Home | History | Annotate | Line # | Download | only in dev
sbmac.c revision 1.60
      1 /* $NetBSD: sbmac.c,v 1.60 2019/05/28 07:41:47 msaitoh Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001, 2004
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation.  The "Broadcom Corporation" name may not be
     19  *    used to endorse or promote products derived from this software
     20  *    without the prior written permission of Broadcom Corporation.
     21  *
     22  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     23  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     24  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     25  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     26  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     27  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     30  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     31  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     32  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: sbmac.c,v 1.60 2019/05/28 07:41:47 msaitoh Exp $");
     37 
     38 #include "opt_inet.h"
     39 #include "opt_ns.h"
     40 
     41 #include <sys/param.h>
     42 #include <sys/systm.h>
     43 #include <sys/sockio.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/kmem.h>
     46 #include <sys/kernel.h>
     47 #include <sys/socket.h>
     48 #include <sys/queue.h>
     49 #include <sys/device.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_arp.h>
     53 #include <net/if_ether.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_media.h>
     56 
     57 #include <net/bpf.h>
     58 
     59 #ifdef INET
     60 #include <netinet/in.h>
     61 #include <netinet/if_inarp.h>
     62 #endif
     63 
     64 #include <mips/locore.h>
     65 
     66 #include "sbobiovar.h"
     67 
     68 #include <dev/mii/mii.h>
     69 #include <dev/mii/miivar.h>
     70 #include <dev/mii/mii_bitbang.h>
     71 
     72 #include <mips/sibyte/include/sb1250_defs.h>
     73 #include <mips/sibyte/include/sb1250_regs.h>
     74 #include <mips/sibyte/include/sb1250_mac.h>
     75 #include <mips/sibyte/include/sb1250_dma.h>
     76 #include <mips/sibyte/include/sb1250_scd.h>
     77 
     78 #include <evbmips/sbmips/systemsw.h>
     79 
     80 /* Simple types */
     81 
     82 typedef u_long sbmac_port_t;
     83 typedef uint64_t sbmac_physaddr_t;
     84 typedef uint64_t sbmac_enetaddr_t;
     85 
     86 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     87 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     88 
     89 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     90 	       sbmac_duplex_full } sbmac_duplex_t;
     91 
     92 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
     93 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
     94 
     95 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
     96 	       sbmac_state_broken } sbmac_state_t;
     97 
     98 
     99 /* Macros */
    100 
    101 #define	SBMAC_EVENT_COUNTERS	/* Include counters for various events */
    102 
    103 #define	SBDMA_NEXTBUF(d, f)	((f + 1) & (d)->sbdma_dscr_mask)
    104 
    105 #define	CACHELINESIZE	32
    106 #define	NUMCACHEBLKS(x)	(((x)+CACHELINESIZE-1)/CACHELINESIZE)
    107 #define	KVTOPHYS(x)	kvtophys((vaddr_t)(x))
    108 
    109 #ifdef SBMACDEBUG
    110 #define	dprintf(x)	printf x
    111 #else
    112 #define	dprintf(x)
    113 #endif
    114 
    115 #define	SBMAC_READCSR(t) mips3_ld((register_t)(t))
    116 #define	SBMAC_WRITECSR(t, v) mips3_sd((register_t)(t), (v))
    117 
    118 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    119 
    120 /* These are limited to fit within one virtual page, and must be 2**N.  */
    121 #define	SBMAC_MAX_TXDESCR	256		/* should be 1024 */
    122 #define	SBMAC_MAX_RXDESCR	256		/* should be 512 */
    123 
    124 /* DMA Descriptor structure */
    125 
    126 typedef struct sbdmadscr_s {
    127 	uint64_t dscr_a;
    128 	uint64_t dscr_b;
    129 } sbdmadscr_t;
    130 
    131 
    132 /* DMA Controller structure */
    133 
    134 typedef struct sbmacdma_s {
    135 
    136 	/*
    137 	 * This stuff is used to identify the channel and the registers
    138 	 * associated with it.
    139 	 */
    140 
    141 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    142 	int		sbdma_channel;	/* channel number */
    143 	int		sbdma_txdir;	/* direction (1=transmit) */
    144 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    145 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    146 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    147 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    148 	sbmac_port_t	sbdma_dscrcnt;	/* Descriptor count register */
    149 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    150 
    151 	/*
    152 	 * This stuff is for maintenance of the ring
    153 	 */
    154 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    155 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    156 	unsigned int	sbdma_dscr_mask;	/* sbdma_maxdescr - 1 */
    157 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    158 	unsigned int	sbdma_add_index;	/* next dscr for sw to add */
    159 	unsigned int	sbdma_rem_index;	/* next dscr for sw to remove */
    160 } sbmacdma_t;
    161 
    162 
    163 /* Ethernet softc structure */
    164 
    165 struct sbmac_softc {
    166 
    167 	/*
    168 	 * NetBSD-specific things
    169 	 */
    170 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    171 	struct mii_data	sc_mii;
    172 	struct callout	sc_tick_ch;
    173 
    174 	device_t	sc_dev;		/* device */
    175 	int		sbm_if_flags;
    176 	void		*sbm_intrhand;
    177 
    178 	/*
    179 	 * Controller-specific things
    180 	 */
    181 
    182 	sbmac_port_t	sbm_base;	/* MAC's base address */
    183 	sbmac_state_t	sbm_state;	/* current state */
    184 
    185 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    186 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    187 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    188 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    189 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    190 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    191 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    192 
    193 	sbmac_speed_t	sbm_speed;	/* current speed */
    194 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    195 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    196 	int		sbm_rxflags;	/* received packet flags */
    197 
    198 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    199 
    200 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    201 	sbmacdma_t	sbm_rxdma;
    202 
    203 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    204 
    205 #ifdef SBMAC_EVENT_COUNTERS
    206 	struct evcnt	sbm_ev_rxintr;	/* Rx interrupts */
    207 	struct evcnt	sbm_ev_txintr;	/* Tx interrupts */
    208 	struct evcnt	sbm_ev_txdrop;	/* Tx dropped due to no mbuf alloc failed */
    209 	struct evcnt	sbm_ev_txstall;	/* Tx stalled due to no descriptors free */
    210 
    211 	struct evcnt	sbm_ev_txsplit;	/* pass3 Tx split mbuf */
    212 	struct evcnt	sbm_ev_txkeep;	/* pass3 Tx didn't split mbuf */
    213 #endif
    214 };
    215 
    216 
    217 #ifdef SBMAC_EVENT_COUNTERS
    218 #define	SBMAC_EVCNT_INCR(ev)	(ev).ev_count++
    219 #else
    220 #define	SBMAC_EVCNT_INCR(ev)	do { /* nothing */ } while (0)
    221 #endif
    222 
    223 /* Externs */
    224 
    225 extern paddr_t kvtophys(vaddr_t);
    226 
    227 /* Prototypes */
    228 
    229 static void sbdma_initctx(sbmacdma_t *, struct sbmac_softc *, int, int, int);
    230 static void sbdma_channel_start(sbmacdma_t *);
    231 static int sbdma_add_rcvbuffer(sbmacdma_t *, struct mbuf *);
    232 static int sbdma_add_txbuffer(sbmacdma_t *, struct mbuf *);
    233 static void sbdma_emptyring(sbmacdma_t *);
    234 static void sbdma_fillring(sbmacdma_t *);
    235 static void sbdma_rx_process(struct sbmac_softc *, sbmacdma_t *);
    236 static void sbdma_tx_process(struct sbmac_softc *, sbmacdma_t *);
    237 static void sbmac_initctx(struct sbmac_softc *);
    238 static void sbmac_channel_start(struct sbmac_softc *);
    239 static void sbmac_channel_stop(struct sbmac_softc *);
    240 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    241     sbmac_state_t);
    242 static void sbmac_promiscuous_mode(struct sbmac_softc *, bool);
    243 static void sbmac_init_and_start(struct sbmac_softc *);
    244 static uint64_t sbmac_addr2reg(u_char *);
    245 static void sbmac_intr(void *, uint32_t, vaddr_t);
    246 static void sbmac_start(struct ifnet *);
    247 static void sbmac_setmulti(struct sbmac_softc *);
    248 static int sbmac_ether_ioctl(struct ifnet *, u_long, void *);
    249 static int sbmac_ioctl(struct ifnet *, u_long, void *);
    250 static void sbmac_watchdog(struct ifnet *);
    251 static int sbmac_match(device_t, cfdata_t, void *);
    252 static void sbmac_attach(device_t, device_t, void *);
    253 static bool sbmac_set_speed(struct sbmac_softc *, sbmac_speed_t);
    254 static bool sbmac_set_duplex(struct sbmac_softc *, sbmac_duplex_t, sbmac_fc_t);
    255 static void sbmac_tick(void *);
    256 
    257 
    258 /* Globals */
    259 
    260 CFATTACH_DECL_NEW(sbmac, sizeof(struct sbmac_softc),
    261     sbmac_match, sbmac_attach, NULL, NULL);
    262 
    263 static uint32_t sbmac_mii_bitbang_read(device_t self);
    264 static void sbmac_mii_bitbang_write(device_t self, uint32_t val);
    265 
    266 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    267 	sbmac_mii_bitbang_read,
    268 	sbmac_mii_bitbang_write,
    269 	{
    270 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    271 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    272 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    273 		0,				/* MII_BIT_DIR_HOST_PHY */
    274 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    275 	}
    276 };
    277 
    278 static uint32_t
    279 sbmac_mii_bitbang_read(device_t self)
    280 {
    281 	struct sbmac_softc *sc = device_private(self);
    282 	sbmac_port_t reg;
    283 
    284 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    285 	return (uint32_t) SBMAC_READCSR(reg);
    286 }
    287 
    288 static void
    289 sbmac_mii_bitbang_write(device_t self, uint32_t val)
    290 {
    291 	struct sbmac_softc *sc = device_private(self);
    292 	sbmac_port_t reg;
    293 
    294 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    295 
    296 	SBMAC_WRITECSR(reg, (val &
    297 	    (M_MAC_MDC | M_MAC_MDIO_DIR | M_MAC_MDIO_OUT | M_MAC_MDIO_IN)));
    298 }
    299 
    300 /*
    301  * Read an PHY register through the MII.
