Home | History | Annotate | Line # | Download | only in dev
sbmac.c revision 1.8
      1 /* $NetBSD: sbmac.c,v 1.8 2002/11/19 01:44:04 cgd Exp $ */
      2 
      3 /*
      4  * Copyright 2000, 2001
      5  * Broadcom Corporation. All rights reserved.
      6  *
      7  * This software is furnished under license and may be used and copied only
      8  * in accordance with the following terms and conditions.  Subject to these
      9  * conditions, you may download, copy, install, use, modify and distribute
     10  * modified or unmodified copies of this software in source and/or binary
     11  * form. No title or ownership is transferred hereby.
     12  *
     13  * 1) Any source code used, modified or distributed must reproduce and
     14  *    retain this copyright notice and list of conditions as they appear in
     15  *    the source file.
     16  *
     17  * 2) No right is granted to use any trade name, trademark, or logo of
     18  *    Broadcom Corporation. Neither the "Broadcom Corporation" name nor any
     19  *    trademark or logo of Broadcom Corporation may be used to endorse or
     20  *    promote products derived from this software without the prior written
     21  *    permission of Broadcom Corporation.
     22  *
     23  * 3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED
     24  *    WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
     25  *    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
     26  *    NON-INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE LIABLE
     27  *    FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM SHALL NOT BE
     28  *    LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  *    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  *    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     31  *    BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     32  *    WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     33  *    OR OTHERWISE), EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 #include "bpfilter.h"
     37 #include "opt_inet.h"
     38 #include "opt_ns.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/sockio.h>
     43 #include <sys/mbuf.h>
     44 #include <sys/malloc.h>
     45 #include <sys/kernel.h>
     46 #include <sys/socket.h>
     47 #include <sys/queue.h>
     48 #include <sys/device.h>
     49 
     50 #include <net/if.h>
     51 #include <net/if_arp.h>
     52 #include <net/if_ether.h>
     53 #include <net/if_dl.h>
     54 #include <net/if_media.h>
     55 
     56 #if NBPFILTER > 0
     57 #include <net/bpf.h>
     58 #endif
     59 
     60 #ifdef INET
     61 #include <netinet/in.h>
     62 #include <netinet/if_inarp.h>
     63 #endif
     64 
     65 #ifdef NS
     66 #include <netns/ns.h>
     67 #include <netns/ns_if.h>
     68 #endif
     69 
     70 #include <machine/locore.h>
     71 
     72 #include "sbobiovar.h"
     73 
     74 #include <dev/mii/mii.h>
     75 #include <dev/mii/miivar.h>
     76 #include <dev/mii/mii_bitbang.h>
     77 
     78 #include <mips/sibyte/include/sb1250_defs.h>
     79 #include <mips/sibyte/include/sb1250_regs.h>
     80 #include <mips/sibyte/include/sb1250_mac.h>
     81 #include <mips/sibyte/include/sb1250_dma.h>
     82 #include <mips/sibyte/include/sb1250_scd.h>
     83 
     84 
     85 /* Simple types */
     86 
     87 typedef u_long sbmac_port_t;
     88 typedef uint64_t sbmac_physaddr_t;
     89 typedef uint64_t sbmac_enetaddr_t;
     90 
     91 typedef enum { sbmac_speed_auto, sbmac_speed_10,
     92 	       sbmac_speed_100, sbmac_speed_1000 } sbmac_speed_t;
     93 
     94 typedef enum { sbmac_duplex_auto, sbmac_duplex_half,
     95 	       sbmac_duplex_full } sbmac_duplex_t;
     96 
     97 typedef enum { sbmac_fc_auto, sbmac_fc_disabled, sbmac_fc_frame,
     98 	       sbmac_fc_collision, sbmac_fc_carrier } sbmac_fc_t;
     99 
    100 typedef enum { sbmac_state_uninit, sbmac_state_off, sbmac_state_on,
    101 	       sbmac_state_broken } sbmac_state_t;
    102 
    103 
    104 /* Macros */
    105 
    106 #define	SBDMA_NEXTBUF(d, f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
    107 			  (d)->sbdma_dscrtable : (d)->f+1)
    108 
    109 
    110 #define	CACHELINESIZE 32
    111 #define	NUMCACHEBLKS(x) (((x)+CACHELINESIZE-1)/CACHELINESIZE)
    112 #define	KMALLOC(x) malloc((x), M_DEVBUF, M_DONTWAIT)
    113 #define	KVTOPHYS(x) kvtophys((vaddr_t)(x))
    114 
    115 #ifdef SBMACDEBUG
    116 #define	dprintf(x)	printf x
    117 #else
    118 #define	dprintf(x)
    119 #endif
    120 
    121 #define	SBMAC_READCSR(t) mips3_ld((uint64_t *) (t))
    122 #define	SBMAC_WRITECSR(t, v) mips3_sd((uint64_t *) (t), (v))
    123 
    124 #define	PKSEG1(x) ((sbmac_port_t) MIPS_PHYS_TO_KSEG1(x))
    125 
    126 #define	SBMAC_MAX_TXDESCR	64
    127 #define	SBMAC_MAX_RXDESCR	64
    128 
    129 #define	ETHER_ALIGN	2
    130 
    131 /* DMA Descriptor structure */
    132 
    133 typedef struct sbdmadscr_s {
    134 	uint64_t dscr_a;
    135 	uint64_t dscr_b;
    136 } sbdmadscr_t;
    137 
    138 
    139 /* DMA Controller structure */
    140 
    141 typedef struct sbmacdma_s {
    142 
    143 	/*
    144 	 * This stuff is used to identify the channel and the registers
    145 	 * associated with it.
    146 	 */
    147 
    148 	struct sbmac_softc *sbdma_eth;	/* back pointer to associated MAC */
    149 	int		sbdma_channel;	/* channel number */
    150 	int		sbdma_txdir;	/* direction (1=transmit) */
    151 	int		sbdma_maxdescr;	/* total # of descriptors in ring */
    152 	sbmac_port_t	sbdma_config0;	/* DMA config register 0 */
    153 	sbmac_port_t	sbdma_config1;	/* DMA config register 1 */
    154 	sbmac_port_t	sbdma_dscrbase;	/* Descriptor base address */
    155 	sbmac_port_t	sbdma_dscrcnt; 	/* Descriptor count register */
    156 	sbmac_port_t	sbdma_curdscr;	/* current descriptor address */
    157 
    158 	/*
    159 	 * This stuff is for maintenance of the ring
    160 	 */
    161 
    162 	sbdmadscr_t	*sbdma_dscrtable;	/* base of descriptor table */
    163 	sbdmadscr_t	*sbdma_dscrtable_end;	/* end of descriptor table */
    164 
    165 	struct mbuf	**sbdma_ctxtable;	/* context table, one per descr */
    166 
    167 	paddr_t		sbdma_dscrtable_phys;	/* and also the phys addr */
    168 	sbdmadscr_t	*sbdma_addptr;		/* next dscr for sw to add */
    169 	sbdmadscr_t	*sbdma_remptr;		/* next dscr for sw to remove */
    170 } sbmacdma_t;
    171 
    172 
    173 /* Ethernet softc structure */
    174 
    175 struct sbmac_softc {
    176 
    177 	/*
    178 	 * NetBSD-specific things
    179 	 */
    180 	struct device	sc_dev;		/* base device (must be first) */
    181 	struct ethercom	sc_ethercom;	/* Ethernet common part */
    182 	struct mii_data	sc_mii;
    183 	struct callout	sc_tick_ch;
    184 
    185 	int		sbm_if_flags;
    186 	void		*sbm_intrhand;
    187 
    188 	/*
    189 	 * Controller-specific things
    190 	 */
    191 
    192 	sbmac_port_t	sbm_base;	/* MAC's base address */
    193 	sbmac_state_t	sbm_state;	/* current state */
    194 
    195 	sbmac_port_t	sbm_macenable;	/* MAC Enable Register */
    196 	sbmac_port_t	sbm_maccfg;	/* MAC Configuration Register */
    197 	sbmac_port_t	sbm_fifocfg;	/* FIFO configuration register */
    198 	sbmac_port_t	sbm_framecfg;	/* Frame configuration register */
    199 	sbmac_port_t	sbm_rxfilter;	/* receive filter register */
    200 	sbmac_port_t	sbm_isr;	/* Interrupt status register */
    201 	sbmac_port_t	sbm_imr;	/* Interrupt mask register */
    202 
    203 	sbmac_speed_t	sbm_speed;	/* current speed */
    204 	sbmac_duplex_t	sbm_duplex;	/* current duplex */
    205 	sbmac_fc_t	sbm_fc;		/* current flow control setting */
    206 	int		sbm_rxflags;	/* received packet flags */
    207 
    208 	u_char		sbm_hwaddr[ETHER_ADDR_LEN];
    209 
    210 	sbmacdma_t	sbm_txdma;	/* for now, only use channel 0 */
    211 	sbmacdma_t	sbm_rxdma;
    212 
    213 	int		sbm_pass3_dma;	/* chip has pass3 SOC DMA features */
    214 };
    215 
    216 
    217 /* Externs */
    218 
    219 extern paddr_t kvtophys(vaddr_t);
    220 
    221 /* Prototypes */
    222 
    223 static void sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan,
    224     int txrx, int maxdescr);
    225 static void sbdma_channel_start(sbmacdma_t *d);
    226 static int sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m);
    227 static int sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m);
    228 static void sbdma_emptyring(sbmacdma_t *d);
    229 static void sbdma_fillring(sbmacdma_t *d);
    230 static void sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    231 static void sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d);
    232 static void sbmac_initctx(struct sbmac_softc *s);
    233 static void sbmac_channel_start(struct sbmac_softc *s);
    234 static void sbmac_channel_stop(struct sbmac_softc *s);
    235 static sbmac_state_t sbmac_set_channel_state(struct sbmac_softc *,
    236     sbmac_state_t);
    237 static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
    238 static void sbmac_init_and_start(struct sbmac_softc *sc);
    239 static uint64_t sbmac_addr2reg(u_char *ptr);
    240 static void sbmac_intr(void *xsc, uint32_t status, uint32_t pc);
    241 static void sbmac_start(struct ifnet *ifp);
    242 static void sbmac_setmulti(struct sbmac_softc *sc);
    243 static int sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
    244 static int sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
    245 static int sbmac_mediachange(struct ifnet *ifp);
    246 static void sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr);
    247 static void sbmac_watchdog(struct ifnet *ifp);
    248 static int sbmac_match(struct device *parent, struct cfdata *match, void *aux);
    249 static void sbmac_attach(struct device *parent, struct device *self, void *aux);
    250 static int sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed);
    251 static int sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex,
    252     sbmac_fc_t fc);
    253 static void sbmac_tick(void *arg);
    254 
    255 
    256 /* Globals */
    257 
    258 CFATTACH_DECL(sbmac, sizeof(struct sbmac_softc),
    259     sbmac_match, sbmac_attach, NULL, NULL);
    260 
    261 static uint32_t sbmac_mii_bitbang_read(struct device *self);
    262 static void sbmac_mii_bitbang_write(struct device *self, uint32_t val);
    263 
    264 static const struct mii_bitbang_ops sbmac_mii_bitbang_ops = {
    265 	sbmac_mii_bitbang_read,
    266 	sbmac_mii_bitbang_write,
    267 	{
    268 		(uint32_t)M_MAC_MDIO_OUT,	/* MII_BIT_MDO */
    269 		(uint32_t)M_MAC_MDIO_IN,	/* MII_BIT_MDI */
    270 		(uint32_t)M_MAC_MDC,		/* MII_BIT_MDC */
    271 		0,				/* MII_BIT_DIR_HOST_PHY */
    272 		(uint32_t)M_MAC_MDIO_DIR	/* MII_BIT_DIR_PHY_HOST */
    273 	}
    274 };
    275 
    276 static uint32_t
    277 sbmac_mii_bitbang_read(struct device *self)
    278 {
    279 	struct sbmac_softc *sc = (void *) self;
    280 	sbmac_port_t reg;
    281 
    282 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    283 	return (uint32_t) SBMAC_READCSR(reg);
    284 }
    285 
    286 static void
    287 sbmac_mii_bitbang_write(struct device *self, uint32_t val)
    288 {
    289 	struct sbmac_softc *sc = (void *) self;
    290 	sbmac_port_t reg;
    291 
    292 	reg = PKSEG1(sc->sbm_base + R_MAC_MDIO);
    293 
    294 	SBMAC_WRITECSR(reg, (val &
    295 	    (M_MAC_MDC|M_MAC_MDIO_DIR|M_MAC_MDIO_OUT|M_MAC_MDIO_IN)));
    296 }
    297 
    298 /*
    299  * Read an PHY register through the MII.
