e500_tlb.c revision 1.1.2.2 1 1.1.2.2 matt /* $NetBSD: e500_tlb.c,v 1.1.2.2 2011/07/26 03:34:13 matt Exp $ */
2 1.1.2.1 matt /*-
3 1.1.2.1 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 1.1.2.1 matt * All rights reserved.
5 1.1.2.1 matt *
6 1.1.2.1 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.1.2.1 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 1.1.2.1 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 1.1.2.1 matt *
10 1.1.2.1 matt * This material is based upon work supported by the Defense Advanced Research
11 1.1.2.1 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 1.1.2.1 matt * Contract No. N66001-09-C-2073.
13 1.1.2.1 matt * Approved for Public Release, Distribution Unlimited
14 1.1.2.1 matt *
15 1.1.2.1 matt * Redistribution and use in source and binary forms, with or without
16 1.1.2.1 matt * modification, are permitted provided that the following conditions
17 1.1.2.1 matt * are met:
18 1.1.2.1 matt * 1. Redistributions of source code must retain the above copyright
19 1.1.2.1 matt * notice, this list of conditions and the following disclaimer.
20 1.1.2.1 matt * 2. Redistributions in binary form must reproduce the above copyright
21 1.1.2.1 matt * notice, this list of conditions and the following disclaimer in the
22 1.1.2.1 matt * documentation and/or other materials provided with the distribution.
23 1.1.2.1 matt *
24 1.1.2.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.1.2.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1.2.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1.2.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.1.2.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1.2.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1.2.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1.2.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1.2.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1.2.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1.2.1 matt * POSSIBILITY OF SUCH DAMAGE.
35 1.1.2.1 matt */
36 1.1.2.1 matt
37 1.1.2.1 matt #include <sys/cdefs.h>
38 1.1.2.1 matt
39 1.1.2.2 matt __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.1.2.2 2011/07/26 03:34:13 matt Exp $");
40 1.1.2.1 matt
41 1.1.2.1 matt #include <sys/param.h>
42 1.1.2.1 matt
43 1.1.2.1 matt #include <uvm/uvm_extern.h>
44 1.1.2.1 matt
45 1.1.2.1 matt #include <powerpc/spr.h>
46 1.1.2.1 matt #include <powerpc/booke/spr.h>
47 1.1.2.1 matt #include <powerpc/booke/cpuvar.h>
48 1.1.2.1 matt #include <powerpc/booke/e500var.h>
49 1.1.2.1 matt #include <powerpc/booke/pmap.h>
50 1.1.2.1 matt
51 1.1.2.1 matt struct e500_tlb {
52 1.1.2.1 matt vaddr_t tlb_va;
53 1.1.2.1 matt uint32_t tlb_pte;
54 1.1.2.1 matt uint32_t tlb_asid;
55 1.1.2.1 matt vsize_t tlb_size;
56 1.1.2.1 matt };
57 1.1.2.1 matt
58 1.1.2.1 matt struct e500_hwtlb {
59 1.1.2.1 matt uint32_t hwtlb_mas0;
60 1.1.2.1 matt uint32_t hwtlb_mas1;
61 1.1.2.1 matt uint32_t hwtlb_mas2;
62 1.1.2.1 matt uint32_t hwtlb_mas3;
63 1.1.2.1 matt };
64 1.1.2.1 matt
65 1.1.2.1 matt struct e500_xtlb {
66 1.1.2.1 matt struct e500_tlb e_tlb;
67 1.1.2.1 matt struct e500_hwtlb e_hwtlb;
68 1.1.2.1 matt u_long e_refcnt;
69 1.1.2.1 matt };
70 1.1.2.1 matt
71 1.1.2.1 matt static struct e500_tlb1 {
72 1.1.2.1 matt uint32_t tlb1_maxsize;
73 1.1.2.1 matt uint32_t tlb1_minsize;
74 1.1.2.1 matt u_int tlb1_numentries;
75 1.1.2.1 matt u_int tlb1_numfree;
76 1.1.2.1 matt u_int tlb1_freelist[32];
77 1.1.2.1 matt struct e500_xtlb tlb1_entries[32];
78 1.1.2.1 matt } e500_tlb1;
79 1.1.2.1 matt
80 1.1.2.1 matt static inline register_t mftlb0cfg(void) __pure;
81 1.1.2.1 matt static inline register_t mftlb1cfg(void) __pure;
82 1.1.2.1 matt
83 1.1.2.1 matt static inline register_t
84 1.1.2.1 matt mftlb0cfg(void)
85 1.1.2.1 matt {
86 1.1.2.1 matt register_t tlb0cfg;
87 1.1.2.1 matt __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
88 1.1.2.1 matt return tlb0cfg;
89 1.1.2.1 matt }
90 1.1.2.1 matt
91 1.1.2.1 matt static inline register_t
92 1.1.2.1 matt mftlb1cfg(void)
93 1.1.2.1 matt {
94 1.1.2.1 matt register_t tlb1cfg;
95 1.1.2.1 matt __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
96 1.1.2.1 matt return tlb1cfg;
97 1.1.2.1 matt }
98 1.1.2.1 matt
99 1.1.2.1 matt static struct e500_tlb
100 1.1.2.1 matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
101 1.1.2.1 matt {
102 1.1.2.1 matt struct e500_tlb tlb;