    302  */
    303 static int
    304 sbmac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
    305 {
    306 
    307 	return mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg,
    308 	    val);
    309 }
    310 
    311 /*
    312  * Write to a PHY register through the MII.
    313  */
    314 static int
    315 sbmac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
    316 {
    317 
    318 	return mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg,
    319 	    val);
    320 }
    321 
    322 static void
    323 sbmac_mii_statchg(struct ifnet *ifp)
    324 {
    325 	struct sbmac_softc *sc = ifp->if_softc;
    326 	sbmac_state_t oldstate;
    327 
    328 	/* Stop the MAC in preparation for changing all of the parameters. */
    329 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    330 
    331 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    332 	default:		/* if autonegotiation fails, assume 10Mbit */
    333 	case IF_Mbps(10):
    334 		sbmac_set_speed(sc, sbmac_speed_10);
    335 		break;
    336 
    337 	case IF_Mbps(100):
    338 		sbmac_set_speed(sc, sbmac_speed_100);
    339 		break;
    340 
    341 	case IF_Mbps(1000):
    342 		sbmac_set_speed(sc, sbmac_speed_1000);
    343 		break;
    344 	}
    345 
    346 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    347 		/* Configure for full-duplex */
    348 		/* XXX: is flow control right for 10, 100? */
    349 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    350 	} else {
    351 		/* Configure for half-duplex */
    352 		/* XXX: is flow control right? */
    353 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    354 	}
    355 
    356 	/* And put it back into its former state. */
    357 	sbmac_set_channel_state(sc, oldstate);
    358 }
    359 
    360 /*
    361  *  SBDMA_INITCTX(d, sc, chan, txrx, maxdescr)
    362  *
    363  *  Initialize a DMA channel context.  Since there are potentially
    364  *  eight DMA channels per MAC, it's nice to do this in a standard
    365  *  way.
    366  *
    367  *  Input parameters:
    368  *	d - sbmacdma_t structure (DMA channel context)
    369  *	sc - sbmac_softc structure (pointer to a MAC)
    370  *	chan - channel number (0..1 right now)
    371  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    372  *	maxdescr - number of descriptors
    373  *
    374  *  Return value:
    375  *	nothing
    376  */
    377 
    378 static void
    379 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *sc, int chan, int txrx,
    380     int maxdescr)
    381 {
    382 	uintptr_t ptr;
    383 
    384 	/*
    385 	 * Save away interesting stuff in the structure
    386 	 */
    387 
    388 	d->sbdma_eth = sc;
    389 	d->sbdma_channel = chan;
    390 	d->sbdma_txdir = txrx;
    391 
    392 	/*
    393 	 * initialize register pointers
    394 	 */
    395 
    396 	d->sbdma_config0 = PKSEG1(sc->sbm_base +
    397 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    398 	d->sbdma_config1 = PKSEG1(sc->sbm_base +
    399 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    400 	d->sbdma_dscrbase = PKSEG1(sc->sbm_base +
    401 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    402 	d->sbdma_dscrcnt = PKSEG1(sc->sbm_base +
    403 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    404 	d->sbdma_curdscr = PKSEG1(sc->sbm_base +
    405 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    406 
    407 	/*
    408 	 * Allocate memory for the ring.  This must be aligned to a
    409 	 * 32-byte cache line boundary on pass1 or pass2 silicon.
    410 	 */
    411 
    412 	d->sbdma_maxdescr = maxdescr;
    413 	d->sbdma_dscr_mask = d->sbdma_maxdescr - 1;
    414 	ptr = (uintptr_t)kmem_zalloc(d->sbdma_maxdescr * sizeof(sbdmadscr_t) +
    415 	    CACHELINESIZE - 1, KM_SLEEP);
    416 	d->sbdma_dscrtable = (sbdmadscr_t *)roundup2(ptr, CACHELINESIZE);
    417 
    418 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    419 
    420 	/*
    421 	 * And context table
    422 	 */
    423 
    424 	d->sbdma_ctxtable = (struct mbuf **)
    425 	    kmem_zalloc(d->sbdma_maxdescr * sizeof(struct mbuf *), KM_SLEEP);
    426 }
    427 
    428 /*
    429  *  SBDMA_CHANNEL_START(d)
    430  *
    431  *  Initialize the hardware registers for a DMA channel.
    432  *
    433  *  Input parameters:
    434  *	d - DMA channel to init (context must be previously init'd
    435  *
    436  *  Return value:
    437  *	nothing
    438  */
    439 
    440 static void
    441 sbdma_channel_start(sbmacdma_t *d)
    442 {
    443 	/*
    444 	 * Turn on the DMA channel
    445 	 */
    446 
    447 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    448 
    449 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    450 
    451 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    452 
    453 	/*
    454 	 * Initialize ring pointers
    455 	 */
    456 
    457 	d->sbdma_add_index = 0;
    458 	d->sbdma_rem_index = 0;
    459 }
    460 
    461 /*
    462  *  SBDMA_ADD_RCVBUFFER(d, m)
    463  *
    464  *  Add a buffer to the specified DMA channel.   For receive channels,
    465  *  this queues a buffer for inbound packets.
    466  *
    467  *  Input parameters:
    468  *	d - DMA channel descriptor
    469  *	m - mbuf to add, or NULL if we should allocate one.
    470  *
    471  *  Return value:
    472  *	0 if buffer could not be added (ring is full)
    473  *	1 if buffer added successfully
    474  */
    475 
    476 static int
    477 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    478 {
    479 	unsigned int dsc, nextdsc;
    480 	struct mbuf *m_new = NULL;
    481 
    482 	/* get pointer to our current place in the ring */
    483 
    484 	dsc = d->sbdma_add_index;
    485 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    486 
    487 	/*
    488 	 * figure out if the ring is full - if the next descriptor
    489 	 * is the same as the one that we're going to remove from
    490 	 * the ring, the ring is full
    491 	 */
    492 
    493 	if (nextdsc == d->sbdma_rem_index)
    494 		return ENOSPC;
    495 
    496 	/*
    497 	 * Allocate an mbuf if we don't already have one.
    498 	 * If we do have an mbuf, reset it so that it's empty.
    499 	 */
    500 
    501 	if (m == NULL) {
    502 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    503 		if (m_new == NULL) {
    504 			aprint_error_dev(d->sbdma_eth->sc_dev,
    505 			    "mbuf allocation failed\n");
    506 			return ENOBUFS;
    507 		}
    508 
    509 		MCLGET(m_new, M_DONTWAIT);
    510 		if (!(m_new->m_flags & M_EXT)) {
    511 			aprint_error_dev(d->sbdma_eth->sc_dev,
    512 			    "mbuf cluster allocation failed\n");
    513 			m_freem(m_new);
    514 			return ENOBUFS;
    515 		}
    516 
    517 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    518 		m_adj(m_new, ETHER_ALIGN);
    519 	} else {
    520 		m_new = m;
    521 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    522 		m_new->m_data = m_new->m_ext.ext_buf;
    523 		m_adj(m_new, ETHER_ALIGN);
    524 	}
    525 
    526 	/*
    527 	 * fill in the descriptor
    528 	 */
    529 
    530 	d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new, void *)) |
    531 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    532 	    M_DMA_DSCRA_INTERRUPT;
    533 
    534 	/* receiving: no options */
    535 	d->sbdma_dscrtable[dsc].dscr_b = 0;
    536 
    537 	/*
    538 	 * fill in the context
    539 	 */
    540 
    541 	d->sbdma_ctxtable[dsc] = m_new;
    542 
    543 	/*
    544 	 * point at next packet
    545 	 */
    546 
    547 	d->sbdma_add_index = nextdsc;
    548 
    549 	/*
    550 	 * Give the buffer to the DMA engine.
    551 	 */
    552 
    553 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    554 
    555 	return 0;					/* we did it */
    556 }
    557 
    558 /*
    559  *  SBDMA_ADD_TXBUFFER(d, m)
    560  *
    561  *  Add a transmit buffer to the specified DMA channel, causing a
    562  *  transmit to start.
    563  *
    564  *  Input parameters:
    565  *	d - DMA channel descriptor
    566  *	m - mbuf to add
    567  *
    568  *  Return value:
    569  *	0 transmit queued successfully
    570  *	otherwise error code
    571  */
    572 
    573 static int
    574 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    575 {
    576 	unsigned int dsc, nextdsc, prevdsc, origdesc;
    577 	int length;
    578 	int num_mbufs = 0;
    579 	struct sbmac_softc *sc = d->sbdma_eth;
    580 
    581 	/* get pointer to our current place in the ring */
    582 
    583 	dsc = d->sbdma_add_index;
    584 	nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    585 
    586 	/*
    587 	 * figure out if the ring is full - if the next descriptor
    588 	 * is the same as the one that we're going to remove from
    589 	 * the ring, the ring is full
    590 	 */
    591 
    592 	if (nextdsc == d->sbdma_rem_index) {
    593 		SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    594 		return ENOSPC;
    595 	}
    596 
    597 	/*
    598 	 * PASS3 parts do not have buffer alignment restriction.
