1 1.24 andvar /* $NetBSD: e500_tlb.c,v 1.24 2022/05/31 08:43:15 andvar Exp $ */ 2 1.2 matt /*- 3 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc. 4 1.2 matt * All rights reserved. 5 1.2 matt * 6 1.2 matt * This code is derived from software contributed to The NetBSD Foundation 7 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects 8 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry. 9 1.2 matt * 10 1.2 matt * This material is based upon work supported by the Defense Advanced Research 11 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under 12 1.2 matt * Contract No. N66001-09-C-2073. 13 1.2 matt * Approved for Public Release, Distribution Unlimited 14 1.2 matt * 15 1.2 matt * Redistribution and use in source and binary forms, with or without 16 1.2 matt * modification, are permitted provided that the following conditions 17 1.2 matt * are met: 18 1.2 matt * 1. Redistributions of source code must retain the above copyright 19 1.2 matt * notice, this list of conditions and the following disclaimer. 20 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright 21 1.2 matt * notice, this list of conditions and the following disclaimer in the 22 1.2 matt * documentation and/or other materials provided with the distribution. 23 1.2 matt * 24 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 25 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 28 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 1.2 matt * POSSIBILITY OF SUCH DAMAGE. 35 1.2 matt */ 36 1.2 matt 37 1.8 matt #define __PMAP_PRIVATE 38 1.8 matt 39 1.2 matt #include <sys/cdefs.h> 40 1.24 andvar __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.24 2022/05/31 08:43:15 andvar Exp $"); 41 1.2 matt 42 1.20 rin #ifdef _KERNEL_OPT 43 1.21 rin #include "opt_multiprocessor.h" 44 1.21 rin #include "opt_pmap.h" 45 1.20 rin #include "opt_ppcparam.h" 46 1.20 rin #endif 47 1.2 matt 48 1.2 matt #include <sys/param.h> 49 1.2 matt 50 1.2 matt #include <uvm/uvm_extern.h> 51 1.2 matt 52 1.2 matt #include <powerpc/spr.h> 53 1.2 matt #include <powerpc/booke/spr.h> 54 1.2 matt #include <powerpc/booke/cpuvar.h> 55 1.8 matt #include <powerpc/booke/e500reg.h> 56 1.2 matt #include <powerpc/booke/e500var.h> 57 1.2 matt #include <powerpc/booke/pmap.h> 58 1.2 matt 59 1.2 matt struct e500_tlb { 60 1.2 matt vaddr_t tlb_va; 61 1.2 matt uint32_t tlb_pte; 62 1.2 matt uint32_t tlb_asid; 63 1.2 matt vsize_t tlb_size; 64 1.2 matt }; 65 1.2 matt 66 1.2 matt struct e500_hwtlb { 67 1.2 matt uint32_t hwtlb_mas0; 68 1.2 matt uint32_t hwtlb_mas1; 69 1.2 matt uint32_t hwtlb_mas2; 70 1.2 matt uint32_t hwtlb_mas3; 71 1.2 matt }; 72 1.2 matt 73 1.2 matt struct e500_xtlb { 74 1.2 matt struct e500_tlb e_tlb; 75 1.2 matt struct e500_hwtlb e_hwtlb; 76 1.2 matt u_long e_refcnt; 77 1.2 matt }; 78 1.2 matt 79 1.2 matt static struct e500_tlb1 { 80 1.2 matt uint32_t tlb1_maxsize; 81 1.2 matt uint32_t tlb1_minsize; 82 1.2 matt u_int tlb1_numentries; 83 1.2 matt u_int tlb1_numfree; 84 1.2 matt u_int tlb1_freelist[32]; 85 1.2 matt struct e500_xtlb tlb1_entries[32]; 86 1.2 matt } e500_tlb1; 87 1.2 matt 88 1.2 matt static inline register_t mftlb0cfg(void) __pure; 89 1.2 matt static inline register_t mftlb1cfg(void) __pure; 90 1.2 matt 91 1.2 matt static inline register_t 92 1.2 matt mftlb0cfg(void) 93 1.2 matt { 94 1.2 matt register_t tlb0cfg; 95 1.2 matt __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG)); 96 1.2 matt return tlb0cfg; 97 1.2 matt } 98 1.2 matt 99 1.2 matt static inline register_t 100 1.2 matt mftlb1cfg(void) 101 1.2 matt { 102 1.2 matt register_t tlb1cfg; 103 1.2 matt __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG)); 104 1.2 matt return tlb1cfg; 105 1.2 matt } 106 1.2 matt 107 1.2 matt static struct e500_tlb 108 1.2 matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb) 109 1.2 matt { 110 1.2 matt struct e500_tlb tlb; 111 1.2 matt register_t prot_mask; 112 1.2 matt u_int prot_shift; 113 1.2 matt 114 1.2 matt tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2; 115 1.2 matt tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1)); 116 1.2 matt tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1); 117 1.2 matt tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE) 118 1.2 matt | (hwtlb.hwtlb_mas3 & MAS3_RPN); 119 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_TS) { 120 1.2 matt prot_mask = MAS3_UX|MAS3_UW|MAS3_UR; 121 1.2 matt prot_shift = PTE_RWX_SHIFT - 1; 122 1.2 matt } else { 123 1.2 matt prot_mask = MAS3_SX|MAS3_SW|MAS3_SR; 124 1.2 matt prot_shift = PTE_RWX_SHIFT; 125 1.2 matt } 126 1.2 matt tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift; 127 1.2 matt return tlb; 128 1.2 matt } 129 1.2 matt 130 1.2 matt static inline struct e500_hwtlb 131 1.2 matt hwtlb_read(uint32_t mas0, u_int slot) 132 1.2 matt { 133 1.2 matt struct e500_hwtlb hwtlb; 134 1.2 matt register_t tlbcfg; 135 1.2 matt 136 1.2 matt if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) { 137 1.2 matt tlbcfg = mftlb0cfg(); 138 1.2 matt } else if (mas0 == MAS0_TLBSEL_TLB1) { 139 1.2 matt tlbcfg = mftlb1cfg(); 140 1.2 matt } else { 141 1.2 matt panic("%s:%d: unexpected MAS0 %#" PRIx32, 142 1.2 matt __func__, __LINE__, mas0); 143 1.2 matt } 144 1.2 matt 145 1.2 matt /* 146 1.2 matt * ESEL is the way we want to look up. 147 1.2 matt * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is 148 1.2 matt * fully associative, the entire slot is placed into ESEL. If tlbassoc 149 1.13 wiz * is less than the number of tlb entries, the slot is split in two 150 1.2 matt * fields. Since the TLB is M rows by N ways, the lowers bits are for 151 1.2 matt * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]). 