Home | History | Annotate | Line # | Download | only in dev
sbmac.c revision 1.41
      1 /* $NetBSD: sbmac.c,v 1.41 2011/07/10 23:32:03 matt Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001, 2004
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
     19  *    used to endorse or promote products derived from this software
     20  *    without the prior written permission of Broadcom Corporation.
     21  *
     22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.41 2011/07/10 23:32:03 matt Exp $");
     37 
     38 #include "opt_inet.h"
     39 #include "opt_ns.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/malloc.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/queue.h>
     49 #include <sys/device.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_arp.h>
     53 #include <net/if_ether.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #ifdef INET
     60 #include <netinet/in.h>
     61 #include <netinet/if_inarp.h>
     62 #endif
     63 
     64 #include <mips/locore.h>
     65 
     66 #include "sbobiovar.h"
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 #include <dev/mii/mii_bitbang.h>
     71 
     72 #include <mips/sibyte/include/sb1250_defs.h>
     73 #include <mips/sibyte/include/sb1250_regs.h>
     74 #include <mips/sibyte/include/sb1250_mac.h>
     75 #include <mips/sibyte/include/sb1250_dma.h>
     76 #include <mips/sibyte/include/sb1250_scd.h>
     77 
     78 /* Simple types */
     79 
     80 typedef u_long sbmac_port_t;
     81 typedef uint64_t sbmac_physaddr_t;
     82 typedef uint64_t sbmac_enetaddr_t;
     83 
     84 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     85 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     86 
     87 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     88 	       sbmac_duplex_full } sbmac_duplex_t;
     89 
     90 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
     91 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
     92 
     93 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
     94 	       sbmac_state_broken } sbmac_state_t;
     95 
     96 
     97 /* Macros */
     98 
     99 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
    100 
    101 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
    102 
    103 #define	CACHELINESIZE 32
    104 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
    105 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
    106 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
    107 
    108 #ifdef SBMACDEBUG
    109 #define	dprintf(x)	printf x
    110 #else
    111 #define	dprintf(x)
    112 #endif
    113 
    114 #define	SBMAC_READCSR(t) mips3_ld((volatile uint64_t *) (t))
    115 #define	SBMAC_WRITECSR(t, v) mips3_sd((volatile uint64_t *) (t), (v))
    116 
    117 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    118 
    119 /* These are limited to fit within one virtual page, and must be 2**N.  */
    120 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
    121 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
    122 
    123 #define	ETHER_ALIGN	2
    124 
    125 /* DMA Descriptor structure */
    126 
    127 typedef struct sbdmadscr_s {
    128 	uint64_t dscr_a;
    129 	uint64_t dscr_b;
    130 } sbdmadscr_t;
    131 
    132 
    133 /* DMA Controller structure */
    134 
    135 typedef struct sbmacdma_s {
    136 
    137 	/*
    138 	 * This stuff is used to identify the channel and the registers
    139 	 * associated with it.
    140 	 */
    141 
    142 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    143 	int		sbdma_channel;	/* channel number */
    144 	int		sbdma_txdir;	/* direction (1=transmit) */
    145 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    146 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    147 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    148 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    149 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
    150 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    151 
    152 	/*
    153 	 * This stuff is for maintenance of the ring
    154 	 */
    155 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    156 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    157 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
    158 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    159 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
    160 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
    161 } sbmacdma_t;
    162 
    163 
    164 /* Ethernet softc structure */
    165 
    166 struct sbmac_softc {
    167 
    168 	/*
    169 	 * NetBSD-specific things
    170 	 */
    171 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    172 	struct mii_data	sc_mii;
    173 	struct callout	sc_tick_ch;
    174 
    175 	device_t	sc_dev;		/* device */
    176 	int		sbm_if_flags;
    177 	void		*sbm_intrhand;
    178 
    179 	/*
    180 	 * Controller-specific things
    181 	 */
    182 
    183 	sbmac_port_t	sbm_base;	/* MAC's base address */
    184 	sbmac_state_t	sbm_state;	/* current state */
    185 
    186 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    187 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    188 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    189 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    190 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    191 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    192 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    193 
    194 	sbmac_speed_t	sbm_speed;	/* current speed */
    195 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    196 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    197 	int		sbm_rxflags;	/* received packet flags */
    198 
    199 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    200 
    201 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    202 	sbmacdma_t	sbm_rxdma;
    203 
    204 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    205 
    206 #ifdef SBMAC_EVENT_COUNTERS
    207 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
    208 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
    209 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
    210 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
    211 
    212 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
    213 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
    214 #endif
    215 };
    216 
    217 
    218 #ifdef SBMAC_EVENT_COUNTERS
    219 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
    220 #else
    221 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
    222 #endif
    223 
    224 /* Externs */
    225 
    226 extern paddr_t kvtophys(vaddr_t);
    227 
    228 /* Prototypes */
    229 
    230 static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int);
    231 static void sbdma_channel_start(sbmacdma_t *);
    232 static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *);
    233 static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *);
    234 static void sbdma_emptyring(sbmacdma_t *);
    235 static void sbdma_fillring(sbmacdma_t *);
    236 static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *);
    237 static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *);
    238 static void sbmac_initctx(struct sbmac_softc *);
    239 static void sbmac_channel_start(struct sbmac_softc *);
    240 static void sbmac_channel_stop(struct sbmac_softc *);
    241 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    242     sbmac_state_t);
    243 static void sbmac_promiscuous_mode(struct sbmac_softc *, bool);
    244 static void sbmac_init_and_start(struct sbmac_softc *);
    245 static uint64_t sbmac_addr2reg(u_char *);
    246 static void sbmac_intr(void *, uint32_t, vaddr_t);
    247 static void sbmac_start(struct ifnet *);
    248 static void sbmac_setmulti(struct sbmac_softc *);
    249 static int sbmac_ether_ioctl(struct ifnet *, u_long, void *);
    250 static int sbmac_ioctl(struct ifnet *, u_long, void *);
    251 static void sbmac_watchdog(struct ifnet *);
    252 static int sbmac_match(device_t, cfdata_t, void *);
    253 static void sbmac_attach(device_t, device_t, void *);
    254 static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t);
    255 static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t);
    256 static void sbmac_tick(void *);
    257 
    258 
    259 /* Globals */
    260 
    261 CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc),
    262     sbmac_match, sbmac_attach, NULL, NULL);
    263 
    264 static uint32_t sbmac_mii_bitbang_read(device_t self);
    265 static void sbmac_mii_bitbang_write(device_t self, uint32_t val);
    266 
    267 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    268 	sbmac_mii_bitbang_read,
    269 	sbmac_mii_bitbang_write,
    270 	{
    271 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    272 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    273 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    274 		0,				/* MII_BIT_DIR_HOST_PHY */
    275 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    276 	}
    277 };
    278 
    279 static uint32_t
    280 sbmac_mii_bitbang_read(device_t self)
    281 {
    282 	struct sbmac_softc *sc = device_private(self);
    283 	sbmac_port_t reg;
    284 
    285 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    286 	return (uint32_t) SBMAC_READCSR(reg);
    287 }
    288 
    289 static void
    290 sbmac_mii_bitbang_write(device_t self, uint32_t val)
    291 {
    292 	struct sbmac_softc *sc = device_private(self);
    293 	sbmac_port_t reg;
    294 
    295 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    296 
    297 	SBMAC_WRITECSR(reg, (val &
    298 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
    299 }
    300 
    301 /*
    302  * Read an PHY register through the MII.
    303  */
    304 static int
    305 sbmac_mii_readreg(device_t self, int phy, int reg)
    306 {
    307 
    308 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
    309 }
    310 
    311 /*
    312  * Write to a PHY register through the MII.
    313  */
    314 static void
    315 sbmac_mii_writereg(device_t self, int phy, int reg, int val)
    316 {
    317 
    318 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
    319 }
    320 
    321 static void
    322 sbmac_mii_statchg(device_t self)
    323 {
    324 	struct sbmac_softc *sc = device_private(self);
    325 	sbmac_state_t oldstate;
    326 
    327 	/* Stop the MAC in preparation for changing all of the parameters. */
    328 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    329 
    330 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    331 	default:		/* if autonegotiation fails, assume 10Mbit */
    332 	case IF_Mbps(10):
    333 		sbmac_set_speed(sc, sbmac_speed_10);
    334 		break;
    335 
    336 	case IF_Mbps(100):
    337 		sbmac_set_speed(sc, sbmac_speed_100);
    338 		break;
    339 
    340 	case IF_Mbps(1000):
    341 		sbmac_set_speed(sc, sbmac_speed_1000);
    342 		break;
    343 	}
    344 
    345 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    346 		/* Configure for full-duplex */
    347 		/* XXX: is flow control right for 10, 100? */
    348 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    349 	} else {
    350 		/* Configure for half-duplex */
    351 		/* XXX: is flow control right? */
    352 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    353 	}
    354 
    355 	/* And put it back into its former state. */
    356 	sbmac_set_channel_state(sc, oldstate);
    357 }
    358 
    359 /*
    360  *  SBDMA_INITCTX(d, sc, chan, txrx, maxdescr)
    361  *
    362  *  Initialize a DMA channel context.  Since there are potentially
    363  *  eight DMA channels per MAC, it's nice to do this in a standard
    364  *  way.