    599 	 * No need to copy/coalesce to new mbuf.  Also has different
    600 	 * descriptor format
    601 	 */
    602 	if (sc->sbm_pass3_dma) {
    603 		struct mbuf *m_temp = NULL;
    604 
    605 		/*
    606 		 * Loop thru this mbuf record.
    607 		 * The head mbuf will have SOP set.
    608 		 */
    609 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m, void *)) |
    610 		    M_DMA_ETHTX_SOP;
    611 
    612 		/*
    613 		 * transmitting: set outbound options,buffer A size(+ low 5
    614 		 * bits of start addr),and packet length.
    615 		 */
    616 		d->sbdma_dscrtable[dsc].dscr_b =
    617 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    618 		    V_DMA_DSCRB_A_SIZE((m->m_len +
    619 		      (mtod(m, uintptr_t) & 0x0000001F))) |
    620 		    V_DMA_DSCRB_PKT_SIZE_MSB((m->m_pkthdr.len & 0xc000) >> 14) |
    621 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len & 0x3fff);
    622 
    623 		d->sbdma_add_index = nextdsc;
    624 		origdesc = prevdsc = dsc;
    625 		dsc = d->sbdma_add_index;
    626 		num_mbufs++;
    627 
    628 		/* Start with first non-head mbuf */
    629 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    630 			int len, next_len;
    631 			uint64_t addr;
    632 
    633 			if (m_temp->m_len == 0)
    634 				continue;	/* Skip 0-length mbufs */
    635 
    636 			len = m_temp->m_len;
    637 			addr = KVTOPHYS(mtod(m_temp, void *));
    638 
    639 			/*
    640 			 * Check to see if the mbuf spans a page boundary.  If
    641 			 * it does, and the physical pages behind the virtual
    642 			 * pages are not contiguous, split it so that each
    643 			 * virtual page uses its own Tx descriptor.
    644 			 */
    645 			if (trunc_page(addr) != trunc_page(addr + len - 1)) {
    646 				next_len = (addr + len) - trunc_page(addr + len);
    647 
    648 				len -= next_len;
    649 
    650 				if (addr + len ==
    651 				    KVTOPHYS(mtod(m_temp, char *) + len)) {
    652 					SBMAC_EVCNT_INCR(sc->sbm_ev_txkeep);
    653 					len += next_len;
    654 					next_len = 0;
    655 				} else {
    656 					SBMAC_EVCNT_INCR(sc->sbm_ev_txsplit);
    657 				}
    658 			} else {
    659 				next_len = 0;
    660 			}
    661 
    662 again:
    663 			/*
    664 			 * fill in the descriptor
    665 			 */
    666 			d->sbdma_dscrtable[dsc].dscr_a = addr;
    667 
    668 			/*
    669 			 * transmitting: set outbound options,buffer A
    670 			 * size(+ low 5 bits of start addr)
    671 			 */
    672 			d->sbdma_dscrtable[dsc].dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    673 			    V_DMA_DSCRB_A_SIZE((len + (addr & 0x0000001F)));
    674 
    675 			d->sbdma_ctxtable[dsc] = NULL;
    676 
    677 			/*
    678 			 * point at next descriptor
    679 			 */
    680 			nextdsc = SBDMA_NEXTBUF(d, d->sbdma_add_index);
    681 			if (nextdsc == d->sbdma_rem_index) {
    682 				d->sbdma_add_index = origdesc;
    683 				SBMAC_EVCNT_INCR(sc->sbm_ev_txstall);
    684 				return ENOSPC;
    685 			}
    686 			d->sbdma_add_index = nextdsc;
    687 
    688 			prevdsc = dsc;
    689 			dsc = d->sbdma_add_index;
    690 			num_mbufs++;
    691 
    692 			if (next_len != 0) {
    693 				addr = KVTOPHYS(mtod(m_temp, char *) + len);
    694 				len = next_len;
    695 
    696 				next_len = 0;
    697 				goto again;
    698 			}
    699 
    700 		}
    701 		/* Set head mbuf to last context index */
    702 		d->sbdma_ctxtable[prevdsc] = m;
    703 
    704 		/* Interrupt on last dscr of packet.  */
    705 		d->sbdma_dscrtable[prevdsc].dscr_a |= M_DMA_DSCRA_INTERRUPT;
    706 	} else {
    707 		struct mbuf *m_new = NULL;
    708 		/*
    709 		 * [BEGIN XXX]
    710 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we
    711 		 * assume it will fit).  This is a temporary hack to get us
    712 		 * going.
    713 		 */
    714 
    715 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    716 		if (m_new == NULL) {
    717 			aprint_error_dev(d->sbdma_eth->sc_dev,
    718 			    "mbuf allocation failed\n");
    719 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    720 			return ENOBUFS;
    721 		}
    722 
    723 		MCLGET(m_new, M_DONTWAIT);
    724 		if (!(m_new->m_flags & M_EXT)) {
    725 			aprint_error_dev(d->sbdma_eth->sc_dev,
    726 			    "mbuf cluster allocation failed\n");
    727 			m_freem(m_new);
    728 			SBMAC_EVCNT_INCR(sc->sbm_ev_txdrop);
    729 			return ENOBUFS;
    730 		}
    731 
    732 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    733 		/*m_adj(m_new, ETHER_ALIGN);*/
    734 
    735 		/*
    736 		 * XXX Don't forget to include the offset portion in the
    737 		 * XXX cache block calculation when this code is rewritten!
    738 		 */
    739 
    740 		/*
    741 		 * Copy data
    742 		 */
    743 
    744 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m_new, void *));
    745 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    746 
    747 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    748 
    749 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    750 		// XXX: function succeeds.
    751 		// m_freem(m);
    752 		length = m_new->m_len;
    753 
    754 		/* [END XXX] */
    755 		/*
    756 		 * fill in the descriptor
    757 		 */
    758 
    759 		d->sbdma_dscrtable[dsc].dscr_a = KVTOPHYS(mtod(m_new,void *)) |
    760 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    761 		    M_DMA_DSCRA_INTERRUPT |
    762 		    M_DMA_ETHTX_SOP;
    763 
    764 		/* transmitting: set outbound options and length */
    765 		d->sbdma_dscrtable[dsc].dscr_b =
    766 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    767 		    V_DMA_DSCRB_PKT_SIZE(length);
    768 
    769 		num_mbufs++;
    770 
    771 		/*
    772 		 * fill in the context
    773 		 */
    774 
    775 		d->sbdma_ctxtable[dsc] = m_new;
    776 
    777 		/*
    778 		 * point at next packet
    779 		 */
    780 		d->sbdma_add_index = nextdsc;
    781 	}
    782 
    783 	/*
    784 	 * Give the buffer to the DMA engine.
    785 	 */
    786 
    787 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    788 
    789 	return 0;					/* we did it */
    790 }
    791 
    792 /*
    793  *  SBDMA_EMPTYRING(d)
    794  *
    795  *  Free all allocated mbufs on the specified DMA channel;
    796  *
    797  *  Input parameters:
    798  *	d  - DMA channel
    799  *
    800  *  Return value:
    801  *	nothing
    802  */
    803 
    804 static void
    805 sbdma_emptyring(sbmacdma_t *d)
    806 {
    807 	int idx;
    808 	struct mbuf *m;
    809 
    810 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    811 		m = d->sbdma_ctxtable[idx];
    812 		if (m) {
    813 			m_freem(m);
    814 			d->sbdma_ctxtable[idx] = NULL;
    815 		}
    816 	}
    817 }
    818 
    819 /*
    820  *  SBDMA_FILLRING(d)
    821  *
    822  *  Fill the specified DMA channel (must be receive channel)
    823  *  with mbufs
    824  *
    825  *  Input parameters:
    826  *	d - DMA channel
    827  *
    828  *  Return value:
    829  *	nothing
    830  */
    831 
    832 static void
    833 sbdma_fillring(sbmacdma_t *d)
    834 {
    835 	int idx;
    836 
    837 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    838 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    839 			break;
    840 }
    841 
    842 /*
    843  *  SBDMA_RX_PROCESS(sc, d)
    844  *
    845  *  Process "completed" receive buffers on the specified DMA channel.
    846  *  Note that this isn't really ideal for priority channels, since
    847  *  it processes all of the packets on a given channel before
    848  *  returning.
    849  *
    850  *  Input parameters:
    851  *	sc - softc structure
    852  *	d - DMA channel context
    853  *
    854  *  Return value:
    855  *	nothing
    856  */
    857 
    858 static void
    859 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    860 {
    861 	int curidx;
    862 	int hwidx;
    863 	sbdmadscr_t *dscp;
    864 	struct mbuf *m;
    865 	int len;
    866 
    867 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    868 
    869 	for (;;) {
    870 		/*
    871 		 * figure out where we are (as an index) and where
    872 		 * the hardware is (also as an index)
    873 		 *
    874 		 * This could be done faster if (for example) the
    875 		 * descriptor table was page-aligned and contiguous in
    876 		 * both virtual and physical memory -- you could then
    877 		 * just compare the low-order bits of the virtual address
    878 		 * (sbdma_rem_index) and the physical address
    879 		 * (sbdma_curdscr CSR).