    300  */
    301 static int
    302 sbmac_mii_readreg(struct device *self, int phy, int reg)
    303 {
    304 
    305 	return (mii_bitbang_readreg(self, &sbmac_mii_bitbang_ops, phy, reg));
    306 }
    307 
    308 /*
    309  * Write to a PHY register through the MII.
    310  */
    311 static void
    312 sbmac_mii_writereg(struct device *self, int phy, int reg, int val)
    313 {
    314 
    315 	mii_bitbang_writereg(self, &sbmac_mii_bitbang_ops, phy, reg, val);
    316 }
    317 
    318 static void
    319 sbmac_mii_statchg(struct device *self)
    320 {
    321 	struct sbmac_softc *sc = (struct sbmac_softc *)self;
    322 	sbmac_state_t oldstate;
    323 
    324 	/* Stop the MAC in preparation for changing all of the parameters. */
    325 	oldstate = sbmac_set_channel_state(sc, sbmac_state_off);
    326 
    327 	switch (sc->sc_ethercom.ec_if.if_baudrate) {
    328 	default:		/* if autonegotiation fails, assume 10Mbit */
    329 	case IF_Mbps(10):
    330 		sbmac_set_speed(sc, sbmac_speed_10);
    331 		break;
    332 
    333 	case IF_Mbps(100):
    334 		sbmac_set_speed(sc, sbmac_speed_100);
    335 		break;
    336 
    337 	case IF_Mbps(1000):
    338 		sbmac_set_speed(sc, sbmac_speed_1000);
    339 		break;
    340 	}
    341 
    342 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
    343 		/* Configure for full-duplex */
    344 		/* XXX: is flow control right for 10, 100? */
    345 		sbmac_set_duplex(sc, sbmac_duplex_full, sbmac_fc_frame);
    346 	} else {
    347 		/* Configure for half-duplex */
    348 		/* XXX: is flow control right? */
    349 		sbmac_set_duplex(sc, sbmac_duplex_half, sbmac_fc_disabled);
    350 	}
    351 
    352 	/* And put it back into its former state. */
    353 	sbmac_set_channel_state(sc, oldstate);
    354 }
    355 
    356 /*
    357  *  SBDMA_INITCTX(d, s, chan, txrx, maxdescr)
    358  *
    359  *  Initialize a DMA channel context.  Since there are potentially
    360  *  eight DMA channels per MAC, it's nice to do this in a standard
    361  *  way.
    362  *
    363  *  Input parameters:
    364  *	d - sbmacdma_t structure (DMA channel context)
    365  *	s - sbmac_softc structure (pointer to a MAC)
    366  *	chan - channel number (0..1 right now)
    367  *	txrx - Identifies DMA_TX or DMA_RX for channel direction
    368  *	maxdescr - number of descriptors
    369  *
    370  *  Return value:
    371  *	nothing
    372  */
    373 
    374 static void
    375 sbdma_initctx(sbmacdma_t *d, struct sbmac_softc *s, int chan, int txrx,
    376     int maxdescr)
    377 {
    378 	/*
    379 	 * Save away interesting stuff in the structure
    380 	 */
    381 
    382 	d->sbdma_eth = s;
    383 	d->sbdma_channel = chan;
    384 	d->sbdma_txdir = txrx;
    385 
    386 	/*
    387 	 * initialize register pointers
    388 	 */
    389 
    390 	d->sbdma_config0 = PKSEG1(s->sbm_base +
    391 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG0));
    392 	d->sbdma_config1 = PKSEG1(s->sbm_base +
    393 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CONFIG1));
    394 	d->sbdma_dscrbase = PKSEG1(s->sbm_base +
    395 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_BASE));
    396 	d->sbdma_dscrcnt = PKSEG1(s->sbm_base +
    397 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_DSCR_CNT));
    398 	d->sbdma_curdscr = PKSEG1(s->sbm_base +
    399 	    R_MAC_DMA_REGISTER(txrx, chan, R_MAC_DMA_CUR_DSCRADDR));
    400 
    401 	/*
    402 	 * Allocate memory for the ring
    403 	 */
    404 
    405 	d->sbdma_maxdescr = maxdescr;
    406 
    407 	d->sbdma_dscrtable = (sbdmadscr_t *)
    408 	    KMALLOC(d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    409 
    410 	bzero(d->sbdma_dscrtable, d->sbdma_maxdescr*sizeof(sbdmadscr_t));
    411 
    412 	d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
    413 
    414 	d->sbdma_dscrtable_phys = KVTOPHYS(d->sbdma_dscrtable);
    415 
    416 	/*
    417 	 * And context table
    418 	 */
    419 
    420 	d->sbdma_ctxtable = (struct mbuf **)
    421 	    KMALLOC(d->sbdma_maxdescr*sizeof(struct mbuf *));
    422 
    423 	bzero(d->sbdma_ctxtable, d->sbdma_maxdescr*sizeof(struct mbuf *));
    424 }
    425 
    426 /*
    427  *  SBDMA_CHANNEL_START(d)
    428  *
    429  *  Initialize the hardware registers for a DMA channel.
    430  *
    431  *  Input parameters:
    432  *	d - DMA channel to init (context must be previously init'd
    433  *
    434  *  Return value:
    435  *	nothing
    436  */
    437 
    438 static void
    439 sbdma_channel_start(sbmacdma_t *d)
    440 {
    441 	/*
    442 	 * Turn on the DMA channel
    443 	 */
    444 
    445 	SBMAC_WRITECSR(d->sbdma_config1, 0);
    446 
    447 	SBMAC_WRITECSR(d->sbdma_dscrbase, d->sbdma_dscrtable_phys);
    448 
    449 	SBMAC_WRITECSR(d->sbdma_config0, V_DMA_RINGSZ(d->sbdma_maxdescr) | 0);
    450 
    451 	/*
    452 	 * Initialize ring pointers
    453 	 */
    454 
    455 	d->sbdma_addptr = d->sbdma_dscrtable;
    456 	d->sbdma_remptr = d->sbdma_dscrtable;
    457 }
    458 
    459 /*
    460  *  SBDMA_ADD_RCVBUFFER(d, m)
    461  *
    462  *  Add a buffer to the specified DMA channel.   For receive channels,
    463  *  this queues a buffer for inbound packets.
    464  *
    465  *  Input parameters:
    466  *	d - DMA channel descriptor
    467  *	m - mbuf to add, or NULL if we should allocate one.
    468  *
    469  *  Return value:
    470  *	0 if buffer could not be added (ring is full)
    471  *	1 if buffer added successfully
    472  */
    473 
    474 static int
    475 sbdma_add_rcvbuffer(sbmacdma_t *d, struct mbuf *m)
    476 {
    477 	sbdmadscr_t *dsc;
    478 	sbdmadscr_t *nextdsc;
    479 	struct mbuf *m_new = NULL;
    480 
    481 	/* get pointer to our current place in the ring */
    482 
    483 	dsc = d->sbdma_addptr;
    484 	nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
    485 
    486 	/*
    487 	 * figure out if the ring is full - if the next descriptor
    488 	 * is the same as the one that we're going to remove from
    489 	 * the ring, the ring is full
    490 	 */
    491 
    492 	if (nextdsc == d->sbdma_remptr)
    493 		return ENOSPC;
    494 
    495 	/*
    496 	 * Allocate an mbuf if we don't already have one.
    497 	 * If we do have an mbuf, reset it so that it's empty.
    498 	 */
    499 
    500 	if (m == NULL) {
    501 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
    502 		if (m_new == NULL) {
    503 			printf("%s: mbuf allocation failed\n",
    504 			    d->sbdma_eth->sc_dev.dv_xname);
    505 			return ENOBUFS;
    506 		}
    507 
    508 		MCLGET(m_new, M_DONTWAIT);
    509 		if (!(m_new->m_flags & M_EXT)) {
    510 			printf("%s: mbuf cluster allocation failed\n",
    511 			    d->sbdma_eth->sc_dev.dv_xname);
    512 			m_freem(m_new);
    513 			return ENOBUFS;
    514 		}
    515 
    516 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    517 		m_adj(m_new, ETHER_ALIGN);
    518 	} else {
    519 		m_new = m;
    520 		m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
    521 		m_new->m_data = m_new->m_ext.ext_buf;
    522 		m_adj(m_new, ETHER_ALIGN);
    523 	}
    524 
    525 	/*
    526 	 * fill in the descriptor
    527 	 */
    528 
    529 	dsc->dscr_a = KVTOPHYS(mtod(m_new, caddr_t)) |
    530 	    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(ETHER_ALIGN + m_new->m_len)) |
    531 	    M_DMA_DSCRA_INTERRUPT;
    532 
    533 	/* receiving: no options */
    534 	dsc->dscr_b = 0;
    535 
    536 	/*
    537 	 * fill in the context
    538 	 */
    539 
    540 	d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
    541 
    542 	/*
    543 	 * point at next packet
    544 	 */
    545 
    546 	d->sbdma_addptr = nextdsc;
    547 
    548 	/*
    549 	 * Give the buffer to the DMA engine.