    365  *
    366  *  Input parameters:
    367  *	d - sbmacdma_t structure (DMA channel context)
    368  *	sc - sbmac_softc structure (pointer to a MAC)
    369  *	chan - channel number (0..1 right now)
    370  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    371  *	maxdescr - number of descriptors
    372  *
    373  *  Return value:
    374  *	nothing
    375  */
    376 
    377 static void
    378 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx,
    379     int maxdescr)
    380 {
    381 	/*
    382 	 * Save away interesting stuff in the structure
    383 	 */
    384 
    385 	d->sbdma_eth = sc;
    386 	d->sbdma_channel = chan;
    387 	d->sbdma_txdir = txrx;
    388 
    389 	/*
    390 	 * initialize register pointers
    391 	 */
    392 
    393 	d->sbdma_config0 = PKSEG1(sc->sbm_base +
    394 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    395 	d->sbdma_config1 = PKSEG1(sc->sbm_base +
    396 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    397 	d->sbdma_dscrbase = PKSEG1(sc->sbm_base +
    398 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    399 	d->sbdma_dscrcnt = PKSEG1(sc->sbm_base +
    400 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    401 	d->sbdma_curdscr = PKSEG1(sc->sbm_base +
    402 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    403 
    404 	/*
    405 	 * Allocate memory for the ring
    406 	 */
    407 
    408 	d->sbdma_maxdescr = maxdescr;
    409 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
    410 
    411 	d->sbdma_dscrtable = (sbdmadscr_t *)
    412 	    KMALLOC(d->sbdma_maxdescr * sizeof(sbdmadscr_t));
    413 
    414 	memset(d->sbdma_dscrtable, 0, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    415 
    416 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    417 
    418 	/*
    419 	 * And context table
    420 	 */
    421 
    422 	d->sbdma_ctxtable = (struct mbuf **)
    423 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
    424 
    425 	memset(d->sbdma_ctxtable, 0, d->sbdma_maxdescr*sizeof(struct mbuf *));
    426 }
    427 
    428 /*
    429  *  SBDMA_CHANNEL_START(d)
    430  *
    431  *  Initialize the hardware registers for a DMA channel.
    432  *
    433  *  Input parameters:
    434  *	d - DMA channel to init (context must be previously init'd
    435  *
    436  *  Return value:
    437  *	nothing
    438  */
    439 
    440 static void
    441 sbdma_channel_start(sbmacdma_t *d)
    442 {
    443 	/*
    444 	 * Turn on the DMA channel
    445 	 */
    446 
    447 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    448 
    449 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    450 
    451 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    452 
    453 	/*
    454 	 * Initialize ring pointers
    455 	 */
    456 
    457 	d->sbdma_add_index = 0;
    458 	d->sbdma_rem_index = 0;
    459 }
    460 
    461 /*
    462  *  SBDMA_ADD_RCVBUFFER(d, m)
    463  *
    464  *  Add a buffer to the specified DMA channel.   For receive channels,
    465  *  this queues a buffer for inbound packets.
    466  *
    467  *  Input parameters:
    468  *	d - DMA channel descriptor
    469  *	m - mbuf to add, or NULL if we should allocate one.
    470  *
    471  *  Return value:
    472  *	0 if buffer could not be added (ring is full)
    473  *	1 if buffer added successfully
    474  */
    475 
    476 static int
    477 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    478 {
    479 	unsigned int dsc, nextdsc;
    480 	struct mbuf *m_new = NULL;
    481 
    482 	/* get pointer to our current place in the ring */
    483 
    484 	dsc = d->sbdma_add_index;
    485 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    486 
    487 	/*
    488 	 * figure out if the ring is full - if the next descriptor
    489 	 * is the same as the one that we're going to remove from
    490 	 * the ring, the ring is full
    491 	 */
    492 
    493 	if (nextdsc == d->sbdma_rem_index)
    494 		return ENOSPC;
    495 
    496 	/*
    497 	 * Allocate an mbuf if we don't already have one.
    498 	 * If we do have an mbuf, reset it so that it's empty.
    499 	 */
    500 
    501 	if (m == NULL) {
    502 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    503 		if (m_new == NULL) {
    504 			aprint_error_dev(d->sbdma_eth->sc_dev,
    505 			    "mbuf allocation failed\n");
    506 			return ENOBUFS;
    507 		}
    508 
    509 		MCLGET(m_new, M_DONTWAIT);
    510 		if (!(m_new->m_flags & M_EXT)) {
    511 			aprint_error_dev(d->sbdma_eth->sc_dev,
    512 			    "mbuf cluster allocation failed\n");
    513 			m_freem(m_new);
    514 			return ENOBUFS;
    515 		}
    516 
    517 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    518 		m_adj(m_new, ETHER_ALIGN);
    519 	} else {
    520 		m_new = m;
    521 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    522 		m_new->m_data = m_new->m_ext.ext_buf;
    523 		m_adj(m_new, ETHER_ALIGN);
    524 	}
    525 
    526 	/*
    527 	 * fill in the descriptor
    528 	 */
    529 
    530 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
    531 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    532 	    M_DMA_DSCRA_INTERRUPT;
    533 
    534 	/* receiving: no options */
    535 	d->sbdma_dscrtable[dsc].dscr_b = 0;
    536 
    537 	/*
    538 	 * fill in the context
    539 	 */
    540 
    541 	d->sbdma_ctxtable[dsc] = m_new;
    542 
    543 	/*
    544 	 * point at next packet
    545 	 */
    546 
    547 	d->sbdma_add_index = nextdsc;
    548 
    549 	/*
    550 	 * Give the buffer to the DMA engine.
    551 	 */
    552 
    553 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    554 
    555 	return 0;					/* we did it */
    556 }
    557 
    558 /*
    559  *  SBDMA_ADD_TXBUFFER(d, m)
    560  *
    561  *  Add a transmit buffer to the specified DMA channel, causing a
    562  *  transmit to start.
    563  *
    564  *  Input parameters:
    565  *	d - DMA channel descriptor
    566  *	m - mbuf to add
    567  *
    568  *  Return value:
    569  *	0 transmit queued successfully
    570  *	otherwise error code
    571  */
    572 
    573 static int
    574 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    575 {
    576         unsigned int dsc, nextdsc, prevdsc, origdesc;
    577 	int length;
    578 	int num_mbufs = 0;
    579 	struct sbmac_softc *sc = d->sbdma_eth;
    580 
    581 	/* get pointer to our current place in the ring */
    582 
    583 	dsc = d->sbdma_add_index;
    584 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    585 
    586 	/*
    587 	 * figure out if the ring is full - if the next descriptor
    588 	 * is the same as the one that we're going to remove from
    589 	 * the ring, the ring is full
    590 	 */
    591 
    592 	if (nextdsc == d->sbdma_rem_index) {
    593 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    594 		return ENOSPC;
    595 	}
    596 
    597 	/*
    598 	 * PASS3 parts do not have buffer alignment restriction.
    599 	 * No need to copy/coalesce to new mbuf.  Also has different
    600 	 * descriptor format
    601 	 */
    602 	if (sc->sbm_pass3_dma) {
    603 		struct mbuf *m_temp = NULL;
    604 
    605 		/*
    606 		 * Loop thru this mbuf record.
    607 		 * The head mbuf will have SOP set.
    608 		 */
    609 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m,void *)) |
    610 		    M_DMA_ETHTX_SOP;
    611 
    612 		/*
    613 		 * transmitting: set outbound options,buffer A size(+ low 5
    614 		 * bits of start addr),and packet length.