152 1.2 matt */ 153 1.2 matt const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg); 154 1.2 matt const u_int tlbentries = TLBCFG_NENTRY(tlbcfg); 155 1.2 matt const u_int esel_shift = 156 1.2 matt __builtin_clz(tlbassoc) - __builtin_clz(tlbentries); 157 1.2 matt 158 1.2 matt /* 159 1.2 matt * Disable interrupts since we don't want anyone else mucking with 160 1.2 matt * the MMU Assist registers 161 1.2 matt */ 162 1.2 matt const register_t msr = wrtee(0); 163 1.2 matt const register_t saved_mas0 = mfspr(SPR_MAS0); 164 1.2 matt mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift)); 165 1.2 matt 166 1.2 matt if (__predict_true(tlbassoc > tlbentries)) 167 1.2 matt mtspr(SPR_MAS2, slot << PAGE_SHIFT); 168 1.2 matt 169 1.2 matt /* 170 1.2 matt * Now select the entry and grab its contents. 171 1.2 matt */ 172 1.2 matt __asm volatile("tlbre"); 173 1.2 matt 174 1.2 matt hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0); 175 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1); 176 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2); 177 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3); 178 1.2 matt 179 1.2 matt mtspr(SPR_MAS0, saved_mas0); 180 1.2 matt wrtee(msr); /* restore interrupts */ 181 1.2 matt 182 1.2 matt return hwtlb; 183 1.2 matt } 184 1.2 matt 185 1.2 matt static inline void 186 1.2 matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync) 187 1.2 matt { 188 1.2 matt const register_t msr = wrtee(0); 189 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0); 190 1.2 matt 191 1.2 matt /* 192 1.2 matt * Need to always write MAS0 and MAS1 193 1.2 matt */ 194 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0); 195 1.2 matt mtspr(SPR_MAS1, hwtlb.hwtlb_mas1); 196 1.2 matt 197 1.2 matt /* 198 1.2 matt * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping. 199 1.2 matt */ 200 1.2 matt if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0 201 1.2 matt || (hwtlb.hwtlb_mas1 & MAS1_V)) { 202 1.2 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2); 203 1.2 matt } 204 1.2 matt /* 205 1.2 matt * Only need to write the RPN/prot if we are dealing with a valid 206 1.2 matt * mapping. 207 1.2 matt */ 208 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) { 209 1.2 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3); 210 1.12 matt //mtspr(SPR_MAS7, 0); 211 1.2 matt } 212 1.2 matt 213 1.2 matt #if 0 214 1.2 matt printf("%s->[%x,%x,%x,%x]\n", 215 1.2 matt __func__, 216 1.2 matt hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1, 217 1.2 matt hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3); 218 1.2 matt #endif 219 1.2 matt __asm volatile("tlbwe"); 220 1.2 matt if (needs_sync) { 221 1.11 matt __asm volatile("tlbsync\n\tisync\n\tsync"); 222 1.2 matt } 223 1.2 matt 224 1.2 matt mtspr(SPR_MAS0, saved_mas0); 225 1.2 matt wrtee(msr); 226 1.2 matt } 227 1.2 matt 228 1.2 matt static struct e500_hwtlb 229 1.2 matt tlb_to_hwtlb(const struct e500_tlb tlb) 230 1.2 matt { 231 1.2 matt struct e500_hwtlb hwtlb; 232 1.2 matt 233 1.2 matt KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va); 234 1.2 matt KASSERT(tlb.tlb_size != 0); 235 1.2 matt KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0); 236 1.2 matt const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK; 237 1.2 matt if (__predict_true(tlb.tlb_size == PAGE_SIZE)) { 238 1.2 matt hwtlb.hwtlb_mas0 = 0; 239 1.2 matt hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1); 240 1.2 matt /* 241 1.2 matt * A non-zero ASID means this is a user page so mark it as 242 1.2 matt * being in the user's address space. 243 1.2 matt */ 244 1.2 matt if (tlb.tlb_asid) { 245 1.2 matt hwtlb.hwtlb_mas1 |= MAS1_TS 246 1.2 matt | MASX_TID_MAKE(tlb.tlb_asid); 247 1.2 matt hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1)) 248 1.2 matt | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT); 249 1.2 matt KASSERT(prot_mask & PTE_xR); 250 1.2 matt KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR); 251 1.2 matt CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1))); 252 1.2 matt CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT)); 253 1.2 matt } else { 254 1.2 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT; 255 1.2 matt } 256 1.2 matt if (tlb.tlb_pte & PTE_UNMODIFIED) 257 1.2 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW); 258 1.2 matt if (tlb.tlb_pte & PTE_UNSYNCED) 259 1.2 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX); 260 1.2 matt } else { 261 1.2 matt KASSERT(tlb.tlb_asid == 0); 262 1.2 matt KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0); 263 1.2 matt u_int cntlz = __builtin_clz(tlb.tlb_size); 264 1.2 matt KASSERT(cntlz & 1); 265 1.2 matt KASSERT(cntlz <= 19); 266 1.2 matt hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1; 267 1.2 matt /* 268 1.8 matt * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not 269 1.2 matt * allowed. So 1K would be 0x00000400 giving 21 leading zero 270 1.2 matt * bits. Subtracting the leading number of zero bits from 21 271 1.2 matt * and dividing by 2 gives us the number that the MMU wants. 272 1.2 matt */ 273 1.2 matt hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2) 274 1.2 matt | MAS1_IPROT | MAS1_V; 275 1.2 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT; 276 1.2 matt } 277 1.2 matt /* We are done with MAS1, on to MAS2 ... */ 278 1.2 matt hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK); 279 1.2 matt hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK; 280 1.2 matt 281 1.2 matt return hwtlb; 282 1.2 matt } 283 1.2 matt 284 1.3 matt void * 285 1.3 matt e500_tlb1_fetch(size_t slot) 286 1.3 matt { 287 1.3 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 288 1.3 matt 289 1.3 matt return &tlb1->tlb1_entries[slot].e_hwtlb; 290 1.3 matt } 291 1.3 matt 292 1.3 matt void 293 1.3 matt e500_tlb1_sync(void) 294 1.3 matt { 295 1.3 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 296 1.3 matt for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) { 297 1.3 matt const struct e500_hwtlb * const new_hwtlb = 298 1.3 matt &tlb1->tlb1_entries[slot].e_hwtlb; 299 1.3 matt const struct e500_hwtlb old_hwtlb = 300 1.3 matt hwtlb_read(MAS0_TLBSEL_TLB1, slot); 301 1.3 matt #define CHANGED(n,o,f) ((n)->f != (o).f) 302 1.3 matt bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1); 303 1.3 matt bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2); 304 1.3 matt bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3); 305 1.3 matt #undef CHANGED 306 1.3 matt bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0; 307 1.3 matt bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0; 308 1.3 matt if ((new_valid_p || old_valid_p) 309 1.3 matt && (mas1_changed_p 310 1.3 matt || (new_valid_p 311 1.3 matt && (mas2_changed_p || mas3_changed_p)))) 312 1.3 matt hwtlb_write(*new_hwtlb, true); 313 1.3 matt } 314 1.3 matt } 315 1.3 matt 316 1.2 matt static int 317 1.2 matt e500_alloc_tlb1_entry(void) 318 1.2 matt { 319 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 320 1.2 matt 321 1.2 matt if (tlb1->tlb1_numfree == 0) 322 1.2 matt return -1; 323 1.2 matt const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree]; 324 1.2 matt KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0); 325 1.2 matt tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 = 326 1.9 matt MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL); 327 1.8 matt return (int)slot; 328 1.2 matt } 329 1.2 matt 330 1.2 matt static void 331 1.2 matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync) 332 1.2 matt { 333 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 334 1.2 matt KASSERT(slot < tlb1->tlb1_numentries); 335 1.2 matt KASSERT(&tlb1->tlb1_entries[slot] == xtlb); 336 1.2 matt 337 1.2 matt KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL))); 338 1.2 matt xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT); 339 1.2 matt hwtlb_write(xtlb->e_hwtlb, needs_sync); 340 1.2 matt 341 1.2 matt const register_t msr = wrtee(0); 342 1.2 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot; 343 1.2 matt wrtee(msr); 344 1.2 matt } 345 1.2 matt 346 1.4 matt static tlb_asid_t 347 1.4 matt e500_tlb_get_asid(void) 348 1.4 matt { 349 1.4 matt return mfspr(SPR_PID0); 350 1.4 matt } 351 1.4 matt 352 1.4 matt static void 353 1.4 matt e500_tlb_set_asid(tlb_asid_t asid) 354 1.2 matt { 355 1.2 matt mtspr(SPR_PID0, asid); 356 1.2 matt } 357 1.2 matt 358 1.4 matt static void 359 1.4 matt e500_tlb_invalidate_all(void) 360 1.2 matt { 361 1.2 matt /* 362 1.2 matt * This does a flash invalidate of all entries in TLB0. 363 1.2 matt * We don't touch TLB1 since we don't expect those to be volatile. 364 1.2 matt */ 365 1.2 matt #if 1 366 1.2 matt __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */ 367 1.11 matt __asm volatile("tlbsync\n\tisync\n\tsync"); 368 1.2 matt #else 369 1.14 nonaka mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FI); 370 1.2 matt while (mfspr(SPR_MMUCSR0) != 0) 371 1.2 matt ; 372 1.2 matt #endif 373 1.2 matt } 374 1.2 matt 375 1.2 matt static void 376 1.2 matt e500_tlb_invalidate_globals(void) 377 1.2 matt { 378 1.16 nonaka #if defined(MULTIPROCESSOR) 379 1.16 nonaka e500_tlb_invalidate_all(); 380 1.16 nonaka #else /* !MULTIPROCESSOR */ 381 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg()); 382 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg()); 383 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT; 384 1.2 matt const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr; 385 1.2 matt const vaddr_t kstack_hi = kstack_lo + USPACE - 1; 386 1.2 matt const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1); 387 1.2 matt const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1); 388 1.2 matt 389 1.2 matt const register_t msr = wrtee(0); 390 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) { 391 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0); 392 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) { 393 1.2 matt mtspr(SPR_MAS2, epn); 394 1.2 matt __asm volatile("tlbre"); 395 1.2 matt uint32_t mas1 = mfspr(SPR_MAS1); 396 1.2 matt 397 1.2 matt /* 398 1.2 matt * Make sure this is a valid kernel entry first. 399 1.2 matt */ 400 1.2 matt if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V) 401 1.2 matt continue; 402 1.2 matt 403 1.2 matt /* 404 1.2 matt * We have a valid kernel TLB entry. But if it matches 405 1.2 matt * the stack we are currently running on, it would 406 1.2 matt * unwise to invalidate it. First see if the epn 407 1.2 matt * overlaps the stack. If it does then get the 408 1.2 matt * VA and see if it really is part of the stack. 409 1.2 matt */ 410 1.2 matt if (epn_kstack_lo < epn_kstack_hi 411 1.2 matt ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi) 412 1.2 matt : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) { 413 1.2 matt const uint32_t mas2_epn = 414 1.2 matt mfspr(SPR_MAS2) & MAS2_EPN; 415 1.2 matt if (kstack_lo <= mas2_epn 416 1.2 matt && mas2_epn <= kstack_hi) 417 1.2 matt continue; 418 1.2 matt } 419 1.2 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V); 420 1.2 matt __asm volatile("tlbwe"); 421 1.2 matt } 422 1.2 matt } 423 1.11 matt __asm volatile("isync\n\tsync"); 424 1.2 matt wrtee(msr); 425 1.16 nonaka #endif /* MULTIPROCESSOR */ 426 1.2 matt } 427 1.2 matt 428 1.2 matt static void 429 1.4 matt e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi) 430 1.2 matt { 431 1.16 nonaka #if defined(MULTIPROCESSOR) 432 1.16 nonaka e500_tlb_invalidate_all(); 433 1.16 nonaka #else /* !MULTIPROCESSOR */ 434 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg()); 435 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg()); 436 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT; 437 1.2 matt 438 1.2 matt asid_lo = __SHIFTIN(asid_lo, MAS1_TID); 439 1.2 matt asid_hi = __SHIFTIN(asid_hi, MAS1_TID); 440 1.2 matt 441 1.2 matt const register_t msr = wrtee(0); 442 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) { 443 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0); 444 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) { 445 1.2 matt mtspr(SPR_MAS2, epn); 446 1.2 matt __asm volatile("tlbre"); 447 1.2 matt const uint32_t mas1 = mfspr(SPR_MAS1); 448 1.2 matt /* 449 1.2 matt * If