    550 	 */
    551 
    552 	SBMAC_WRITECSR(d->sbdma_dscrcnt, 1);
    553 
    554 	return 0;					/* we did it */
    555 }
    556 
    557 /*
    558  *  SBDMA_ADD_TXBUFFER(d, m)
    559  *
    560  *  Add a transmit buffer to the specified DMA channel, causing a
    561  *  transmit to start.
    562  *
    563  *  Input parameters:
    564  *	d - DMA channel descriptor
    565  *	m - mbuf to add
    566  *
    567  *  Return value:
    568  *	0 transmit queued successfully
    569  *	otherwise error code
    570  */
    571 
    572 static int
    573 sbdma_add_txbuffer(sbmacdma_t *d, struct mbuf *m)
    574 {
    575 	sbdmadscr_t *dsc;
    576 	sbdmadscr_t *nextdsc;
    577 	sbdmadscr_t *prevdsc;
    578 	sbdmadscr_t *origdesc;
    579 	int length;
    580 	int num_mbufs = 0;
    581 	struct sbmac_softc *sc = d->sbdma_eth;
    582 
    583 	/* get pointer to our current place in the ring */
    584 
    585 	dsc = d->sbdma_addptr;
    586 	nextdsc = SBDMA_NEXTBUF(d, sbdma_addptr);
    587 
    588 	/*
    589 	 * figure out if the ring is full - if the next descriptor
    590 	 * is the same as the one that we're going to remove from
    591 	 * the ring, the ring is full
    592 	 */
    593 
    594 	if (nextdsc == d->sbdma_remptr)
    595 		return ENOSPC;
    596 
    597 #if 0
    598 	do {
    599 		struct mbuf *m0;
    600 
    601 		printf("mbuf chain: ");
    602 		for (m0 = m; m0 != 0; m0 = m0->m_next) {
    603 			printf("%d%c/%X ", m0->m_len,
    604 			m0->m_flags & M_EXT ? 'X' : 'N',
    605 			mtod(m0, u_int));
    606 		}
    607 		printf("\n");
    608 	} while (0);
    609 #endif
    610 
    611 	/*
    612 	 * PASS3 parts do not have buffer alignment restriction.
    613 	 * No need to copy/coalesce to new mbuf.  Also has different
    614 	 * descriptor format
    615 	 */
    616 	if (sc->sbm_pass3_dma) {
    617 		struct mbuf *m_temp = NULL;
    618 
    619 		/*
    620 		 * Loop thru this mbuf record.
    621 		 * The head mbuf will have SOP set.
    622 		 */
    623 		dsc->dscr_a = KVTOPHYS(mtod(m,caddr_t)) |
    624 		    M_DMA_DSCRA_INTERRUPT |
    625 		    M_DMA_ETHTX_SOP;
    626 
    627 		/*
    628 		 * transmitting: set outbound options,buffer A size(+ low 5
    629 		 * bits of start addr),and packet length.
    630 		 */
    631 		dsc->dscr_b =
    632 		    V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    633 		    V_DMA_DSCRB_A_SIZE((m->m_len + (mtod(m,unsigned int) & 0x0000001F))) |
    634 		    V_DMA_DSCRB_PKT_SIZE_MSB( (m->m_pkthdr.len & 0xB000) ) |
    635 		    V_DMA_DSCRB_PKT_SIZE(m->m_pkthdr.len);
    636 
    637 		d->sbdma_addptr = nextdsc;
    638 		origdesc = prevdsc = dsc;
    639 		dsc = d->sbdma_addptr;
    640 		num_mbufs++;
    641 
    642 		/* Start with first non-head mbuf */
    643 		for(m_temp = m->m_next; m_temp != 0; m_temp = m_temp->m_next) {
    644 
    645 			if (m_temp->m_len == 0)
    646 				continue;	/* Skip 0-length mbufs */
    647 
    648 			/*
    649 			 * fill in the descriptor
    650 			 */
    651 
    652 			dsc->dscr_a = KVTOPHYS(mtod(m_temp,caddr_t)) |
    653 			    M_DMA_DSCRA_INTERRUPT;
    654 
    655 			/* transmitting: set outbound options,buffer A size(+ low 5 bits of start addr) */
    656 			dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_NOTSOP) |
    657 			    V_DMA_DSCRB_A_SIZE( (m_temp->m_len + (mtod(m_temp,unsigned int) & 0x0000001F)) );
    658 
    659 			d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = NULL;
    660 
    661 			/*
    662 			 * point at next descriptor
    663 			 */
    664 			nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
    665 			if (nextdsc == d->sbdma_remptr) {
    666 				d->sbdma_addptr = origdesc;
    667 				return ENOSPC;
    668 			}
    669 			d->sbdma_addptr = nextdsc;
    670 
    671 			prevdsc = dsc;
    672 			dsc = d->sbdma_addptr;
    673 			num_mbufs++;
    674 		}
    675 
    676 		/*Set head mbuf to last context index*/
    677 		d->sbdma_ctxtable[prevdsc-d->sbdma_dscrtable] = m;
    678 	} else {
    679 		struct mbuf *m_new = NULL;
    680 		/*
    681 		 * [BEGIN XXX]
    682 		 * XXX Copy/coalesce the mbufs into a single mbuf cluster (we assume
    683 		 * it will fit).  This is a temporary hack to get us going.
    684 		 */
    685 
    686 		MGETHDR(m_new,M_DONTWAIT,MT_DATA);
    687 		if (m_new == NULL) {
    688 			printf("%s: mbuf allocation failed\n",
    689 			    d->sbdma_eth->sc_dev.dv_xname);
    690 			return ENOBUFS;
    691 		}
    692 
    693 		MCLGET(m_new,M_DONTWAIT);
    694 		if (!(m_new->m_flags & M_EXT)) {
    695 			printf("%s: mbuf cluster allocation failed\n",
    696 			    d->sbdma_eth->sc_dev.dv_xname);
    697 			m_freem(m_new);
    698 			return ENOBUFS;
    699 		}
    700 
    701 		m_new->m_len = m_new->m_pkthdr.len= MCLBYTES;
    702 		/*m_adj(m_new,ETHER_ALIGN);*/
    703 
    704 		/*
    705 		 * XXX Don't forget to include the offset portion in the
    706 		 * XXX cache block calculation when this code is rewritten!
    707 		 */
    708 
    709 		/*
    710 		 * Copy data
    711 		 */
    712 
    713 		m_copydata(m,0,m->m_pkthdr.len,mtod(m_new,caddr_t));
    714 		m_new->m_len = m_new->m_pkthdr.len = m->m_pkthdr.len;
    715 
    716 		/* Free old mbuf 'm', actual mbuf is now 'm_new' */
    717 
    718 		// XXX: CALLERS WILL FREE, they might have to bpf_mtap() if this
    719 		// XXX: function succeeds.
    720 		// m_freem(m);
    721 		length = m_new->m_len;
    722 
    723 		/* [END XXX] */
    724 		/*
    725 		 * fill in the descriptor
    726 		 */
    727 
    728 		dsc->dscr_a = KVTOPHYS(mtod(m_new,caddr_t)) |
    729 		    V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(m_new->m_len)) |
    730 		    M_DMA_DSCRA_INTERRUPT |
    731 		    M_DMA_ETHTX_SOP;
    732 
    733 		/* transmitting: set outbound options and length */
    734 		dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
    735 		    V_DMA_DSCRB_PKT_SIZE(length);
    736 
    737 		num_mbufs++;
    738 
    739 		/*
    740 		 * fill in the context
    741 		 */
    742 
    743 		d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = m_new;
    744 
    745 		/*
    746 		 * point at next packet
    747 		 */
    748 		d->sbdma_addptr = nextdsc;
    749 	}
    750 
    751 	/*
    752 	 * Give the buffer to the DMA engine.
    753 	 */
    754 
    755 	SBMAC_WRITECSR(d->sbdma_dscrcnt, num_mbufs);
    756 
    757 	return 0;					/* we did it */
    758 }
    759 
    760 /*
    761  *  SBDMA_EMPTYRING(d)
    762  *
    763  *  Free all allocated mbufs on the specified DMA channel;
    764  *
    765  *  Input parameters:
    766  *	d  - DMA channel
    767  *
    768  *  Return value:
    769  *	nothing
    770  */
    771 
    772 static void
    773 sbdma_emptyring(sbmacdma_t *d)
    774 {
    775 	int idx;
    776 	struct mbuf *m;
    777 
    778 	for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
    779 		m = d->sbdma_ctxtable[idx];
    780 		if (m) {
    781 			m_freem(m);
    782 			d->sbdma_ctxtable[idx] = NULL;
    783 		}
    784 	}
    785 }
    786 
    787 /*
    788  *  SBDMA_FILLRING(d)
    789  *
    790  *  Fill the specified DMA channel (must be receive channel)
    791  *  with mbufs
    792  *
    793  *  Input parameters:
    794  *	d - DMA channel
    795  *
    796  *  Return value:
    797  *	nothing
    798  */
    799 
    800 static void
    801 sbdma_fillring(sbmacdma_t *d)
    802 {
    803 	int idx;
    804 
    805 	for (idx = 0; idx < SBMAC_MAX_RXDESCR-1; idx++)
    806 		if (sbdma_add_rcvbuffer(d, NULL) != 0)
    807 			break;
    808 }
    809 
    810 /*
    811  *  SBDMA_RX_PROCESS(sc, d)
    812  *
    813  *  Process "completed" receive buffers on the specified DMA channel.
    814  *  Note that this isn't really ideal for priority channels, since
    815  *  it processes all of the packets on a given channel before
    816  *  returning.