103 1.1.2.1 matt register_t prot_mask;
104 1.1.2.1 matt u_int prot_shift;
105 1.1.2.1 matt
106 1.1.2.1 matt tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
107 1.1.2.1 matt tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
108 1.1.2.1 matt tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
109 1.1.2.1 matt tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
110 1.1.2.1 matt | (hwtlb.hwtlb_mas3 & MAS3_RPN);
111 1.1.2.1 matt if (hwtlb.hwtlb_mas1 & MAS1_TS) {
112 1.1.2.1 matt prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
113 1.1.2.1 matt prot_shift = PTE_RWX_SHIFT - 1;
114 1.1.2.1 matt } else {
115 1.1.2.1 matt prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
116 1.1.2.1 matt prot_shift = PTE_RWX_SHIFT;
117 1.1.2.1 matt }
118 1.1.2.1 matt tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
119 1.1.2.1 matt return tlb;
120 1.1.2.1 matt }
121 1.1.2.1 matt
122 1.1.2.1 matt static inline struct e500_hwtlb
123 1.1.2.1 matt hwtlb_read(uint32_t mas0, u_int slot)
124 1.1.2.1 matt {
125 1.1.2.1 matt struct e500_hwtlb hwtlb;
126 1.1.2.1 matt register_t tlbcfg;
127 1.1.2.1 matt
128 1.1.2.1 matt if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
129 1.1.2.1 matt tlbcfg = mftlb0cfg();
130 1.1.2.1 matt } else if (mas0 == MAS0_TLBSEL_TLB1) {
131 1.1.2.1 matt tlbcfg = mftlb1cfg();
132 1.1.2.1 matt } else {
133 1.1.2.1 matt panic("%s:%d: unexpected MAS0 %#" PRIx32,
134 1.1.2.1 matt __func__, __LINE__, mas0);
135 1.1.2.1 matt }
136 1.1.2.1 matt
137 1.1.2.1 matt /*
138 1.1.2.1 matt * ESEL is the way we want to look up.
139 1.1.2.1 matt * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
140 1.1.2.1 matt * fully associative, the entire slot is placed into ESEL. If tlbassoc
141 1.1.2.1 matt * is less then the number of tlb entries, the slot is split in two
142 1.1.2.1 matt * fields. Since the TLB is M rows by N ways, the lowers bits are for
143 1.1.2.1 matt * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
144 1.1.2.1 matt */
145 1.1.2.1 matt const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
146 1.1.2.1 matt const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
147 1.1.2.1 matt const u_int esel_shift =
148 1.1.2.1 matt __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
149 1.1.2.1 matt
150 1.1.2.1 matt /*
151 1.1.2.1 matt * Disable interrupts since we don't want anyone else mucking with
152 1.1.2.1 matt * the MMU Assist registers
153 1.1.2.1 matt */
154 1.1.2.1 matt const register_t msr = wrtee(0);
155 1.1.2.1 matt const register_t saved_mas0 = mfspr(SPR_MAS0);
156 1.1.2.1 matt mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
157 1.1.2.1 matt
158 1.1.2.1 matt if (__predict_true(tlbassoc > tlbentries))
159 1.1.2.1 matt mtspr(SPR_MAS2, slot << PAGE_SHIFT);
160 1.1.2.1 matt
161 1.1.2.1 matt /*
162 1.1.2.1 matt * Now select the entry and grab its contents.
163 1.1.2.1 matt */
164 1.1.2.1 matt __asm volatile("tlbre");
165 1.1.2.1 matt
166 1.1.2.1 matt hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
167 1.1.2.1 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
168 1.1.2.1 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
169 1.1.2.1 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
170 1.1.2.1 matt
171 1.1.2.1 matt mtspr(SPR_MAS0, saved_mas0);
172 1.1.2.1 matt wrtee(msr); /* restore interrupts */
173 1.1.2.1 matt
174 1.1.2.1 matt return hwtlb;
175 1.1.2.1 matt }
176 1.1.2.1 matt
177 1.1.2.1 matt static inline void
178 1.1.2.1 matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
179 1.1.2.1 matt {
180 1.1.2.1 matt const register_t msr = wrtee(0);
181 1.1.2.1 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
182 1.1.2.1 matt
183 1.1.2.1 matt /*
184 1.1.2.1 matt * Need to always write MAS0 and MAS1
185 1.1.2.1 matt */
186 1.1.2.1 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
187 1.1.2.1 matt mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
188 1.1.2.1 matt
189 1.1.2.1 matt /*
190 1.1.2.1 matt * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
191 1.1.2.1 matt */
192 1.1.2.1 matt if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
193 1.1.2.1 matt || (hwtlb.hwtlb_mas1 & MAS1_V)) {
194 1.1.2.1 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
195 1.1.2.1 matt }
196 1.1.2.1 matt /*
197 1.1.2.1 matt * Only need to write the RPN/prot if we are dealing with a valid
198 1.1.2.1 matt * mapping.