this is a valid entry for AS space 1 and 450 1.2 matt * its asid matches the constraints of the caller, 451 1.2 matt * clear its valid bit. 452 1.2 matt */ 453 1.2 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS) 454 1.2 matt && asid_lo <= (mas1 & MAS1_TID) 455 1.5 matt && (mas1 & MAS1_TID) <= asid_hi) { 456 1.2 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V); 457 1.2 matt #if 0 458 1.2 matt printf("%s[%zu,%zu]->[%x]\n", 459 1.2 matt __func__, assoc, epn, mas1); 460 1.2 matt #endif 461 1.2 matt __asm volatile("tlbwe"); 462 1.2 matt } 463 1.2 matt } 464 1.2 matt } 465 1.11 matt __asm volatile("isync\n\tsync"); 466 1.2 matt wrtee(msr); 467 1.16 nonaka #endif /* MULTIPROCESSOR */ 468 1.2 matt } 469 1.2 matt 470 1.2 matt static u_int 471 1.18 matt e500_tlb_record_asids(u_long *bitmap, tlb_asid_t asid_max) 472 1.2 matt { 473 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg()); 474 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg()); 475 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT; 476 1.2 matt const size_t nbits = 8 * sizeof(bitmap[0]); 477 1.2 matt u_int found = 0; 478 1.2 matt 479 1.2 matt const register_t msr = wrtee(0); 480 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) { 481 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0); 482 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) { 483 1.2 matt mtspr(SPR_MAS2, epn); 484 1.2 matt __asm volatile("tlbre"); 485 1.2 matt const uint32_t mas1 = mfspr(SPR_MAS1); 486 1.2 matt /* 487 1.2 matt * If this is a valid entry for AS space 1 and 488 1.2 matt * its asid matches the constraints of the caller, 489 1.2 matt * clear its valid bit. 490 1.2 matt */ 491 1.2 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) { 492 1.2 matt const uint32_t asid = MASX_TID_GET(mas1); 493 1.2 matt const u_int i = asid / nbits; 494 1.2 matt const u_long mask = 1UL << (asid & (nbits - 1)); 495 1.2 matt if ((bitmap[i] & mask) == 0) { 496 1.2 matt bitmap[i] |= mask; 497 1.2 matt found++; 498 1.2 matt } 499 1.2 matt } 500 1.2 matt } 501 1.2 matt } 502 1.2 matt wrtee(msr); 503 1.2 matt 504 1.2 matt return found; 505 1.2 matt } 506 1.2 matt 507 1.2 matt static void 508 1.4 matt e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid) 509 1.2 matt { 510 1.2 matt KASSERT((va & PAGE_MASK) == 0); 511 1.2 matt /* 512 1.2 matt * Bits 60 & 61 have meaning 513 1.2 matt */ 514 1.11 matt if (asid == KERNEL_PID) { 515 1.11 matt /* 516 1.11 matt * For data accesses, the context-synchronizing instruction 517 1.11 matt * before tlbwe or tlbivax ensures that all memory accesses 518 1.11 matt * due to preceding instructions have completed to a point 519 1.11 matt * at which they have reported all exceptions they will cause. 520 1.11 matt */ 521 1.11 matt __asm volatile("isync"); 522 1.11 matt } 523 1.2 matt __asm volatile("tlbivax\t0, %0" :: "b"(va)); 524 1.2 matt __asm volatile("tlbsync"); 525 1.11 matt __asm volatile("tlbsync"); /* Why? */ 526 1.11 matt if (asid == KERNEL_PID) { 527 1.11 matt /* 528 1.11 matt * The context-synchronizing instruction after tlbwe or tlbivax 529 1.11 matt * ensures that subsequent accesses (data and instruction) use 530 1.11 matt * the updated value in any TLB entries affected. 531 1.11 matt */ 532 1.11 matt __asm volatile("isync\n\tsync"); 533 1.11 matt } 534 1.2 matt } 535 1.2 matt 536 1.2 matt static bool 537 1.4 matt e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert) 538 1.2 matt { 539 1.16 nonaka #if defined(MULTIPROCESSOR) 540 1.16 nonaka e500_tlb_invalidate_addr(va, asid); 541 1.16 nonaka return true; 542 1.16 nonaka #else /* !MULTIPROCESSOR */ 543 1.2 matt struct e500_hwtlb hwtlb = tlb_to_hwtlb( 544 1.2 matt (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid, 545 1.2 matt .tlb_size = PAGE_SIZE, .tlb_pte = pte,}); 546 1.2 matt 547 1.2 matt register_t msr = wrtee(0); 548 1.2 matt mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0); 549 1.2 matt __asm volatile("tlbsx 0, %0" :: "b"(va)); 550 1.2 matt register_t mas1 = mfspr(SPR_MAS1); 551 1.2 matt if ((mas1 & MAS1_V) == 0) { 552 1.2 matt if (!insert) { 553 1.2 matt wrtee(msr); 554 1.2 matt #if 0 555 1.2 matt printf("%s(%#lx,%#x,%#x,%x)<no update>\n", 556 1.2 matt __func__, va, asid, pte, insert); 557 1.2 matt #endif 558 1.2 matt return false; 559 1.2 matt } 560 1.18 matt mas1 = hwtlb.hwtlb_mas1 | MAS1_V; 561 1.18 matt mtspr(SPR_MAS1, mas1); 562 1.2 matt } 563 1.2 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2); 564 1.2 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3); 565 1.12 matt //mtspr(SPR_MAS7, 0); 566 1.2 matt __asm volatile("tlbwe"); 567 1.11 matt if (asid == KERNEL_PID) 568 1.11 matt __asm volatile("isync\n\tsync"); 569 1.2 matt wrtee(msr); 570 1.2 matt #if 0 571 1.2 matt if (asid) 572 1.2 matt printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n", 573 1.2 matt __func__, va, asid, pte, insert, 574 1.2 matt hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3); 575 1.2 matt #endif 576 1.2 matt return (mas1 & MAS1_V) != 0; 577 1.16 nonaka #endif /* MULTIPROCESSOR */ 578 1.2 matt } 579 1.2 matt 580 1.2 matt static void 581 1.4 matt e500_tlb_write_entry(size_t index, const struct tlbmask *tlb) 582 1.4 matt { 583 1.4 matt } 584 1.4 matt 585 1.4 matt static void 586 1.2 matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb) 587 1.2 matt { 588 1.2 matt } 589 1.2 matt 590 1.2 matt static void 591 1.2 matt e500_tlb_dump(void (*pr)(const char *, ...)) 