\n");
    511 			return ENOBUFS;
    512 		}
    513 
    514 		MCLGET(m_new, M_DONTWAIT);
    515 		if (!(m_new->m_flags & M_EXT)) {
    516 			aprint_error_dev(d->sbdma_eth->sc_dev,
    517 			    "mbuf cluster allocation failed\n");
    518 			m_freem(m_new);
    519 			return ENOBUFS;
    520 		}
    521 
    522 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    523 		m_adj(m_new, ETHER_ALIGN);
    524 	} else {
    525 		m_new = m;
    526 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    527 		m_new->m_data = m_new->m_ext.ext_buf;
    528 		m_adj(m_new, ETHER_ALIGN);
    529 	}
    530 
    531 	/*
    532 	 * fill in the descriptor
    533 	 */
    534 
    535 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
    536 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    537 	    M_DMA_DSCRA_INTERRUPT;
    538 
    539 	/* receiving: no options */
    540 	d->sbdma_dscrtable[dsc].dscr_b = 0;
    541 
    542 	/*
    543 	 * fill in the context
    544 	 */
    545 
    546 	d->sbdma_ctxtable[dsc] = m_new;
    547 
    548 	/*
    549 	 * point at next packet
    550 	 */
    551 
    552 	d->sbdma_add_index = nextdsc;
    553 
    554 	/*
    555 	 * Give the buffer to the DMA engine.
    556 	 */
    557 
    558 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    559 
    560 	return 0;					/* we did it */
    561 }
    562 
    563 /*
    564  *  SBDMA_ADD_TXBUFFER(d, m)
    565  *
    566  *  Add a transmit buffer to the specified DMA channel, causing a
    567  *  transmit to start.
    568  *
    569  *  Input parameters:
    570  *	d - DMA channel descriptor
    571  *	m - mbuf to add
    572  *
    573  *  Return value:
    574  *	0 transmit queued successfully
    575  *	otherwise error code
    576  */
    577 
    578 static int
    579 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    580 {
    581         unsigned int dsc, nextdsc, prevdsc, origdesc;
    582 	int length;
    583 	int num_mbufs = 0;
    584 	struct sbmac_softc *sc = d->sbdma_eth;
    585 
    586 	/* get pointer to our current place in the ring */
    587 
    588 	dsc = d->sbdma_add_index;
    589 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    590 
    591 	/*
    592 	 * figure out if the ring is full - if the next descriptor
    593 	 * is the same as the one that we're going to remove from
    594 	 * the ring, the ring is full
    595 	 */
    596 
    597 	if (nextdsc == d->sbdma_rem_index) {
    598 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    599 		return ENOSPC;
    600 	}
    601 
    602 	/*
    603 	 * PASS3 parts do not have buffer alignment restriction.
    604 	 * No need to copy/coalesce to new mbuf.  Also has different
    605 	 * descriptor format
    606 	 */
    607 	if (sc->sbm_pass3_dma) {
    608 		struct mbuf *m_temp = NULL;
    609 
    610 		/*
    611 		 * Loop thru this mbuf record.
    612 		 * The head mbuf will have SOP set.
    613 		 */
    614 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
    615 		    M_DMA_ETHTX_SOP;
    616 
    617 		/*
    618 		 * transmitting: set outbound options,buffer A size(+ low 5
    619 		 * bits of start addr),and packet length.
    620 		 */
    621 		d->sbdma_dscrtable[dsc].dscr_b =
    622 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    623 		    V_DMA_DSCRB_A_SIZE((m->m_len +
    624 		      (mtod(m,uintptr_t) & 0x0000001F))) |
    625 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
    626 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
    627 
    628 		d->sbdma_add_index = nextdsc;
    629 		origdesc = prevdsc = dsc;
    630 		dsc = d->sbdma_add_index;
    631 		num_mbufs++;
    632 
    633 		/* Start with first non-head mbuf */
    634 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    635 			int len, next_len;
    636 			uint64_t addr;
    637 
    638 			if (m_temp->m_len == 0)
    639 				continue;	/* Skip 0-length mbufs */
    640 
    641 			len = m_temp->m_len;
    642 			addr = KVTOPHYS(mtod(m_temp, void *));
    643 
    644 			/*
    645 			 * Check to see if the mbuf spans a page boundary.  If
    646 			 * it does, and the physical pages behind the virtual
    647 			 * pages are not contiguous, split it so that each
    648 			 * virtual page uses it's own Tx descriptor.
    649 			 */
    650 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
    651 				next_len = (addr + len) - trunc_page(addr + len);
    652 
    653 				len -= next_len;
    654 
    655 				if (addr + len ==
    656 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
    657 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
    658 					len += next_len;
    659 					next_len = 0;
    660 				} else {
    661 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
    662 				}
    663 			} else {
    664 				next_len = 0;
    665 			}
    666 
    667 again:
    668 			/*
    669 			 * fill in the descriptor
    670 			 */
    671 			d->sbdma_dscrtable[dsc].dscr_a = addr;
    672 
    673 			/*
    674 			 * transmitting: set outbound options,buffer A
    675 			 * size(+ low 5 bits of start addr)
    676 			 */
    677 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    678 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
    679 
    680 			d->sbdma_ctxtable[dsc] = NULL;
    681 
    682 			/*
    683 			 * point at next descriptor
    684 			 */
    685 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    686 			if (nextdsc == d->sbdma_rem_index) {
    687 				d->sbdma_add_index = origdesc;
    688 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    689 				return ENOSPC;
    690 			}
    691 			d->sbdma_add_index = nextdsc;
    692 
    693 			prevdsc = dsc;
    694 			dsc = d->sbdma_add_index;
    695 			num_mbufs++;
    696 
    697 			if (next_len != 0) {
    698 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
    699 				len = next_len;
    700 
    701 				next_len = 0;
    702 				goto again;
    703 			}
    704 
    705 		}
    706 		/* Set head mbuf to last context index */
    707 		d->sbdma_ctxtable[prevdsc] = m;
    708 
    709 		/* Interrupt on last dscr of packet.  */
    710 	        d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
    711 	} else {
    712 		struct mbuf *m_new = NULL;
    713 		/*
    714 		 * [BEGIN XXX]
    715 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
    716 		 * assume it will fit).  This is a temporary hack to get us
    717 		 * going.
    718 		 */
    719 
    720 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
    721 		if (m_new == NULL) {
    722 			aprint_error_dev(d->sbdma_eth->sc_dev,
    723 			    "mbuf allocation failed\n");
    724 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    725 			return ENOBUFS;
    726 		}
    727 
    728 		MCLGET(m_new,M_DONTWAIT);
    729 		if (!(m_new->m_flags & M_EXT)) {
    730 			aprint_error_dev(d->sbdma_eth->sc_dev,
    731 			    "mbuf cluster allocation failed\n");
    732 			m_freem(m_new);
    733 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    734 			return ENOBUFS;
    735 		}
    736 
    737 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    738 		/*m_adj(m_new,ETHER_ALIGN);*/
    739 
    740 		/*
    741 		 * XXX Don't forget to include the offset portion in the
    742 		 * XXX cache block calculation when this code is rewritten!