199 1.1.2.1 matt */
200 1.1.2.1 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
201 1.1.2.1 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
202 1.1.2.1 matt }
203 1.1.2.1 matt
204 1.1.2.1 matt #if 0
205 1.1.2.1 matt printf("%s->[%x,%x,%x,%x]\n",
206 1.1.2.1 matt __func__,
207 1.1.2.1 matt hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
208 1.1.2.1 matt hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
209 1.1.2.1 matt #endif
210 1.1.2.1 matt __asm volatile("tlbwe");
211 1.1.2.1 matt if (needs_sync) {
212 1.1.2.1 matt __asm volatile("tlbsync");
213 1.1.2.1 matt __asm volatile("isync");
214 1.1.2.1 matt }
215 1.1.2.1 matt
216 1.1.2.1 matt mtspr(SPR_MAS0, saved_mas0);
217 1.1.2.1 matt wrtee(msr);
218 1.1.2.1 matt }
219 1.1.2.1 matt
220 1.1.2.1 matt static struct e500_hwtlb
221 1.1.2.1 matt tlb_to_hwtlb(const struct e500_tlb tlb)
222 1.1.2.1 matt {
223 1.1.2.1 matt struct e500_hwtlb hwtlb;
224 1.1.2.1 matt
225 1.1.2.1 matt KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
226 1.1.2.1 matt KASSERT(tlb.tlb_size != 0);
227 1.1.2.1 matt KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
228 1.1.2.1 matt const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
229 1.1.2.1 matt if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
230 1.1.2.1 matt hwtlb.hwtlb_mas0 = 0;
231 1.1.2.1 matt hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
232 1.1.2.1 matt /*
233 1.1.2.1 matt * A non-zero ASID means this is a user page so mark it as
234 1.1.2.1 matt * being in the user's address space.
235 1.1.2.1 matt */
236 1.1.2.1 matt if (tlb.tlb_asid) {
237 1.1.2.1 matt hwtlb.hwtlb_mas1 |= MAS1_TS
238 1.1.2.1 matt | MASX_TID_MAKE(tlb.tlb_asid);
239 1.1.2.1 matt hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
240 1.1.2.1 matt | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
241 1.1.2.1 matt KASSERT(prot_mask & PTE_xR);
242 1.1.2.1 matt KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
243 1.1.2.1 matt CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
244 1.1.2.1 matt CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
245 1.1.2.1 matt } else {
246 1.1.2.1 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
247 1.1.2.1 matt }
248 1.1.2.1 matt if (tlb.tlb_pte & PTE_UNMODIFIED)
249 1.1.2.1 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
250 1.1.2.1 matt if (tlb.tlb_pte & PTE_UNSYNCED)
251 1.1.2.1 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
252 1.1.2.1 matt } else {
253 1.1.2.1 matt KASSERT(tlb.tlb_asid == 0);
254 1.1.2.1 matt KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
255 1.1.2.1 matt u_int cntlz = __builtin_clz(tlb.tlb_size);
256 1.1.2.1 matt KASSERT(cntlz & 1);
257 1.1.2.1 matt KASSERT(cntlz <= 19);
258 1.1.2.1 matt hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
259 1.1.2.1 matt /*
260 1.1.2.1 matt * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
261 1.1.2.1 matt * allowed. So 1K would be 0x00000400 giving 21 leading zero
262 1.1.2.1 matt * bits. Subtracting the leading number of zero bits from 21
263 1.1.2.1 matt * and dividing by 2 gives us the number that the MMU wants.
264 1.1.2.1 matt */
265 1.1.2.1 matt hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
266 1.1.2.1 matt | MAS1_IPROT | MAS1_V;
267 1.1.2.1 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
268 1.1.2.1 matt }
269 1.1.2.1 matt /* We are done with MAS1, on to MAS2 ... */
270 1.1.2.1 matt hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
271 1.1.2.1 matt hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
272 1.1.2.1 matt
273 1.1.2.1 matt return hwtlb;
274 1.1.2.1 matt }
275 1.1.2.1 matt
276 1.1.2.1 matt static int
277 1.1.2.1 matt e500_alloc_tlb1_entry(void)
278 1.1.2.1 matt {
279 1.1.2.1 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
280 1.1.2.1 matt
281 1.1.2.1 matt if (tlb1->tlb1_numfree == 0)
282 1.1.2.1 matt return -1;
283 1.1.2.1 matt const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
284 1.1.2.1 matt KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
285 1.1.2.1 matt tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
286 1.1.2.1 matt MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
287 1.1.2.1 matt return slot;
288 1.1.2.1 matt }
289 1.1.2.1 matt
290 1.1.2.1 matt static void
291 1.1.2.1 matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
292 1.1.2.1 matt {
293 1.1.2.1 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
294 1.1.2.1 matt KASSERT(slot < tlb1->tlb1_numentries);
295 1.1.2.1 matt KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
296 1.1.2.1 matt
297 1.1.2.1 matt KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
298 1.1.2.1 matt xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
299 1.1.2.1 matt hwtlb_write(xtlb->e_hwtlb, needs_sync);
300 1.1.2.1 matt
301 1.1.2.1 matt const register_t msr = wrtee(0);
302 1.1.2.1 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
303 1.1.2.1 matt wrtee(msr);
304 1.1.2.1 matt }
305 1.1.2.1 matt
306 1.1.2.1 matt static void e500_tlb_set_asid(uint32_t asid)
307 1.1.2.1 matt {
308 1.1.2.1 matt mtspr(SPR_PID0, asid);
309 1.1.2.1 matt }
310 1.1.2.1 matt
311 1.1.2.1 matt static void e500_tlb_invalidate_all(void)
312 1.1.2.1 matt {
313 1.1.2.1 matt /*
314 1.1.2.1 matt * This does a flash invalidate of all entries in TLB0.