    817  *
    818  *  Input parameters:
    819  *	sc - softc structure
    820  *	d - DMA channel context
    821  *
    822  *  Return value:
    823  *	nothing
    824  */
    825 
    826 static void
    827 sbdma_rx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    828 {
    829 	int curidx;
    830 	int hwidx;
    831 	sbdmadscr_t *dsc;
    832 	struct mbuf *m;
    833 	struct ether_header *eh;
    834 	int len;
    835 
    836 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    837 
    838 	for (;;) {
    839 		/*
    840 		 * figure out where we are (as an index) and where
    841 		 * the hardware is (also as an index)
    842 		 *
    843 		 * This could be done faster if (for example) the
    844 		 * descriptor table was page-aligned and contiguous in
    845 		 * both virtual and physical memory -- you could then
    846 		 * just compare the low-order bits of the virtual address
    847 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
    848 		 */
    849 
    850 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
    851 		hwidx = (int)
    852 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    853 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    854 
    855 		/*
    856 		 * If they're the same, that means we've processed all
    857 		 * of the descriptors up to (but not including) the one that
    858 		 * the hardware is working on right now.
    859 		 */
    860 
    861 		if (curidx == hwidx)
    862 			break;
    863 
    864 		/*
    865 		 * Otherwise, get the packet's mbuf ptr back
    866 		 */
    867 
    868 		dsc = &(d->sbdma_dscrtable[curidx]);
    869 		m = d->sbdma_ctxtable[curidx];
    870 		d->sbdma_ctxtable[curidx] = NULL;
    871 
    872 		len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
    873 
    874 		/*
    875 		 * Check packet status.  If good, process it.
    876 		 * If not, silently drop it and put it back on the
    877 		 * receive ring.
    878 		 */
    879 
    880 		if (! (dsc->dscr_a & M_DMA_ETHRX_BAD)) {
    881 
    882 			/*
    883 			 * Set length into the packet
    884 			 * XXX do we remove the CRC here?
    885 			 */
    886 			m->m_pkthdr.len = m->m_len = len;
    887 
    888 			ifp->if_ipackets++;
    889 			eh = mtod(m, struct ether_header *);
    890 			m->m_pkthdr.rcvif = ifp;
    891 
    892 
    893 			/*
    894 			 * Add a new buffer to replace the old one.
    895 			 */
    896 			sbdma_add_rcvbuffer(d, NULL);
    897 
    898 #if (NBPFILTER > 0)
    899 			/*
    900 			 * Handle BPF listeners. Let the BPF user see the
    901 			 * packet, but don't pass it up to the ether_input()
    902 			 * layer unless it's a broadcast packet, multicast
    903 			 * packet, matches our ethernet address or the
    904 			 * interface is in promiscuous mode.
    905 			 */
    906 
    907 			if (ifp->if_bpf)
    908 				bpf_mtap(ifp->if_bpf, m);
    909 #endif
    910 			/*
    911 			 * Pass the buffer to the kernel
    912 			 */
    913 			(*ifp->if_input)(ifp, m);
    914 		} else {
    915 			/*
    916 			 * Packet was mangled somehow.  Just drop it and
    917 			 * put it back on the receive ring.
    918 			 */
    919 			sbdma_add_rcvbuffer(d, m);
    920 		}
    921 
    922 		/*
    923 		 * .. and advance to the next buffer.
    924 		 */
    925 
    926 		d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
    927 	}
    928 }
    929 
    930 /*
    931  *  SBDMA_TX_PROCESS(sc, d)
    932  *
    933  *  Process "completed" transmit buffers on the specified DMA channel.
    934  *  This is normally called within the interrupt service routine.
    935  *  Note that this isn't really ideal for priority channels, since
    936  *  it processes all of the packets on a given channel before
    937  *  returning.
    938  *
    939  *  Input parameters:
    940  *	sc - softc structure
    941  *	d - DMA channel context
    942  *
    943  *  Return value:
    944  *	nothing
    945  */
    946 
    947 static void
    948 sbdma_tx_process(struct sbmac_softc *sc, sbmacdma_t *d)
    949 {
    950 	int curidx;
    951 	int hwidx;
    952 	sbdmadscr_t *dsc;
    953 	struct mbuf *m;
    954 
    955 	struct ifnet *ifp = &(sc->sc_ethercom.ec_if);
    956 
    957 	for (;;) {
    958 		/*
    959 		 * figure out where we are (as an index) and where
    960 		 * the hardware is (also as an index)
    961 		 *
    962 		 * This could be done faster if (for example) the
    963 		 * descriptor table was page-aligned and contiguous in
    964 		 * both virtual and physical memory -- you could then
    965 		 * just compare the low-order bits of the virtual address
    966 		 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
    967 		 */
    968 
    969 		curidx = d->sbdma_remptr - d->sbdma_dscrtable;
    970 		hwidx = (int)
    971 		    (((SBMAC_READCSR(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
    972 		    d->sbdma_dscrtable_phys) / sizeof(sbdmadscr_t));
    973 
    974 		/*
    975 		 * If they're the same, that means we've processed all
    976 		 * of the descriptors up to (but not including) the one that
    977 		 * the hardware is working on right now.
    978 		 */
    979 
    980 		if (curidx == hwidx)
    981 			break;
    982 
    983 		/*
    984 		 * Otherwise, get the packet's mbuf ptr back
    985 		 */
    986 
    987 		dsc = &(d->sbdma_dscrtable[curidx]);
    988 		m = d->sbdma_ctxtable[curidx];
    989 		d->sbdma_ctxtable[curidx] = NULL;
    990 
    991 		/*
    992 		 * for transmits, we just free buffers.
    993 		 */
    994 
    995 		m_freem(m);
    996 
    997 		/*
    998 		 * .. and advance to the next buffer.
    999 		 */
   1000 
   1001 		d->sbdma_remptr = SBDMA_NEXTBUF(d, sbdma_remptr);
   1002 	}
   1003 
   1004 	/*
   1005 	 * Decide what to set the IFF_OACTIVE bit in the interface to.
   1006 	 * It's supposed to reflect if the interface is actively
   1007 	 * transmitting, but that's really hard to do quickly.
   1008 	 */
   1009 
   1010 	ifp->if_flags &= ~IFF_OACTIVE;
   1011 }
   1012 
   1013 /*
   1014  *  SBMAC_INITCTX(s)
   1015  *
   1016  *  Initialize an Ethernet context structure - this is called
   1017  *  once per MAC on the 1250.  Memory is allocated here, so don't
   1018  *  call it again from inside the ioctl routines that bring the
   1019  *  interface up/down
   1020  *
   1021  *  Input parameters:
   1022  *	s - sbmac context structure
   1023  *
   1024  *  Return value:
   1025  *	0
   1026  */
   1027 
   1028 static void
   1029 sbmac_initctx(struct sbmac_softc *s)
   1030 {
   1031 	uint64_t sysrev;
   1032 
   1033 	/*
   1034 	 * figure out the addresses of some ports
   1035 	 */
   1036 
   1037 	s->sbm_macenable = PKSEG1(s->sbm_base + R_MAC_ENABLE);
   1038 	s->sbm_maccfg    = PKSEG1(s->sbm_base + R_MAC_CFG);
   1039 	s->sbm_fifocfg   = PKSEG1(s->sbm_base + R_MAC_THRSH_CFG);
   1040 	s->sbm_framecfg  = PKSEG1(s->sbm_base + R_MAC_FRAMECFG);
   1041 	s->sbm_rxfilter  = PKSEG1(s->sbm_base + R_MAC_ADFILTER_CFG);
   1042 	s->sbm_isr       = PKSEG1(s->sbm_base + R_MAC_STATUS);
   1043 	s->sbm_imr       = PKSEG1(s->sbm_base + R_MAC_INT_MASK);
   1044 
   1045 	/*
   1046 	 * Initialize the DMA channels.  Right now, only one per MAC is used
   1047 	 * Note: Only do this _once_, as it allocates memory from the kernel!
   1048 	 */
   1049 
   1050 	sbdma_initctx(&(s->sbm_txdma), s, 0, DMA_TX, SBMAC_MAX_TXDESCR);
   1051 	sbdma_initctx(&(s->sbm_rxdma), s, 0, DMA_RX, SBMAC_MAX_RXDESCR);
   1052 
   1053 	/*
   1054 	 * initial state is OFF
   1055 	 */
   1056 
   1057 	s->sbm_state = sbmac_state_off;
   1058 
   1059 	/*
   1060 	 * Initial speed is (XXX TEMP) 10MBit/s HDX no FC
   1061 	 */
   1062 
   1063 	s->sbm_speed = sbmac_speed_10;
   1064 	s->sbm_duplex = sbmac_duplex_half;
   1065 	s->sbm_fc = sbmac_fc_disabled;
   1066 
   1067 	/*
   1068 	 * Determine SOC type.  112x has Pass3 SOC features.
   1069 	 */
   1070 	sysrev = SBMAC_READCSR( PKSEG1(A_SCD_SYSTEM_REVISION) );
   1071 	s->sbm_pass3_dma = (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1120 ||
   1072 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125 ||
   1073 			    SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1125H ||
   1074 			    (SYS_SOC_TYPE(sysrev) == K_SYS_SOC_TYPE_BCM1250 &&
   1075 			     0));
   1076 }
   1077 
   1078 /*
   1079  *  SBMAC_CHANNEL_START(s)
   1080  *
   1081  *  Start packet processing on this MAC.
   1082  *
   1083  *  Input parameters:
   1084  *	s - sbmac structure
   1085  *
   1086  *  Return value:
   1087  *	nothing
   1088  */
   1089 
   1090 static void
   1091 sbmac_channel_start(struct sbmac_softc *s)
   1092 {
   1093 	uint64_t reg;
   1094 	sbmac_port_t port;
   1095 	uint64_t cfg, fifo, framecfg;
   1096 	int idx;
   1097 	uint64_t dma_cfg0, fifo_cfg;
   1098 	sbmacdma_t *txdma;
   1099 
   1100 	/*
   1101 	 * Don't do this if running
   1102 	 */
   1103 
   1104 	if (s->sbm_state == sbmac_state_on)
   1105 		return;
   1106 
   1107 	/*
   1108 	 * Bring the controller out of reset, but leave it off.
   1109 	 */
   1110 
   1111 	SBMAC_WRITECSR(s->sbm_macenable, 0);
   1112 
   1113 	/*
   1114 	 * Ignore all received packets
   1115 	 */
   1116 
   1117 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1118 
   1119 	/*
   1120 	 * Calculate values for various control registers.