    743 		 */
    744 
    745 		/*
    746 		 * Copy data
    747 		 */
    748 
    749 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
    750 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    751 
    752 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    753 
    754 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    755 		// XXX: function succeeds.
    756 		// m_freem(m);
    757 		length = m_new->m_len;
    758 
    759 		/* [END XXX] */
    760 		/*
    761 		 * fill in the descriptor
    762 		 */
    763 
    764 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
    765 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    766 		    M_DMA_DSCRA_INTERRUPT |
    767 		    M_DMA_ETHTX_SOP;
    768 
    769 		/* transmitting: set outbound options and length */
    770 		d->sbdma_dscrtable[dsc].dscr_b =
    771 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    772 		    V_DMA_DSCRB_PKT_SIZE(length);
    773 
    774 		num_mbufs++;
    775 
    776 		/*
    777 		 * fill in the context
    778 		 */
    779 
    780 		d->sbdma_ctxtable[dsc] = m_new;
    781 
    782 		/*
    783 		 * point at next packet
    784 		 */
    785 		d->sbdma_add_index = nextdsc;
    786 	}
    787 
    788 	/*
    789 	 * Give the buffer to the DMA engine.
    790 	 */
    791 
    792 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    793 
    794 	return 0;					/* we did it */
    795 }
    796 
    797 /*
    798  *  SBDMA_EMPTYRING(d)
    799  *
    800  *  Free all allocated mbufs on the specified DMA channel;
    801  *
    802  *  Input parameters:
    803  *	d  - DMA channel
    804  *
    805  *  Return value:
    806  *	nothing
    807  */
    808 
    809 static void
    810 sbdma_emptyring(sbmacdma_t *d)
    811 {
    812 	int idx;
    813 	struct mbuf *m;
    814 
    815 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    816 		m = d->sbdma_ctxtable[idx];
    817 		if (m) {
    818 			m_freem(m);
    819 			d->sbdma_ctxtable[idx] = NULL;
    820 		}
    821 	}
    822 }
    823 
    824 /*
    825  *  SBDMA_FILLRING(d)
    826  *
    827  *  Fill the specified DMA channel (must be receive channel)
    828  *  with mbufs
    829  *
    830  *  Input parameters:
    831  *	d - DMA channel
    832  *
    833  *  Return value:
    834  *	nothing
    835  */
    836 
    837 static void
    838 sbdma_fillring(sbmacdma_t *d)
    839 {
    840 	int idx;
    841 
    842 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    843 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    844 			break;
    845 }
    846 
    847 /*
    848  *  SBDMA_RX_PROCESS(sc, d)
    849  *
    850  *  Process "completed" receive buffers on the specified DMA channel.
    851  *  Note that this isn't really ideal for priority channels, since
    852  *  it processes all of the packets on a given channel before
    853  *  returning.
    854  *
    855  *  Input parameters:
    856  *	sc - softc structure
    857  *	d - DMA channel context
    858  *
    859  *  Return value:
    860  *	nothing
    861  */
    862 
    863 static void
    864 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    865 {
    866 	int curidx;
    867 	int hwidx;
    868 	sbdmadscr_t *dscp;
    869 	struct mbuf *m;
    870 	int len;
    871 
    872 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    873 
    874 	for (;;) {
    875 		/*
    876 		 * figure out where we are (as an index) and where
    877 		 * the hardware is (also as an index)
    878 		 *
    879 		 * This could be done faster if (for example) the
    880 		 * descriptor table was page-aligned and contiguous in
    881 		 * both virtual and physical memory -- you could then
    882 		 * just compare the low-order bits of the virtual address
    883 		 * (sbdma_rem_index) and the physical address
    884 		 * (sbdma_curdscr CSR).
    885 		 */
    886 
    887 		curidx = d->sbdma_rem_index;
    888 		hwidx = (int)
    889 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    890 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    891 
    892 		/*
    893 		 * If they're the same, that means we've processed all
    894 		 * of the descriptors up to (but not including) the one that
    895 		 * the hardware is working on right now.
    896 		 */
    897 
    898 		if (curidx == hwidx)
    899 			break;
    900 
    901 		/*
    902 		 * Otherwise, get the packet's mbuf ptr back
    903 		 */
    904 
    905 		dscp = &(d->sbdma_dscrtable[curidx]);
    906 		m = d->sbdma_ctxtable[curidx];
    907 		d->sbdma_ctxtable[curidx] = NULL;
    908 
    909 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
    910 
    911 		/*
    912 		 * Check packet status.  If good, process it.
    913 		 * If not, silently drop it and put it back on the
    914 		 * receive ring.
    915 		 */
    916 
    917 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
    918 
    919 			/*
    920 			 * Set length into the packet
    921 			 * XXX do we remove the CRC here?
    922 			 */
    923 			m->m_pkthdr.len = m->m_len = len;
    924 
    925 			ifp->if_ipackets++;
    926 			m->m_pkthdr.rcvif = ifp;
    927 
    928 
    929 			/*
    930 			 * Add a new buffer to replace the old one.
    931 			 */
    932 			sbdma_add_rcvbuffer(d, NULL);
    933 
    934 			/*
    935 			 * Handle BPF listeners. Let the BPF user see the
    936 			 * packet, but don't pass it up to the ether_input()
    937 			 * layer unless it's a broadcast packet, multicast
    938 			 * packet, matches our ethernet address or the
    939 			 * interface is in promiscuous mode.
    940 			 */
    941 
    942 			bpf_mtap(ifp, m);
    943 			/*
    944 			 * Pass the buffer to the kernel
    945 			 */
    946 			(*ifp->if_input)(ifp, m);
    947 		} else {
    948 			/*
    949 			 * Packet was mangled somehow.  Just drop it and
    950 			 * put it back on the receive ring.
    951 			 */
    952 			sbdma_add_rcvbuffer(d, m);
    953 		}
    954 
    955 		/*
    956 		 * .. and advance to the next buffer.
    957 		 */
    958 
    959 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
    960 	}
    961 }
    962 
    963 /*
    964  *  SBDMA_TX_PROCESS(sc, d)
    965  *
    966  *  Process "completed" transmit buffers on the specified DMA channel.
    967  *  This is normally called within the interrupt service routine.
    968  *  Note that this isn't really ideal for priority channels, since
    969  *  it processes all of the packets on a given channel before
    970  *  returning.
    971  *
    972  *  Input parameters:
    973  *	sc - softc structure
    974  *	d - DMA channel context
    975  *
    976  *  Return value:
    977  *	nothing
    978  */
    979 
    980 static void
    981 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    982 {
    983 	int curidx;
    984 	int hwidx;
    985 	struct mbuf *m;
    986 
    987 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    988 
    989 	for (;;) {
    990 		/*
    991 		 * figure out where we are (as an index) and where
    992 		 * the hardware is (also as an index)
    993 		 *
    994 		 * This could be done faster if (for example) the
    995 		 * descriptor table was page-aligned and contiguous in
    996 		 * both virtual and physical memory -- you could then
    997 		 * just compare the low-order bits of the virtual address
    998 		 * (sbdma_rem_index) and the physical address
    999 		 * (sbdma_curdscr CSR).