315 1.1.2.1 matt * We don't touch TLB1 since we don't expect those to be volatile.
316 1.1.2.1 matt */
317 1.1.2.1 matt #if 1
318 1.1.2.1 matt __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
319 1.1.2.1 matt #else
320 1.1.2.1 matt mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
321 1.1.2.1 matt while (mfspr(SPR_MMUCSR0) != 0)
322 1.1.2.1 matt ;
323 1.1.2.1 matt #endif
324 1.1.2.1 matt }
325 1.1.2.1 matt
326 1.1.2.1 matt static void
327 1.1.2.1 matt e500_tlb_invalidate_globals(void)
328 1.1.2.1 matt {
329 1.1.2.1 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
330 1.1.2.1 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
331 1.1.2.1 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
332 1.1.2.1 matt const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
333 1.1.2.1 matt const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
334 1.1.2.1 matt const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
335 1.1.2.1 matt const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
336 1.1.2.1 matt
337 1.1.2.1 matt const register_t msr = wrtee(0);
338 1.1.2.1 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
339 1.1.2.1 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
340 1.1.2.1 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
341 1.1.2.1 matt mtspr(SPR_MAS2, epn);
342 1.1.2.1 matt __asm volatile("tlbre");
343 1.1.2.1 matt uint32_t mas1 = mfspr(SPR_MAS1);
344 1.1.2.1 matt
345 1.1.2.1 matt /*
346 1.1.2.1 matt * Make sure this is a valid kernel entry first.
347 1.1.2.1 matt */
348 1.1.2.1 matt if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
349 1.1.2.1 matt continue;
350 1.1.2.1 matt
351 1.1.2.1 matt /*
352 1.1.2.1 matt * We have a valid kernel TLB entry. But if it matches
353 1.1.2.1 matt * the stack we are currently running on, it would
354 1.1.2.1 matt * unwise to invalidate it. First see if the epn
355 1.1.2.1 matt * overlaps the stack. If it does then get the
356 1.1.2.1 matt * VA and see if it really is part of the stack.
357 1.1.2.1 matt */
358 1.1.2.1 matt if (epn_kstack_lo < epn_kstack_hi
359 1.1.2.1 matt ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
360 1.1.2.1 matt : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
361 1.1.2.1 matt const uint32_t mas2_epn =
362 1.1.2.1 matt mfspr(SPR_MAS2) & MAS2_EPN;
363 1.1.2.1 matt if (kstack_lo <= mas2_epn
364 1.1.2.1 matt && mas2_epn <= kstack_hi)
365 1.1.2.1 matt continue;
366 1.1.2.1 matt }
367 1.1.2.1 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V);
368 1.1.2.1 matt __asm volatile("tlbwe");
369 1.1.2.1 matt }
370 1.1.2.1 matt }
371 1.1.2.1 matt __asm volatile("isync");
372 1.1.2.1 matt wrtee(msr);
373 1.1.2.1 matt }
374 1.1.2.1 matt
375 1.1.2.1 matt static void
376 1.1.2.1 matt e500_tlb_invalidate_asids(uint32_t asid_lo, uint32_t asid_hi)
377 1.1.2.1 matt {
378 1.1.2.1 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
379 1.1.2.1 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
380 1.1.2.1 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
381 1.1.2.1 matt
382 1.1.2.1 matt asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
383 1.1.2.1 matt asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
384 1.1.2.1 matt
385 1.1.2.1 matt const register_t msr = wrtee(0);
386 1.1.2.1 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
387 1.1.2.1 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
388 1.1.2.1 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
389 1.1.2.1 matt mtspr(SPR_MAS2, epn);
390 1.1.2.1 matt __asm volatile("tlbre");
391 1.1.2.1 matt const uint32_t mas1 = mfspr(SPR_MAS1);
392 1.1.2.1 matt /*
393 1.1.2.1 matt * If this is a valid entry for AS space 1 and
394 1.1.2.1 matt * its asid matches the constraints of the caller,
395 1.1.2.1 matt * clear its valid bit.