    880 		 */
    881 
    882 		curidx = d->sbdma_rem_index;
    883 		hwidx = (int)
    884 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    885 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    886 
    887 		/*
    888 		 * If they're the same, that means we've processed all
    889 		 * of the descriptors up to (but not including) the one that
    890 		 * the hardware is working on right now.
    891 		 */
    892 
    893 		if (curidx == hwidx)
    894 			break;
    895 
    896 		/*
    897 		 * Otherwise, get the packet's mbuf ptr back
    898 		 */
    899 
    900 		dscp = &(d->sbdma_dscrtable[curidx]);
    901 		m = d->sbdma_ctxtable[curidx];
    902 		d->sbdma_ctxtable[curidx] = NULL;
    903 
    904 		len = (int)G_DMA_DSCRB_PKT_SIZE(dscp->dscr_b) - 4;
    905 
    906 		/*
    907 		 * Check packet status.  If good, process it.
    908 		 * If not, silently drop it and put it back on the
    909 		 * receive ring.
    910 		 */
    911 
    912 		if (! (dscp->dscr_a & M_DMA_ETHRX_BAD)) {
    913 
    914 			/*
    915 			 * Set length into the packet
    916 			 * XXX do we remove the CRC here?
    917 			 */
    918 			m->m_pkthdr.len = m->m_len = len;
    919 
    920 			m_set_rcvif(m, ifp);
    921 
    922 
    923 			/*
    924 			 * Add a new buffer to replace the old one.
    925 			 */
    926 			sbdma_add_rcvbuffer(d, NULL);
    927 
    928 			/*
    929 			 * Handle BPF listeners. Let the BPF user see the
    930 			 * packet, but don't pass it up to the ether_input()
    931 			 * layer unless it's a broadcast packet, multicast
    932 			 * packet, matches our ethernet address or the
    933 			 * interface is in promiscuous mode.
    934 			 */
    935 
    936 			/*
    937 			 * Pass the buffer to the kernel
    938 			 */
    939 			if_percpuq_enqueue(ifp->if_percpuq, m);
    940 		} else {
    941 			/*
    942 			 * Packet was mangled somehow.  Just drop it and
    943 			 * put it back on the receive ring.
    944 			 */
    945 			sbdma_add_rcvbuffer(d, m);
    946 		}
    947 
    948 		/*
    949 		 * .. and advance to the next buffer.
    950 		 */
    951 
    952 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
    953 	}
    954 }
    955 
    956 /*
    957  *  SBDMA_TX_PROCESS(sc, d)
    958  *
    959  *  Process "completed" transmit buffers on the specified DMA channel.
    960  *  This is normally called within the interrupt service routine.
    961  *  Note that this isn't really ideal for priority channels, since
    962  *  it processes all of the packets on a given channel before
    963  *  returning.
    964  *
    965  *  Input parameters:
    966  *	sc - softc structure
    967  *	d - DMA channel context
    968  *
    969  *  Return value:
    970  *	nothing
    971  */
    972 
    973 static void
    974 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    975 {
    976 	int curidx;
    977 	int hwidx;
    978 	struct mbuf *m;
    979 
    980 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    981 
    982 	for (;;) {
    983 		/*
    984 		 * figure out where we are (as an index) and where
    985 		 * the hardware is (also as an index)
    986 		 *
    987 		 * This could be done faster if (for example) the
    988 		 * descriptor table was page-aligned and contiguous in
    989 		 * both virtual and physical memory -- you could then
    990 		 * just compare the low-order bits of the virtual address
    991 		 * (sbdma_rem_index) and the physical address
    992 		 * (sbdma_curdscr CSR).
    993 		 */
    994 
    995 		curidx = d->sbdma_rem_index;
    996 		hwidx = (int)
    997 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    998 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    999 
   1000 		/*
   1001 		 * If they're the same, that means we've processed all
   1002 		 * of the descriptors up to (but not including) the one that
   1003 		 * the hardware is working on right now.
   1004 		 */
   1005 
   1006 		if (curidx == hwidx)
   1007 			break;
   1008 
   1009 		/*
   1010 		 * Otherwise, get the packet's mbuf ptr back
   1011 		 */
   1012 
   1013 		m = d->sbdma_ctxtable[curidx];
   1014 		d->sbdma_ctxtable[curidx] = NULL;
   1015 
   1016 		/*
   1017 		 * for transmits we just free buffers and count packets.
   1018 		 */
   1019 		ifp->if_opackets++;
   1020 		m_freem(m);
   1021 
   1022 		/*
   1023 		 * .. and advance to the next buffer.
   1024 		 */
   1025 
   1026 		d->sbdma_rem_index = SBDMA_NEXTBUF(d, d->sbdma_rem_index);
   1027 	}
   1028 
   1029 	/*
   1030 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
   1031 	 * It's supposed to reflect if the interface is actively
   1032 	 * transmitting, but that's really hard to do quickly.
   1033 	 */
   1034 
   1035 	ifp->if_flags &= ~IFF_OACTIVE;
   1036 }
   1037 
   1038 /*
   1039  *  SBMAC_INITCTX(s)
   1040  *
   1041  *  Initialize an Ethernet context structure - this is called
   1042  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1043  *  call it again from inside the ioctl routines that bring the
   1044  *  interface up/down
   1045  *
   1046  *  Input parameters:
   1047  *	sc - sbmac context structure
   1048  *
   1049  *  Return value:
   1050  *	0
   1051  */
   1052 
   1053 static void
   1054 sbmac_initctx(struct sbmac_softc *sc)
   1055 {
   1056 	uint64_t sysrev;
   1057 
   1058 	/*
   1059 	 * figure out the addresses of some ports
   1060 	 */
   1061 
   1062 	sc->sbm_macenable = PKSEG1(sc->sbm_base + R_MAC_ENABLE);
   1063 	sc->sbm_maccfg	  = PKSEG1(sc->sbm_base + R_MAC_CFG);
   1064 	sc->sbm_fifocfg	  = PKSEG1(sc->sbm_base + R_MAC_THRSH_CFG);
   1065 	sc->sbm_framecfg  = PKSEG1(sc->sbm_base + R_MAC_FRAMECFG);
   1066 	sc->sbm_rxfilter  = PKSEG1(sc->sbm_base + R_MAC_ADFILTER_CFG);
   1067 	sc->sbm_isr	  = PKSEG1(sc->sbm_base + R_MAC_STATUS);
   1068 	sc->sbm_imr	  = PKSEG1(sc->sbm_base + R_MAC_INT_MASK);
   1069 
   1070 	/*
   1071 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1072 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1073 	 */
   1074 
   1075 	sbdma_initctx(&(sc->sbm_txdma), sc, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1076 	sbdma_initctx(&(sc->sbm_rxdma), sc, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1077 
   1078 	/*
   1079 	 * initial state is OFF
   1080 	 */
   1081 
   1082 	sc->sbm_state = sbmac_state_off;
   1083 
   1084 	/*
   1085 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1086 	 */
   1087 
   1088 	sc->sbm_speed = sbmac_speed_10;
   1089 	sc->sbm_duplex = sbmac_duplex_half;
   1090 	sc->sbm_fc = sbmac_fc_disabled;
   1091 
   1092 	/*
   1093 	 * Determine SOC type.  112x has Pass3 SOC features.
   1094 	 */
   1095 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1096 	sc->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1097 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1098 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1099 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1100 			     G_SYS_REVISION(sysrev) >= K_SYS_REVISION_BCM1250_PASS3));
   1101 #ifdef SBMAC_EVENT_COUNTERS
   1102 	const char * const xname = device_xname(sc->sc_dev);
   1103 	evcnt_attach_dynamic(&sc->sbm_ev_rxintr, EVCNT_TYPE_INTR,
   1104 	    NULL, xname, "rxintr");
   1105 	evcnt_attach_dynamic(&sc->sbm_ev_txintr, EVCNT_TYPE_INTR,
   1106 	    NULL, xname, "txintr");
   1107 	evcnt_attach_dynamic(&sc->sbm_ev_txdrop, EVCNT_TYPE_MISC,
   1108 	    NULL, xname, "txdrop");
   1109 	evcnt_attach_dynamic(&sc->sbm_ev_txstall, EVCNT_TYPE_MISC,
   1110 	    NULL, xname, "txstall");
   1111 	if (sc->sbm_pass3_dma) {
   1112 		evcnt_attach_dynamic(&sc->sbm_ev_txsplit, EVCNT_TYPE_MISC,
   1113 		    NULL, xname, "pass3tx-split");
   1114 		evcnt_attach_dynamic(&sc->sbm_ev_txkeep, EVCNT_TYPE_MISC,
   1115 		    NULL, xname, "pass3tx-keep");
   1116 	}
   1117 #endif
   1118 }
   1119 
   1120 /*
   1121  *  SBMAC_CHANNEL_START(s)
   1122  *
   1123  *  Start packet processing on this MAC.
   1124  *
   1125  *  Input parameters:
   1126  *	sc - sbmac structure
   1127  *
   1128  *  Return value:
   1129  *	nothing
   1130  */
   1131 
   1132 static void
   1133 sbmac_channel_start(struct sbmac_softc *sc)
   1134 {
   1135 	uint64_t reg;
   1136 	sbmac_port_t port;
   1137 	uint64_t cfg, fifo, framecfg;
   1138 	int idx;
   1139 	uint64_t dma_cfg0, fifo_cfg;
   1140 	sbmacdma_t *txdma;
   1141 
   1142 	/*
   1143 	 * Don't do this if running
   1144 	 */
   1145 
   1146 	if (sc->sbm_state == sbmac_state_on)
   1147 		return;
   1148 
   1149 	/*
   1150 	 * Bring the controller out of reset, but leave it off.
