Home | History | Annotate | Line # | Download | only in sboot
      1 |	$NetBSD: oc_cksum.s,v 1.2 2000/11/30 22:26:27 scw Exp $
      2 
      3 | Copyright (c) 1988 Regents of the University of California.
      4 | All rights reserved.
      5 |
      6 | Redistribution and use in source and binary forms, with or without
      7 | modification, are permitted provided that the following conditions
      8 | are met:
      9 | 1. Redistributions of source code must retain the above copyright
     10 |    notice, this list of conditions and the following disclaimer.
     11 | 2. Redistributions in binary form must reproduce the above copyright
     12 |    notice, this list of conditions and the following disclaimer in the
     13 |    documentation and/or other materials provided with the distribution.
     14 | 3. All advertising materials mentioning features or use of this software
     15 |    must display the following acknowledgement:
     16 |	This product includes software developed by the University of
     17 |	California, Berkeley and its contributors.
     18 | 4. Neither the name of the University nor the names of its contributors
     19 |    may be used to endorse or promote products derived from this software
     20 |    without specific prior written permission.
     21 |
     22 | THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25 | ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28 | OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29 | HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31 | OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32 | SUCH DAMAGE.
     33 |
     34 |	@(#)oc_cksum.s	7.2 (Berkeley) 11/3/90
     35 |
     36 |
     37 | oc_cksum: ones complement 16 bit checksum for MC68020.
     38 |
     39 | oc_cksum (buffer, count, strtval)
     40 |
     41 | Do a 16 bit one's complement sum of 'count' bytes from 'buffer'.
     42 | 'strtval' is the starting value of the sum (usually zero).
     43 |
     44 | It simplifies life in in_cksum if strtval can be >= 2^16.
     45 | This routine will work as long as strtval is < 2^31.
     46 |
     47 | Performance
     48 | -----------
     49 | This routine is intended for MC 68020s but should also work
     50 | for 68030s.  It (deliberately) doesn't worry about the alignment
     51 | of the buffer so will only work on a 68010 if the buffer is
     52 | aligned on an even address.  (Also, a routine written to use
     53 | 68010 "loop mode" would almost certainly be faster than this
     54 | code on a 68010).
     55 |
     56 | We don't worry about alignment because this routine is frequently
     57 | called with small counts: 20 bytes for IP header checksums and 40
     58 | bytes for TCP ack checksums.  For these small counts, testing for
     59 | bad alignment adds ~10% to the per-call cost.  Since, by the nature
     60 | of the kernel's allocator, the data we're called with is almost
     61 | always longword aligned, there is no benefit to this added cost
     62 | and we're better off letting the loop take a big performance hit
     63 | in the rare cases where we're handed an unaligned buffer.
     64 |
     65 | Loop unrolling constants of 2, 4, 8, 16, 32 and 64 times were
     66 | tested on random data on four different types of processors (see
     67 | list below -- 64 was the largest unrolling because anything more
     68 | overflows the 68020 Icache).  On all the processors, the
     69 | throughput asymptote was located between 8 and 16 (closer to 8).
     70 | However, 16 was substantially better than 8 for small counts.
     71 | (It's clear why this happens for a count of 40: unroll-8 pays a
     72 | loop branch cost and unroll-16 doesn't.  But the tests also showed
     73 | that 16 was better than 8 for a count of 20.  It's not obvious to
     74 | me why.)  So, since 16 was good for both large and small counts,
     75 | the loop below is unrolled 16 times.
     76 |
     77 | The processors tested and their average time to checksum 1024 bytes
     78 | of random data were:
     79 | 	Sun 3/50 (15MHz)	190 us/KB
     80 | 	Sun 3/180 (16.6MHz)	175 us/KB
     81 | 	Sun 3/60 (20MHz)	134 us/KB
     82 | 	Sun 3/280 (25MHz)	 95 us/KB
     83 |
     84 | The cost of calling this routine was typically 10% of the per-
     85 | kilobyte cost.  E.g., checksumming zero bytes on a 3/60 cost 9us
     86 | and each additional byte cost 125ns.  With the high fixed cost,
     87 | it would clearly be a gain to "inline" this routine -- the
     88 | subroutine call adds 400% overhead to an IP header checksum.