396 1.1.2.1 matt */
397 1.1.2.1 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
398 1.1.2.1 matt && asid_lo <= (mas1 & MAS1_TID)
399 1.1.2.1 matt && (mas1 & MAS1_TID) < asid_hi) {
400 1.1.2.1 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V);
401 1.1.2.1 matt #if 0
402 1.1.2.1 matt printf("%s[%zu,%zu]->[%x]\n",
403 1.1.2.1 matt __func__, assoc, epn, mas1);
404 1.1.2.1 matt #endif
405 1.1.2.1 matt __asm volatile("tlbwe");
406 1.1.2.1 matt }
407 1.1.2.1 matt }
408 1.1.2.1 matt }
409 1.1.2.1 matt __asm volatile("isync");
410 1.1.2.1 matt wrtee(msr);
411 1.1.2.1 matt }
412 1.1.2.1 matt
413 1.1.2.1 matt static u_int
414 1.1.2.1 matt e500_tlb_record_asids(u_long *bitmap, uint32_t start_slot)
415 1.1.2.1 matt {
416 1.1.2.1 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
417 1.1.2.1 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
418 1.1.2.1 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
419 1.1.2.1 matt const size_t nbits = 8 * sizeof(bitmap[0]);
420 1.1.2.1 matt u_int found = 0;
421 1.1.2.1 matt
422 1.1.2.1 matt const register_t msr = wrtee(0);
423 1.1.2.1 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
424 1.1.2.1 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
425 1.1.2.1 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
426 1.1.2.1 matt mtspr(SPR_MAS2, epn);
427 1.1.2.1 matt __asm volatile("tlbre");
428 1.1.2.1 matt const uint32_t mas1 = mfspr(SPR_MAS1);
429 1.1.2.1 matt /*
430 1.1.2.1 matt * If this is a valid entry for AS space 1 and
431 1.1.2.1 matt * its asid matches the constraints of the caller,
432 1.1.2.1 matt * clear its valid bit.
433 1.1.2.1 matt */
434 1.1.2.1 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
435 1.1.2.1 matt const uint32_t asid = MASX_TID_GET(mas1);
436 1.1.2.1 matt const u_int i = asid / nbits;
437 1.1.2.1 matt const u_long mask = 1UL << (asid & (nbits - 1));
438 1.1.2.1 matt if ((bitmap[i] & mask) == 0) {
439 1.1.2.1 matt bitmap[i] |= mask;
440 1.1.2.1 matt found++;
441 1.1.2.1 matt }
442 1.1.2.1 matt }
443 1.1.2.1 matt }
444 1.1.2.1 matt }
445 1.1.2.1 matt wrtee(msr);
446 1.1.2.1 matt
447 1.1.2.1 matt return found;
448 1.1.2.1 matt }
449 1.1.2.1 matt
450 1.1.2.1 matt static void
451 1.1.2.1 matt e500_tlb_invalidate_addr(vaddr_t va, uint32_t asid)
452 1.1.2.1 matt {
453 1.1.2.1 matt KASSERT((va & PAGE_MASK) == 0);
454 1.1.2.1 matt /*
455 1.1.2.1 matt * Bits 60 & 61 have meaning
456 1.1.2.1 matt */
457 1.1.2.1 matt __asm volatile("tlbivax\t0, %0" :: "b"(va));
458 1.1.2.1 matt __asm volatile("tlbsync");
459 1.1.2.1 matt __asm volatile("tlbsync");
460 1.1.2.1 matt }
461 1.1.2.1 matt
462 1.1.2.1 matt static bool
463 1.1.2.1 matt e500_tlb_update_addr(vaddr_t va, uint32_t asid, uint32_t pte, bool insert)
464 1.1.2.1 matt {
465 1.1.2.1 matt struct e500_hwtlb hwtlb = tlb_to_hwtlb(
466 1.1.2.1 matt (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
467 1.1.2.1 matt .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
468 1.1.2.1 matt
469 1.1.2.1 matt register_t msr = wrtee(0);
470 1.1.2.1 matt mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
471 1.1.2.1 matt __asm volatile("tlbsx 0, %0" :: "b"(va));
472 1.1.2.1 matt register_t mas1 = mfspr(SPR_MAS1);
473 1.1.2.1 matt if ((mas1 & MAS1_V) == 0) {
474 1.1.2.1 matt if (!insert) {
475 1.1.2.1 matt wrtee(msr);
476 1.1.2.1 matt #if 0
477 1.1.2.1 matt printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
478 1.1.2.1 matt __func__, va, asid, pte, insert);
479 1.1.2.1 matt #endif
480 1.1.2.1 matt return false;
481 1.1.2.1 matt }
482 1.1.2.1 matt mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
483 1.1.2.1 matt }
484 1.1.2.1 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
485 1.1.2.1 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
486 1.1.2.1 matt __asm volatile("tlbwe");
487 1.1.2.1 matt if (asid == 0)
488 1.1.2.1 matt __asm volatile("isync");
489 1.1.2.1 matt wrtee(msr);
490 1.1.2.1 matt #if 0
491 1.1.2.1 matt if (asid)
492 1.1.2.1 matt printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
493 1.1.2.1 matt __func__, va, asid, pte, insert,
494 1.1.2.1 matt hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
495 1.1.2.1 matt #endif
496 1.1.2.1 matt return (mas1 & MAS1_V) != 0;
497 1.1.2.1 matt }
498 1.1.2.1 matt
499 1.1.2.1 matt static void
500 1.1.2.1 matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
501 1.1.2.1 matt {
502 1.1.2.1 matt }
503 1.1.2.1 matt
504 1.1.2.1 matt static void
505 1.1.2.1 matt e500_tlb_dump(void (*pr)(const char *, ...))