592 1.2 matt { 593 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg()); 594 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg()); 595 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT; 596 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0); 597 1.2 matt size_t valid = 0; 598 1.2 matt 599 1.2 matt if (pr == NULL) 600 1.2 matt pr = printf; 601 1.2 matt 602 1.2 matt const register_t msr = wrtee(0); 603 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) { 604 1.2 matt struct e500_hwtlb hwtlb; 605 1.2 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0; 606 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0); 607 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) { 608 1.2 matt mtspr(SPR_MAS2, epn); 609 1.2 matt __asm volatile("tlbre"); 610 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1); 611 1.2 matt /* 612 1.2 matt * If this is a valid entry for AS space 1 and 613 1.2 matt * its asid matches the constraints of the caller, 614 1.2 matt * clear its valid bit. 615 1.2 matt */ 616 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) { 617 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2); 618 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3); 619 1.2 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb); 620 1.2 matt (*pr)("[%zu,%zu]->[%x,%x,%x]", 621 1.2 matt assoc, atop(epn), 622 1.2 matt hwtlb.hwtlb_mas1, 623 1.2 matt hwtlb.hwtlb_mas2, 624 1.2 matt hwtlb.hwtlb_mas3); 625 1.2 matt (*pr)(": VA=%#lx size=4KB asid=%u pte=%x", 626 1.2 matt tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte); 627 1.2 matt (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n", 628 1.2 matt tlb.tlb_pte & PTE_RPN_MASK, 629 1.2 matt tlb.tlb_pte & PTE_xR ? "R" : "", 630 1.2 matt tlb.tlb_pte & PTE_xW ? "W" : "", 631 1.2 matt tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "", 632 1.2 matt tlb.tlb_pte & PTE_xX ? "X" : "", 633 1.2 matt tlb.tlb_pte & PTE_UNSYNCED ? "*" : "", 634 1.2 matt tlb.tlb_pte & PTE_W ? "W" : "", 635 1.2 matt tlb.tlb_pte & PTE_I ? "I" : "", 636 1.2 matt tlb.tlb_pte & PTE_M ? "M" : "", 637 1.2 matt tlb.tlb_pte & PTE_G ? "G" : "", 638 1.2 matt tlb.tlb_pte & PTE_E ? "E" : ""); 639 1.2 matt valid++; 640 1.2 matt } 641 1.2 matt } 642 1.2 matt } 643 1.2 matt mtspr(SPR_MAS0, saved_mas0); 644 1.2 matt wrtee(msr); 645 1.2 matt (*pr)("%s: %zu valid entries\n", __func__, valid); 646 1.2 matt } 647 1.2 matt 648 1.2 matt static void 649 1.2 matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t)) 650 1.2 matt { 651 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg()); 652 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg()); 653 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT; 654 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0); 655 1.2 matt 656 1.2 matt const register_t msr = wrtee(0); 657 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) { 658 1.2 matt struct e500_hwtlb hwtlb; 659 1.2 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0; 660 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0); 661 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) { 662 1.2 matt mtspr(SPR_MAS2, epn); 663 1.2 matt __asm volatile("tlbre"); 664 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1); 665 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) { 666 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2); 667 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3); 668 1.2 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb); 669 1.2 matt if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid, 670 1.2 matt tlb.tlb_pte)) 671 1.2 matt break; 672 1.2 matt } 673 1.2 matt } 674 1.2 matt } 675 1.2 matt mtspr(SPR_MAS0, saved_mas0); 676 1.2 matt wrtee(msr); 677 1.2 matt } 678 1.2 matt 679 1.2 matt static struct e500_xtlb * 680 1.9 matt e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp) 681 1.9 matt { 682 1.9 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 683 1.9 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries; 684 1.9 matt 685 1.9 matt /* 686 1.9 matt * See if we have a TLB entry for the pa. 687 1.9 matt */ 688 1.9 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) { 689 1.9 matt psize_t mask = ~(xtlb->e_tlb.tlb_size - 1); 690 1.9 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) 691 1.9 matt && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) { 692 1.9 matt if (slotp != NULL) 693 1.9 matt *slotp = i; 694 1.9 matt return xtlb; 695 1.9 matt } 696 1.9 matt } 697 1.9 matt 698 1.9 matt return NULL; 699 1.9 matt } 700 1.9 matt 701 1.12 matt struct e500_xtlb * 702 1.2 matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp) 703 1.2 matt { 704 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 705 1.2 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries; 706 1.2 matt 707 1.2 matt /* 708 1.9 matt * See if we have a TLB entry for the va. 709 1.2 matt */ 710 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) { 711 1.9 matt vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1); 712 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) 713 1.9 matt && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) { 714 1.2 matt if (slotp != NULL) 715 1.2 matt *slotp = i; 716 1.2 matt return xtlb; 717 1.2 matt } 718 1.2 matt } 719 1.2 matt 720 1.2 matt return NULL; 721 1.2 matt } 722 1.2 matt 723 1.2 matt static struct e500_xtlb * 724 1.2 matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len) 725 1.2 matt { 726 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 727 1.2 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries; 728 1.2 matt 729 1.2 matt /* 730 1.2 matt * See if we have a TLB entry for the pa. 731 1.2 matt */ 732 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) { 733 1.9 matt vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1); 734 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) 735 1.9 matt && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0 736 1.9 matt && (((va + len - 1) ^ va) & mask) == 0) { 737 1.2 matt return xtlb; 738 1.2 matt } 739 1.2 matt } 740 1.2 matt 741 1.2 matt return NULL; 742 1.2 matt } 743 1.2 matt 744 1.2 matt static void * 745 1.7 matt e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable) 746 1.2 matt { 747 1.9 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL); 748 1.2 matt 749 1.2 matt /* 750 1.2 matt * See if we have a TLB entry for the pa. If completely falls within 751 1.6 matt * mark the reference and return the pa. But only if the tlb entry 752 1.6 matt * is not cacheable. 