   1121 	 */
   1122 
   1123 	cfg = M_MAC_RETRY_EN |
   1124 	      M_MAC_TX_HOLD_SOP_EN |
   1125 	      V_MAC_TX_PAUSE_CNT_16K |
   1126 	      M_MAC_AP_STAT_EN |
   1127 	      M_MAC_SS_EN |
   1128 	      0;
   1129 
   1130 	fifo = V_MAC_TX_WR_THRSH(4) |	/* Must be '4' or '8' */
   1131 	       V_MAC_TX_RD_THRSH(4) |
   1132 	       V_MAC_TX_RL_THRSH(4) |
   1133 	       V_MAC_RX_PL_THRSH(4) |
   1134 	       V_MAC_RX_RD_THRSH(4) |	/* Must be '4' */
   1135 	       V_MAC_RX_PL_THRSH(4) |
   1136 	       V_MAC_RX_RL_THRSH(8) |
   1137 	       0;
   1138 
   1139 	framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
   1140 	    V_MAC_MAX_FRAMESZ_DEFAULT |
   1141 	    V_MAC_BACKOFF_SEL(1);
   1142 
   1143 	/*
   1144 	 * Clear out the hash address map
   1145 	 */
   1146 
   1147 	port = PKSEG1(s->sbm_base + R_MAC_HASH_BASE);
   1148 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1149 		SBMAC_WRITECSR(port, 0);
   1150 		port += sizeof(uint64_t);
   1151 	}
   1152 
   1153 	/*
   1154 	 * Clear out the exact-match table
   1155 	 */
   1156 
   1157 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1158 	for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
   1159 		SBMAC_WRITECSR(port, 0);
   1160 		port += sizeof(uint64_t);
   1161 	}
   1162 
   1163 	/*
   1164 	 * Clear out the DMA Channel mapping table registers
   1165 	 */
   1166 
   1167 	port = PKSEG1(s->sbm_base + R_MAC_CHUP0_BASE);
   1168 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1169 		SBMAC_WRITECSR(port, 0);
   1170 		port += sizeof(uint64_t);
   1171 	}
   1172 
   1173 	port = PKSEG1(s->sbm_base + R_MAC_CHLO0_BASE);
   1174 	for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
   1175 		SBMAC_WRITECSR(port, 0);
   1176 		port += sizeof(uint64_t);
   1177 	}
   1178 
   1179 	/*
   1180 	 * Program the hardware address.  It goes into the hardware-address
   1181 	 * register as well as the first filter register.
   1182 	 */
   1183 
   1184 	reg = sbmac_addr2reg(s->sbm_hwaddr);
   1185 
   1186 	port = PKSEG1(s->sbm_base + R_MAC_ADDR_BASE);
   1187 	SBMAC_WRITECSR(port, reg);
   1188 	port = PKSEG1(s->sbm_base + R_MAC_ETHERNET_ADDR);
   1189 	SBMAC_WRITECSR(port, 0);			// pass1 workaround
   1190 
   1191 	/*
   1192 	 * Set the receive filter for no packets, and write values
   1193 	 * to the various config registers
   1194 	 */
   1195 
   1196 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1197 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1198 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1199 	SBMAC_WRITECSR(s->sbm_fifocfg, fifo);
   1200 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1201 
   1202 	/*
   1203 	 * Initialize DMA channels (rings should be ok now)
   1204 	 */
   1205 
   1206 	sbdma_channel_start(&(s->sbm_rxdma));
   1207 	sbdma_channel_start(&(s->sbm_txdma));
   1208 
   1209 	/*
   1210 	 * Configure the speed, duplex, and flow control
   1211 	 */
   1212 
   1213 	sbmac_set_speed(s, s->sbm_speed);
   1214 	sbmac_set_duplex(s, s->sbm_duplex, s->sbm_fc);
   1215 
   1216 	/*
   1217 	 * Fill the receive ring
   1218 	 */
   1219 
   1220 	sbdma_fillring(&(s->sbm_rxdma));
   1221 
   1222 	/*
   1223 	 * Turn on the rest of the bits in the enable register
   1224 	 */
   1225 
   1226 	SBMAC_WRITECSR(s->sbm_macenable, M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 |
   1227 	    M_MAC_RX_ENABLE | M_MAC_TX_ENABLE);
   1228 
   1229 
   1230 	/*
   1231 	 * Accept any kind of interrupt on TX and RX DMA channel 0
   1232 	 */
   1233 	SBMAC_WRITECSR(s->sbm_imr,
   1234 	    (M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
   1235 	    (M_MAC_INT_CHANNEL << S_MAC_RX_CH0));
   1236 
   1237 	/*
   1238 	 * Enable receiving unicasts and broadcasts
   1239 	 */
   1240 
   1241 	SBMAC_WRITECSR(s->sbm_rxfilter, M_MAC_UCAST_EN | M_MAC_BCAST_EN);
   1242 
   1243 	/*
   1244 	 * On chips which support unaligned DMA features, set the descriptor
   1245 	 * ring for transmit channels to use the unaligned buffer format.
   1246 	 */
   1247 	txdma = &(s->sbm_txdma);
   1248 
   1249 	if (s->sbm_pass3_dma) {
   1250 
   1251 		dma_cfg0 = SBMAC_READCSR(txdma->sbdma_config0);
   1252 		dma_cfg0 |= V_DMA_DESC_TYPE(K_DMA_DESC_TYPE_RING_UAL_RMW) |
   1253 		    M_DMA_TBX_EN | M_DMA_TDX_EN;
   1254 		SBMAC_WRITECSR(txdma->sbdma_config0,dma_cfg0);
   1255 
   1256 		fifo_cfg =  SBMAC_READCSR(s->sbm_fifocfg);
   1257 		fifo_cfg |= V_MAC_TX_WR_THRSH(8) |
   1258 		    V_MAC_TX_RD_THRSH(8) | V_MAC_TX_RL_THRSH(8);
   1259 		SBMAC_WRITECSR(s->sbm_fifocfg,fifo_cfg);
   1260 	}
   1261 
   1262 	/*
   1263 	 * we're running now.
   1264 	 */
   1265 
   1266 	s->sbm_state = sbmac_state_on;
   1267 	s->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
   1268 
   1269 	/*
   1270 	 * Program multicast addresses
   1271 	 */
   1272 
   1273 	sbmac_setmulti(s);
   1274 
   1275 	/*
   1276 	 * If channel was in promiscuous mode before, turn that on
   1277 	 */
   1278 
   1279 	if (s->sc_ethercom.ec_if.if_flags & IFF_PROMISC)
   1280 		sbmac_promiscuous_mode(s, 1);
   1281 
   1282 	/*
   1283 	 * Turn on the once-per-second timer
   1284 	 */
   1285 
   1286 	callout_reset(&(s->sc_tick_ch), hz, sbmac_tick, s);
   1287 }
   1288 
   1289 /*
   1290  *  SBMAC_CHANNEL_STOP(s)
   1291  *
   1292  *  Stop packet processing on this MAC.
   1293  *
   1294  *  Input parameters:
   1295  *	s - sbmac structure
   1296  *
   1297  *  Return value:
   1298  *	nothing
   1299  */
   1300 
   1301 static void
   1302 sbmac_channel_stop(struct sbmac_softc *s)
   1303 {
   1304 	uint64_t ctl;
   1305 
   1306 	/* don't do this if already stopped */
   1307 
   1308 	if (s->sbm_state == sbmac_state_off)
   1309 		return;
   1310 
   1311 	/* don't accept any packets, disable all interrupts */
   1312 
   1313 	SBMAC_WRITECSR(s->sbm_rxfilter, 0);
   1314 	SBMAC_WRITECSR(s->sbm_imr, 0);
   1315 
   1316 	/* Turn off ticker */
   1317 
   1318 	callout_stop(&(s->sc_tick_ch));
   1319 
   1320 	/* turn off receiver and transmitter */
   1321 
   1322 	ctl = SBMAC_READCSR(s->sbm_macenable);
   1323 	ctl &= ~(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0);
   1324 	SBMAC_WRITECSR(s->sbm_macenable, ctl);
   1325 
   1326 	/* We're stopped now. */
   1327 
   1328 	s->sbm_state = sbmac_state_off;
   1329 	s->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;
   1330 
   1331 	/* Empty the receive and transmit rings */
   1332 
   1333 	sbdma_emptyring(&(s->sbm_rxdma));
   1334 	sbdma_emptyring(&(s->sbm_txdma));
   1335 }
   1336 
   1337 /*
   1338  *  SBMAC_SET_CHANNEL_STATE(state)
   1339  *
   1340  *  Set the channel's state ON or OFF
   1341  *
   1342  *  Input parameters:
   1343  *	state - new state
   1344  *
   1345  *  Return value:
   1346  *	old state
   1347  */
   1348 
   1349 static sbmac_state_t
   1350 sbmac_set_channel_state(struct sbmac_softc *sc, sbmac_state_t state)
   1351 {
   1352 	sbmac_state_t oldstate = sc->sbm_state;
   1353 
   1354 	/*
   1355 	 * If same as previous state, return
   1356 	 */
   1357 
   1358 	if (state == oldstate)
   1359 		return oldstate;
   1360 
   1361 	/*
   1362 	 * If new state is ON, turn channel on
   1363 	 */
   1364 
   1365 	if (state == sbmac_state_on)
   1366 		sbmac_channel_start(sc);
   1367 	else
   1368 		sbmac_channel_stop(sc);
   1369 
   1370 	/*
   1371 	 * Return previous state
   1372 	 */
   1373 
   1374 	return oldstate;
   1375 }
   1376 
   1377 /*
   1378  *  SBMAC_PROMISCUOUS_MODE(sc, onoff)
   1379  *
   1380  *  Turn on or off promiscuous mode
   1381  *
   1382  *  Input parameters:
   1383  *	sc - softc
   1384  *	onoff - 1 to turn on, 0 to turn off
   1385  *
   1386  *  Return value:
   1387  *	nothing
   1388  */
   1389 
   1390 static void
   1391 sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff)
   1392 {
   1393 	uint64_t reg;
   1394 
   1395 	if (sc->sbm_state != sbmac_state_on)
   1396 		return;
   1397 
   1398 	if (onoff) {
   1399 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1400 		reg |= M_MAC_ALLPKT_EN;
   1401 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1402 	} else {
   1403 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1404 		reg &= ~M_MAC_ALLPKT_EN;
   1405 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1406 	}
   1407 }
   1408 
   1409 /*
   1410  *  SBMAC_INIT_AND_START(sc)
   1411  *
   1412  *  Stop the channel and restart it.  This is generally used
   1413  *  when we have to do something to the channel that requires
   1414  *  a swift kick.