506 1.1.2.1 matt {
507 1.1.2.1 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
508 1.1.2.1 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
509 1.1.2.1 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
510 1.1.2.1 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
511 1.1.2.1 matt size_t valid = 0;
512 1.1.2.1 matt
513 1.1.2.1 matt if (pr == NULL)
514 1.1.2.1 matt pr = printf;
515 1.1.2.1 matt
516 1.1.2.1 matt const register_t msr = wrtee(0);
517 1.1.2.1 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
518 1.1.2.1 matt struct e500_hwtlb hwtlb;
519 1.1.2.1 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
520 1.1.2.1 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
521 1.1.2.1 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
522 1.1.2.1 matt mtspr(SPR_MAS2, epn);
523 1.1.2.1 matt __asm volatile("tlbre");
524 1.1.2.1 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
525 1.1.2.1 matt /*
526 1.1.2.1 matt * If this is a valid entry for AS space 1 and
527 1.1.2.1 matt * its asid matches the constraints of the caller,
528 1.1.2.1 matt * clear its valid bit.
529 1.1.2.1 matt */
530 1.1.2.1 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
531 1.1.2.1 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
532 1.1.2.1 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
533 1.1.2.1 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
534 1.1.2.1 matt (*pr)("[%zu,%zu]->[%x,%x,%x]",
535 1.1.2.1 matt assoc, atop(epn),
536 1.1.2.1 matt hwtlb.hwtlb_mas1,
537 1.1.2.1 matt hwtlb.hwtlb_mas2,
538 1.1.2.1 matt hwtlb.hwtlb_mas3);
539 1.1.2.1 matt (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
540 1.1.2.1 matt tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
541 1.1.2.1 matt (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
542 1.1.2.1 matt tlb.tlb_pte & PTE_RPN_MASK,
543 1.1.2.1 matt tlb.tlb_pte & PTE_xR ? "R" : "",
544 1.1.2.1 matt tlb.tlb_pte & PTE_xW ? "W" : "",
545 1.1.2.1 matt tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
546 1.1.2.1 matt tlb.tlb_pte & PTE_xX ? "X" : "",
547 1.1.2.1 matt tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
548 1.1.2.1 matt tlb.tlb_pte & PTE_W ? "W" : "",
549 1.1.2.1 matt tlb.tlb_pte & PTE_I ? "I" : "",
550 1.1.2.1 matt tlb.tlb_pte & PTE_M ? "M" : "",
551 1.1.2.1 matt tlb.tlb_pte & PTE_G ? "G" : "",
552 1.1.2.1 matt tlb.tlb_pte & PTE_E ? "E" : "");
553 1.1.2.1 matt valid++;
554 1.1.2.1 matt }
555 1.1.2.1 matt }
556 1.1.2.1 matt }
557 1.1.2.1 matt mtspr(SPR_MAS0, saved_mas0);
558 1.1.2.1 matt wrtee(msr);
559 1.1.2.1 matt (*pr)("%s: %zu valid entries\n", __func__, valid);
560 1.1.2.1 matt }
561 1.1.2.1 matt
562 1.1.2.1 matt static void
563 1.1.2.1 matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
564 1.1.2.1 matt {
565 1.1.2.1 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
566 1.1.2.1 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
567 1.1.2.1 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
568 1.1.2.1 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
569 1.1.2.1 matt
570 1.1.2.1 matt const register_t msr = wrtee(0);
571 1.1.2.1 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
572 1.1.2.1 matt struct e500_hwtlb hwtlb;
573 1.1.2.1 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
574 1.1.2.1 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
575 1.1.2.1 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
576 1.1.2.1 matt mtspr(SPR_MAS2, epn);
577 1.1.2.1 matt __asm volatile("tlbre");
578 1.1.2.1 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
579 1.1.2.1 matt /*
580 1.1.2.1 matt * If this is a valid entry for AS space 1 and
581 1.1.2.1 matt * its asid matches the constraints of the caller,
582 1.1.2.1 matt * clear its valid bit.
583 1.1.2.1 matt */
584 1.1.2.1 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
585 1.1.2.1 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
586 1.1.2.1 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
587 1.1.2.1 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
588 1.1.2.1 matt if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
589 1.1.2.1 matt tlb.tlb_pte))
590 1.1.2.1 matt break;
591 1.1.2.1 matt }
592 1.1.2.1 matt }
593 1.1.2.1 matt }
594 1.1.2.1 matt mtspr(SPR_MAS0, saved_mas0);
595 1.1.2.1 matt wrtee(msr);
596 1.1.2.1 matt }
597 1.1.2.1 matt
598 1.1.2.1 matt static struct e500_xtlb *
599 1.1.2.1 matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
600 1.1.2.1 matt {
601 1.1.2.1 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
602 1.1.2.1 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
603 1.1.2.1 matt
604 1.1.2.1 matt /*
605 1.1.2.1 matt * See if we have a TLB entry for the pa.