753 1.2 matt */ 754 1.6 matt if (xtlb 755 1.7 matt && (prefetchable 756 1.7 matt || (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) { 757 1.2 matt xtlb->e_refcnt++; 758 1.10 matt return (void *) (xtlb->e_tlb.tlb_va 759 1.10 matt + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK)); 760 1.2 matt } 761 1.2 matt return NULL; 762 1.2 matt } 763 1.2 matt 764 1.2 matt static void 765 1.2 matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len) 766 1.2 matt { 767 1.2 matt if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) { 768 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL); 769 1.2 matt if (xtlb) 770 1.2 matt xtlb->e_refcnt--; 771 1.2 matt } 772 1.2 matt } 773 1.2 matt 774 1.2 matt static int 775 1.4 matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte) 776 1.2 matt { 777 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 778 1.2 matt struct e500_xtlb *xtlb; 779 1.2 matt 780 1.2 matt KASSERT(len & 0x55555000); 781 1.2 matt KASSERT((len & ~0x55555000) == 0); 782 1.2 matt KASSERT(len >= PAGE_SIZE); 783 1.2 matt KASSERT((len & (len - 1)) == 0); 784 1.2 matt KASSERT((va & (len - 1)) == 0); 785 1.9 matt KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0); 786 1.2 matt 787 1.2 matt if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) { 788 1.17 nonaka psize_t mask __diagused = ~(xtlb->e_tlb.tlb_size - 1); 789 1.9 matt KASSERT(len <= xtlb->e_tlb.tlb_size); 790 1.9 matt KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask)); 791 1.2 matt xtlb->e_refcnt++; 792 1.2 matt return 0; 793 1.2 matt } 794 1.2 matt 795 1.2 matt const int slot = e500_alloc_tlb1_entry(); 796 1.2 matt if (slot < 0) 797 1.2 matt return ENOMEM; 798 1.2 matt 799 1.2 matt xtlb = &tlb1->tlb1_entries[slot]; 800 1.2 matt xtlb->e_tlb.tlb_va = va; 801 1.2 matt xtlb->e_tlb.tlb_size = len; 802 1.2 matt xtlb->e_tlb.tlb_pte = pte; 803 1.2 matt xtlb->e_tlb.tlb_asid = KERNEL_PID; 804 1.2 matt 805 1.2 matt xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb); 806 1.9 matt xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL); 807 1.2 matt hwtlb_write(xtlb->e_hwtlb, true); 808 1.16 nonaka 809 1.16 nonaka #if defined(MULTIPROCESSOR) 810 1.16 nonaka cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC); 811 1.16 nonaka #endif 812 1.16 nonaka 813 1.2 matt return 0; 814 1.2 matt } 815 1.2 matt 816 1.2 matt static int 817 1.2 matt e500_tlb_iorelease(vaddr_t va) 818 1.2 matt { 819 1.2 matt u_int slot; 820 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot); 821 1.2 matt 822 1.2 matt if (xtlb == NULL) 823 1.2 matt return ENOENT; 824 1.2 matt 825 1.2 matt if (xtlb->e_refcnt) 826 1.2 matt return EBUSY; 827 1.2 matt 828 1.2 matt e500_free_tlb1_entry(xtlb, slot, true); 829 1.2 matt 830 1.16 nonaka #if defined(MULTIPROCESSOR) 831 1.16 nonaka cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC); 832 1.16 nonaka #endif 833 1.16 nonaka 834 1.2 matt return 0; 835 1.2 matt } 836 1.2 matt 837 1.2 matt static u_int 838 1.2 matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1) 839 1.2 matt { 840 1.2 matt u_int slotmask = 0; 841 1.2 matt u_int slots = 0, nextslot = 0; 842 1.2 matt KASSERT(tlb1->tlb1_numfree > 1); 843 1.2 matt KASSERT(((memstart + memsize - 1) & -memsize) == memstart); 844 1.2 matt for (paddr_t lastaddr = memstart; 0 < memsize; ) { 845 1.2 matt u_int cnt = __builtin_clz(memsize); 846 1.19 riastrad psize_t size = uimin(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize); 847 1.2 matt slots += memsize / size; 848 1.2 matt if (slots > 4) 849 1.2 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s", 850 1.2 matt __func__, __LINE__, memsize, "too fragmented"); 851 1.2 matt if (slots > tlb1->tlb1_numfree - 1) 852 1.2 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s", 853 1.2 matt __func__, __LINE__, memsize, 854 1.24 andvar "insufficient TLB entries"); 855 1.2 matt for (; nextslot < slots; nextslot++) { 856 1.2 matt const u_int freeslot = e500_alloc_tlb1_entry(); 857 1.2 matt struct e500_xtlb * const xtlb = 858 1.2 matt &tlb1->tlb1_entries[freeslot]; 859 1.2 matt xtlb->e_tlb.tlb_asid = KERNEL_PID; 860 1.2 matt xtlb->e_tlb.tlb_size = size; 861 1.2 matt xtlb->e_tlb.tlb_va = lastaddr; 862 1.2 matt xtlb->e_tlb.tlb_pte = lastaddr 863 1.2 matt | PTE_M | PTE_xX | PTE_xW | PTE_xR; 864 1.2 matt lastaddr += size; 865 1.2 matt memsize -= size; 866 1.2 matt slotmask |= 1 << (31 - freeslot); /* clz friendly */ 867 1.2 matt } 868 1.2 matt } 869 1.2 matt 870 1.16 nonaka #if defined(MULTIPROCESSOR) 871 1.16 nonaka cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC); 872 1.16 nonaka #endif 873 1.16 nonaka 874 1.2 matt return nextslot; 875 1.2 matt } 876 1.15 nonaka 877 1.2 matt static const struct tlb_md_ops e500_tlb_ops = { 878 1.4 matt .md_tlb_get_asid = e500_tlb_get_asid, 879 1.2 matt .md_tlb_set_asid = e500_tlb_set_asid, 880 1.2 matt .md_tlb_invalidate_all = e500_tlb_invalidate_all, 881 1.2 matt .md_tlb_invalidate_globals = e500_tlb_invalidate_globals, 882 1.2 matt .md_tlb_invalidate_asids = e500_tlb_invalidate_asids, 883 1.2 matt .md_tlb_invalidate_addr = e500_tlb_invalidate_addr, 884 1.2 matt .md_tlb_update_addr = e500_tlb_update_addr, 885 1.2 matt .md_tlb_record_asids = e500_tlb_record_asids, 886 1.4 matt .md_tlb_write_entry = e500_tlb_write_entry, 887 1.2 matt .md_tlb_read_entry = e500_tlb_read_entry, 888 1.4 matt .md_tlb_dump = e500_tlb_dump, 889 1.4 matt .md_tlb_walk = e500_tlb_walk, 890 1.4 matt }; 891 1.4 matt 892 1.4 matt static const struct tlb_md_io_ops e500_tlb_io_ops = { 893 1.2 matt .md_tlb_mapiodev = e500_tlb_mapiodev, 894 1.2 matt .md_tlb_unmapiodev = e500_tlb_unmapiodev, 895 1.2 matt .md_tlb_ioreserve = e500_tlb_ioreserve, 896 1.2 matt .md_tlb_iorelease = e500_tlb_iorelease, 897 1.2 matt }; 898 1.2 matt 899 1.2 matt void 900 1.2 matt e500_tlb_init(vaddr_t endkernel, psize_t memsize) 901 1.2 matt { 902 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 903 1.2 matt 904 1.2 matt #if 0 905 1.2 matt