   1415  *
   1416  *  Input parameters:
   1417  *	sc - softc
   1418  */
   1419 
   1420 static void
   1421 sbmac_init_and_start(struct sbmac_softc *sc)
   1422 {
   1423 	int s;
   1424 
   1425 	s = splnet();
   1426 
   1427 	mii_pollstat(&sc->sc_mii);			/* poll phy for current speed */
   1428 	sbmac_mii_statchg((struct device *) sc);	/* set state to new speed */
   1429 	sbmac_set_channel_state(sc, sbmac_state_on);
   1430 
   1431 	splx(s);
   1432 }
   1433 
   1434 /*
   1435  *  SBMAC_ADDR2REG(ptr)
   1436  *
   1437  *  Convert six bytes into the 64-bit register value that
   1438  *  we typically write into the SBMAC's address/mcast registers
   1439  *
   1440  *  Input parameters:
   1441  *	ptr - pointer to 6 bytes
   1442  *
   1443  *  Return value:
   1444  *	register value
   1445  */
   1446 
   1447 static uint64_t
   1448 sbmac_addr2reg(u_char *ptr)
   1449 {
   1450 	uint64_t reg = 0;
   1451 
   1452 	ptr += 6;
   1453 
   1454 	reg |= (uint64_t) *(--ptr);
   1455 	reg <<= 8;
   1456 	reg |= (uint64_t) *(--ptr);
   1457 	reg <<= 8;
   1458 	reg |= (uint64_t) *(--ptr);
   1459 	reg <<= 8;
   1460 	reg |= (uint64_t) *(--ptr);
   1461 	reg <<= 8;
   1462 	reg |= (uint64_t) *(--ptr);
   1463 	reg <<= 8;
   1464 	reg |= (uint64_t) *(--ptr);
   1465 
   1466 	return reg;
   1467 }
   1468 
   1469 /*
   1470  *  SBMAC_SET_SPEED(s, speed)
   1471  *
   1472  *  Configure LAN speed for the specified MAC.
   1473  *  Warning: must be called when MAC is off!
   1474  *
   1475  *  Input parameters:
   1476  *	s - sbmac structure
   1477  *	speed - speed to set MAC to (see sbmac_speed_t enum)
   1478  *
   1479  *  Return value:
   1480  *	1 if successful
   1481  *	0 indicates invalid parameters
   1482  */
   1483 
   1484 static int
   1485 sbmac_set_speed(struct sbmac_softc *s, sbmac_speed_t speed)
   1486 {
   1487 	uint64_t cfg;
   1488 	uint64_t framecfg;
   1489 
   1490 	/*
   1491 	 * Save new current values
   1492 	 */
   1493 
   1494 	s->sbm_speed = speed;
   1495 
   1496 	if (s->sbm_state != sbmac_state_off)
   1497 		panic("sbmac_set_speed while MAC not off");
   1498 
   1499 	/*
   1500 	 * Read current register values
   1501 	 */
   1502 
   1503 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1504 	framecfg = SBMAC_READCSR(s->sbm_framecfg);
   1505 
   1506 	/*
   1507 	 * Mask out the stuff we want to change
   1508 	 */
   1509 
   1510 	cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
   1511 	framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
   1512 	    M_MAC_SLOT_SIZE);
   1513 
   1514 	/*
   1515 	 * Now add in the new bits
   1516 	 */
   1517 
   1518 	switch (speed) {
   1519 	case sbmac_speed_10:
   1520 		framecfg |= V_MAC_IFG_RX_10 |
   1521 		    V_MAC_IFG_TX_10 |
   1522 		    K_MAC_IFG_THRSH_10 |
   1523 		    V_MAC_SLOT_SIZE_10;
   1524 		cfg |= V_MAC_SPEED_SEL_10MBPS;
   1525 		break;
   1526 
   1527 	case sbmac_speed_100:
   1528 		framecfg |= V_MAC_IFG_RX_100 |
   1529 		    V_MAC_IFG_TX_100 |
   1530 		    V_MAC_IFG_THRSH_100 |
   1531 		    V_MAC_SLOT_SIZE_100;
   1532 		cfg |= V_MAC_SPEED_SEL_100MBPS ;
   1533 		break;
   1534 
   1535 	case sbmac_speed_1000:
   1536 		framecfg |= V_MAC_IFG_RX_1000 |
   1537 		    V_MAC_IFG_TX_1000 |
   1538 		    V_MAC_IFG_THRSH_1000 |
   1539 		    V_MAC_SLOT_SIZE_1000;
   1540 		cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
   1541 		break;
   1542 
   1543 	case sbmac_speed_auto:		/* XXX not implemented */
   1544 		/* fall through */
   1545 	default:
   1546 		return 0;
   1547 	}
   1548 
   1549 	/*
   1550 	 * Send the bits back to the hardware
   1551 	 */
   1552 
   1553 	SBMAC_WRITECSR(s->sbm_framecfg, framecfg);
   1554 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1555 
   1556 	return 1;
   1557 }
   1558 
   1559 /*
   1560  *  SBMAC_SET_DUPLEX(s, duplex, fc)
   1561  *
   1562  *  Set Ethernet duplex and flow control options for this MAC
   1563  *  Warning: must be called when MAC is off!
   1564  *
   1565  *  Input parameters:
   1566  *	s - sbmac structure
   1567  *	duplex - duplex setting (see sbmac_duplex_t)
   1568  *	fc - flow control setting (see sbmac_fc_t)
   1569  *
   1570  *  Return value:
   1571  *	1 if ok
   1572  *	0 if an invalid parameter combination was specified
   1573  */
   1574 
   1575 static int
   1576 sbmac_set_duplex(struct sbmac_softc *s, sbmac_duplex_t duplex, sbmac_fc_t fc)
   1577 {
   1578 	uint64_t cfg;
   1579 
   1580 	/*
   1581 	 * Save new current values
   1582 	 */
   1583 
   1584 	s->sbm_duplex = duplex;
   1585 	s->sbm_fc = fc;
   1586 
   1587 	if (s->sbm_state != sbmac_state_off)
   1588 		panic("sbmac_set_duplex while MAC not off");
   1589 
   1590 	/*
   1591 	 * Read current register values
   1592 	 */
   1593 
   1594 	cfg = SBMAC_READCSR(s->sbm_maccfg);
   1595 
   1596 	/*
   1597 	 * Mask off the stuff we're about to change
   1598 	 */
   1599 
   1600 	cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
   1601 
   1602 	switch (duplex) {
   1603 	case sbmac_duplex_half:
   1604 		switch (fc) {
   1605 		case sbmac_fc_disabled:
   1606 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
   1607 			break;
   1608 
   1609 		case sbmac_fc_collision:
   1610 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
   1611 			break;
   1612 
   1613 		case sbmac_fc_carrier:
   1614 			cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
   1615 			break;
   1616 
   1617 		case sbmac_fc_auto:		/* XXX not implemented */
   1618 			/* fall through */
   1619 		case sbmac_fc_frame:		/* not valid in half duplex */
   1620 		default:			/* invalid selection */
   1621 			panic("%s: invalid half duplex fc selection %d",
   1622 			    s->sc_dev.dv_xname, fc);
   1623 			return 0;
   1624 		}
   1625 		break;
   1626 
   1627 	case sbmac_duplex_full:
   1628 		switch (fc) {
   1629 		case sbmac_fc_disabled:
   1630 			cfg |= V_MAC_FC_CMD_DISABLED;
   1631 			break;
   1632 
   1633 		case sbmac_fc_frame:
   1634 			cfg |= V_MAC_FC_CMD_ENABLED;
   1635 			break;
   1636 
   1637 		case sbmac_fc_collision:	/* not valid in full duplex */
   1638 		case sbmac_fc_carrier:		/* not valid in full duplex */
   1639 		case sbmac_fc_auto:		/* XXX not implemented */
   1640 			/* fall through */
   1641 		default:
   1642 			panic("%s: invalid full duplex fc selection %d",
   1643 			    s->sc_dev.dv_xname, fc);
   1644 			return 0;
   1645 		}
   1646 		break;
   1647 
   1648 	default:
   1649 		/* fall through */
   1650 	case sbmac_duplex_auto:
   1651 		panic("%s: bad duplex %d", s->sc_dev.dv_xname, duplex);
   1652 		/* XXX not implemented */
   1653 		break;
   1654 	}
   1655 
   1656 	/*
   1657 	 * Send the bits back to the hardware
   1658 	 */
   1659 
   1660 	SBMAC_WRITECSR(s->sbm_maccfg, cfg);
   1661 
   1662 	return 1;
   1663 }
   1664 
   1665 /*
   1666  *  SBMAC_INTR()
   1667  *
   1668  *  Interrupt handler for MAC interrupts
   1669  *
   1670  *  Input parameters:
   1671  *	MAC structure
   1672  *
   1673  *  Return value:
   1674  *	nothing
   1675  */
   1676 
   1677 /* ARGSUSED */
   1678 static void
   1679 sbmac_intr(void *xsc, uint32_t status, uint32_t pc)
   1680 {
   1681 	struct sbmac_softc *sc = (struct sbmac_softc *) xsc;
   1682 	uint64_t isr;
   1683 
   1684 	for (;;) {
   1685 
   1686 		/*
   1687 		 * Read the ISR (this clears the bits in the real register)
   1688 		 */
   1689 
   1690 		isr = SBMAC_READCSR(sc->sbm_isr);
   1691 
   1692 		if (isr == 0)
   1693 			break;
   1694 
   1695 		/*
   1696 		 * Transmits on channel 0
   1697 		 */
   1698 
   1699 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
   1700 			sbdma_tx_process(sc, &(sc->sbm_txdma));
   1701 
   1702 		/*
   1703 		 * Receives on channel 0
   1704 		 */
   1705 
   1706 		if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0))
   1707 			sbdma_rx_process(sc, &(sc->sbm_rxdma));
   1708 	}
   1709 }
   1710 
   1711 
   1712 /*
   1713  *  SBMAC_START(ifp)
   1714  *
   1715  *  Start output on the specified interface.  Basically, we
   1716  *  queue as many buffers as we can until the ring fills up, or
   1717  *  we run off the end of the queue, whichever comes first.
   1718  *
   1719  *  Input parameters:
   1720  *	ifp - interface
   1721  *
   1722  *  Return value:
   1723  *	nothing
   1724  */
   1725 
   1726 static void
   1727 sbmac_start(struct ifnet *ifp)
   1728 {
   1729 	struct sbmac_softc	*sc;
   1730 	struct mbuf		*m_head = NULL;
   1731 	int			rv;
   1732 
   1733 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1734 		return;
   1735 
   1736 	sc = ifp->if_softc;
   1737 
   1738 	for (;;) {
   1739 
   1740 		IF_DEQUEUE(&ifp->if_snd, m_head);
   1741 		if (m_head == NULL)
   1742 		    break;
   1743 
   1744 		/*
   1745 		 * Put the buffer on the transmit ring.  If we
   1746 		 * don't have room, set the OACTIVE flag and wait
   1747 		 * for the NIC to drain the ring.