606 1.1.2.1 matt */
607 1.1.2.1 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
608 1.1.2.1 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
609 1.1.2.1 matt && xtlb->e_tlb.tlb_va <= va
610 1.1.2.1 matt && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
611 1.1.2.1 matt if (slotp != NULL)
612 1.1.2.1 matt *slotp = i;
613 1.1.2.1 matt return xtlb;
614 1.1.2.1 matt }
615 1.1.2.1 matt }
616 1.1.2.1 matt
617 1.1.2.1 matt return NULL;
618 1.1.2.1 matt }
619 1.1.2.1 matt
620 1.1.2.1 matt static struct e500_xtlb *
621 1.1.2.1 matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
622 1.1.2.1 matt {
623 1.1.2.1 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
624 1.1.2.1 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
625 1.1.2.1 matt
626 1.1.2.1 matt /*
627 1.1.2.1 matt * See if we have a TLB entry for the pa.
628 1.1.2.1 matt */
629 1.1.2.1 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
630 1.1.2.1 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
631 1.1.2.1 matt && xtlb->e_tlb.tlb_va < va + len
632 1.1.2.1 matt && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
633 1.1.2.1 matt return xtlb;
634 1.1.2.1 matt }
635 1.1.2.1 matt }
636 1.1.2.1 matt
637 1.1.2.1 matt return NULL;
638 1.1.2.1 matt }
639 1.1.2.1 matt
640 1.1.2.1 matt static void *
641 1.1.2.1 matt e500_tlb_mapiodev(paddr_t pa, psize_t len)
642 1.1.2.1 matt {
643 1.1.2.1 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
644 1.1.2.1 matt
645 1.1.2.1 matt /*
646 1.1.2.1 matt * See if we have a TLB entry for the pa. If completely falls within
647 1.1.2.1 matt * mark the reference and return the pa.
648 1.1.2.1 matt */
649 1.1.2.2 matt if (xtlb && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size
650 1.1.2.2 matt && (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G)) {
651 1.1.2.1 matt xtlb->e_refcnt++;
652 1.1.2.1 matt return (void *) pa;
653 1.1.2.1 matt }
654 1.1.2.1 matt return NULL;
655 1.1.2.1 matt }
656 1.1.2.1 matt
657 1.1.2.1 matt static void
658 1.1.2.1 matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
659 1.1.2.1 matt {
660 1.1.2.1 matt if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
661 1.1.2.1 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
662 1.1.2.1 matt if (xtlb)
663 1.1.2.1 matt xtlb->e_refcnt--;
664 1.1.2.1 matt }
665 1.1.2.1 matt }
666 1.1.2.1 matt
667 1.1.2.1 matt static int
668 1.1.2.1 matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, uint32_t pte)
669 1.1.2.1 matt {
670 1.1.2.1 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
671 1.1.2.1 matt struct e500_xtlb *xtlb;
672 1.1.2.1 matt
673 1.1.2.1 matt KASSERT(len & 0x55555000);
674 1.1.2.1 matt KASSERT((len & ~0x55555000) == 0);
675 1.1.2.1 matt KASSERT(len >= PAGE_SIZE);
676 1.1.2.1 matt KASSERT((len & (len - 1)) == 0);
677 1.1.2.1 matt KASSERT((va & (len - 1)) == 0);
678 1.1.2.1 matt KASSERT((pte & (len - 1)) == 0);
679 1.1.2.1 matt
680 1.1.2.1 matt if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
681 1.1.2.1 matt if (va < xtlb->e_tlb.tlb_va
682 1.1.2.1 matt || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
683 1.1.2.1 matt || va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
684 1.1.2.1 matt return EBUSY;
685 1.1.2.1 matt xtlb->e_refcnt++;
686 1.1.2.1 matt return 0;
687 1.1.2.1 matt }
688 1.1.2.1 matt
689 1.1.2.1 matt const int slot = e500_alloc_tlb1_entry();
690 1.1.2.1 matt if (slot < 0)
691 1.1.2.1 matt return ENOMEM;
692 1.1.2.1 matt
693 1.1.2.1 matt xtlb = &tlb1->tlb1_entries[slot];
694 1.1.2.1 matt xtlb->e_tlb.tlb_va = va;
695 1.1.2.1 matt xtlb->e_tlb.tlb_size = len;
696 1.1.2.1 matt xtlb->e_tlb.tlb_pte = pte;
697 1.1.2.1 matt xtlb->e_tlb.tlb_asid = KERNEL_PID;
698 1.1.2.1 matt
699 1.1.2.1 matt xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
700 1.1.2.1 matt xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
701 1.1.2.1 matt hwtlb_write(xtlb->e_hwtlb, true);