   1151 	 */
   1152 
   1153 	SBMAC_WRITECSR(sc->sbm_macenable, 0);
   1154 
   1155 	/*
   1156 	 * Ignore all received packets
   1157 	 */
   1158 
   1159 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1160 
   1161 	/*
   1162 	 * Calculate values for various control registers.
   1163 	 */
   1164 
   1165 	cfg = M_MAC_RETRY_EN |
   1166 	      M_MAC_TX_HOLD_SOP_EN |
   1167 	      V_MAC_TX_PAUSE_CNT_16K |
   1168 	      M_MAC_AP_STAT_EN |
   1169 	      M_MAC_SS_EN |
   1170 	      0;
   1171 
   1172 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1173 	       V_MAC_TX_RD_THRSH(4) |
   1174 	       V_MAC_TX_RL_THRSH(4) |
   1175 	       V_MAC_RX_PL_THRSH(4) |
   1176 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1177 	       V_MAC_RX_PL_THRSH(4) |
   1178 	       V_MAC_RX_RL_THRSH(8) |
   1179 	       0;
   1180 
   1181 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1182 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1183 	    V_MAC_BACKOFF_SEL(1);
   1184 
   1185 	/*
   1186 	 * Clear out the hash address map
   1187 	 */
   1188 
   1189 	port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE);
   1190 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1191 		SBMAC_WRITECSR(port, 0);
   1192 		port += sizeof(uint64_t);
   1193 	}
   1194 
   1195 	/*
   1196 	 * Clear out the exact-match table
   1197 	 */
   1198 
   1199 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
   1200 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1201 		SBMAC_WRITECSR(port, 0);
   1202 		port += sizeof(uint64_t);
   1203 	}
   1204 
   1205 	/*
   1206 	 * Clear out the DMA Channel mapping table registers
   1207 	 */
   1208 
   1209 	port = PKSEG1(sc->sbm_base + R_MAC_CHUP0_BASE);
   1210 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1211 		SBMAC_WRITECSR(port, 0);
   1212 		port += sizeof(uint64_t);
   1213 	}
   1214 
   1215 	port = PKSEG1(sc->sbm_base + R_MAC_CHLO0_BASE);
   1216 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1217 		SBMAC_WRITECSR(port, 0);
   1218 		port += sizeof(uint64_t);
   1219 	}
   1220 
   1221 	/*
   1222 	 * Program the hardware address.  It goes into the hardware-address
   1223 	 * register as well as the first filter register.
   1224 	 */
   1225 
   1226 	reg = sbmac_addr2reg(sc->sbm_hwaddr);
   1227 
   1228 	port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE);
   1229 	SBMAC_WRITECSR(port, reg);
   1230 	port = PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR);
   1231 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1232 
   1233 	/*
   1234 	 * Set the receive filter for no packets, and write values
   1235 	 * to the various config registers
   1236 	 */
   1237 
   1238 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1239 	SBMAC_WRITECSR(sc->sbm_imr, 0);
   1240 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
   1241 	SBMAC_WRITECSR(sc->sbm_fifocfg, fifo);
   1242 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1243 
   1244 	/*
   1245 	 * Initialize DMA channels (rings should be ok now)
   1246 	 */
   1247 
   1248 	sbdma_channel_start(&(sc->sbm_rxdma));
   1249 	sbdma_channel_start(&(sc->sbm_txdma));
   1250 
   1251 	/*
   1252 	 * Configure the speed, duplex, and flow control
   1253 	 */
   1254 
   1255 	sbmac_set_speed(sc, sc->sbm_speed);
   1256 	sbmac_set_duplex(sc, sc->sbm_duplex, sc->sbm_fc);
   1257 
   1258 	/*
   1259 	 * Fill the receive ring
   1260 	 */
   1261 
   1262 	sbdma_fillring(&(sc->sbm_rxdma));
   1263 
   1264 	/*
   1265 	 * Turn on the rest of the bits in the enable register
   1266 	 */
   1267 
   1268 	SBMAC_WRITECSR(sc->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1269 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1270 
   1271 
   1272 	/*
   1273 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1274 	 */
   1275 	SBMAC_WRITECSR(sc->sbm_imr,
   1276 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1277 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1278 
   1279 	/*
   1280 	 * Enable receiving unicasts and broadcasts
   1281 	 */
   1282 
   1283 	SBMAC_WRITECSR(sc->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1284 
   1285 	/*
   1286 	 * On chips which support unaligned DMA features, set the descriptor
   1287 	 * ring for transmit channels to use the unaligned buffer format.
   1288 	 */
   1289 	txdma = &(sc->sbm_txdma);
   1290 
   1291 	if (sc->sbm_pass3_dma) {
   1292 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1293 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1294 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1295 		SBMAC_WRITECSR(txdma->sbdma_config0, dma_cfg0);
   1296 
   1297 		fifo_cfg =  SBMAC_READCSR(sc->sbm_fifocfg);
   1298 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1299 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1300 		SBMAC_WRITECSR(sc->sbm_fifocfg, fifo_cfg);
   1301 	}
   1302 
   1303 	/*
   1304 	 * we're running now.
   1305 	 */
   1306 
   1307 	sc->sbm_state = sbmac_state_on;
   1308 	sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1309 
   1310 	/*
   1311 	 * Program multicast addresses
   1312 	 */
   1313 
   1314 	sbmac_setmulti(sc);
   1315 
   1316 	/*
   1317 	 * If channel was in promiscuous mode before, turn that on
   1318 	 */
   1319 
   1320 	if (sc->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1321 		sbmac_promiscuous_mode(sc, true);
   1322 
   1323 	/*
   1324 	 * Turn on the once-per-second timer
   1325 	 */
   1326 
   1327 	callout_reset(&(sc->sc_tick_ch), hz, sbmac_tick, sc);
   1328 }
   1329 
   1330 /*
   1331  *  SBMAC_CHANNEL_STOP(s)
   1332  *
   1333  *  Stop packet processing on this MAC.
   1334  *
   1335  *  Input parameters:
   1336  *	sc - sbmac structure
   1337  *
   1338  *  Return value:
   1339  *	nothing
   1340  */
   1341 
   1342 static void
   1343 sbmac_channel_stop(struct sbmac_softc *sc)
   1344 {
   1345 	uint64_t ctl;
   1346 
   1347 	/* don't do this if already stopped */
   1348 
   1349 	if (sc->sbm_state == sbmac_state_off)
   1350 		return;
   1351 
   1352 	/* don't accept any packets, disable all interrupts */
   1353 
   1354 	SBMAC_WRITECSR(sc->sbm_rxfilter, 0);
   1355 	SBMAC_WRITECSR(sc->sbm_imr, 0);
   1356 
   1357 	/* Turn off ticker */
   1358 
   1359 	callout_stop(&(sc->sc_tick_ch));
   1360 
   1361 	/* turn off receiver and transmitter */
   1362 
   1363 	ctl = SBMAC_READCSR(sc->sbm_macenable);
   1364 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1365 	SBMAC_WRITECSR(sc->sbm_macenable, ctl);
   1366 
   1367 	/* We're stopped now. */
   1368 
   1369 	sc->sbm_state = sbmac_state_off;
   1370 	sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1371 
   1372 	/* Empty the receive and transmit rings */
   1373 
   1374 	sbdma_emptyring(&(sc->sbm_rxdma));
   1375 	sbdma_emptyring(&(sc->sbm_txdma));
   1376 }
   1377 
   1378 /*
   1379  *  SBMAC_SET_CHANNEL_STATE(state)
   1380  *
   1381  *  Set the channel's state ON or OFF
   1382  *
   1383  *  Input parameters:
   1384  *	state - new state
   1385  *
   1386  *  Return value:
   1387  *	old state
   1388  */
   1389 
   1390 static sbmac_state_t
   1391 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1392 {
   1393 	sbmac_state_t oldstate = sc->sbm_state;
   1394 
   1395 	/*
   1396 	 * If same as previous state, return
   1397 	 */
   1398 
   1399 	if (state == oldstate)
   1400 		return oldstate;
   1401 
   1402 	/*
   1403 	 * If new state is ON, turn channel on
   1404 	 */
   1405 
   1406 	if (state == sbmac_state_on)
   1407 		sbmac_channel_start(sc);
   1408 	else
   1409 		sbmac_channel_stop(sc);
   1410 
   1411 	/*
   1412 	 * Return previous state
   1413 	 */
   1414 
   1415 	return oldstate;
   1416 }
   1417 
   1418 /*
   1419  *  SBMAC_PROMISCUOUS_MODE(sc, enabled)
   1420  *
   1421  *  Turn on or off promiscuous mode
   1422  *
   1423  *  Input parameters:
   1424  *	sc - softc
   1425  *	enabled - true to turn on, false to turn off
   1426  *
   1427  *  Return value:
   1428  *	nothing
   1429  */
   1430 
   1431 static void
   1432 sbmac_promiscuous_mode(struct sbmac_softc *sc, bool enabled)
   1433 {
   1434 	uint64_t reg;
   1435 
   1436 	if (sc->sbm_state != sbmac_state_on)
   1437 		return;
   1438 
   1439 	if (enabled) {
   1440 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1441 		reg |= M_MAC_ALLPKT_EN;
   1442 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1443 	} else {
   1444 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1445 		reg &= ~M_MAC_ALLPKT_EN;
   1446 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1447 	}
   1448 }
   1449 
   1450 /*
   1451  *  SBMAC_INIT_AND_START(sc)
   1452  *
   1453  *  Stop the channel and restart it.  This is generally used
   1454  *  when we have to do something to the channel that requires
   1455  *  a swift kick.