    615 		 */
    616 		d->sbdma_dscrtable[dsc].dscr_b =
    617 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    618 		    V_DMA_DSCRB_A_SIZE((m->m_len +
    619 		      (mtod(m,uintptr_t) & 0x0000001F))) |
    620 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
    621 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
    622 
    623 		d->sbdma_add_index = nextdsc;
    624 		origdesc = prevdsc = dsc;
    625 		dsc = d->sbdma_add_index;
    626 		num_mbufs++;
    627 
    628 		/* Start with first non-head mbuf */
    629 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    630 			int len, next_len;
    631 			uint64_t addr;
    632 
    633 			if (m_temp->m_len == 0)
    634 				continue;	/* Skip 0-length mbufs */
    635 
    636 			len = m_temp->m_len;
    637 			addr = KVTOPHYS(mtod(m_temp, void *));
    638 
    639 			/*
    640 			 * Check to see if the mbuf spans a page boundary.  If
    641 			 * it does, and the physical pages behind the virtual
    642 			 * pages are not contiguous, split it so that each
    643 			 * virtual page uses it's own Tx descriptor.
    644 			 */
    645 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
    646 				next_len = (addr + len) - trunc_page(addr + len);
    647 
    648 				len -= next_len;
    649 
    650 				if (addr + len ==
    651 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
    652 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
    653 					len += next_len;
    654 					next_len = 0;
    655 				} else {
    656 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
    657 				}
    658 			} else {
    659 				next_len = 0;
    660 			}
    661 
    662 again:
    663 			/*
    664 			 * fill in the descriptor
    665 			 */
    666 			d->sbdma_dscrtable[dsc].dscr_a = addr;
    667 
    668 			/*
    669 			 * transmitting: set outbound options,buffer A
    670 			 * size(+ low 5 bits of start addr)
    671 			 */
    672 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    673 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
    674 
    675 			d->sbdma_ctxtable[dsc] = NULL;
    676 
    677 			/*
    678 			 * point at next descriptor
    679 			 */
    680 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    681 			if (nextdsc == d->sbdma_rem_index) {
    682 				d->sbdma_add_index = origdesc;
    683 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    684 				return ENOSPC;
    685 			}
    686 			d->sbdma_add_index = nextdsc;
    687 
    688 			prevdsc = dsc;
    689 			dsc = d->sbdma_add_index;
    690 			num_mbufs++;
    691 
    692 			if (next_len != 0) {
    693 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
    694 				len = next_len;
    695 
    696 				next_len = 0;
    697 				goto again;
    698 			}
    699 
    700 		}
    701 		/* Set head mbuf to last context index */
    702 		d->sbdma_ctxtable[prevdsc] = m;
    703 
    704 		/* Interrupt on last dscr of packet.  */
    705 	        d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
    706 	} else {
    707 		struct mbuf *m_new = NULL;
    708 		/*
    709 		 * [BEGIN XXX]
    710 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
    711 		 * assume it will fit).  This is a temporary hack to get us
    712 		 * going.
    713 		 */
    714 
    715 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
    716 		if (m_new == NULL) {
    717 			aprint_error_dev(d->sbdma_eth->sc_dev,
    718 			    "mbuf allocation failed\n");
    719 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    720 			return ENOBUFS;
    721 		}
    722 
    723 		MCLGET(m_new,M_DONTWAIT);
    724 		if (!(m_new->m_flags & M_EXT)) {
    725 			aprint_error_dev(d->sbdma_eth->sc_dev,
    726 			    "mbuf cluster allocation failed\n");
    727 			m_freem(m_new);
    728 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    729 			return ENOBUFS;
    730 		}
    731 
    732 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    733 		/*m_adj(m_new,ETHER_ALIGN);*/
    734 
    735 		/*
    736 		 * XXX Don't forget to include the offset portion in the
    737 		 * XXX cache block calculation when this code is rewritten!
    738 		 */
    739 
    740 		/*
    741 		 * Copy data
    742 		 */
    743 
    744 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,void *));
    745 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    746 
    747 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    748 
    749 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    750 		// XXX: function succeeds.
    751 		// m_freem(m);
    752 		length = m_new->m_len;
    753 
    754 		/* [END XXX] */
    755 		/*
    756 		 * fill in the descriptor
    757 		 */
    758 
    759 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
    760 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    761 		    M_DMA_DSCRA_INTERRUPT |
    762 		    M_DMA_ETHTX_SOP;
    763 
    764 		/* transmitting: set outbound options and length */
    765 		d->sbdma_dscrtable[dsc].dscr_b =
    766 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    767 		    V_DMA_DSCRB_PKT_SIZE(length);
    768 
    769 		num_mbufs++;
    770 
    771 		/*
    772 		 * fill in the context
    773 		 */
    774 
    775 		d->sbdma_ctxtable[dsc] = m_new;
    776 
    777 		/*
    778 		 * point at next packet
    779 		 */
    780 		d->sbdma_add_index = nextdsc;
    781 	}
    782 
    783 	/*
    784 	 * Give the buffer to the DMA engine.
    785 	 */
    786 
    787 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    788 
    789 	return 0;					/* we did it */
    790 }
    791 
    792 /*
    793  *  SBDMA_EMPTYRING(d)
    794  *
    795  *  Free all allocated mbufs on the specified DMA channel;
    796  *
    797  *  Input parameters:
    798  *	d  - DMA channel
    799  *
    800  *  Return value:
    801  *	nothing
    802  */
    803 
    804 static void
    805 sbdma_emptyring(sbmacdma_t *d)
    806 {
    807 	int idx;
    808 	struct mbuf *m;
    809 
    810 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    811 		m = d->sbdma_ctxtable[idx];
    812 		if (m) {
    813 			m_freem(m);
    814 			d->sbdma_ctxtable[idx] = NULL;
    815 		}
    816 	}
    817 }
    818 
    819 /*
    820  *  SBDMA_FILLRING(d)
    821  *
    822  *  Fill the specified DMA channel (must be receive channel)
    823  *  with mbufs
    824  *
    825  *  Input parameters:
    826  *	d - DMA channel
    827  *
    828  *  Return value:
    829  *	nothing
    830  */
    831 
    832 static void
    833 sbdma_fillring(sbmacdma_t *d)
    834 {
    835 	int idx;
    836 
    837 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    838 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    839 			break;
    840 }
    841 
    842 /*
    843  *  SBDMA_RX_PROCESS(sc, d)
    844  *
    845  *  Process "completed" receive buffers on the specified DMA channel.
    846  *  Note that this isn't really ideal for priority channels, since
    847  *  it processes all of the packets on a given channel before
    848  *  returning.
    849  *
    850  *  Input parameters:
    851  *	sc - softc structure
    852  *	d - DMA channel context
    853  *
    854  *  Return value:
    855  *	nothing
    856  */
    857 
    858 static void
    859 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    860 {
    861 	int curidx;
    862 	int hwidx;
    863 	sbdmadscr_t *dscp;
    864 	struct mbuf *m;
    865 	int len;
    866 
    867 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    868 
    869 	for (;;) {
    870 		/*
    871 		 * figure out where we are (as an index) and where
    872 		 * the hardware is (also as an index)
    873 		 *
    874 		 * This could be done faster if (for example) the
    875 		 * descriptor table was page-aligned and contiguous in
    876 		 * both virtual and physical memory -- you could then
    877 		 * just compare the low-order bits of the virtual address
    878 		 * (sbdma_rem_index) and the physical address
    879 		 * (sbdma_curdscr CSR).
    880 		 */
    881 
    882 		curidx = d->sbdma_rem_index;
    883 		hwidx = (int)
    884 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    885 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    886 
    887 		/*
    888 		 * If they're the same, that means we've processed all
    889 		 * of the descriptors up to (but not including) the one that
    890 		 * the hardware is working on right now.
    891 		 */
    892 
    893 		if (curidx == hwidx)
    894 			break;
    895 
    896 		/*
    897 		 * Otherwise, get the packet's mbuf ptr back
    898 		 */
    899 
    900 		dscp = &(d->sbdma_dscrtable[curidx]);
    901 		m = d->sbdma_ctxtable[curidx];
    902 		d->sbdma_ctxtable[curidx] = NULL;
    903 
    904 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
    905 
    906 		/*
    907 		 * Check packet status.  If good, process it.
    908 		 * If not, silently drop it and put it back on the
    909 		 * receive ring.
    910 		 */
    911 
    912 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
    913 
    914 			/*
    915 			 * Set length into the packet
    916 			 * XXX do we remove the CRC here?
    917 			 */
    918 			m->m_pkthdr.len = m->m_len = len;
    919 
    920 			ifp->if_ipackets++;
    921 			m->m_pkthdr.rcvif = ifp;
    922 
    923 
    924 			/*
    925 			 * Add a new buffer to replace the old one.