   1000 		 */
   1001 
   1002 		curidx = d->sbdma_rem_index;
   1003 		hwidx = (int)
   1004 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
   1005 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
   1006 
   1007 		/*
   1008 		 * If they're the same, that means we've processed all
   1009 		 * of the descriptors up to (but not including) the one that
   1010 		 * the hardware is working on right now.
   1011 		 */
   1012 
   1013 		if (curidx == hwidx)
   1014 			break;
   1015 
   1016 		/*
   1017 		 * Otherwise, get the packet's mbuf ptr back
   1018 		 */
   1019 
   1020 		m = d->sbdma_ctxtable[curidx];
   1021 		d->sbdma_ctxtable[curidx] = NULL;
   1022 
   1023 		/*
   1024 		 * for transmits we just free buffers and count packets.
   1025 		 */
   1026 		ifp->if_opackets++;
   1027 		m_freem(m);
   1028 
   1029 		/*
   1030 		 * .. and advance to the next buffer.
   1031 		 */
   1032 
   1033 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
   1034 	}
   1035 
   1036 	/*
   1037 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
   1038 	 * It's supposed to reflect if the interface is actively
   1039 	 * transmitting, but that's really hard to do quickly.
   1040 	 */
   1041 
   1042 	ifp->if_flags &= ~IFF_OACTIVE;
   1043 }
   1044 
   1045 /*
   1046  *  SBMAC_INITCTX(s)
   1047  *
   1048  *  Initialize an Ethernet context structure - this is called
   1049  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1050  *  call it again from inside the ioctl routines that bring the
   1051  *  interface up/down
   1052  *
   1053  *  Input parameters:
   1054  *	sc - sbmac context structure
   1055  *
   1056  *  Return value:
   1057  *	0
   1058  */
   1059 
   1060 static void
   1061 sbmac_initctx(struct sbmac_softc *sc)
   1062 {
   1063 	uint64_t sysrev;
   1064 
   1065 	/*
   1066 	 * figure out the addresses of some ports
   1067 	 */
   1068 
   1069 	sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE);
   1070 	sc->sbm_maccfg    = PKSEG1(sc->sbm_base + R_MAC_CFG);
   1071 	sc->sbm_fifocfg   = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG);
   1072 	sc->sbm_framecfg  = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG);
   1073 	sc->sbm_rxfilter  = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG);
   1074 	sc->sbm_isr       = PKSEG1(sc->sbm_base + R_MAC_STATUS);
   1075 	sc->sbm_imr       = PKSEG1(sc->sbm_base + R_MAC_INT_MASK);
   1076 
   1077 	/*
   1078 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1079 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1080 	 */
   1081 
   1082 	sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1083 	sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1084 
   1085 	/*
   1086 	 * initial state is OFF
   1087 	 */
   1088 
   1089 	sc->sbm_state = sbmac_state_off;
   1090 
   1091 	/*
   1092 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1093 	 */
   1094 
   1095 	sc->sbm_speed = sbmac_speed_10;
   1096 	sc->sbm_duplex = sbmac_duplex_half;
   1097 	sc->sbm_fc = sbmac_fc_disabled;
   1098 
   1099 	/*
   1100 	 * Determine SOC type.  112x has Pass3 SOC features.
   1101 	 */
   1102 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1103 	sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1104 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1105 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1106 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1107 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
   1108 #ifdef SBMAC_EVENT_COUNTERS
   1109 	const char * const xname = device_xname(sc->sc_dev);
   1110 	evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR,
   1111 	    NULL, xname, "rxintr");
   1112 	evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR,
   1113 	    NULL, xname, "txintr");
   1114 	evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC,
   1115 	    NULL, xname, "txdrop");
   1116 	evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC,
   1117 	    NULL, xname, "txstall");
   1118 	if (sc->sbm_pass3_dma) {
   1119 		evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC,
   1120 		    NULL, xname, "pass3tx-split");
   1121 		evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC,
   1122 		    NULL, xname, "pass3tx-keep");
   1123 	}
   1124 #endif
   1125 }
   1126 
   1127 /*
   1128  *  SBMAC_CHANNEL_START(s)
   1129  *
   1130  *  Start packet processing on this MAC.
   1131  *
   1132  *  Input parameters:
   1133  *	sc - sbmac structure
   1134  *
   1135  *  Return value:
   1136  *	nothing
   1137  */
   1138 
   1139 static void
   1140 sbmac_channel_start(struct sbmac_softc *sc)
   1141 {
   1142 	uint64_t reg;
   1143 	sbmac_port_t port;
   1144 	uint64_t cfg, fifo, framecfg;
   1145 	int idx;
   1146 	uint64_t dma_cfg0, fifo_cfg;
   1147 	sbmacdma_t *txdma;
   1148 
   1149 	/*
   1150 	 * Don't do this if running
   1151 	 */
   1152 
   1153 	if (sc->sbm_state == sbmac_state_on)
   1154 		return;
   1155 
   1156 	/*
   1157 	 * Bring the controller out of reset, but leave it off.
   1158 	 */
   1159 
   1160 	SBMAC_WRITECSR(sc->sbm_macenable, 0);
   1161 
   1162 	/*
   1163 	 * Ignore all received packets
   1164 	 */
   1165 
   1166 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1167 
   1168 	/*
   1169 	 * Calculate values for various control registers.
   1170 	 */
   1171 
   1172 	cfg = M_MAC_RETRY_EN |
   1173 	      M_MAC_TX_HOLD_SOP_EN |
   1174 	      V_MAC_TX_PAUSE_CNT_16K |
   1175 	      M_MAC_AP_STAT_EN |
   1176 	      M_MAC_SS_EN |
   1177 	      0;
   1178 
   1179 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1180 	       V_MAC_TX_RD_THRSH(4) |
   1181 	       V_MAC_TX_RL_THRSH(4) |
   1182 	       V_MAC_RX_PL_THRSH(4) |
   1183 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1184 	       V_MAC_RX_PL_THRSH(4) |
   1185 	       V_MAC_RX_RL_THRSH(8) |
   1186 	       0;
   1187 
   1188 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1189 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1190 	    V_MAC_BACKOFF_SEL(1);
   1191 
   1192 	/*
   1193 	 * Clear out the hash address map
   1194 	 */
   1195 
   1196 	port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE);
   1197 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1198 		SBMAC_WRITECSR(port, 0);
   1199 		port += sizeof(uint64_t);
   1200 	}
   1201 
   1202 	/*
   1203 	 * Clear out the exact-match table
   1204 	 */
   1205 
   1206 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
   1207 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1208 		SBMAC_WRITECSR(port, 0);
   1209 		port += sizeof(uint64_t);
   1210 	}
   1211 
   1212 	/*
   1213 	 * Clear out the DMA Channel mapping table registers
   1214 	 */
   1215 
   1216 	port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE);
   1217 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1218 		SBMAC_WRITECSR(port, 0);
   1219 		port += sizeof(uint64_t);
   1220 	}
   1221 
   1222 	port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE);
   1223 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1224 		SBMAC_WRITECSR(port, 0);
   1225 		port += sizeof(uint64_t);
   1226 	}
   1227 
   1228 	/*
   1229 	 * Program the hardware address.  It goes into the hardware-address
   1230 	 * register as well as the first filter register.