   1456  *
   1457  *  Input parameters:
   1458  *	sc - softc
   1459  */
   1460 
   1461 static void
   1462 sbmac_init_and_start(struct sbmac_softc *sc)
   1463 {
   1464 	int s;
   1465 
   1466 	s = splnet();
   1467 
   1468 	mii_pollstat(&sc->sc_mii);		/* poll phy for current speed */
   1469 	sbmac_mii_statchg(&sc->sc_ethercom.ec_if); /* set state to new speed */
   1470 	sbmac_set_channel_state(sc, sbmac_state_on);
   1471 
   1472 	splx(s);
   1473 }
   1474 
   1475 /*
   1476  *  SBMAC_ADDR2REG(ptr)
   1477  *
   1478  *  Convert six bytes into the 64-bit register value that
   1479  *  we typically write into the SBMAC's address/mcast registers
   1480  *
   1481  *  Input parameters:
   1482  *	ptr - pointer to 6 bytes
   1483  *
   1484  *  Return value:
   1485  *	register value
   1486  */
   1487 
   1488 static uint64_t
   1489 sbmac_addr2reg(u_char *ptr)
   1490 {
   1491 	uint64_t reg = 0;
   1492 
   1493 	ptr += 6;
   1494 
   1495 	reg |= (uint64_t) *(--ptr);
   1496 	reg <<= 8;
   1497 	reg |= (uint64_t) *(--ptr);
   1498 	reg <<= 8;
   1499 	reg |= (uint64_t) *(--ptr);
   1500 	reg <<= 8;
   1501 	reg |= (uint64_t) *(--ptr);
   1502 	reg <<= 8;
   1503 	reg |= (uint64_t) *(--ptr);
   1504 	reg <<= 8;
   1505 	reg |= (uint64_t) *(--ptr);
   1506 
   1507 	return reg;
   1508 }
   1509 
   1510 /*
   1511  *  SBMAC_SET_SPEED(sc, speed)
   1512  *
   1513  *  Configure LAN speed for the specified MAC.
   1514  *  Warning: must be called when MAC is off!
   1515  *
   1516  *  Input parameters:
   1517  *	sc - sbmac structure
   1518  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1519  *
   1520  *  Return value:
   1521  *	true if successful
   1522  *	false indicates invalid parameters
   1523  */
   1524 
   1525 static bool
   1526 sbmac_set_speed(struct sbmac_softc *sc, sbmac_speed_t speed)
   1527 {
   1528 	uint64_t cfg;
   1529 	uint64_t framecfg;
   1530 
   1531 	/*
   1532 	 * Save new current values
   1533 	 */
   1534 
   1535 	sc->sbm_speed = speed;
   1536 
   1537 	if (sc->sbm_state != sbmac_state_off)
   1538 		panic("sbmac_set_speed while MAC not off");
   1539 
   1540 	/*
   1541 	 * Read current register values
   1542 	 */
   1543 
   1544 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
   1545 	framecfg = SBMAC_READCSR(sc->sbm_framecfg);
   1546 
   1547 	/*
   1548 	 * Mask out the stuff we want to change
   1549 	 */
   1550 
   1551 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1552 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1553 	    M_MAC_SLOT_SIZE);
   1554 
   1555 	/*
   1556 	 * Now add in the new bits
   1557 	 */
   1558 
   1559 	switch (speed) {
   1560 	case sbmac_speed_10:
   1561 		framecfg |= V_MAC_IFG_RX_10 |
   1562 		    V_MAC_IFG_TX_10 |
   1563 		    K_MAC_IFG_THRSH_10 |
   1564 		    V_MAC_SLOT_SIZE_10;
   1565 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1566 		break;
   1567 
   1568 	case sbmac_speed_100:
   1569 		framecfg |= V_MAC_IFG_RX_100 |
   1570 		    V_MAC_IFG_TX_100 |
   1571 		    V_MAC_IFG_THRSH_100 |
   1572 		    V_MAC_SLOT_SIZE_100;
   1573 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1574 		break;
   1575 
   1576 	case sbmac_speed_1000:
   1577 		framecfg |= V_MAC_IFG_RX_1000 |
   1578 		    V_MAC_IFG_TX_1000 |
   1579 		    V_MAC_IFG_THRSH_1000 |
   1580 		    V_MAC_SLOT_SIZE_1000;
   1581 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1582 		break;
   1583 
   1584 	case sbmac_speed_auto:		/* XXX not implemented */
   1585 		/* fall through */
   1586 	default:
   1587 		return false;
   1588 	}
   1589 
   1590 	/*
   1591 	 * Send the bits back to the hardware
   1592 	 */
   1593 
   1594 	SBMAC_WRITECSR(sc->sbm_framecfg, framecfg);
   1595 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1596 
   1597 	return true;
   1598 }
   1599 
   1600 /*
   1601  *  SBMAC_SET_DUPLEX(sc, duplex, fc)
   1602  *
   1603  *  Set Ethernet duplex and flow control options for this MAC
   1604  *  Warning: must be called when MAC is off!
   1605  *
   1606  *  Input parameters:
   1607  *	sc - sbmac structure
   1608  *	duplex - duplex setting (see sbmac_duplex_t)
   1609  *	fc - flow control setting (see sbmac_fc_t)
   1610  *
   1611  *  Return value:
   1612  *	true if ok
   1613  *	false if an invalid parameter combination was specified
   1614  */
   1615 
   1616 static bool
   1617 sbmac_set_duplex(struct sbmac_softc *sc, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1618 {
   1619 	uint64_t cfg;
   1620 
   1621 	/*
   1622 	 * Save new current values
   1623 	 */
   1624 
   1625 	sc->sbm_duplex = duplex;
   1626 	sc->sbm_fc = fc;
   1627 
   1628 	if (sc->sbm_state != sbmac_state_off)
   1629 		panic("sbmac_set_duplex while MAC not off");
   1630 
   1631 	/*
   1632 	 * Read current register values
   1633 	 */
   1634 
   1635 	cfg = SBMAC_READCSR(sc->sbm_maccfg);
   1636 
   1637 	/*
   1638 	 * Mask off the stuff we're about to change
   1639 	 */
   1640 
   1641 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1642 
   1643 	switch (duplex) {
   1644 	case sbmac_duplex_half:
   1645 		switch (fc) {
   1646 		case sbmac_fc_disabled:
   1647 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1648 			break;
   1649 
   1650 		case sbmac_fc_collision:
   1651 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1652 			break;
   1653 
   1654 		case sbmac_fc_carrier:
   1655 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1656 			break;
   1657 
   1658 		case sbmac_fc_auto:		/* XXX not implemented */
   1659 			/* fall through */
   1660 		case sbmac_fc_frame:		/* not valid in half duplex */
   1661 		default:			/* invalid selection */
   1662 			panic("%s: invalid half duplex fc selection %d",
   1663 			    device_xname(sc->sc_dev), fc);
   1664 			return false;
   1665 		}
   1666 		break;
   1667 
   1668 	case sbmac_duplex_full:
   1669 		switch (fc) {
   1670 		case sbmac_fc_disabled:
   1671 			cfg |= V_MAC_FC_CMD_DISABLED;
   1672 			break;
   1673 
   1674 		case sbmac_fc_frame:
   1675 			cfg |= V_MAC_FC_CMD_ENABLED;
   1676 			break;
   1677 
   1678 		case sbmac_fc_collision:	/* not valid in full duplex */
   1679 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1680 		case sbmac_fc_auto:		/* XXX not implemented */
   1681 			/* fall through */
   1682 		default:
   1683 			panic("%s: invalid full duplex fc selection %d",
   1684 			    device_xname(sc->sc_dev), fc);
   1685 			return false;
   1686 		}
   1687 		break;
   1688 
   1689 	default:
   1690 		/* fall through */
   1691 	case sbmac_duplex_auto:
   1692 		panic("%s: bad duplex %d", device_xname(sc->sc_dev), duplex);
   1693 		/* XXX not implemented */
   1694 		break;
   1695 	}
   1696 
   1697 	/*
   1698 	 * Send the bits back to the hardware
   1699 	 */
   1700 
   1701 	SBMAC_WRITECSR(sc->sbm_maccfg, cfg);
   1702 
   1703 	return true;
   1704 }
   1705 
   1706 /*
   1707  *  SBMAC_INTR()
   1708  *
   1709  *  Interrupt handler for MAC interrupts
   1710  *
   1711  *  Input parameters:
   1712  *	MAC structure
   1713  *
   1714  *  Return value:
   1715  *	nothing
   1716  */
   1717 
   1718 /* ARGSUSED */
   1719 static void
   1720 sbmac_intr(void *xsc, uint32_t status, vaddr_t pc)
   1721 {
   1722 	struct sbmac_softc *sc = xsc;
   1723 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1724 	uint64_t isr;
   1725 
   1726 	for (;;) {
   1727 
   1728 		/*
   1729 		 * Read the ISR (this clears the bits in the real register)
   1730 		 */
   1731 
   1732 		isr = SBMAC_READCSR(sc->sbm_isr);
   1733 
   1734 		if (isr == 0)
   1735 			break;
   1736 
   1737 		/*
   1738 		 * Transmits on channel 0
   1739 		 */
   1740 
   1741 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) {
   1742 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1743 			SBMAC_EVCNT_INCR(sc->sbm_ev_txintr);
   1744 		}
   1745 
   1746 		/*
   1747 		 * Receives on channel 0
   1748 		 */
   1749 
   1750 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
   1751 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1752 			SBMAC_EVCNT_INCR(sc->sbm_ev_rxintr);
   1753 		}
   1754 	}
   1755 
   1756 	/* try to get more packets going */
   1757 	if_schedule_deferred_start(ifp);
   1758 }
   1759 
   1760 
   1761 /*
   1762  *  SBMAC_START(ifp)
   1763  *
   1764  *  Start output on the specified interface.  Basically, we
   1765  *  queue as many buffers as we can until the ring fills up, or
   1766  *  we run off the end of the queue, whichever comes first.