    926 			 */
    927 			sbdma_add_rcvbuffer(d, NULL);
    928 
    929 			/*
    930 			 * Handle BPF listeners. Let the BPF user see the
    931 			 * packet, but don't pass it up to the ether_input()
    932 			 * layer unless it's a broadcast packet, multicast
    933 			 * packet, matches our ethernet address or the
    934 			 * interface is in promiscuous mode.
    935 			 */
    936 
    937 			bpf_mtap(ifp, m);
    938 			/*
    939 			 * Pass the buffer to the kernel
    940 			 */
    941 			(*ifp->if_input)(ifp, m);
    942 		} else {
    943 			/*
    944 			 * Packet was mangled somehow.  Just drop it and
    945 			 * put it back on the receive ring.
    946 			 */
    947 			sbdma_add_rcvbuffer(d, m);
    948 		}
    949 
    950 		/*
    951 		 * .. and advance to the next buffer.
    952 		 */
    953 
    954 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
    955 	}
    956 }
    957 
    958 /*
    959  *  SBDMA_TX_PROCESS(sc, d)
    960  *
    961  *  Process "completed" transmit buffers on the specified DMA channel.
    962  *  This is normally called within the interrupt service routine.
    963  *  Note that this isn't really ideal for priority channels, since
    964  *  it processes all of the packets on a given channel before
    965  *  returning.
    966  *
    967  *  Input parameters:
    968  *	sc - softc structure
    969  *	d - DMA channel context
    970  *
    971  *  Return value:
    972  *	nothing
    973  */
    974 
    975 static void
    976 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    977 {
    978 	int curidx;
    979 	int hwidx;
    980 	struct mbuf *m;
    981 
    982 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    983 
    984 	for (;;) {
    985 		/*
    986 		 * figure out where we are (as an index) and where
    987 		 * the hardware is (also as an index)
    988 		 *
    989 		 * This could be done faster if (for example) the
    990 		 * descriptor table was page-aligned and contiguous in
    991 		 * both virtual and physical memory -- you could then
    992 		 * just compare the low-order bits of the virtual address
    993 		 * (sbdma_rem_index) and the physical address
    994 		 * (sbdma_curdscr CSR).
    995 		 */
    996 
    997 		curidx = d->sbdma_rem_index;
    998 		hwidx = (int)
    999 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
   1000 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
   1001 
   1002 		/*
   1003 		 * If they're the same, that means we've processed all
   1004 		 * of the descriptors up to (but not including) the one that
   1005 		 * the hardware is working on right now.
   1006 		 */
   1007 
   1008 		if (curidx == hwidx)
   1009 			break;
   1010 
   1011 		/*
   1012 		 * Otherwise, get the packet's mbuf ptr back
   1013 		 */
   1014 
   1015 		m = d->sbdma_ctxtable[curidx];
   1016 		d->sbdma_ctxtable[curidx] = NULL;
   1017 
   1018 		/*
   1019 		 * for transmits we just free buffers and count packets.
   1020 		 */
   1021 		ifp->if_opackets++;
   1022 		m_freem(m);
   1023 
   1024 		/*
   1025 		 * .. and advance to the next buffer.
   1026 		 */
   1027 
   1028 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
   1029 	}
   1030 
   1031 	/*
   1032 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
   1033 	 * It's supposed to reflect if the interface is actively
   1034 	 * transmitting, but that's really hard to do quickly.
   1035 	 */
   1036 
   1037 	ifp->if_flags &= ~IFF_OACTIVE;
   1038 }
   1039 
   1040 /*
   1041  *  SBMAC_INITCTX(s)
   1042  *
   1043  *  Initialize an Ethernet context structure - this is called
   1044  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1045  *  call it again from inside the ioctl routines that bring the
   1046  *  interface up/down
   1047  *
   1048  *  Input parameters:
   1049  *	sc - sbmac context structure
   1050  *
   1051  *  Return value:
   1052  *	0
   1053  */
   1054 
   1055 static void
   1056 sbmac_initctx(struct sbmac_softc *sc)
   1057 {
   1058 	uint64_t sysrev;
   1059 
   1060 	/*
   1061 	 * figure out the addresses of some ports
   1062 	 */
   1063 
   1064 	sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE);
   1065 	sc->sbm_maccfg    = PKSEG1(sc->sbm_base + R_MAC_CFG);
   1066 	sc->sbm_fifocfg   = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG);
   1067 	sc->sbm_framecfg  = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG);
   1068 	sc->sbm_rxfilter  = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG);
   1069 	sc->sbm_isr       = PKSEG1(sc->sbm_base + R_MAC_STATUS);
   1070 	sc->sbm_imr       = PKSEG1(sc->sbm_base + R_MAC_INT_MASK);
   1071 
   1072 	/*
   1073 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1074 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1075 	 */
   1076 
   1077 	sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1078 	sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1079 
   1080 	/*
   1081 	 * initial state is OFF
   1082 	 */
   1083 
   1084 	sc->sbm_state = sbmac_state_off;
   1085 
   1086 	/*
   1087 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1088 	 */
   1089 
   1090 	sc->sbm_speed = sbmac_speed_10;
   1091 	sc->sbm_duplex = sbmac_duplex_half;
   1092 	sc->sbm_fc = sbmac_fc_disabled;
   1093 
   1094 	/*
   1095 	 * Determine SOC type.  112x has Pass3 SOC features.
   1096 	 */
   1097 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1098 	sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1099 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1100 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1101 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1102 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
   1103 #ifdef SBMAC_EVENT_COUNTERS
   1104 	const char * const xname = device_xname(sc->sc_dev);
   1105 	evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR,
   1106 	    NULL, xname, "rxintr");
   1107 	evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR,
   1108 	    NULL, xname, "txintr");
   1109 	evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC,
   1110 	    NULL, xname, "txdrop");
   1111 	evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC,
   1112 	    NULL, xname, "txstall");
   1113 	if (sc->sbm_pass3_dma) {
   1114 		evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC,
   1115 		    NULL, xname, "pass3tx-split");
   1116 		evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC,
   1117 		    NULL, xname, "pass3tx-keep");
   1118 	}
   1119 #endif
   1120 }
   1121 
   1122 /*
   1123  *  SBMAC_CHANNEL_START(s)
   1124  *
   1125  *  Start packet processing on this MAC.
   1126  *
   1127  *  Input parameters:
   1128  *	sc - sbmac structure
   1129  *
   1130  *  Return value:
   1131  *	nothing
   1132  */
   1133 
   1134 static void
   1135 sbmac_channel_start(struct sbmac_softc *sc)
   1136 {
   1137 	uint64_t reg;
   1138 	sbmac_port_t port;
   1139 	uint64_t cfg, fifo, framecfg;
   1140 	int idx;
   1141 	uint64_t dma_cfg0, fifo_cfg;
   1142 	sbmacdma_t *txdma;
   1143 
   1144 	/*
   1145 	 * Don't do this if running
   1146 	 */
   1147 
   1148 	if (sc->sbm_state == sbmac_state_on)
   1149 		return;
   1150 
   1151 	/*
   1152 	 * Bring the controller out of reset, but leave it off.
   1153 	 */
   1154 
   1155 	SBMAC_WRITECSR(sc->sbm_macenable, 0);
   1156 
   1157 	/*
   1158 	 * Ignore all received packets
   1159 	 */
   1160 
   1161 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1162 
   1163 	/*
   1164 	 * Calculate values for various control registers.
   1165 	 */
   1166 
   1167 	cfg = M_MAC_RETRY_EN |
   1168 	      M_MAC_TX_HOLD_SOP_EN |
   1169 	      V_MAC_TX_PAUSE_CNT_16K |
   1170 	      M_MAC_AP_STAT_EN |
   1171 	      M_MAC_SS_EN |
   1172 	      0;
   1173 
   1174 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1175 	       V_MAC_TX_RD_THRSH(4) |
   1176 	       V_MAC_TX_RL_THRSH(4) |
   1177 	       V_MAC_RX_PL_THRSH(4) |
   1178 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1179 	       V_MAC_RX_PL_THRSH(4) |
   1180 	       V_MAC_RX_RL_THRSH(8) |
   1181 	       0;
   1182 
   1183 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1184 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1185 	    V_MAC_BACKOFF_SEL(1);
   1186 
   1187 	/*
   1188 	 * Clear out the hash address map
   1189 	 */
   1190 
   1191 	port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE);
   1192 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1193 		SBMAC_WRITECSR(port, 0);
   1194 		port += sizeof(uint64_t);
   1195 	}
   1196 
   1197 	/*
   1198 	 * Clear out the exact-match table
   1199 	 */
   1200 
   1201 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
   1202 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1203 		SBMAC_WRITECSR(port, 0);
   1204 		port += sizeof(uint64_t);
   1205 	}
   1206 
   1207 	/*
   1208 	 * Clear out the DMA Channel mapping table registers
   1209 	 */
   1210 
   1211 	port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE);
   1212 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1213 		SBMAC_WRITECSR(port, 0);
   1214 		port += sizeof(uint64_t);
   1215 	}
   1216 
   1217 	port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE);
   1218 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1219 		SBMAC_WRITECSR(port, 0);
   1220 		port += sizeof(uint64_t);
   1221 	}
   1222 
   1223 	/*
   1224 	 * Program the hardware address.  It goes into the hardware-address
   1225 	 * register as well as the first filter register.