     89 | However, in absolute terms, inlining would only gain 10us per
     90 | packet -- a 1% effect for a 1ms ethernet packet.  This is not
     91 | enough gain to be worth the effort.
     92 
     93 #include <m68k/asm.h>
     94 
     95 	.text
     96 	.even
     97 
     98 ENTRY_NOPROFILE(oc_cksum)
     99 	movl	%sp@(4),%a0	| get buffer ptr
    100 	movl	%sp@(8),%d1	| get byte count
    101 	movl	%sp@(12),%d0	| get starting value
    102 	movl	%d2,%sp@-	| free a reg
    103 
    104 	| test for possible 1, 2 or 3 bytes of excess at end
    105 	| of buffer.  The usual case is no excess (the usual
    106 	| case is header checksums) so we give that the faster
    107 	| 'not taken' leg of the compare.  (We do the excess
    108 	| first because we're about the trash the low order
    109 	| bits of the count in d1.)
    110 
    111 	btst	#0,%d1
    112 	jne	L5		| if one or three bytes excess
    113 	btst	#1,%d1
    114 	jne	L7		| if two bytes excess
    115 L1:
    116 	movl	%d1,%d2
    117 	lsrl	#6,%d1		| make cnt into # of 64 byte chunks
    118 	andl	#0x3c,%d2	| then find fractions of a chunk
    119 	negl	%d2
    120 	andb	#0xf,%ccr		| clear X
    121 	jmp	%pc@(L3-.-2:b,%d2)
    122 L2:
    123 	movl	%a0@+,%d2
    124 	addxl	%d2,%d0
    125 	movl	%a0@+,%d2
    126 	addxl	%d2,%d0
    127 	movl	%a0@+,%d2
    128 	addxl	%d2,%d0
    129 	movl	%a0@+,%d2
    130 	addxl	%d2,%d0
    131 	movl	%a0@+,%d2
    132 	addxl	%d2,%d0
    133 	movl	%a0@+,%d2
    134 	addxl	%d2,%d0
    135 	movl	%a0@+,%d2
    136 	addxl	%d2,%d0
    137 	movl	%a0@+,%d2
    138 	addxl	%d2,%d0
    139 	movl	%a0@+,%d2
    140 	addxl	%d2,%d0
    141 	movl	%a0@+,%d2
    142 	addxl	%d2,%d0
    143 	movl	%a0@+,%d2
    144 	addxl	%d2,%d0
    145 	movl	%a0@+,%d2
    146 	addxl	%d2,%d0
    147 	movl	%a0@+,%d2
    148 	addxl	%d2,%d0
    149 	movl	%a0@+,%d2
    150 	addxl	%d2,%d0
    151 	movl	%a0@+,%d2
    152 	addxl	%d2,%d0
    153 	movl	%a0@+,%d2
    154 	addxl	%d2,%d0
    155 L3:
    156 	dbra	%d1,L2		| (NB- dbra doesn't affect X)
    157 
    158 	movl	%d0,%d1		| fold 32 bit sum to 16 bits
    159 	swap	%d1		| (NB- swap doesn't affect X)
    160 	addxw	%d1,%d0
    161 	jcc	L4
    162 	addw	#1,%d0
    163 L4:
    164 	andl	#0xffff,%d0
    165 	movl	%sp@+,%d2
    166 	rts
    167 
    168 L5:	| deal with 1 or 3 excess bytes at the end of the buffer.
    169 	btst	#1,%d1
    170 	jeq	L6		| if 1 excess
    171 
    172 	| 3 bytes excess
    173 	clrl	%d2
    174 	movw	%a0@(-3,%d1:l),%d2	| add in last full word then drop
    175 	addl	%d2,%d0		|  through to pick up last byte
    176 
    177 L6:	| 1 byte excess
    178 	clrl	%d2
    179 	movb	%a0@(-1,%d1:l),%d2
    180 	lsll	#8,%d2
    181 	addl	%d2,%d0
    182 	jra	L1
    183 
    184 L7:	| 2 bytes excess
    185 	clrl	%d2
    186 	movw	%a0@(-2,%d1:l),%d2
    187 	addl	%d2,%d0
    188 	jra	L1
    189