   1767  *
   1768  *  Input parameters:
   1769  *	ifp - interface
   1770  *
   1771  *  Return value:
   1772  *	nothing
   1773  */
   1774 
   1775 static void
   1776 sbmac_start(struct ifnet *ifp)
   1777 {
   1778 	struct sbmac_softc	*sc;
   1779 	struct mbuf		*m_head = NULL;
   1780 	int			rv;
   1781 
   1782 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1783 		return;
   1784 
   1785 	sc = ifp->if_softc;
   1786 
   1787 	for (;;) {
   1788 
   1789 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1790 		if (m_head == NULL)
   1791 		    break;
   1792 
   1793 		/*
   1794 		 * Put the buffer on the transmit ring.  If we
   1795 		 * don't have room, set the OACTIVE flag and wait
   1796 		 * for the NIC to drain the ring.
   1797 		 */
   1798 
   1799 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1800 
   1801 		if (rv == 0) {
   1802 			/*
   1803 			 * If there's a BPF listener, bounce a copy of this
   1804 			 * frame to it.
   1805 			 */
   1806 			bpf_mtap(ifp, m_head, BPF_D_OUT);
   1807 			if (!sc->sbm_pass3_dma) {
   1808 				/*
   1809 				 * Don't free mbuf if we're not copying to new
   1810 				 * mbuf in sbdma_add_txbuffer.  It will be
   1811 				 * freed in sbdma_tx_process.
   1812 				 */
   1813 				m_freem(m_head);
   1814 			}
   1815 		} else {
   1816 		    IF_PREPEND(&ifp->if_snd, m_head);
   1817 		    ifp->if_flags |= IFF_OACTIVE;
   1818 		    break;
   1819 		}
   1820 	}
   1821 }
   1822 
   1823 /*
   1824  *  SBMAC_SETMULTI(sc)
   1825  *
   1826  *  Reprogram the multicast table into the hardware, given
   1827  *  the list of multicasts associated with the interface
   1828  *  structure.
   1829  *
   1830  *  Input parameters:
   1831  *	sc - softc
   1832  *
   1833  *  Return value:
   1834  *	nothing
   1835  */
   1836 
   1837 static void
   1838 sbmac_setmulti(struct sbmac_softc *sc)
   1839 {
   1840 	struct ethercom *ec = &sc->sc_ethercom;
   1841 	struct ifnet *ifp = &ec->ec_if;
   1842 	uint64_t reg;
   1843 	sbmac_port_t port;
   1844 	int idx;
   1845 	struct ether_multi *enm;
   1846 	struct ether_multistep step;
   1847 
   1848 	/*
   1849 	 * Clear out entire multicast table.  We do this by nuking
   1850 	 * the entire hash table and all the direct matches except
   1851 	 * the first one, which is used for our station address
   1852 	 */
   1853 
   1854 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1855 		port = PKSEG1(sc->sbm_base +
   1856 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1857 		SBMAC_WRITECSR(port, 0);
   1858 	}
   1859 
   1860 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1861 		port = PKSEG1(sc->sbm_base +
   1862 		    R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1863 		SBMAC_WRITECSR(port, 0);
   1864 	}
   1865 
   1866 	/*
   1867 	 * Clear the filter to say we don't want any multicasts.
   1868 	 */
   1869 
   1870 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1871 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1872 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1873 
   1874 	if (ifp->if_flags & IFF_ALLMULTI) {
   1875 		/*
   1876 		 * Enable ALL multicasts.  Do this by inverting the
   1877 		 * multicast enable bit.
   1878 		 */
   1879 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1880 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1881 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1882 		return;
   1883 	}
   1884 
   1885 	/*
   1886 	 * Progam new multicast entries.  For now, only use the
   1887 	 * perfect filter.  In the future we'll need to use the
   1888 	 * hash filter if the perfect filter overflows
   1889 	 */
   1890 
   1891 	/*
   1892 	 * XXX only using perfect filter for now, need to use hash
   1893 	 * XXX if the table overflows
   1894 	 */
   1895 
   1896 	idx = 1;		/* skip station address */
   1897 	ETHER_LOCK(ec);
   1898 	ETHER_FIRST_MULTI(step, ec, enm);
   1899 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1900 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1901 		port = PKSEG1(sc->sbm_base +
   1902 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1903 		SBMAC_WRITECSR(port, reg);
   1904 		idx++;
   1905 		ETHER_NEXT_MULTI(step, enm);
   1906 	}
   1907 	ETHER_UNLOCK(ec);
   1908 
   1909 	/*
   1910 	 * Enable the "accept multicast bits" if we programmed at least one
   1911 	 * multicast.
   1912 	 */
   1913 
   1914 	if (idx > 1) {
   1915 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1916 	    reg |= M_MAC_MCAST_EN;
   1917 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1918 	}
   1919 }
   1920 
   1921 /*
   1922  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1923  *
   1924  *  Generic IOCTL requests for this interface.  The basic
   1925  *  stuff is handled here for bringing the interface up,
   1926  *  handling multicasts, etc.
   1927  *
   1928  *  Input parameters:
   1929  *	ifp - interface structure
   1930  *	cmd - command code
   1931  *	data - pointer to data
   1932  *
   1933  *  Return value:
   1934  *	return value (0 is success)
   1935  */
   1936 
   1937 static int
   1938 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1939 {
   1940 	struct ifaddr *ifa = (struct ifaddr *) data;
   1941 	struct sbmac_softc *sc = ifp->if_softc;
   1942 
   1943 	switch (cmd) {
   1944 	case SIOCINITIFADDR:
   1945 		ifp->if_flags |= IFF_UP;
   1946 
   1947 		switch (ifa->ifa_addr->sa_family) {
   1948 #ifdef INET
   1949 		case AF_INET:
   1950 			sbmac_init_and_start(sc);
   1951 			arp_ifinit(ifp, ifa);
   1952 			break;
   1953 #endif
   1954 		default:
   1955 			sbmac_init_and_start(sc);
   1956 			break;
   1957 		}
   1958 		break;
   1959 
   1960 	default:
   1961 		return ENOTTY;
   1962 	}
   1963 
   1964 	return 0;
   1965 }
   1966 
   1967 /*
   1968  *  SBMAC_IOCTL(ifp, cmd, data)
   1969  *
   1970  *  Main IOCTL handler - dispatches to other IOCTLs for various
   1971  *  types of requests.
   1972  *
   1973  *  Input parameters:
   1974  *	ifp - interface pointer
   1975  *	cmd - command code
   1976  *	data - pointer to argument data
   1977  *
   1978  *  Return value:
   1979  *	0 if ok
   1980  *	else error code
   1981  */
   1982 
   1983 static int
   1984 sbmac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1985 {
   1986 	struct sbmac_softc *sc = ifp->if_softc;
   1987 	struct ifreq *ifr = (struct ifreq *) data;
   1988 	int s, error = 0;
   1989 
   1990 	s = splnet();
   1991 
   1992 	switch (cmd) {
   1993 	case SIOCINITIFADDR:
   1994 		error = sbmac_ether_ioctl(ifp, cmd, data);
   1995 		break;
   1996 	case SIOCSIFMTU:
   1997 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
   1998 			error = EINVAL;
   1999 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
   2000 			/* XXX Program new MTU here */
   2001 			error = 0;
   2002 		break;
   2003 	case SIOCSIFFLAGS:
   2004 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   2005 			break;
   2006 		if (ifp->if_flags & IFF_UP) {
   2007 			/*
   2008 			 * If only the state of the PROMISC flag changed,
   2009 			 * just tweak the hardware registers.