   1226 	 */
   1227 
   1228 	reg = sbmac_addr2reg(sc->sbm_hwaddr);
   1229 
   1230 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
   1231 	SBMAC_WRITECSR(port, reg);
   1232 	port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR);
   1233 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1234 
   1235 	/*
   1236 	 * Set the receive filter for no packets, and write values
   1237 	 * to the various config registers
   1238 	 */
   1239 
   1240 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1241 	SBMAC_WRITECSR(sc->sbm_imr, 0);
   1242 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
   1243 	SBMAC_WRITECSR(sc->sbm_fifocfg, fifo);
   1244 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1245 
   1246 	/*
   1247 	 * Initialize DMA channels (rings should be ok now)
   1248 	 */
   1249 
   1250 	sbdma_channel_start(&(sc->sbm_rxdma));
   1251 	sbdma_channel_start(&(sc->sbm_txdma));
   1252 
   1253 	/*
   1254 	 * Configure the speed, duplex, and flow control
   1255 	 */
   1256 
   1257 	sbmac_set_speed(sc, sc->sbm_speed);
   1258 	sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc);
   1259 
   1260 	/*
   1261 	 * Fill the receive ring
   1262 	 */
   1263 
   1264 	sbdma_fillring(&(sc->sbm_rxdma));
   1265 
   1266 	/*
   1267 	 * Turn on the rest of the bits in the enable register
   1268 	 */
   1269 
   1270 	SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1271 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1272 
   1273 
   1274 	/*
   1275 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1276 	 */
   1277 	SBMAC_WRITECSR(sc->sbm_imr,
   1278 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1279 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1280 
   1281 	/*
   1282 	 * Enable receiving unicasts and broadcasts
   1283 	 */
   1284 
   1285 	SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1286 
   1287 	/*
   1288 	 * On chips which support unaligned DMA features, set the descriptor
   1289 	 * ring for transmit channels to use the unaligned buffer format.
   1290 	 */
   1291 	txdma = &(sc->sbm_txdma);
   1292 
   1293 	if (sc->sbm_pass3_dma) {
   1294 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1295 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1296 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1297 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
   1298 
   1299 		fifo_cfg =  SBMAC_READCSR(sc->sbm_fifocfg);
   1300 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1301 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1302 		SBMAC_WRITECSR(sc->sbm_fifocfg,fifo_cfg);
   1303 	}
   1304 
   1305 	/*
   1306 	 * we're running now.
   1307 	 */
   1308 
   1309 	sc->sbm_state = sbmac_state_on;
   1310 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1311 
   1312 	/*
   1313 	 * Program multicast addresses
   1314 	 */
   1315 
   1316 	sbmac_setmulti(sc);
   1317 
   1318 	/*
   1319 	 * If channel was in promiscuous mode before, turn that on
   1320 	 */
   1321 
   1322 	if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1323 		sbmac_promiscuous_mode(sc, true);
   1324 
   1325 	/*
   1326 	 * Turn on the once-per-second timer
   1327 	 */
   1328 
   1329 	callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc);
   1330 }
   1331 
   1332 /*
   1333  *  SBMAC_CHANNEL_STOP(s)
   1334  *
   1335  *  Stop packet processing on this MAC.
   1336  *
   1337  *  Input parameters:
   1338  *	sc - sbmac structure
   1339  *
   1340  *  Return value:
   1341  *	nothing
   1342  */
   1343 
   1344 static void
   1345 sbmac_channel_stop(struct sbmac_softc *sc)
   1346 {
   1347 	uint64_t ctl;
   1348 
   1349 	/* don't do this if already stopped */
   1350 
   1351 	if (sc->sbm_state == sbmac_state_off)
   1352 		return;
   1353 
   1354 	/* don't accept any packets, disable all interrupts */
   1355 
   1356 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1357 	SBMAC_WRITECSR(sc->sbm_imr, 0);
   1358 
   1359 	/* Turn off ticker */
   1360 
   1361 	callout_stop(&(sc->sc_tick_ch));
   1362 
   1363 	/* turn off receiver and transmitter */
   1364 
   1365 	ctl = SBMAC_READCSR(sc->sbm_macenable);
   1366 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1367 	SBMAC_WRITECSR(sc->sbm_macenable, ctl);
   1368 
   1369 	/* We're stopped now. */
   1370 
   1371 	sc->sbm_state = sbmac_state_off;
   1372 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1373 
   1374 	/* Empty the receive and transmit rings */
   1375 
   1376 	sbdma_emptyring(&(sc->sbm_rxdma));
   1377 	sbdma_emptyring(&(sc->sbm_txdma));
   1378 }
   1379 
   1380 /*
   1381  *  SBMAC_SET_CHANNEL_STATE(state)
   1382  *
   1383  *  Set the channel's state ON or OFF
   1384  *
   1385  *  Input parameters:
   1386  *	state - new state
   1387  *
   1388  *  Return value:
   1389  *	old state
   1390  */
   1391 
   1392 static sbmac_state_t
   1393 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1394 {
   1395 	sbmac_state_t oldstate = sc->sbm_state;
   1396 
   1397 	/*
   1398 	 * If same as previous state, return
   1399 	 */
   1400 
   1401 	if (state == oldstate)
   1402 		return oldstate;
   1403 
   1404 	/*
   1405 	 * If new state is ON, turn channel on
   1406 	 */
   1407 
   1408 	if (state == sbmac_state_on)
   1409 		sbmac_channel_start(sc);
   1410 	else
   1411 		sbmac_channel_stop(sc);
   1412 
   1413 	/*
   1414 	 * Return previous state
   1415 	 */
   1416 
   1417 	return oldstate;
   1418 }
   1419 
   1420 /*
   1421  *  SBMAC_PROMISCUOUS_MODE(sc, enabled)
   1422  *
   1423  *  Turn on or off promiscuous mode
   1424  *
   1425  *  Input parameters:
   1426  *	sc - softc
   1427  *	enabled - true to turn on, false to turn off
   1428  *
   1429  *  Return value:
   1430  *	nothing
   1431  */
   1432 
   1433 static void
   1434 sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled)
   1435 {
   1436 	uint64_t reg;
   1437 
   1438 	if (sc->sbm_state != sbmac_state_on)
   1439 		return;
   1440 
   1441 	if (enabled) {
   1442 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1443 		reg |= M_MAC_ALLPKT_EN;
   1444 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1445 	} else {
   1446 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1447 		reg &= ~M_MAC_ALLPKT_EN;
   1448 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1449 	}
   1450 }
   1451 
   1452 /*
   1453  *  SBMAC_INIT_AND_START(sc)
   1454  *
   1455  *  Stop the channel and restart it.  This is generally used
   1456  *  when we have to do something to the channel that requires
   1457  *  a swift kick.
   1458  *
   1459  *  Input parameters:
   1460  *	sc - softc
   1461  */
   1462 
   1463 static void
   1464 sbmac_init_and_start(struct sbmac_softc *sc)
   1465 {
   1466 	int s;
   1467 
   1468 	s = splnet();
   1469 
   1470 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
   1471 	sbmac_mii_statchg(sc->sc_dev); /* set state to new speed */
   1472 	sbmac_set_channel_state(sc, sbmac_state_on);
   1473 
   1474 	splx(s);
   1475 }
   1476 
   1477 /*
   1478  *  SBMAC_ADDR2REG(ptr)
   1479  *
   1480  *  Convert six bytes into the 64-bit register value that
   1481  *  we typically write into the SBMAC's address/mcast registers
   1482  *
   1483  *  Input parameters:
   1484  *	ptr - pointer to 6 bytes
   1485  *
   1486  *  Return value:
   1487  *	register value
   1488  */
   1489 
   1490 static uint64_t
   1491 sbmac_addr2reg(u_char *ptr)
   1492 {
   1493 	uint64_t reg = 0;
   1494 
   1495 	ptr += 6;
   1496 
   1497 	reg |= (uint64_t) *(--ptr);
   1498 	reg <<= 8;
   1499 	reg |= (uint64_t) *(--ptr);
   1500 	reg <<= 8;
   1501 	reg |= (uint64_t) *(--ptr);
   1502 	reg <<= 8;
   1503 	reg |= (uint64_t) *(--ptr);
   1504 	reg <<= 8;
   1505 	reg |= (uint64_t) *(--ptr);
   1506 	reg <<= 8;
   1507 	reg |= (uint64_t) *(--ptr);
   1508 
   1509 	return reg;
   1510 }
   1511 
   1512 /*
   1513  *  SBMAC_SET_SPEED(sc, speed)
   1514  *
   1515  *  Configure LAN speed for the specified MAC.