   1231 	 */
   1232 
   1233 	reg = sbmac_addr2reg(sc->sbm_hwaddr);
   1234 
   1235 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
   1236 	SBMAC_WRITECSR(port, reg);
   1237 	port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR);
   1238 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1239 
   1240 	/*
   1241 	 * Set the receive filter for no packets, and write values
   1242 	 * to the various config registers
   1243 	 */
   1244 
   1245 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1246 	SBMAC_WRITECSR(sc->sbm_imr, 0);
   1247 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
   1248 	SBMAC_WRITECSR(sc->sbm_fifocfg, fifo);
   1249 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1250 
   1251 	/*
   1252 	 * Initialize DMA channels (rings should be ok now)
   1253 	 */
   1254 
   1255 	sbdma_channel_start(&(sc->sbm_rxdma));
   1256 	sbdma_channel_start(&(sc->sbm_txdma));
   1257 
   1258 	/*
   1259 	 * Configure the speed, duplex, and flow control
   1260 	 */
   1261 
   1262 	sbmac_set_speed(sc, sc->sbm_speed);
   1263 	sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc);
   1264 
   1265 	/*
   1266 	 * Fill the receive ring
   1267 	 */
   1268 
   1269 	sbdma_fillring(&(sc->sbm_rxdma));
   1270 
   1271 	/*
   1272 	 * Turn on the rest of the bits in the enable register
   1273 	 */
   1274 
   1275 	SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1276 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1277 
   1278 
   1279 	/*
   1280 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1281 	 */
   1282 	SBMAC_WRITECSR(sc->sbm_imr,
   1283 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1284 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1285 
   1286 	/*
   1287 	 * Enable receiving unicasts and broadcasts
   1288 	 */
   1289 
   1290 	SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1291 
   1292 	/*
   1293 	 * On chips which support unaligned DMA features, set the descriptor
   1294 	 * ring for transmit channels to use the unaligned buffer format.
   1295 	 */
   1296 	txdma = &(sc->sbm_txdma);
   1297 
   1298 	if (sc->sbm_pass3_dma) {
   1299 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1300 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1301 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1302 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
   1303 
   1304 		fifo_cfg =  SBMAC_READCSR(sc->sbm_fifocfg);
   1305 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1306 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1307 		SBMAC_WRITECSR(sc->sbm_fifocfg,fifo_cfg);
   1308 	}
   1309 
   1310 	/*
   1311 	 * we're running now.
   1312 	 */
   1313 
   1314 	sc->sbm_state = sbmac_state_on;
   1315 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1316 
   1317 	/*
   1318 	 * Program multicast addresses
   1319 	 */
   1320 
   1321 	sbmac_setmulti(sc);
   1322 
   1323 	/*
   1324 	 * If channel was in promiscuous mode before, turn that on
   1325 	 */
   1326 
   1327 	if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1328 		sbmac_promiscuous_mode(sc, true);
   1329 
   1330 	/*
   1331 	 * Turn on the once-per-second timer
   1332 	 */
   1333 
   1334 	callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc);
   1335 }
   1336 
   1337 /*
   1338  *  SBMAC_CHANNEL_STOP(s)
   1339  *
   1340  *  Stop packet processing on this MAC.
   1341  *
   1342  *  Input parameters:
   1343  *	sc - sbmac structure
   1344  *
   1345  *  Return value:
   1346  *	nothing
   1347  */
   1348 
   1349 static void
   1350 sbmac_channel_stop(struct sbmac_softc *sc)
   1351 {
   1352 	uint64_t ctl;
   1353 
   1354 	/* don't do this if already stopped */
   1355 
   1356 	if (sc->sbm_state == sbmac_state_off)
   1357 		return;
   1358 
   1359 	/* don't accept any packets, disable all interrupts */
   1360 
   1361 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1362 	SBMAC_WRITECSR(sc->sbm_imr, 0);
   1363 
   1364 	/* Turn off ticker */
   1365 
   1366 	callout_stop(&(sc->sc_tick_ch));
   1367 
   1368 	/* turn off receiver and transmitter */
   1369 
   1370 	ctl = SBMAC_READCSR(sc->sbm_macenable);
   1371 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1372 	SBMAC_WRITECSR(sc->sbm_macenable, ctl);
   1373 
   1374 	/* We're stopped now. */
   1375 
   1376 	sc->sbm_state = sbmac_state_off;
   1377 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1378 
   1379 	/* Empty the receive and transmit rings */
   1380 
   1381 	sbdma_emptyring(&(sc->sbm_rxdma));
   1382 	sbdma_emptyring(&(sc->sbm_txdma));
   1383 }
   1384 
   1385 /*
   1386  *  SBMAC_SET_CHANNEL_STATE(state)
   1387  *
   1388  *  Set the channel's state ON or OFF
   1389  *
   1390  *  Input parameters:
   1391  *	state - new state
   1392  *
   1393  *  Return value:
   1394  *	old state
   1395  */
   1396 
   1397 static sbmac_state_t
   1398 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1399 {
   1400 	sbmac_state_t oldstate = sc->sbm_state;
   1401 
   1402 	/*
   1403 	 * If same as previous state, return
   1404 	 */
   1405 
   1406 	if (state == oldstate)
   1407 		return oldstate;
   1408 
   1409 	/*
   1410 	 * If new state is ON, turn channel on
   1411 	 */
   1412 
   1413 	if (state == sbmac_state_on)
   1414 		sbmac_channel_start(sc);
   1415 	else
   1416 		sbmac_channel_stop(sc);
   1417 
   1418 	/*
   1419 	 * Return previous state
   1420 	 */
   1421 
   1422 	return oldstate;
   1423 }
   1424 
   1425 /*
   1426  *  SBMAC_PROMISCUOUS_MODE(sc, enabled)
   1427  *
   1428  *  Turn on or off promiscuous mode
   1429  *
   1430  *  Input parameters:
   1431  *	sc - softc
   1432  *	enabled - true to turn on, false to turn off
   1433  *
   1434  *  Return value:
   1435  *	nothing
   1436  */
   1437 
   1438 static void
   1439 sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled)
   1440 {
   1441 	uint64_t reg;
   1442 
   1443 	if (sc->sbm_state != sbmac_state_on)
   1444 		return;
   1445 
   1446 	if (enabled) {
   1447 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1448 		reg |= M_MAC_ALLPKT_EN;
   1449 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1450 	} else {
   1451 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1452 		reg &= ~M_MAC_ALLPKT_EN;
   1453 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1454 	}
   1455 }
   1456 
   1457 /*
   1458  *  SBMAC_INIT_AND_START(sc)
   1459  *
   1460  *  Stop the channel and restart it.  This is generally used
   1461  *  when we have to do something to the channel that requires
   1462  *  a swift kick.