   2010 			 */
   2011 			if ((ifp->if_flags & IFF_RUNNING) &&
   2012 			    (ifp->if_flags & IFF_PROMISC)) {
   2013 				/* turn on promiscuous mode */
   2014 				sbmac_promiscuous_mode(sc, true);
   2015 			} else if (ifp->if_flags & IFF_RUNNING &&
   2016 			    !(ifp->if_flags & IFF_PROMISC)) {
   2017 			    /* turn off promiscuous mode */
   2018 			    sbmac_promiscuous_mode(sc, false);
   2019 			} else
   2020 			    sbmac_set_channel_state(sc, sbmac_state_on);
   2021 		} else {
   2022 			if (ifp->if_flags & IFF_RUNNING)
   2023 				sbmac_set_channel_state(sc, sbmac_state_off);
   2024 		}
   2025 
   2026 		sc->sbm_if_flags = ifp->if_flags;
   2027 		error = 0;
   2028 		break;
   2029 
   2030 	default:
   2031 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
   2032 			error = 0;
   2033 			if (ifp->if_flags & IFF_RUNNING)
   2034 				sbmac_setmulti(sc);
   2035 		}
   2036 		break;
   2037 	}
   2038 
   2039 	(void)splx(s);
   2040 
   2041 	return error;
   2042 }
   2043 
   2044 /*
   2045  *  SBMAC_IFMEDIA_UPD(ifp)
   2046  *
   2047  *  Configure an appropriate media type for this interface,
   2048  *  given the data in the interface structure
   2049  *
   2050  *  Input parameters:
   2051  *	ifp - interface
   2052  *
   2053  *  Return value:
   2054  *	0 if ok
   2055  *	else error code
   2056  */
   2057 
   2058 /*
   2059  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2060  *
   2061  *  Report current media status (used by ifconfig, for example)
   2062  *
   2063  *  Input parameters:
   2064  *	ifp - interface structure
   2065  *	ifmr - media request structure
   2066  *
   2067  *  Return value:
   2068  *	nothing
   2069  */
   2070 
   2071 /*
   2072  *  SBMAC_WATCHDOG(ifp)
   2073  *
   2074  *  Called periodically to make sure we're still happy.
   2075  *
   2076  *  Input parameters:
   2077  *	ifp - interface structure
   2078  *
   2079  *  Return value:
   2080  *	nothing
   2081  */
   2082 
   2083 static void
   2084 sbmac_watchdog(struct ifnet *ifp)
   2085 {
   2086 
   2087 	/* XXX do something */
   2088 }
   2089 
   2090 /*
   2091  * One second timer, used to tick MII.
   2092  */
   2093 static void
   2094 sbmac_tick(void *arg)
   2095 {
   2096 	struct sbmac_softc *sc = arg;
   2097 	int s;
   2098 
   2099 	s = splnet();
   2100 	mii_tick(&sc->sc_mii);
   2101 	splx(s);
   2102 
   2103 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2104 }
   2105 
   2106 
   2107 /*
   2108  *  SBMAC_MATCH(parent, match, aux)
   2109  *
   2110  *  Part of the config process - see if this device matches the
   2111  *  info about what we expect to find on the bus.
   2112  *
   2113  *  Input parameters:
   2114  *	parent - parent bus structure
   2115  *	match -
   2116  *	aux - bus-specific args
   2117  *
   2118  *  Return value:
   2119  *	1 if we match
   2120  *	0 if we don't match
   2121  */
   2122 
   2123 static int
   2124 sbmac_match(device_t parent, cfdata_t match, void *aux)
   2125 {
   2126 	struct sbobio_attach_args *sa = aux;
   2127 
   2128 	/*
   2129 	 * Make sure it's a MAC
   2130 	 */
   2131 	if (sa->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2132 		return 0;
   2133 
   2134 	/*
   2135 	 * Yup, it is.
   2136 	 */
   2137 
   2138 	return 1;
   2139 }
   2140 
   2141 /*
   2142  *  SBMAC_PARSE_XDIGIT(str)
   2143  *
   2144  *  Parse a hex digit, returning its value
   2145  *
   2146  *  Input parameters:
   2147  *	str - character
   2148  *
   2149  *  Return value:
   2150  *	hex value, or -1 if invalid
   2151  */
   2152 
   2153 static int
   2154 sbmac_parse_xdigit(char str)
   2155 {
   2156 	int digit;
   2157 
   2158 	if ((str >= '0') && (str <= '9'))
   2159 		digit = str - '0';
   2160 	else if ((str >= 'a') && (str <= 'f'))
   2161 		digit = str - 'a' + 10;
   2162 	else if ((str >= 'A') && (str <= 'F'))
   2163 		digit = str - 'A' + 10;
   2164 	else
   2165 		digit = -1;
   2166 
   2167 	return digit;
   2168 }
   2169 
   2170 /*
   2171  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2172  *
   2173  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2174  *  Ethernet address.
   2175  *
   2176  *  Input parameters:
   2177  *	str - string
   2178  *	hwaddr - pointer to hardware address
   2179  *
   2180  *  Return value:
   2181  *	0 if ok, else -1
   2182  */
   2183 
   2184 static int
   2185 sbmac_parse_hwaddr(const char *str, u_char *hwaddr)
   2186 {
   2187 	int digit1, digit2;
   2188 	int idx = 6;
   2189 
   2190 	while (*str && (idx > 0)) {
   2191 		digit1 = sbmac_parse_xdigit(*str);
   2192 		if (digit1 < 0)
   2193 			return -1;
   2194 		str++;
   2195 		if (!*str)
   2196 			return -1;
   2197 
   2198 		if ((*str == ':') || (*str == '-')) {
   2199 			digit2 = digit1;
   2200 			digit1 = 0;
   2201 		} else {
   2202 			digit2 = sbmac_parse_xdigit(*str);
   2203 			if (digit2 < 0)
   2204 				return -1;
   2205 			str++;
   2206 		}
   2207 
   2208 		*hwaddr++ = (digit1 << 4) | digit2;
   2209 		idx--;
   2210 
   2211 		if (*str == '-')
   2212 			str++;
   2213 		if (*str == ':')
   2214 			str++;
   2215 	}
   2216 	return 0;
   2217 }
   2218 
   2219 /*
   2220  *  SBMAC_ATTACH(parent, self, aux)
   2221  *
   2222  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2223  *
   2224  *  Input parameters:
   2225  *	parent - parent bus device
   2226  *	self - our softc
   2227  *	aux - attach data
   2228  *
   2229  *  Return value:
   2230  *	nothing
   2231  */
   2232 
   2233 static void
   2234 sbmac_attach(device_t parent, device_t self, void *aux)
   2235 {
   2236 	struct sbmac_softc * const sc = device_private(self);
   2237 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
   2238 	struct mii_data * const mii = &sc->sc_mii;
   2239 	struct sbobio_attach_args * const sa = aux;
   2240 	u_char *eaddr;
   2241 	static int unit = 0;	/* XXX */
   2242 	uint64_t ea_reg;
   2243 	int idx;
   2244 
   2245 	sc->sc_dev = self;
   2246 
   2247 	/* Determine controller base address */
   2248 
   2249 	sc->sbm_base = sa->sa_base + sa->sa_locs.sa_offset;
   2250 
   2251 	eaddr = sc->sbm_hwaddr;
   2252 
   2253 	/*
   2254 	 * Initialize context (get pointers to registers and stuff), then
   2255 	 * allocate the memory for the descriptor tables.
   2256 	 */
   2257 
   2258 	sbmac_initctx(sc);
   2259 
   2260 	callout_init(&(sc->sc_tick_ch), 0);
   2261 
   2262 	/*
   2263 	 * Read the ethernet address.  The firwmare left this programmed
   2264 	 * for us in the ethernet address register for each mac.
   2265 	 */
   2266 
   2267 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2268 	for (idx = 0; idx < 6; idx++) {
   2269 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2270 		ea_reg >>= 8;
   2271 	}
   2272 
   2273 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2274 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2275 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2276 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2277 		eaddr[5] = unit;
   2278 	}
   2279 
   2280 #ifdef SBMAC_ETH0_HWADDR
   2281 	if (unit == 0)
   2282 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2283 #endif
   2284 #ifdef SBMAC_ETH1_HWADDR
   2285 	if (unit == 1)
   2286 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2287 #endif
   2288 #ifdef SBMAC_ETH2_HWADDR
   2289 	if (unit == 2)
   2290 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2291 #endif
   2292 	unit++;
   2293 
   2294 	/*
   2295 	 * Display Ethernet address (this is called during the config process
   2296 	 * so we need to finish off the config message that was being displayed)
   2297 	 */
   2298 	aprint_normal(": Ethernet%s\n",
   2299 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2300 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
   2301 
   2302 
   2303 	/*
   2304 	 * Set up ifnet structure
   2305 	 */
   2306 
   2307 	ifp->if_softc = sc;
   2308 	memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
   2309 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
   2310 	ifp->if_ioctl = sbmac_ioctl;
   2311 	ifp->if_start = sbmac_start;
   2312 	ifp->if_watchdog = sbmac_watchdog;
   2313 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2314 
   2315 	/*
   2316 	 * Set up ifmedia support.
   2317 	 */
   2318 
   2319 	/*
   2320 	 * Initialize MII/media info.
   2321 	 */
   2322 	mii->mii_ifp	  = ifp;
   2323 	mii->mii_readreg  = sbmac_mii_readreg;
   2324 	mii->mii_writereg = sbmac_mii_writereg;
   2325 	mii->mii_statchg  = sbmac_mii_statchg;
   2326 	sc->sc_ethercom.ec_mii = mii;
   2327 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
   2328 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
   2329 	    MII_OFFSET_ANY, 0);
   2330 
   2331 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
   2332 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
   2333 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
   2334 	} else
   2335 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
   2336 
   2337 	/*
   2338 	 * map/route interrupt
   2339 	 */
   2340 
   2341 	sc->sbm_intrhand = cpu_intr_establish(sa->sa_locs.sa_intr[0], IPL_NET,
   2342 	    sbmac_intr, sc);
   2343 
   2344 	/*
   2345 	 * Call MI attach routines.
   2346 	 */
   2347 	if_attach(ifp);
   2348 	if_deferred_start_init(ifp, NULL);
   2349 	ether_ifattach(ifp, eaddr);
   2350 }
   2351