   1516  *  Warning: must be called when MAC is off!
   1517  *
   1518  *  Input parameters:
   1519  *	sc - sbmac structure
   1520  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1521  *
   1522  *  Return value:
   1523  *	true if successful
   1524  *	false indicates invalid parameters
   1525  */
   1526 
   1527 static bool
   1528 sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed)
   1529 {
   1530 	uint64_t cfg;
   1531 	uint64_t framecfg;
   1532 
   1533 	/*
   1534 	 * Save new current values
   1535 	 */
   1536 
   1537 	sc->sbm_speed = speed;
   1538 
   1539 	if (sc->sbm_state != sbmac_state_off)
   1540 		panic("sbmac_set_speed while MAC not off");
   1541 
   1542 	/*
   1543 	 * Read current register values
   1544 	 */
   1545 
   1546 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
   1547 	framecfg = SBMAC_READCSR(sc->sbm_framecfg);
   1548 
   1549 	/*
   1550 	 * Mask out the stuff we want to change
   1551 	 */
   1552 
   1553 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1554 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1555 	    M_MAC_SLOT_SIZE);
   1556 
   1557 	/*
   1558 	 * Now add in the new bits
   1559 	 */
   1560 
   1561 	switch (speed) {
   1562 	case sbmac_speed_10:
   1563 		framecfg |= V_MAC_IFG_RX_10 |
   1564 		    V_MAC_IFG_TX_10 |
   1565 		    K_MAC_IFG_THRSH_10 |
   1566 		    V_MAC_SLOT_SIZE_10;
   1567 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1568 		break;
   1569 
   1570 	case sbmac_speed_100:
   1571 		framecfg |= V_MAC_IFG_RX_100 |
   1572 		    V_MAC_IFG_TX_100 |
   1573 		    V_MAC_IFG_THRSH_100 |
   1574 		    V_MAC_SLOT_SIZE_100;
   1575 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1576 		break;
   1577 
   1578 	case sbmac_speed_1000:
   1579 		framecfg |= V_MAC_IFG_RX_1000 |
   1580 		    V_MAC_IFG_TX_1000 |
   1581 		    V_MAC_IFG_THRSH_1000 |
   1582 		    V_MAC_SLOT_SIZE_1000;
   1583 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1584 		break;
   1585 
   1586 	case sbmac_speed_auto:		/* XXX not implemented */
   1587 		/* fall through */
   1588 	default:
   1589 		return false;
   1590 	}
   1591 
   1592 	/*
   1593 	 * Send the bits back to the hardware
   1594 	 */
   1595 
   1596 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
   1597 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1598 
   1599 	return true;
   1600 }
   1601 
   1602 /*
   1603  *  SBMAC_SET_DUPLEX(sc, duplex, fc)
   1604  *
   1605  *  Set Ethernet duplex and flow control options for this MAC
   1606  *  Warning: must be called when MAC is off!
   1607  *
   1608  *  Input parameters:
   1609  *	sc - sbmac structure
   1610  *	duplex - duplex setting (see sbmac_duplex_t)
   1611  *	fc - flow control setting (see sbmac_fc_t)
   1612  *
   1613  *  Return value:
   1614  *	true if ok
   1615  *	false if an invalid parameter combination was specified
   1616  */
   1617 
   1618 static bool
   1619 sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1620 {
   1621 	uint64_t cfg;
   1622 
   1623 	/*
   1624 	 * Save new current values
   1625 	 */
   1626 
   1627 	sc->sbm_duplex = duplex;
   1628 	sc->sbm_fc = fc;
   1629 
   1630 	if (sc->sbm_state != sbmac_state_off)
   1631 		panic("sbmac_set_duplex while MAC not off");
   1632 
   1633 	/*
   1634 	 * Read current register values
   1635 	 */
   1636 
   1637 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
   1638 
   1639 	/*
   1640 	 * Mask off the stuff we're about to change
   1641 	 */
   1642 
   1643 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1644 
   1645 	switch (duplex) {
   1646 	case sbmac_duplex_half:
   1647 		switch (fc) {
   1648 		case sbmac_fc_disabled:
   1649 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1650 			break;
   1651 
   1652 		case sbmac_fc_collision:
   1653 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1654 			break;
   1655 
   1656 		case sbmac_fc_carrier:
   1657 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1658 			break;
   1659 
   1660 		case sbmac_fc_auto:		/* XXX not implemented */
   1661 			/* fall through */
   1662 		case sbmac_fc_frame:		/* not valid in half duplex */
   1663 		default:			/* invalid selection */
   1664 			panic("%s: invalid half duplex fc selection %d",
   1665 			    device_xname(sc->sc_dev), fc);
   1666 			return false;
   1667 		}
   1668 		break;
   1669 
   1670 	case sbmac_duplex_full:
   1671 		switch (fc) {
   1672 		case sbmac_fc_disabled:
   1673 			cfg |= V_MAC_FC_CMD_DISABLED;
   1674 			break;
   1675 
   1676 		case sbmac_fc_frame:
   1677 			cfg |= V_MAC_FC_CMD_ENABLED;
   1678 			break;
   1679 
   1680 		case sbmac_fc_collision:	/* not valid in full duplex */
   1681 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1682 		case sbmac_fc_auto:		/* XXX not implemented */
   1683 			/* fall through */
   1684 		default:
   1685 			panic("%s: invalid full duplex fc selection %d",
   1686 			    device_xname(sc->sc_dev), fc);
   1687 			return false;
   1688 		}
   1689 		break;
   1690 
   1691 	default:
   1692 		/* fall through */
   1693 	case sbmac_duplex_auto:
   1694 		panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex);
   1695 		/* XXX not implemented */
   1696 		break;
   1697 	}
   1698 
   1699 	/*
   1700 	 * Send the bits back to the hardware
   1701 	 */
   1702 
   1703 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1704 
   1705 	return true;
   1706 }
   1707 
   1708 /*
   1709  *  SBMAC_INTR()
   1710  *
   1711  *  Interrupt handler for MAC interrupts
   1712  *
   1713  *  Input parameters:
   1714  *	MAC structure
   1715  *
   1716  *  Return value:
   1717  *	nothing
   1718  */
   1719 
   1720 /* ARGSUSED */
   1721 static void
   1722 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
   1723 {
   1724 	struct sbmac_softc *sc = xsc;
   1725 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1726 	uint64_t isr;
   1727 
   1728 	for (;;) {
   1729 
   1730 		/*
   1731 		 * Read the ISR (this clears the bits in the real register)
   1732 		 */
   1733 
   1734 		isr = SBMAC_READCSR(sc->sbm_isr);
   1735 
   1736 		if (isr == 0)
   1737 			break;
   1738 
   1739 		/*
   1740 		 * Transmits on channel 0
   1741 		 */
   1742 
   1743 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
   1744 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1745 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
   1746 		}
   1747 
   1748 		/*
   1749 		 * Receives on channel 0
   1750 		 */
   1751 
   1752 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
   1753 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1754 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
   1755 		}
   1756 	}
   1757 
   1758 	/* try to get more packets going */
   1759 	sbmac_start(ifp);
   1760 }
   1761 
   1762 
   1763 /*
   1764  *  SBMAC_START(ifp)
   1765  *
   1766  *  Start output on the specified interface.  Basically, we
   1767  *  queue as many buffers as we can until the ring fills up, or
   1768  *  we run off the end of the queue, whichever comes first.
   1769  *
   1770  *  Input parameters:
   1771  *	ifp - interface
   1772  *
   1773  *  Return value:
   1774  *	nothing
   1775  */
   1776 
   1777 static void
   1778 sbmac_start(struct ifnet *ifp)
   1779 {
   1780 	struct sbmac_softc	*sc;
   1781 	struct mbuf		*m_head = NULL;
   1782 	int			rv;
   1783 
   1784 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1785 		return;
   1786 
   1787 	sc = ifp->if_softc;
   1788 
   1789 	for (;;) {
   1790 
   1791 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1792 		if (m_head == NULL)
   1793 		    break;
   1794 
   1795 		/*
   1796 		 * Put the buffer on the transmit ring.  If we
   1797 		 * don't have room, set the OACTIVE flag and wait
   1798 		 * for the NIC to drain the ring.