register_t mmucfg = mfspr(SPR_MMUCFG); 906 1.2 matt register_t mas4 = mfspr(SPR_MAS4); 907 1.2 matt #endif 908 1.2 matt 909 1.2 matt const uint32_t tlb1cfg = mftlb1cfg(); 910 1.2 matt tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg); 911 1.2 matt KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries)); 912 1.2 matt /* 913 1.2 matt * Limit maxsize to 1G since 4G isn't really useful to us. 914 1.2 matt */ 915 1.2 matt tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg)); 916 1.19 riastrad tlb1->tlb1_maxsize = 1024 << (2 * uimin(10, TLBCFG_MAXSIZE(tlb1cfg))); 917 1.2 matt 918 1.2 matt #ifdef VERBOSE_INITPPC 919 1.2 matt printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB", 920 1.2 matt tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10, 921 1.2 matt tlb1->tlb1_maxsize >> 10); 922 1.2 matt #endif 923 1.2 matt 924 1.2 matt /* 925 1.2 matt * Let's see what's in TLB1 and we need to invalidate any entry that 926 1.2 matt * would fit within the kernel's mapped address space. 927 1.2 matt */ 928 1.2 matt psize_t memmapped = 0; 929 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) { 930 1.2 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i]; 931 1.2 matt 932 1.2 matt xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i); 933 1.2 matt 934 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) { 935 1.2 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i; 936 1.2 matt #ifdef VERBOSE_INITPPC 937 1.2 matt printf(" TLB1[%u]=<unused>", i); 938 1.2 matt #endif 939 1.2 matt continue; 940 1.2 matt } 941 1.2 matt 942 1.2 matt xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb); 943 1.2 matt #ifdef VERBOSE_INITPPC 944 1.2 matt printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>", 945 1.2 matt i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size, 946 1.2 matt xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte); 947 1.2 matt #endif 948 1.2 matt if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va 949 1.2 matt && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS) 950 1.2 matt || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS 951 1.2 matt && VM_MIN_KERNEL_ADDRESS < 952 1.2 matt xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) { 953 1.2 matt #ifdef VERBOSE_INITPPC 954 1.2 matt printf("free"); 955 1.2 matt #endif 956 1.2 matt e500_free_tlb1_entry(xtlb, i, false); 957 1.2 matt #ifdef VERBOSE_INITPPC 958 1.2 matt printf("d"); 959 1.2 matt #endif 960 1.2 matt continue; 961 1.2 matt } 962 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) { 963 1.2 matt xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT; 964 1.2 matt hwtlb_write(xtlb->e_hwtlb, false); 965 1.2 matt #ifdef VERBOSE_INITPPC 966 1.2 matt printf("+iprot"); 967 1.2 matt #endif 968 1.2 matt } 969 1.2 matt if (xtlb->e_tlb.tlb_pte & PTE_I) 970 1.2 matt continue; 971 1.2 matt 972 1.2 matt if (xtlb->e_tlb.tlb_va == 0 973 1.2 matt || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) { 974 1.2 matt memmapped += xtlb->e_tlb.tlb_size; 975 1.12 matt /* 976 1.12 matt * Let make sure main memory is setup so it's memory 977 1.12 matt * coherent. For some reason u-boot doesn't set it up 978 1.12 matt * that way. 979 1.12 matt */ 980 1.12 matt if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) { 981 1.12 matt xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M; 982 1.12 matt hwtlb_write(xtlb->e_hwtlb, true); 983 1.12 matt } 984 1.2 matt } 985 1.2 matt } 986 1.2 matt 987 1.2 matt cpu_md_ops.md_tlb_ops = &e500_tlb_ops; 988 1.4 matt cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops; 989 1.2 matt 990 1.2 matt if (__predict_false(memmapped < memsize)) { 991 1.2 matt /* 992 1.2 matt * Let's see how many TLB entries are needed to map memory. 993 1.2 matt */ 994 1.2 matt u_int slotmask = e500_tlbmemmap(0, memsize, tlb1); 995 1.2 matt 996 1.2 matt /* 997 1.2 matt * To map main memory into the TLB, we need to flush any 998 1.2 matt * existing entries from the TLB that overlap the virtual 999 1.2 matt * address space needed to map physical memory. That may 1000 1.2 matt * include the entries for the pages currently used by the 1001 1.2 matt * stack or that we are executing. So to avoid problems, we 1002 1.2 matt * are going to temporarily map the kernel and stack into AS 1, 1003 1.2 matt * switch to it, and clear out the TLB entries from AS 0, 1004 1.2 matt * install the new TLB entries to map memory, and then switch 1005 1.2 matt * back to AS 0 and free the temp entry used for AS1. 1006 1.2 matt */ 1007 1.2 matt u_int b = __builtin_clz(endkernel); 1008 1.2 matt 1009 1.2 matt /* 1010 1.2 matt * If the kernel doesn't end on a clean power of 2, we need 1011 1.2 matt * to round the size up (by decrementing the number of leading 1012 1.2 matt * zero bits). If the size isn't a power of 4KB, decrement 1013 1.2 matt * again to make it one. 1014 1.2 matt */ 1015 1.2 matt if (endkernel & (endkernel - 1)) 1016 1.2 matt b--; 1017 1.2 matt if ((b & 1) == 0) 1018 1.2 matt b--; 1019 1.2 matt 1020 1.2 matt /* 1021 1.2 matt * Create a TLB1 mapping for the kernel in AS1. 1022 1.2 matt */ 1023 1.2 matt const u_int kslot = e500_alloc_tlb1_entry(); 1024 1.2 matt struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot]; 1025 1.2 matt kxtlb->e_tlb.tlb_va = 0; 1026 1.2 matt kxtlb->e_tlb.tlb_size = 1UL << (31 - b); 1027 1.2 matt kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX; 1028 1.2 matt kxtlb->e_tlb.tlb_asid = KERNEL_PID; 1029 1.2 matt 1030 1.2 matt kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb); 1031 1.9 matt kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL); 1032 1.2 matt kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS; 1033 1.2 matt hwtlb_write(kxtlb->e_hwtlb, true); 1034 1.2 matt 1035 1.2 matt /* 1036 1.2 matt * Now that we have a TLB mapping in AS1 for the kernel and its 1037 1.2 matt * stack, we switch to AS1 to cleanup the TLB mappings for TLB0. 