   1463  *
   1464  *  Input parameters:
   1465  *	sc - softc
   1466  */
   1467 
   1468 static void
   1469 sbmac_init_and_start(struct sbmac_softc *sc)
   1470 {
   1471 	int s;
   1472 
   1473 	s = splnet();
   1474 
   1475 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
   1476 	sbmac_mii_statchg(sc->sc_dev); /* set state to new speed */
   1477 	sbmac_set_channel_state(sc, sbmac_state_on);
   1478 
   1479 	splx(s);
   1480 }
   1481 
   1482 /*
   1483  *  SBMAC_ADDR2REG(ptr)
   1484  *
   1485  *  Convert six bytes into the 64-bit register value that
   1486  *  we typically write into the SBMAC's address/mcast registers
   1487  *
   1488  *  Input parameters:
   1489  *	ptr - pointer to 6 bytes
   1490  *
   1491  *  Return value:
   1492  *	register value
   1493  */
   1494 
   1495 static uint64_t
   1496 sbmac_addr2reg(u_char *ptr)
   1497 {
   1498 	uint64_t reg = 0;
   1499 
   1500 	ptr += 6;
   1501 
   1502 	reg |= (uint64_t) *(--ptr);
   1503 	reg <<= 8;
   1504 	reg |= (uint64_t) *(--ptr);
   1505 	reg <<= 8;
   1506 	reg |= (uint64_t) *(--ptr);
   1507 	reg <<= 8;
   1508 	reg |= (uint64_t) *(--ptr);
   1509 	reg <<= 8;
   1510 	reg |= (uint64_t) *(--ptr);
   1511 	reg <<= 8;
   1512 	reg |= (uint64_t) *(--ptr);
   1513 
   1514 	return reg;
   1515 }
   1516 
   1517 /*
   1518  *  SBMAC_SET_SPEED(sc, speed)
   1519  *
   1520  *  Configure LAN speed for the specified MAC.
   1521  *  Warning: must be called when MAC is off!
   1522  *
   1523  *  Input parameters:
   1524  *	sc - sbmac structure
   1525  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1526  *
   1527  *  Return value:
   1528  *	true if successful
   1529  *	false indicates invalid parameters
   1530  */
   1531 
   1532 static bool
   1533 sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed)
   1534 {
   1535 	uint64_t cfg;
   1536 	uint64_t framecfg;
   1537 
   1538 	/*
   1539 	 * Save new current values
   1540 	 */
   1541 
   1542 	sc->sbm_speed = speed;
   1543 
   1544 	if (sc->sbm_state != sbmac_state_off)
   1545 		panic("sbmac_set_speed while MAC not off");
   1546 
   1547 	/*
   1548 	 * Read current register values
   1549 	 */
   1550 
   1551 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
   1552 	framecfg = SBMAC_READCSR(sc->sbm_framecfg);
   1553 
   1554 	/*
   1555 	 * Mask out the stuff we want to change
   1556 	 */
   1557 
   1558 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1559 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1560 	    M_MAC_SLOT_SIZE);
   1561 
   1562 	/*
   1563 	 * Now add in the new bits
   1564 	 */
   1565 
   1566 	switch (speed) {
   1567 	case sbmac_speed_10:
   1568 		framecfg |= V_MAC_IFG_RX_10 |
   1569 		    V_MAC_IFG_TX_10 |
   1570 		    K_MAC_IFG_THRSH_10 |
   1571 		    V_MAC_SLOT_SIZE_10;
   1572 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1573 		break;
   1574 
   1575 	case sbmac_speed_100:
   1576 		framecfg |= V_MAC_IFG_RX_100 |
   1577 		    V_MAC_IFG_TX_100 |
   1578 		    V_MAC_IFG_THRSH_100 |
   1579 		    V_MAC_SLOT_SIZE_100;
   1580 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1581 		break;
   1582 
   1583 	case sbmac_speed_1000:
   1584 		framecfg |= V_MAC_IFG_RX_1000 |
   1585 		    V_MAC_IFG_TX_1000 |
   1586 		    V_MAC_IFG_THRSH_1000 |
   1587 		    V_MAC_SLOT_SIZE_1000;
   1588 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1589 		break;
   1590 
   1591 	case sbmac_speed_auto:		/* XXX not implemented */
   1592 		/* fall through */
   1593 	default:
   1594 		return false;
   1595 	}
   1596 
   1597 	/*
   1598 	 * Send the bits back to the hardware
   1599 	 */
   1600 
   1601 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
   1602 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1603 
   1604 	return true;
   1605 }
   1606 
   1607 /*
   1608  *  SBMAC_SET_DUPLEX(sc, duplex, fc)
   1609  *
   1610  *  Set Ethernet duplex and flow control options for this MAC
   1611  *  Warning: must be called when MAC is off!