   1748 		 */
   1749 
   1750 		rv = sbdma_add_txbuffer(&(sc->sbm_txdma), m_head);
   1751 
   1752 		if (rv == 0) {
   1753 			/*
   1754 			 * If there's a BPF listener, bounce a copy of this frame
   1755 			 * to it.
   1756 			 */
   1757 #if (NBPFILTER > 0)
   1758 			if (ifp->if_bpf)
   1759 				bpf_mtap(ifp->if_bpf, m_head);
   1760 #endif
   1761 			if (!sc->sbm_pass3_dma) {
   1762 				/*
   1763 				 * Don't free mbuf if we're not copying to new mbuf in sbdma_add_txbuffer.
   1764 				 * It will be freed in sbdma_tx_process.
   1765 				 */
   1766 				m_freem(m_head);
   1767 			}
   1768 		} else {
   1769 		    IF_PREPEND(&ifp->if_snd, m_head);
   1770 		    ifp->if_flags |= IFF_OACTIVE;
   1771 		    break;
   1772 		}
   1773 	}
   1774 }
   1775 
   1776 /*
   1777  *  SBMAC_SETMULTI(sc)
   1778  *
   1779  *  Reprogram the multicast table into the hardware, given
   1780  *  the list of multicasts associated with the interface
   1781  *  structure.
   1782  *
   1783  *  Input parameters:
   1784  *	sc - softc
   1785  *
   1786  *  Return value:
   1787  *	nothing
   1788  */
   1789 
   1790 static void
   1791 sbmac_setmulti(struct sbmac_softc *sc)
   1792 {
   1793 	struct ifnet *ifp;
   1794 	uint64_t reg;
   1795 	sbmac_port_t port;
   1796 	int idx;
   1797 	struct ether_multi *enm;
   1798 	struct ether_multistep step;
   1799 
   1800 	ifp = &sc->sc_ethercom.ec_if;
   1801 
   1802 	/*
   1803 	 * Clear out entire multicast table.  We do this by nuking
   1804 	 * the entire hash table and all the direct matches except
   1805 	 * the first one, which is used for our station address
   1806 	 */
   1807 
   1808 	for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
   1809 		port = PKSEG1(sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1810 		SBMAC_WRITECSR(port, 0);
   1811 	}
   1812 
   1813 	for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
   1814 		port = PKSEG1(sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t)));
   1815 		SBMAC_WRITECSR(port, 0);
   1816 	}
   1817 
   1818 	/*
   1819 	 * Clear the filter to say we don't want any multicasts.
   1820 	 */
   1821 
   1822 	reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1823 	reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1824 	SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1825 
   1826 	if (ifp->if_flags & IFF_ALLMULTI) {
   1827 		/*
   1828 		 * Enable ALL multicasts.  Do this by inverting the
   1829 		 * multicast enable bit.
   1830 		 */
   1831 		reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1832 		reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
   1833 		SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1834 		return;
   1835 	}
   1836 
   1837 	/*
   1838 	 * Progam new multicast entries.  For now, only use the
   1839 	 * perfect filter.  In the future we'll need to use the
   1840 	 * hash filter if the perfect filter overflows
   1841 	 */
   1842 
   1843 	/*
   1844 	 * XXX only using perfect filter for now, need to use hash
   1845 	 * XXX if the table overflows
   1846 	 */
   1847 
   1848 	idx = 1;		/* skip station address */
   1849 	ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
   1850 	while ((enm != NULL) && (idx < MAC_ADDR_COUNT)) {
   1851 		reg = sbmac_addr2reg(enm->enm_addrlo);
   1852 		port = PKSEG1(sc->sbm_base +
   1853 		    R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)));
   1854 		SBMAC_WRITECSR(port, reg);
   1855 		idx++;
   1856 		ETHER_NEXT_MULTI(step, enm);
   1857 	}
   1858 
   1859 	/*
   1860 	 * Enable the "accept multicast bits" if we programmed at least one
   1861 	 * multicast.
   1862 	 */
   1863 
   1864 	if (idx > 1) {
   1865 	    reg = SBMAC_READCSR(sc->sbm_rxfilter);
   1866 	    reg |= M_MAC_MCAST_EN;
   1867 	    SBMAC_WRITECSR(sc->sbm_rxfilter, reg);
   1868 	}
   1869 }
   1870 
   1871 /*
   1872  *  SBMAC_ETHER_IOCTL(ifp, cmd, data)
   1873  *
   1874  *  Generic IOCTL requests for this interface.  The basic
   1875  *  stuff is handled here for bringing the interface up,
   1876  *  handling multicasts, etc.
   1877  *
   1878  *  Input parameters:
   1879  *	ifp - interface structure
   1880  *	cmd - command code
   1881  *	data - pointer to data
   1882  *
   1883  *  Return value:
   1884  *	return value (0 is success)
   1885  */
   1886 
   1887 static int
   1888 sbmac_ether_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1889 {
   1890 	struct ifaddr *ifa = (struct ifaddr *) data;
   1891 	struct sbmac_softc *sc = ifp->if_softc;
   1892 
   1893 	switch (cmd) {
   1894 	case SIOCSIFADDR:
   1895 		ifp->if_flags |= IFF_UP;
   1896 
   1897 		switch (ifa->ifa_addr->sa_family) {
   1898 #ifdef INET
   1899 		case AF_INET:
   1900 			sbmac_init_and_start(sc);
   1901 			arp_ifinit(ifp, ifa);
   1902 			break;
   1903 #endif
   1904 #ifdef NS
   1905 		case AF_NS:
   1906 		{
   1907 			struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
   1908 
   1909 			if (ns_nullhost(*ina))
   1910 				ina->x_host = *(union ns_host *)LLADDR(ifp->if_sadl);
   1911 			else
   1912 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
   1913 				    ifp->if_addrlen);
   1914 			/* Set new address. */
   1915 			sbmac_init_and_start(sc);
   1916 			break;
   1917 		}
   1918 #endif
   1919 		default:
   1920 			sbmac_init_and_start(sc);
   1921 			break;
   1922 		}
   1923 		break;
   1924 
   1925 	default:
   1926 		return (EINVAL);
   1927 	}
   1928 
   1929 	return (0);
   1930 }
   1931 
   1932 /*
   1933  *  SBMAC_IOCTL(ifp, command, data)
   1934  *
   1935  *  Main IOCTL handler - dispatches to other IOCTLs for various
   1936  *  types of requests.
   1937  *
   1938  *  Input parameters:
   1939  *	ifp - interface pointer
   1940  *	command - command code
   1941  *	data - pointer to argument data
   1942  *
   1943  *  Return value:
   1944  *	0 if ok
   1945  *	else error code
   1946  */
   1947 
   1948 static int
   1949 sbmac_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
   1950 {
   1951 	struct sbmac_softc *sc = ifp->if_softc;
   1952 	struct ifreq *ifr = (struct ifreq *) data;
   1953 	int s, error = 0;
   1954 
   1955 	s = splnet();
   1956 
   1957 	switch(command) {
   1958 	case SIOCSIFADDR:
   1959 	case SIOCGIFADDR:
   1960 		error = sbmac_ether_ioctl(ifp, command, data);
   1961 		break;
   1962 	case SIOCSIFMTU:
   1963 		if (ifr->ifr_mtu > ETHER_MAX_LEN)
   1964 			error = EINVAL;
   1965 		else {
   1966 			ifp->if_mtu = ifr->ifr_mtu;
   1967 			/* XXX Program new MTU here */
   1968 		}
   1969 		break;
   1970 	case SIOCSIFFLAGS:
   1971 		if (ifp->if_flags & IFF_UP) {
   1972 			/*
   1973 			 * If only the state of the PROMISC flag changed,
   1974 			 * just tweak the hardware registers.
   1975 			 */
   1976 			if ((ifp->if_flags & IFF_RUNNING) &&
   1977 			    (ifp->if_flags & IFF_PROMISC)) {
   1978 				/* turn on promiscuous mode */
   1979 				sbmac_promiscuous_mode(sc, 1);
   1980 			} else if (ifp->if_flags & IFF_RUNNING &&
   1981 			    !(ifp->if_flags & IFF_PROMISC)) {
   1982 			    /* turn off promiscuous mode */
   1983 			    sbmac_promiscuous_mode(sc, 0);
   1984 			} else
   1985 			    sbmac_set_channel_state(sc, sbmac_state_on);
   1986 		} else {
   1987 			if (ifp->if_flags & IFF_RUNNING)
   1988 				sbmac_set_channel_state(sc, sbmac_state_off);
   1989 		}
   1990 
   1991 		sc->sbm_if_flags = ifp->if_flags;
   1992 		error = 0;
   1993 		break;
   1994 
   1995 	case SIOCADDMULTI:
   1996 	case SIOCDELMULTI:
   1997 		if (ifp->if_flags & IFF_RUNNING) {
   1998 			sbmac_setmulti(sc);
   1999 			error = 0;
   2000 		}
   2001 		break;
   2002 	case SIOCSIFMEDIA:
   2003 	case SIOCGIFMEDIA:
   2004 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
   2005 		break;
   2006 	default:
   2007 		error = EINVAL;
   2008 		break;
   2009 	}
   2010 
   2011 	(void)splx(s);
   2012 
   2013 	return(error);
   2014 }
   2015 
   2016 /*
   2017  *  SBMAC_IFMEDIA_UPD(ifp)
   2018  *
   2019  *  Configure an appropriate media type for this interface,
   2020  *  given the data in the interface structure
   2021  *
   2022  *  Input parameters:
   2023  *	ifp - interface
   2024  *
   2025  *  Return value:
   2026  *	0 if ok
   2027  *	else error code
   2028  */
   2029 
   2030 static int
   2031 sbmac_mediachange(struct ifnet *ifp)
   2032 {
   2033 	struct sbmac_softc *sc = ifp->if_softc;
   2034 
   2035 	if (ifp->if_flags & IFF_UP)
   2036 		mii_mediachg(&sc->sc_mii);
   2037 	return(0);
   2038 }
   2039 
   2040 /*
   2041  *  SBMAC_IFMEDIA_STS(ifp, ifmr)
   2042  *
   2043  *  Report current media status (used by ifconfig, for example)
   2044  *
   2045  *  Input parameters:
   2046  *	ifp - interface structure
   2047  *	ifmr - media request structure
   2048  *
   2049  *  Return value:
   2050  *	nothing
   2051  */
   2052 
   2053 static void
   2054 sbmac_mediastatus(struct ifnet *ifp, struct ifmediareq *req)
   2055 {
   2056 	struct sbmac_softc	*sc = ifp->if_softc;
   2057 
   2058   	mii_pollstat(&sc->sc_mii);
   2059 	req->ifm_status = sc->sc_mii.mii_media_status;
   2060 	req->ifm_active = sc->sc_mii.mii_media_active;
   2061 }
   2062 
   2063 /*
   2064  *  SBMAC_WATCHDOG(ifp)
   2065  *
   2066  *  Called periodically to make sure we're still happy.