1038 1.2 matt */ 1039 1.2 matt const register_t saved_msr = mfmsr(); 1040 1.2 matt mtmsr(saved_msr | PSL_DS | PSL_IS); 1041 1.2 matt __asm volatile("isync"); 1042 1.2 matt 1043 1.2 matt /* 1044 1.2 matt *** Invalidate all the TLB0 entries. 1045 1.2 matt */ 1046 1.2 matt e500_tlb_invalidate_all(); 1047 1.2 matt 1048 1.2 matt /* 1049 1.2 matt *** Now let's see if we have any entries in TLB1 that would 1050 1.2 matt *** overlap the ones we are about to install. If so, nuke 'em. 1051 1.2 matt */ 1052 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) { 1053 1.2 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i]; 1054 1.2 matt struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb; 1055 1.2 matt if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V 1056 1.2 matt && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) { 1057 1.2 matt e500_free_tlb1_entry(xtlb, i, false); 1058 1.2 matt } 1059 1.2 matt } 1060 1.2 matt 1061 1.2 matt /* 1062 1.2 matt *** Now we can add the TLB entries that will map physical 1063 1.2 matt *** memory. If bit 0 [MSB] in slotmask is set, then tlb 1064 1.2 matt *** entry 0 contains a mapping for physical memory... 1065 1.2 matt */ 1066 1.2 matt struct e500_xtlb *entries = tlb1->tlb1_entries; 1067 1.2 matt while (slotmask != 0) { 1068 1.2 matt const u_int slot = __builtin_clz(slotmask); 1069 1.2 matt hwtlb_write(entries[slot].e_hwtlb, false); 1070 1.2 matt entries += slot + 1; 1071 1.2 matt slotmask <<= slot + 1; 1072 1.2 matt } 1073 1.2 matt 1074 1.2 matt /* 1075 1.2 matt *** Synchronize the TLB and the instruction stream. 1076 1.2 matt */ 1077 1.2 matt __asm volatile("tlbsync"); 1078 1.2 matt __asm volatile("isync"); 1079 1.2 matt 1080 1.2 matt /* 1081 1.2 matt *** Switch back to AS 0. 1082 1.2 matt */ 1083 1.2 matt mtmsr(saved_msr); 1084 1.2 matt __asm volatile("isync"); 1085 1.2 matt 1086 1.2 matt /* 1087 1.2 matt * Free the temporary TLB1 entry. 1088 1.2 matt */ 1089 1.2 matt e500_free_tlb1_entry(kxtlb, kslot, true); 1090 1.2 matt } 1091 1.2 matt 1092 1.2 matt /* 1093 1.2 matt * Finally set the MAS4 defaults. 1094 1.2 matt */ 1095 1.2 matt mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD); 1096 1.2 matt 1097 1.2 matt /* 1098 1.2 matt * Invalidate all the TLB0 entries. 1099 1.2 matt */ 1100 1.2 matt e500_tlb_invalidate_all(); 1101 1.2 matt } 1102 1.8 matt 1103 1.8 matt void 1104 1.8 matt e500_tlb_minimize(vaddr_t endkernel) 1105 1.8 matt { 1106 1.8 matt #ifdef PMAP_MINIMALTLB 1107 1.8 matt struct e500_tlb1 * const tlb1 = &e500_tlb1; 1108 1.8 matt extern uint32_t _fdata[]; 1109 1.8 matt 1110 1.8 matt u_int slot; 1111 1.8 matt 1112 1.8 matt paddr_t boot_page = cpu_read_4(GUR_BPTR); 1113 1.8 matt if (boot_page & BPTR_EN) { 1114 1.8 matt /* 1115 1.8 matt * shift it to an address 1116 1.8 matt */ 1117 1.8 matt boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT; 1118 1.8 matt pmap_kvptefill(boot_page, boot_page + NBPG, 1119 1.8 matt PTE_M | PTE_xR | PTE_xW | PTE_xX); 1120 1.8 matt } 1121 1.8 matt 1122 1.8 matt 1123 1.8 matt KASSERT(endkernel - (uintptr_t)_fdata < 0x400000); 1124 1.8 matt KASSERT((uintptr_t)_fdata == 0x400000); 1125 1.8 matt 1126 1.8 matt struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot); 1127 1.8 matt 1128 1.8 matt KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel)); 1129 1.8 matt const u_int tmp_slot = e500_alloc_tlb1_entry(); 1130 1.8 matt KASSERT(tmp_slot != (u_int) -1); 1131 1.8 matt 1132 1.8 matt struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot]; 1133 1.8 matt tmp_xtlb->e_tlb = xtlb->e_tlb; 1134 1.8 matt tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb); 1135 1.8 matt tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS; 1136 1.8 matt KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1); 1137 1.8 matt tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL); 1138 1.8 matt hwtlb_write(tmp_xtlb->e_hwtlb, true); 1139 1.8 matt 1140 1.8 matt const u_int text_slot = e500_alloc_tlb1_entry(); 1141 1.8 matt KASSERT(text_slot != (u_int)-1); 1142 1.8 matt struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot]; 1143 1.8 matt text_xtlb->e_tlb.tlb_va = 0; 1144 1.8 matt text_xtlb->e_tlb.tlb_size = 0x400000; 1145 1.8 matt text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va; 1146 1.8 matt text_xtlb->e_tlb.tlb_asid = 0; 1147 1.8 matt text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb); 1148 1.8 matt KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1); 1149 1.8 matt text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL); 1150 1.8 matt 1151 1.8 matt const u_int data_slot = e500_alloc_tlb1_entry(); 1152 1.8 matt KASSERT(data_slot != (u_int)-1); 1153 1.8 matt struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot]; 1154 1.8 matt data_xtlb->e_tlb.tlb_va = 0x400000; 1155 1.8 matt data_xtlb->e_tlb.tlb_size = 0x400000; 1156 1.8 matt data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va; 1157 1.8 matt data_xtlb->e_tlb.tlb_asid = 0; 1158 1.8 matt data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb); 1159 1.8 matt KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1); 1160 1.8 matt data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL); 1161 1.8 matt 1162 1.8 matt const register_t msr = mfmsr(); 1163 1.8 matt const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE; 1164 1.8 matt 1165 1.8 matt __asm __volatile( 1166 1.8 matt "mtmsr %[ts_msr]" "\n\t" 1167 1.8 matt "sync" "\n\t" 1168 1.8 matt "isync" 1169 1.8 matt :: [ts_msr] "r" (ts_msr)); 1170 1.8 matt 1171 1.8 matt #if 0 1172 1.8 matt hwtlb_write(text_xtlb->e_hwtlb, false); 1173 1.8 matt hwtlb_write(data_xtlb->e_hwtlb, false); 1174 1.8 matt e500_free_tlb1_entry(xtlb, slot, true); 1175 1.8 matt #endif 1176 1.8 matt 1177 1.8 matt __asm __volatile( 1178 1.8 matt "mtmsr %[msr]" "\n\t" 1179 1.8 matt "sync" "\n\t" 1180 1.8 matt "isync" 1181 1.8 matt :: [msr] "r" (msr)); 1182 1.8 matt 1183 1.8 matt e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true); 1184 1.8 matt #endif /* PMAP_MINIMALTLB */ 1185 1.8 matt } 1186