   1612  *
   1613  *  Input parameters:
   1614  *	sc - sbmac structure
   1615  *	duplex - duplex setting (see sbmac_duplex_t)
   1616  *	fc - flow control setting (see sbmac_fc_t)
   1617  *
   1618  *  Return value:
   1619  *	true if ok
   1620  *	false if an invalid parameter combination was specified
   1621  */
   1622 
   1623 static bool
   1624 sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1625 {
   1626 	uint64_t cfg;
   1627 
   1628 	/*
   1629 	 * Save new current values
   1630 	 */
   1631 
   1632 	sc->sbm_duplex = duplex;
   1633 	sc->sbm_fc = fc;
   1634 
   1635 	if (sc->sbm_state != sbmac_state_off)
   1636 		panic("sbmac_set_duplex while MAC not off");
   1637 
   1638 	/*
   1639 	 * Read current register values
   1640 	 */
   1641 
   1642 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
   1643 
   1644 	/*
   1645 	 * Mask off the stuff we're about to change
   1646 	 */
   1647 
   1648 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1649 
   1650 	switch (duplex) {
   1651 	case sbmac_duplex_half:
   1652 		switch (fc) {
   1653 		case sbmac_fc_disabled:
   1654 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1655 			break;
   1656 
   1657 		case sbmac_fc_collision:
   1658 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1659 			break;
   1660 
   1661 		case sbmac_fc_carrier:
   1662 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1663 			break;
   1664 
   1665 		case sbmac_fc_auto:		/* XXX not implemented */
   1666 			/* fall through */
   1667 		case sbmac_fc_frame:		/* not valid in half duplex */
   1668 		default:			/* invalid selection */
   1669 			panic("%s: invalid half duplex fc selection %d",
   1670 			    device_xname(sc->sc_dev), fc);
   1671 			return false;
   1672 		}
   1673 		break;
   1674 
   1675 	case sbmac_duplex_full:
   1676 		switch (fc) {
   1677 		case sbmac_fc_disabled:
   1678 			cfg |= V_MAC_FC_CMD_DISABLED;
   1679 			break;
   1680 
   1681 		case sbmac_fc_frame:
   1682 			cfg |= V_MAC_FC_CMD_ENABLED;
   1683 			break;
   1684 
   1685 		case sbmac_fc_collision:	/* not valid in full duplex */
   1686 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1687 		case sbmac_fc_auto:		/* XXX not implemented */
   1688 			/* fall through */
   1689 		default:
   1690 			panic("%s: invalid full duplex fc selection %d",
   1691 			    device_xname(sc->sc_dev), fc);
   1692 			return false;
   1693 		}
   1694 		break;
   1695 
   1696 	default:
   1697 		/* fall through */
   1698 	case sbmac_duplex_auto:
   1699 		panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex);
   1700 		/* XXX not implemented */
   1701 		break;
   1702 	}
   1703 
   1704 	/*
   1705 	 * Send the bits back to the hardware
   1706 	 */
   1707 
   1708 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1709 
   1710 	return true;
   1711 }
   1712 
   1713 /*
   1714  *  SBMAC_INTR()
   1715  *
   1716  *  Interrupt handler for MAC interrupts
   1717  *
   1718  *  Input parameters:
   1719  *	MAC structure
   1720  *
   1721  *  Return value:
   1722  *	nothing
   1723  */
   1724 
   1725 /* ARGSUSED */
   1726 static void
   1727 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
   1728 {
   1729 	struct sbmac_softc *sc = xsc;
   1730 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1731 	uint64_t isr;
   1732 
   1733 	for (;;) {
   1734 
   1735 		/*
   1736 		 * Read the ISR (this clears the bits in the real register)
   1737 		 */
   1738 
   1739 		isr = SBMAC_READCSR(sc->sbm_isr);
   1740 
   1741 		if (isr == 0)
   1742 			break;
   1743 
   1744 		/*
   1745 		 * Transmits on channel 0
   1746 		 */
   1747 
   1748 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
   1749 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1750 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
   1751 		}
   1752 
   1753 		/*
   1754 		 * Receives on channel 0
   1755 		 */
   1756 
   1757 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
   1758 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1759 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
   1760 		}
   1761 	}
   1762 
   1763 	/* try to get more packets going */
   1764 	sbmac_start(ifp);
   1765 }
   1766 
   1767 
   1768 /*
   1769  *  SBMAC_START(ifp)
   1770  *
   1771  *  Start output on the specified interface.  Basically, we
   1772  *  queue as many buffers as we can until the ring fills up, or
   1773  *  we run off the end of the queue, whichever comes first.
   1774  *
   1775  *  Input parameters:
   1776  *	ifp - interface
   1777  *
   1778  *  Return value:
   1779  *	nothing
   1780  */
   1781 
   1782 static void
   1783 sbmac_start(struct ifnet *ifp)
   1784 {
   1785 	struct sbmac_softc	*sc;
   1786 	struct mbuf		*m_head = NULL;
   1787 	int			rv;
   1788 
   1789 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1790 		return;
   1791 
   1792 	sc = ifp->if_softc;
   1793 
   1794 	for (;;) {
   1795 
   1796 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1797 		if (m_head == NULL)
   1798 		    break;
   1799 
   1800 		/*
   1801 		 * Put the buffer on the transmit ring.  If we
   1802 		 * don't have room, set the OACTIVE flag and wait
   1803 		 * for the NIC to drain the ring.
   1804 		 */
   1805 
   1806 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1807 
   1808 		if (rv == 0) {
   1809 			/*
   1810 			 * If there's a BPF listener, bounce a copy of this
   1811 			 * frame to it.
   1812 			 */
   1813 			bpf_mtap(ifp, m_head);
   1814 			if (!sc->sbm_pass3_dma) {
   1815 				/*
   1816 				 * Don't free mbuf if we're not copying to new
   1817 				 * mbuf in sbdma_add_txbuffer.  It will be
   1818 				 * freed in sbdma_tx_process.
   1819 				 */
   1820 				m_freem(m_head);
   1821 			}
   1822 		} else {
   1823 		    IF_PREPEND(&ifp->if_snd, m_head);
   1824 		    ifp->if_flags |= IFF_OACTIVE;
   1825 		    break;
   1826 		}
   1827 	}
   1828 }
   1829 
   1830 /*
   1831  *  SBMAC_SETMULTI(sc)
   1832  *
   1833  *  Reprogram the multicast table into the hardware, given
   1834  *  the list of multicasts associated with the interface
   1835  *  structure.
   1836  *
   1837  *  Input parameters:
   1838  *	sc - softc
   1839  *
   1840  *  Return value:
   1841  *	nothing
   1842  */
   1843 
   1844 static void
   1845 sbmac_setmulti(struct sbmac_softc *sc)
   1846 {
   1847 	struct ifnet *ifp;
   1848 	uint64_t reg;
   1849 	sbmac_port_t port;
   1850 	int idx;
   1851 	struct ether_multi *enm;
   1852 	struct ether_multistep step;
   1853 
   1854 	ifp = &sc->sc_ethercom.ec_if;
   1855 
   1856 	/*
   1857 	 * Clear out entire multicast table.  We do this by nuking
   1858 	 * the entire hash table and all the direct matches except
   1859 	 * the first one, which is used for our station address
   1860 	 */
   1861 
   1862 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1863 		port = PKSEG1(sc->sbm_base +
   1864 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1865 		SBMAC_WRITECSR(port, 0);
   1866 	}
   1867 
   1868 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1869 		port = PKSEG1(sc->sbm_base +
   1870 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1871 		SBMAC_WRITECSR(port, 0);
   1872 	}
   1873 
   1874 	/*
   1875 	 * Clear the filter to say we don't want any multicasts.
   1876 	 */
   1877 
   1878 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1879 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1880 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1881 
   1882 	if (ifp->if_flags & IFF_ALLMULTI) {
   1883 		/*
   1884 		 * Enable ALL multicasts.  Do this by inverting the
   1885 		 * multicast enable bit.
   1886 		 */
   1887 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1888 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1889 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1890 		return;
   1891 	}
   1892 
   1893 	/*
   1894 	 * Progam new multicast entries.  For now, only use the
   1895 	 * perfect filter.  In the future we'll need to use the
   1896 	 * hash filter if the perfect filter overflows
   1897 	 */
   1898 
   1899 	/*
   1900 	 * XXX only using perfect filter for now, need to use hash
   1901 	 * XXX if the table overflows
   1902 	 */
   1903 
   1904 	idx = 1;		/* skip station address */
   1905 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1906 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1907 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1908 		port = PKSEG1(sc->sbm_base +
   1909 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1910 		SBMAC_WRITECSR(port, reg);
   1911 		idx++;
   1912 		ETHER_NEXT_MULTI(step, enm);
   1913 	}
   1914 
   1915 	/*
   1916 	 * Enable the "accept multicast bits" if we programmed at least one
   1917 	 * multicast.