   2067  *
   2068  *  Input parameters:
   2069  *	ifp - interface structure
   2070  *
   2071  *  Return value:
   2072  *	nothing
   2073  */
   2074 
   2075 static void
   2076 sbmac_watchdog(struct ifnet *ifp)
   2077 {
   2078 
   2079 	/* XXX do something */
   2080 }
   2081 
   2082 /*
   2083  * One second timer, used to tick MII.
   2084  */
   2085 static void
   2086 sbmac_tick(void *arg)
   2087 {
   2088 	struct sbmac_softc *sc = arg;
   2089 	int s;
   2090 
   2091 	s = splnet();
   2092 	mii_tick(&sc->sc_mii);
   2093 	splx(s);
   2094 
   2095 	callout_reset(&sc->sc_tick_ch, hz, sbmac_tick, sc);
   2096 }
   2097 
   2098 
   2099 /*
   2100  *  SBMAC_MATCH(parent, match, aux)
   2101  *
   2102  *  Part of the config process - see if this device matches the
   2103  *  info about what we expect to find on the bus.
   2104  *
   2105  *  Input parameters:
   2106  *	parent - parent bus structure
   2107  *	match -
   2108  *	aux - bus-specific args
   2109  *
   2110  *  Return value:
   2111  *	1 if we match
   2112  *	0 if we don't match
   2113  */
   2114 
   2115 static int
   2116 sbmac_match(struct device *parent, struct cfdata *match, void *aux)
   2117 {
   2118 	struct sbobio_attach_args *sap = aux;
   2119 
   2120 	/*
   2121 	 * Make sure it's a MAC
   2122 	 */
   2123 
   2124 	if (sap->sa_locs.sa_type != SBOBIO_DEVTYPE_MAC)
   2125 		return 0;
   2126 
   2127 	/*
   2128 	 * Yup, it is.
   2129 	 */
   2130 
   2131 	return 1;
   2132 }
   2133 
   2134 /*
   2135  *  SBMAC_PARSE_XDIGIT(str)
   2136  *
   2137  *  Parse a hex digit, returning its value
   2138  *
   2139  *  Input parameters:
   2140  *	str - character
   2141  *
   2142  *  Return value:
   2143  *	hex value, or -1 if invalid
   2144  */
   2145 
   2146 static int
   2147 sbmac_parse_xdigit(char str)
   2148 {
   2149 	int digit;
   2150 
   2151 	if ((str >= '0') && (str <= '9'))
   2152 		digit = str - '0';
   2153 	else if ((str >= 'a') && (str <= 'f'))
   2154 		digit = str - 'a' + 10;
   2155 	else if ((str >= 'A') && (str <= 'F'))
   2156 		digit = str - 'A' + 10;
   2157 	else
   2158 		digit = -1;
   2159 
   2160 	return digit;
   2161 }
   2162 
   2163 /*
   2164  *  SBMAC_PARSE_HWADDR(str, hwaddr)
   2165  *
   2166  *  Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte
   2167  *  Ethernet address.
   2168  *
   2169  *  Input parameters:
   2170  *	str - string
   2171  *	hwaddr - pointer to hardware address
   2172  *
   2173  *  Return value:
   2174  *	0 if ok, else -1
   2175  */
   2176 
   2177 static int
   2178 sbmac_parse_hwaddr(char *str, u_char *hwaddr)
   2179 {
   2180 	int digit1, digit2;
   2181 	int idx = 6;
   2182 
   2183 	while (*str && (idx > 0)) {
   2184 		digit1 = sbmac_parse_xdigit(*str);
   2185 		if (digit1 < 0)
   2186 			return -1;
   2187 		str++;
   2188 		if (!*str)
   2189 			return -1;
   2190 
   2191 		if ((*str == ':') || (*str == '-')) {
   2192 			digit2 = digit1;
   2193 			digit1 = 0;
   2194 		} else {
   2195 			digit2 = sbmac_parse_xdigit(*str);
   2196 			if (digit2 < 0)
   2197 				return -1;
   2198 			str++;
   2199 		}
   2200 
   2201 		*hwaddr++ = (digit1 << 4) | digit2;
   2202 		idx--;
   2203 
   2204 		if (*str == '-')
   2205 			str++;
   2206 		if (*str == ':')
   2207 			str++;
   2208 	}
   2209 	return 0;
   2210 }
   2211 
   2212 /*
   2213  *  SBMAC_ATTACH(parent, self, aux)
   2214  *
   2215  *  Attach routine - init hardware and hook ourselves into NetBSD.
   2216  *
   2217  *  Input parameters:
   2218  *	parent - parent bus device
   2219  *	self - our softc
   2220  *	aux - attach data
   2221  *
   2222  *  Return value:
   2223  *	nothing
   2224  */
   2225 
   2226 static void
   2227 sbmac_attach(struct device *parent, struct device *self, void *aux)
   2228 {
   2229 	struct ifnet *ifp;
   2230 	struct sbmac_softc *sc;
   2231 	struct sbobio_attach_args *sap = aux;
   2232 	u_char *eaddr;
   2233 	static int unit = 0;	/* XXX */
   2234 	uint64_t ea_reg;
   2235 	int idx;
   2236 
   2237 	sc = (struct sbmac_softc *)self;
   2238 
   2239 	/* Determine controller base address */
   2240 
   2241 	sc->sbm_base = (sbmac_port_t) sap->sa_base + sap->sa_locs.sa_offset;
   2242 
   2243 	eaddr = sc->sbm_hwaddr;
   2244 
   2245 	/*
   2246 	 * Initialize context (get pointers to registers and stuff), then
   2247 	 * allocate the memory for the descriptor tables.
   2248 	 */
   2249 
   2250 	sbmac_initctx(sc);
   2251 
   2252 	callout_init(&(sc->sc_tick_ch));
   2253 
   2254 	/*
   2255 	 * Read the ethernet address.  The firwmare left this programmed
   2256 	 * for us in the ethernet address register for each mac.
   2257 	 */
   2258 
   2259 	ea_reg = SBMAC_READCSR(PKSEG1(sc->sbm_base + R_MAC_ETHERNET_ADDR));
   2260 	for (idx = 0; idx < 6; idx++) {
   2261 		eaddr[idx] = (uint8_t) (ea_reg & 0xFF);
   2262 		ea_reg >>= 8;
   2263 	}
   2264 
   2265 #define	SBMAC_DEFAULT_HWADDR "40:00:00:00:01:00"
   2266 	if (eaddr[0] == 0 && eaddr[1] == 0 && eaddr[2] == 0 &&
   2267 		eaddr[3] == 0 && eaddr[4] == 0 && eaddr[5] == 0) {
   2268 		sbmac_parse_hwaddr(SBMAC_DEFAULT_HWADDR, eaddr);
   2269 		eaddr[5] = unit;
   2270 	}
   2271 
   2272 #ifdef SBMAC_ETH0_HWADDR
   2273 	if (unit == 0)
   2274 		sbmac_parse_hwaddr(SBMAC_ETH0_HWADDR, eaddr);
   2275 #endif
   2276 #ifdef SBMAC_ETH1_HWADDR
   2277 	if (unit == 1)
   2278 		sbmac_parse_hwaddr(SBMAC_ETH1_HWADDR, eaddr);
   2279 #endif
   2280 #ifdef SBMAC_ETH2_HWADDR
   2281 	if (unit == 2)
   2282 		sbmac_parse_hwaddr(SBMAC_ETH2_HWADDR, eaddr);
   2283 #endif
   2284 	unit++;
   2285 
   2286 	/*
   2287 	 * Display Ethernet address (this is called during the config process
   2288 	 * so we need to finish off the config message that was being displayed)
   2289 	 */
   2290 	printf(": Ethernet%s\n",
   2291 	    sc->sbm_pass3_dma ? ", using unaligned tx DMA" : "");
   2292 	printf("%s: Ethernet address: %s\n", self->dv_xname,
   2293 	    ether_sprintf(eaddr));
   2294 
   2295 
   2296 	/*
   2297 	 * Set up ifnet structure
   2298 	 */
   2299 
   2300 	ifp = &sc->sc_ethercom.ec_if;
   2301 	ifp->if_softc = sc;
   2302 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
   2303 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST | IFF_NOTRAILERS;
   2304 	ifp->if_ioctl = sbmac_ioctl;
   2305 	ifp->if_start = sbmac_start;
   2306 	ifp->if_watchdog = sbmac_watchdog;
   2307 	ifp->if_snd.ifq_maxlen = SBMAC_MAX_TXDESCR - 1;
   2308 
   2309 	/*
   2310 	 * Set up ifmedia support.
   2311 	 */
   2312 
   2313 	/*
   2314 	 * Initialize MII/media info.
   2315 	 */
   2316 	sc->sc_mii.mii_ifp      = ifp;
   2317 	sc->sc_mii.mii_readreg  = sbmac_mii_readreg;
   2318 	sc->sc_mii.mii_writereg = sbmac_mii_writereg;
   2319 	sc->sc_mii.mii_statchg  = sbmac_mii_statchg;
   2320 	ifmedia_init(&sc->sc_mii.mii_media, 0, sbmac_mediachange,
   2321 	    sbmac_mediastatus);
   2322 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
   2323 	    MII_OFFSET_ANY, 0);
   2324 
   2325 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
   2326 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
   2327 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
   2328 	} else {
   2329 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
   2330 	}
   2331 
   2332 
   2333 	/*
   2334 	 * map/route interrupt
   2335 	 */
   2336 
   2337 	sc->sbm_intrhand = cpu_intr_establish(sap->sa_locs.sa_intr[0], IPL_NET,
   2338 	    sbmac_intr, sc);
   2339 
   2340 	/*
   2341 	 * Call MI attach routines.
   2342 	 */
   2343 	if_attach(ifp);
   2344 	ether_ifattach(ifp, eaddr);
   2345 }
   2346