   1799 		 */
   1800 
   1801 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1802 
   1803 		if (rv == 0) {
   1804 			/*
   1805 			 * If there's a BPF listener, bounce a copy of this
   1806 			 * frame to it.
   1807 			 */
   1808 			bpf_mtap(ifp, m_head);
   1809 			if (!sc->sbm_pass3_dma) {
   1810 				/*
   1811 				 * Don't free mbuf if we're not copying to new
   1812 				 * mbuf in sbdma_add_txbuffer.  It will be
   1813 				 * freed in sbdma_tx_process.
   1814 				 */
   1815 				m_freem(m_head);
   1816 			}
   1817 		} else {
   1818 		    IF_PREPEND(&ifp->if_snd, m_head);
   1819 		    ifp->if_flags |= IFF_OACTIVE;
   1820 		    break;
   1821 		}
   1822 	}
   1823 }
   1824 
   1825 /*
   1826  *  SBMAC_SETMULTI(sc)
   1827  *
   1828  *  Reprogram the multicast table into the hardware, given
   1829  *  the list of multicasts associated with the interface
   1830  *  structure.
   1831  *
   1832  *  Input parameters:
   1833  *	sc - softc
   1834  *
   1835  *  Return value:
   1836  *	nothing
   1837  */
   1838 
   1839 static void
   1840 sbmac_setmulti(struct sbmac_softc *sc)
   1841 {
   1842 	struct ifnet *ifp;
   1843 	uint64_t reg;
   1844 	sbmac_port_t port;
   1845 	int idx;
   1846 	struct ether_multi *enm;
   1847 	struct ether_multistep step;
   1848 
   1849 	ifp = &sc->sc_ethercom.ec_if;
   1850 
   1851 	/*
   1852 	 * Clear out entire multicast table.  We do this by nuking
   1853 	 * the entire hash table and all the direct matches except
   1854 	 * the first one, which is used for our station address
   1855 	 */
   1856 
   1857 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1858 		port = PKSEG1(sc->sbm_base +
   1859 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1860 		SBMAC_WRITECSR(port, 0);
   1861 	}
   1862 
   1863 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1864 		port = PKSEG1(sc->sbm_base +
   1865 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1866 		SBMAC_WRITECSR(port, 0);
   1867 	}
   1868 
   1869 	/*
   1870 	 * Clear the filter to say we don't want any multicasts.
   1871 	 */
   1872 
   1873 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1874 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1875 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1876 
   1877 	if (ifp->if_flags & IFF_ALLMULTI) {
   1878 		/*
   1879 		 * Enable ALL multicasts.  Do this by inverting the
   1880 		 * multicast enable bit.
   1881 		 */
   1882 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1883 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1884 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1885 		return;
   1886 	}
   1887 
   1888 	/*
   1889 	 * Progam new multicast entries.  For now, only use the
   1890 	 * perfect filter.  In the future we'll need to use the
   1891 	 * hash filter if the perfect filter overflows
   1892 	 */
   1893 
   1894 	/*
   1895 	 * XXX only using perfect filter for now, need to use hash
   1896 	 * XXX if the table overflows
   1897 	 */
   1898 
   1899 	idx = 1;		/* skip station address */
   1900 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1901 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1902 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1903 		port = PKSEG1(sc->sbm_base +
   1904 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1905 		SBMAC_WRITECSR(port, reg);
   1906 		idx++;
   1907 		ETHER_NEXT_MULTI(step, enm);
   1908 	}
   1909 
   1910 	/*
   1911 	 * Enable the "accept multicast bits" if we programmed at least one
   1912 	 * multicast.
   1913 	 */
   1914 
   1915 	if (idx > 1) {
   1916 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1917 	    reg |= M_MAC_MCAST_EN;
   1918 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1919 	}
   1920 }
   1921 
   1922 /*
   1923  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1924  *
   1925  *  Generic IOCTL requests for this interface.  The basic
   1926  *  stuff is handled here for bringing the interface up,
   1927  *  handling multicasts, etc.
   1928  *
   1929  *  Input parameters:
   1930  *	ifp - interface structure
   1931  *	cmd - command code
   1932  *	data - pointer to data
   1933  *
   1934  *  Return value:
   1935  *	return value (0 is success)
   1936  */
   1937 
   1938 static int
   1939 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1940 {
   1941 	struct ifaddr *ifa = (struct ifaddr *) data;
   1942 	struct sbmac_softc *sc = ifp->if_softc;
   1943 
   1944 	switch (cmd) {
   1945 	case SIOCINITIFADDR:
   1946 		ifp->if_flags |= IFF_UP;
   1947 
   1948 		switch (ifa->ifa_addr->sa_family) {
   1949 #ifdef INET
   1950 		case AF_INET:
   1951 			sbmac_init_and_start(sc);
   1952 			arp_ifinit(ifp, ifa);
   1953 			break;
   1954 #endif
   1955 		default:
   1956 			sbmac_init_and_start(sc);
   1957 			break;
   1958 		}
   1959 		break;
   1960 
   1961 	default:
   1962 		return ENOTTY;
   1963 	}
   1964 
   1965 	return (0);
   1966 }
   1967 
   1968 /*
   1969  *  SBMAC_IOCTL(ifp, cmd, data)
   1970  *
   1971  *  Main IOCTL handler - dispatches to other IOCTLs for various
   1972  *  types of requests.
   1973  *
   1974  *  Input parameters:
   1975  *	ifp - interface pointer
   1976  *	cmd - command code
   1977  *	data - pointer to argument data
   1978  *
   1979  *  Return value:
   1980  *	0 if ok
   1981  *	else error code
   1982  */
   1983 
   1984 static int
   1985 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1986 {
   1987 	struct sbmac_softc *sc = ifp->if_softc;
   1988 	struct ifreq *ifr = (struct ifreq *) data;
   1989 	int s, error = 0;
   1990 
   1991 	s = splnet();
   1992 
   1993 	switch (cmd) {
   1994 	case SIOCINITIFADDR:
   1995 		error = sbmac_ether_ioctl(ifp, cmd, data);
   1996 		break;
   1997 	case SIOCSIFMTU:
   1998 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
   1999 			error = EINVAL;
   2000 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   2001 			/* XXX Program new MTU here */
   2002 			error = 0;
   2003 		break;
   2004 	case SIOCSIFFLAGS:
   2005 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2006 			break;
   2007 		if (ifp->if_flags & IFF_UP) {
   2008 			/*
   2009 			 * If only the state of the PROMISC flag changed,
   2010 			 * just tweak the hardware registers.
   2011 			 */
   2012 			if ((ifp->if_flags & IFF_RUNNING) &&
   2013 			    (ifp->if_flags & IFF_PROMISC)) {
   2014 				/* turn on promiscuous mode */
   2015 				sbmac_promiscuous_mode(sc, true);
   2016 			} else if (ifp->if_flags & IFF_RUNNING &&
   2017 			    !(ifp->if_flags & IFF_PROMISC)) {
   2018 			    /* turn off promiscuous mode */
   2019 			    sbmac_promiscuous_mode(sc, false);
   2020 			} else
   2021 			    sbmac_set_channel_state(sc, sbmac_state_on);
   2022 		} else {
   2023 			if (ifp->if_flags & IFF_RUNNING)
   2024 				sbmac_set_channel_state(sc, sbmac_state_off);
   2025 		}
   2026 
   2027 		sc->sbm_if_flags = ifp->if_flags;
   2028 		error = 0;
   2029 		break;
   2030 
   2031 	case SIOCADDMULTI:
   2032 	case SIOCDELMULTI:
   2033 	case SIOCSIFMEDIA:
   2034 	case SIOCGIFMEDIA:
   2035 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2036 			error = 0;
   2037 			if (ifp->if_flags & IFF_RUNNING)
   2038 				sbmac_setmulti(sc);
   2039 		}
   2040 		break;
   2041 	default:
   2042 		error = ether_ioctl(ifp, cmd, data);
   2043 		break;
   2044 	}
   2045 
   2046 	(void)splx(s);
   2047 
   2048 	return(error);
   2049 }
   2050 
   2051 /*
   2052  *  SBMAC_IFMEDIA_UPD(ifp)
   2053  *
   2054  *  Configure an appropriate media type for this interface,
   2055  *  given the data in the interface structure
   2056  *
   2057  *  Input parameters:
   2058  *	ifp - interface
   2059  *
   2060  *  Return value:
   2061  *	0 if ok
   2062  *	else error code
   2063  */
   2064 
   2065 /*
   2066  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2067  *
   2068  *  Report current media status (used by ifconfig, for example)
   2069  *
   2070  *  Input parameters:
   2071  *	ifp - interface structure
   2072  *	ifmr - media request structure
   2073  *
   2074  *  Return value:
   2075  *	nothing
   2076  */
   2077 
   2078 /*
   2079  *  SBMAC_WATCHDOG(ifp)
   2080  *
   2081  *  Called periodically to make sure we're still happy.