   1918 	 */
   1919 
   1920 	if (idx > 1) {
   1921 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1922 	    reg |= M_MAC_MCAST_EN;
   1923 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1924 	}
   1925 }
   1926 
   1927 /*
   1928  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1929  *
   1930  *  Generic IOCTL requests for this interface.  The basic
   1931  *  stuff is handled here for bringing the interface up,
   1932  *  handling multicasts, etc.
   1933  *
   1934  *  Input parameters:
   1935  *	ifp - interface structure
   1936  *	cmd - command code
   1937  *	data - pointer to data
   1938  *
   1939  *  Return value:
   1940  *	return value (0 is success)
   1941  */
   1942 
   1943 static int
   1944 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1945 {
   1946 	struct ifaddr *ifa = (struct ifaddr *) data;
   1947 	struct sbmac_softc *sc = ifp->if_softc;
   1948 
   1949 	switch (cmd) {
   1950 	case SIOCINITIFADDR:
   1951 		ifp->if_flags |= IFF_UP;
   1952 
   1953 		switch (ifa->ifa_addr->sa_family) {
   1954 #ifdef INET
   1955 		case AF_INET:
   1956 			sbmac_init_and_start(sc);
   1957 			arp_ifinit(ifp, ifa);
   1958 			break;
   1959 #endif
   1960 #ifdef NS
   1961 		case AF_NS:
   1962 		{
   1963 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1964 
   1965 			if (ns_nullhost(*ina))
   1966 				ina->x_host =
   1967 				    *(union ns_host *)LLADDR(ifp->if_sadl);
   1968 			else
   1969 				memcpy(LLADDR(ifp->if_sadl), ina->x_host.c_host,
   1970 				    ifp->if_addrlen);
   1971 			/* Set new address. */
   1972 			sbmac_init_and_start(sc);
   1973 			break;
   1974 		}
   1975 #endif
   1976 		default:
   1977 			sbmac_init_and_start(sc);
   1978 			break;
   1979 		}
   1980 		break;
   1981 
   1982 	default:
   1983 		return ENOTTY;
   1984 	}
   1985 
   1986 	return (0);
   1987 }
   1988 
   1989 /*
   1990  *  SBMAC_IOCTL(ifp, cmd, data)
   1991  *
   1992  *  Main IOCTL handler - dispatches to other IOCTLs for various
   1993  *  types of requests.
   1994  *
   1995  *  Input parameters:
   1996  *	ifp - interface pointer
   1997  *	cmd - command code
   1998  *	data - pointer to argument data
   1999  *
   2000  *  Return value:
   2001  *	0 if ok
   2002  *	else error code
   2003  */
   2004 
   2005 static int
   2006 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2007 {
   2008 	struct sbmac_softc *sc = ifp->if_softc;
   2009 	struct ifreq *ifr = (struct ifreq *) data;
   2010 	int s, error = 0;
   2011 
   2012 	s = splnet();
   2013 
   2014 	switch (cmd) {
   2015 	case SIOCINITIFADDR:
   2016 		error = sbmac_ether_ioctl(ifp, cmd, data);
   2017 		break;
   2018 	case SIOCSIFMTU:
   2019 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
   2020 			error = EINVAL;
   2021 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   2022 			/* XXX Program new MTU here */
   2023 			error = 0;
   2024 		break;
   2025 	case SIOCSIFFLAGS:
   2026 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2027 			break;
   2028 		if (ifp->if_flags & IFF_UP) {
   2029 			/*
   2030 			 * If only the state of the PROMISC flag changed,
   2031 			 * just tweak the hardware registers.
   2032 			 */
   2033 			if ((ifp->if_flags & IFF_RUNNING) &&
   2034 			    (ifp->if_flags & IFF_PROMISC)) {
   2035 				/* turn on promiscuous mode */
   2036 				sbmac_promiscuous_mode(sc, true);
   2037 			} else if (ifp->if_flags & IFF_RUNNING &&
   2038 			    !(ifp->if_flags & IFF_PROMISC)) {
   2039 			    /* turn off promiscuous mode */
   2040 			    sbmac_promiscuous_mode(sc, false);
   2041 			} else
   2042 			    sbmac_set_channel_state(sc, sbmac_state_on);
   2043 		} else {
   2044 			if (ifp->if_flags & IFF_RUNNING)
   2045 				sbmac_set_channel_state(sc, sbmac_state_off);
   2046 		}
   2047 
   2048 		sc->sbm_if_flags = ifp->if_flags;
   2049 		error = 0;
   2050 		break;
   2051 
   2052 	case SIOCADDMULTI:
   2053 	case SIOCDELMULTI:
   2054 	case SIOCSIFMEDIA:
   2055 	case SIOCGIFMEDIA:
   2056 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2057 			error = 0;
   2058 			if (ifp->if_flags & IFF_RUNNING)
   2059 				sbmac_setmulti(sc);
   2060 		}
   2061 		break;
   2062 	default:
   2063 		error = ether_ioctl(ifp, cmd, data);
   2064 		break;
   2065 	}
   2066 
   2067 	(void)splx(s);
   2068 
   2069 	return(error);
   2070 }
   2071 
   2072 /*
   2073  *  SBMAC_IFMEDIA_UPD(ifp)
   2074  *
   2075  *  Configure an appropriate media type for this interface,
   2076  *  given the data in the interface structure
   2077  *
   2078  *  Input parameters:
   2079  *	ifp - interface
   2080  *
   2081  *  Return value:
   2082  *	0 if ok
   2083  *	else error code
   2084  */
   2085 
   2086 /*
   2087  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2088  *
   2089  *  Report current media status (used by ifconfig, for example)
   2090  *
   2091  *  Input parameters:
   2092  *	ifp - interface structure
   2093  *	ifmr - media request structure
   2094  *
   2095  *  Return value:
   2096  *	nothing
   2097  */
   2098 
   2099 /*
   2100  *  SBMAC_WATCHDOG(ifp)
   2101  *
   2102  *  Called periodically to make sure we're still happy.
   2103  *
   2104  *  Input parameters:
   2105  *	ifp - interface structure
   2106  *
   2107  *  Return value:
   2108  *	nothing
   2109  */
   2110 
   2111 static void
   2112 sbmac_watchdog(struct ifnet *ifp)
   2113 {
   2114 
   2115 	/* XXX do something */
   2116 }
   2117 
   2118 /*
   2119  * One second timer, used to tick MII.
   2120  */
   2121 static void
   2122 sbmac_tick(void *arg)
   2123 {
   2124 	struct sbmac_softc *sc = arg;
   2125 	int s;
   2126 
   2127 	s = splnet();
   2128 	mii_tick(&sc->sc_mii);
   2129 	splx(s);
   2130 
   2131 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2132 }
   2133 
   2134 
   2135 /*
   2136  *  SBMAC_MATCH(parent, match, aux)
   2137  *
   2138  *  Part of the config process - see if this device matches the
   2139  *  info about what we expect to find on the bus.