   2082  *
   2083  *  Input parameters:
   2084  *	ifp - interface structure
   2085  *
   2086  *  Return value:
   2087  *	nothing
   2088  */
   2089 
   2090 static void
   2091 sbmac_watchdog(struct ifnet *ifp)
   2092 {
   2093 
   2094 	/* XXX do something */
   2095 }
   2096 
   2097 /*
   2098  * One second timer, used to tick MII.
   2099  */
   2100 static void
   2101 sbmac_tick(void *arg)
   2102 {
   2103 	struct sbmac_softc *sc = arg;
   2104 	int s;
   2105 
   2106 	s = splnet();
   2107 	mii_tick(&sc->sc_mii);
   2108 	splx(s);
   2109 
   2110 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2111 }
   2112 
   2113 
   2114 /*
   2115  *  SBMAC_MATCH(parent, match, aux)
   2116  *
   2117  *  Part of the config process - see if this device matches the
   2118  *  info about what we expect to find on the bus.
   2119  *
   2120  *  Input parameters:
   2121  *	parent - parent bus structure
   2122  *	match -
   2123  *	aux - bus-specific args
   2124  *
   2125  *  Return value:
   2126  *	1 if we match
   2127  *	0 if we don't match
   2128  */
   2129 
   2130 static int
   2131 sbmac_match(device_t parent, cfdata_t match, void *aux)
   2132 {
   2133 	struct sbobio_attach_args *sa = aux;
   2134 
   2135 	/*
   2136 	 * Make sure it's a MAC
   2137 	 */
   2138 	if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2139 		return 0;
   2140 
   2141 	/*
   2142 	 * Yup, it is.
   2143 	 */
   2144 
   2145 	return 1;
   2146 }
   2147 
   2148 /*
   2149  *  SBMAC_PARSE_XDIGIT(str)
   2150  *
   2151  *  Parse a hex digit, returning its value
   2152  *
   2153  *  Input parameters:
   2154  *	str - character
   2155  *
   2156  *  Return value:
   2157  *	hex value, or -1 if invalid
   2158  */
   2159 
   2160 static int
   2161 sbmac_parse_xdigit(char str)
   2162 {
   2163 	int digit;
   2164 
   2165 	if ((str >= '0') && (str <= '9'))
   2166 		digit = str - '0';
   2167 	else if ((str >= 'a') && (str <= 'f'))
   2168 		digit = str - 'a' + 10;
   2169 	else if ((str >= 'A') && (str <= 'F'))
   2170 		digit = str - 'A' + 10;
   2171 	else
   2172 		digit = -1;
   2173 
   2174 	return digit;
   2175 }
   2176 
   2177 /*
   2178  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2179  *
   2180  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2181  *  Ethernet address.
   2182  *
   2183  *  Input parameters:
   2184  *	str - string
   2185  *	hwaddr - pointer to hardware address
   2186  *
   2187  *  Return value:
   2188  *	0 if ok, else -1
   2189  */
   2190 
   2191 static int
   2192 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
   2193 {
   2194 	int digit1, digit2;
   2195 	int idx = 6;
   2196 
   2197 	while (*str && (idx > 0)) {
   2198 		digit1 = sbmac_parse_xdigit(*str);
   2199 		if (digit1 < 0)
   2200 			return -1;
   2201 		str++;
   2202 		if (!*str)
   2203 			return -1;
   2204 
   2205 		if ((*str == ':') || (*str == '-')) {
   2206 			digit2 = digit1;
   2207 			digit1 = 0;
   2208 		} else {
   2209 			digit2 = sbmac_parse_xdigit(*str);
   2210 			if (digit2 < 0)
   2211 				return -1;
   2212 			str++;
   2213 		}
   2214 
   2215 		*hwaddr++ = (digit1 << 4) | digit2;
   2216 		idx--;
   2217 
   2218 		if (*str == '-')
   2219 			str++;
   2220 		if (*str == ':')
   2221 			str++;
   2222 	}
   2223 	return 0;
   2224 }
   2225 
   2226 /*
   2227  *  SBMAC_ATTACH(parent, self, aux)
   2228  *
   2229  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2230  *
   2231  *  Input parameters:
   2232  *	parent - parent bus device
   2233  *	self - our softc
   2234  *	aux - attach data
   2235  *
   2236  *  Return value:
   2237  *	nothing
   2238  */
   2239 
   2240 static void
   2241 sbmac_attach(device_t parent, device_t self, void *aux)
   2242 {
   2243 	struct sbmac_softc * const sc = device_private(self);
   2244 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   2245 	struct sbobio_attach_args * const sa = aux;
   2246 	u_char *eaddr;
   2247 	static int unit = 0;	/* XXX */
   2248 	uint64_t ea_reg;
   2249 	int idx;
   2250 
   2251 	sc->sc_dev = self;
   2252 
   2253 	/* Determine controller base address */
   2254 
   2255 	sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset;
   2256 
   2257 	eaddr = sc->sbm_hwaddr;
   2258 
   2259 	/*
   2260 	 * Initialize context (get pointers to registers and stuff), then
   2261 	 * allocate the memory for the descriptor tables.
   2262 	 */
   2263 
   2264 	sbmac_initctx(sc);
   2265 
   2266 	callout_init(&(sc->sc_tick_ch), 0);
   2267 
   2268 	/*
   2269 	 * Read the ethernet address.  The firwmare left this programmed
   2270 	 * for us in the ethernet address register for each mac.
   2271 	 */
   2272 
   2273 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2274 	for (idx = 0; idx < 6; idx++) {
   2275 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2276 		ea_reg >>= 8;
   2277 	}
   2278 
   2279 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2280 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2281 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2282 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2283 		eaddr[5] = unit;
   2284 	}
   2285 
   2286 #ifdef SBMAC_ETH0_HWADDR
   2287 	if (unit == 0)
   2288 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2289 #endif
   2290 #ifdef SBMAC_ETH1_HWADDR
   2291 	if (unit == 1)
   2292 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2293 #endif
   2294 #ifdef SBMAC_ETH2_HWADDR
   2295 	if (unit == 2)
   2296 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2297 #endif
   2298 	unit++;
   2299 
   2300 	/*
   2301 	 * Display Ethernet address (this is called during the config process
   2302 	 * so we need to finish off the config message that was being displayed)
   2303 	 */
   2304 	aprint_normal(": Ethernet%s\n",
   2305 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2306 	aprint_normal_dev(self, "Ethernet address: %s\n", ether_sprintf(eaddr));
   2307 
   2308 
   2309 	/*
   2310 	 * Set up ifnet structure
   2311 	 */
   2312 
   2313 	ifp->if_softc = sc;
   2314 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   2315 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
   2316 	    IFF_NOTRAILERS;
   2317 	ifp->if_ioctl = sbmac_ioctl;
   2318 	ifp->if_start = sbmac_start;
   2319 	ifp->if_watchdog = sbmac_watchdog;
   2320 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2321 
   2322 	/*
   2323 	 * Set up ifmedia support.
   2324 	 */
   2325 
   2326 	/*
   2327 	 * Initialize MII/media info.
   2328 	 */
   2329 	sc->sc_mii.mii_ifp      = ifp;
   2330 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
   2331 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
   2332 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
   2333 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
   2334 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
   2335 	    ether_mediastatus);
   2336 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2337 	    MII_OFFSET_ANY, 0);
   2338 
   2339 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2340 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2341 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2342 	} else {
   2343 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2344 	}
   2345 
   2346 
   2347 	/*
   2348 	 * map/route interrupt
   2349 	 */
   2350 
   2351 	sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET,
   2352 	    sbmac_intr, sc);
   2353 
   2354 	/*
   2355 	 * Call MI attach routines.
   2356 	 */
   2357 	if_attach(ifp);
   2358 	ether_ifattach(ifp, eaddr);
   2359 }
   2360