   2140  *
   2141  *  Input parameters:
   2142  *	parent - parent bus structure
   2143  *	match -
   2144  *	aux - bus-specific args
   2145  *
   2146  *  Return value:
   2147  *	1 if we match
   2148  *	0 if we don't match
   2149  */
   2150 
   2151 static int
   2152 sbmac_match(device_t parent, cfdata_t match, void *aux)
   2153 {
   2154 	struct sbobio_attach_args *sa = aux;
   2155 
   2156 	/*
   2157 	 * Make sure it's a MAC
   2158 	 */
   2159 	if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2160 		return 0;
   2161 
   2162 	/*
   2163 	 * Yup, it is.
   2164 	 */
   2165 
   2166 	return 1;
   2167 }
   2168 
   2169 /*
   2170  *  SBMAC_PARSE_XDIGIT(str)
   2171  *
   2172  *  Parse a hex digit, returning its value
   2173  *
   2174  *  Input parameters:
   2175  *	str - character
   2176  *
   2177  *  Return value:
   2178  *	hex value, or -1 if invalid
   2179  */
   2180 
   2181 static int
   2182 sbmac_parse_xdigit(char str)
   2183 {
   2184 	int digit;
   2185 
   2186 	if ((str >= '0') && (str <= '9'))
   2187 		digit = str - '0';
   2188 	else if ((str >= 'a') && (str <= 'f'))
   2189 		digit = str - 'a' + 10;
   2190 	else if ((str >= 'A') && (str <= 'F'))
   2191 		digit = str - 'A' + 10;
   2192 	else
   2193 		digit = -1;
   2194 
   2195 	return digit;
   2196 }
   2197 
   2198 /*
   2199  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2200  *
   2201  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2202  *  Ethernet address.
   2203  *
   2204  *  Input parameters:
   2205  *	str - string
   2206  *	hwaddr - pointer to hardware address
   2207  *
   2208  *  Return value:
   2209  *	0 if ok, else -1
   2210  */
   2211 
   2212 static int
   2213 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
   2214 {
   2215 	int digit1, digit2;
   2216 	int idx = 6;
   2217 
   2218 	while (*str && (idx > 0)) {
   2219 		digit1 = sbmac_parse_xdigit(*str);
   2220 		if (digit1 < 0)
   2221 			return -1;
   2222 		str++;
   2223 		if (!*str)
   2224 			return -1;
   2225 
   2226 		if ((*str == ':') || (*str == '-')) {
   2227 			digit2 = digit1;
   2228 			digit1 = 0;
   2229 		} else {
   2230 			digit2 = sbmac_parse_xdigit(*str);
   2231 			if (digit2 < 0)
   2232 				return -1;
   2233 			str++;
   2234 		}
   2235 
   2236 		*hwaddr++ = (digit1 << 4) | digit2;
   2237 		idx--;
   2238 
   2239 		if (*str == '-')
   2240 			str++;
   2241 		if (*str == ':')
   2242 			str++;
   2243 	}
   2244 	return 0;
   2245 }
   2246 
   2247 /*
   2248  *  SBMAC_ATTACH(parent, self, aux)
   2249  *
   2250  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2251  *
   2252  *  Input parameters:
   2253  *	parent - parent bus device
   2254  *	self - our softc
   2255  *	aux - attach data
   2256  *
   2257  *  Return value:
   2258  *	nothing
   2259  */
   2260 
   2261 static void
   2262 sbmac_attach(device_t parent, device_t self, void *aux)
   2263 {
   2264 	struct sbmac_softc * const sc = device_private(self);
   2265 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   2266 	struct sbobio_attach_args * const sa = aux;
   2267 	u_char *eaddr;
   2268 	static int unit = 0;	/* XXX */
   2269 	uint64_t ea_reg;
   2270 	int idx;
   2271 
   2272 	sc->sc_dev = self;
   2273 
   2274 	/* Determine controller base address */
   2275 
   2276 	sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset;
   2277 
   2278 	eaddr = sc->sbm_hwaddr;
   2279 
   2280 	/*
   2281 	 * Initialize context (get pointers to registers and stuff), then
   2282 	 * allocate the memory for the descriptor tables.
   2283 	 */
   2284 
   2285 	sbmac_initctx(sc);
   2286 
   2287 	callout_init(&(sc->sc_tick_ch), 0);
   2288 
   2289 	/*
   2290 	 * Read the ethernet address.  The firwmare left this programmed
   2291 	 * for us in the ethernet address register for each mac.
   2292 	 */
   2293 
   2294 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2295 	for (idx = 0; idx < 6; idx++) {
   2296 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2297 		ea_reg >>= 8;
   2298 	}
   2299 
   2300 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2301 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2302 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2303 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2304 		eaddr[5] = unit;
   2305 	}
   2306 
   2307 #ifdef SBMAC_ETH0_HWADDR
   2308 	if (unit == 0)
   2309 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2310 #endif
   2311 #ifdef SBMAC_ETH1_HWADDR
   2312 	if (unit == 1)
   2313 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2314 #endif
   2315 #ifdef SBMAC_ETH2_HWADDR
   2316 	if (unit == 2)
   2317 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2318 #endif
   2319 	unit++;
   2320 
   2321 	/*
   2322 	 * Display Ethernet address (this is called during the config process
   2323 	 * so we need to finish off the config message that was being displayed)
   2324 	 */
   2325 	aprint_normal(": Ethernet%s\n",
   2326 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2327 	aprint_normal_dev(self, "Ethernet address: %s\n", ether_sprintf(eaddr));
   2328 
   2329 
   2330 	/*
   2331 	 * Set up ifnet structure
   2332 	 */
   2333 
   2334 	ifp->if_softc = sc;
   2335 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   2336 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
   2337 	    IFF_NOTRAILERS;
   2338 	ifp->if_ioctl = sbmac_ioctl;
   2339 	ifp->if_start = sbmac_start;
   2340 	ifp->if_watchdog = sbmac_watchdog;
   2341 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2342 
   2343 	/*
   2344 	 * Set up ifmedia support.
   2345 	 */
   2346 
   2347 	/*
   2348 	 * Initialize MII/media info.
   2349 	 */
   2350 	sc->sc_mii.mii_ifp      = ifp;
   2351 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
   2352 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
   2353 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
   2354 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   2355 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
   2356 	    ether_mediastatus);
   2357 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2358 	    MII_OFFSET_ANY, 0);
   2359 
   2360 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2361 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2362 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2363 	} else {
   2364 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2365 	}
   2366 
   2367 
   2368 	/*
   2369 	 * map/route interrupt
   2370 	 */
   2371 
   2372 	sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET,
   2373 	    sbmac_intr, sc);
   2374 
   2375 	/*
   2376 	 * Call MI attach routines.
   2377 	 */
   2378 	if_attach(ifp);
   2379 	ether_ifattach(ifp, eaddr);
   2380 }
   2381