702 1.1.2.1 matt return 0;
703 1.1.2.1 matt }
704 1.1.2.1 matt
705 1.1.2.1 matt static int
706 1.1.2.1 matt e500_tlb_iorelease(vaddr_t va)
707 1.1.2.1 matt {
708 1.1.2.1 matt u_int slot;
709 1.1.2.1 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
710 1.1.2.1 matt
711 1.1.2.1 matt if (xtlb == NULL)
712 1.1.2.1 matt return ENOENT;
713 1.1.2.1 matt
714 1.1.2.1 matt if (xtlb->e_refcnt)
715 1.1.2.1 matt return EBUSY;
716 1.1.2.1 matt
717 1.1.2.1 matt e500_free_tlb1_entry(xtlb, slot, true);
718 1.1.2.1 matt
719 1.1.2.1 matt return 0;
720 1.1.2.1 matt }
721 1.1.2.1 matt
722 1.1.2.1 matt static u_int
723 1.1.2.1 matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
724 1.1.2.1 matt {
725 1.1.2.1 matt u_int slotmask = 0;
726 1.1.2.1 matt u_int slots = 0, nextslot = 0;
727 1.1.2.1 matt KASSERT(tlb1->tlb1_numfree > 1);
728 1.1.2.1 matt KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
729 1.1.2.1 matt for (paddr_t lastaddr = memstart; 0 < memsize; ) {
730 1.1.2.1 matt u_int cnt = __builtin_clz(memsize);
731 1.1.2.1 matt psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
732 1.1.2.1 matt slots += memsize / size;
733 1.1.2.1 matt if (slots > 4)
734 1.1.2.1 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
735 1.1.2.1 matt __func__, __LINE__, memsize, "too fragmented");
736 1.1.2.1 matt if (slots > tlb1->tlb1_numfree - 1)
737 1.1.2.1 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
738 1.1.2.1 matt __func__, __LINE__, memsize,
739 1.1.2.1 matt "insufficent TLB entries");
740 1.1.2.1 matt for (; nextslot < slots; nextslot++) {
741 1.1.2.1 matt const u_int freeslot = e500_alloc_tlb1_entry();
742 1.1.2.1 matt struct e500_xtlb * const xtlb =
743 1.1.2.1 matt &tlb1->tlb1_entries[freeslot];
744 1.1.2.1 matt xtlb->e_tlb.tlb_asid = KERNEL_PID;
745 1.1.2.1 matt xtlb->e_tlb.tlb_size = size;
746 1.1.2.1 matt xtlb->e_tlb.tlb_va = lastaddr;
747 1.1.2.1 matt xtlb->e_tlb.tlb_pte = lastaddr
748 1.1.2.1 matt | PTE_M | PTE_xX | PTE_xW | PTE_xR;
749 1.1.2.1 matt lastaddr += size;
750 1.1.2.1 matt memsize -= size;
751 1.1.2.1 matt slotmask |= 1 << (31 - freeslot); /* clz friendly */
752 1.1.2.1 matt }
753 1.1.2.1 matt }
754 1.1.2.1 matt
755 1.1.2.1 matt return nextslot;
756 1.1.2.1 matt }
757 1.1.2.1 matt static const struct tlb_md_ops e500_tlb_ops = {
758 1.1.2.1 matt .md_tlb_set_asid = e500_tlb_set_asid,
759 1.1.2.1 matt .md_tlb_invalidate_all = e500_tlb_invalidate_all,
760 1.1.2.1 matt .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
761 1.1.2.1 matt .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
762 1.1.2.1 matt .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
763 1.1.2.1 matt .md_tlb_update_addr = e500_tlb_update_addr,
764 1.1.2.1 matt .md_tlb_record_asids = e500_tlb_record_asids,
765 1.1.2.1 matt .md_tlb_read_entry = e500_tlb_read_entry,
766 1.1.2.1 matt .md_tlb_mapiodev = e500_tlb_mapiodev,
767 1.1.2.1 matt .md_tlb_unmapiodev = e500_tlb_unmapiodev,
768 1.1.2.1 matt .md_tlb_ioreserve = e500_tlb_ioreserve,
769 1.1.2.1 matt .md_tlb_iorelease = e500_tlb_iorelease,
770 1.1.2.1 matt .md_tlb_dump = e500_tlb_dump,
771 1.1.2.1 matt .md_tlb_walk = e500_tlb_walk,
772 1.1.2.1 matt };
773 1.1.2.1 matt
774 1.1.2.1 matt void
775 1.1.2.1 matt e500_tlb_init(vaddr_t endkernel, psize_t memsize)
776 1.1.2.1 matt {
777 1.1.2.1 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
778 1.1.2.1 matt
779 1.1.2.1 matt #if 0
780 1.1.2.1 matt register_t mmucfg = mfspr(SPR_MMUCFG);
781 1.1.2.1 matt register_t mas4 = mfspr(SPR_MAS4);
782 1.1.2.1 matt #endif
783 1.1.2.1 matt
784 1.1.2.1 matt const uint32_t tlb1cfg = mftlb1cfg();
785 1.1.2.1 matt tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
786 1.1.2.1 matt KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
787 1.1.2.1 matt /*
788 1.1.2.1 matt * Limit maxsize to 1G since 4G isn't really useful to us.
789 1.1.2.1 matt */
790 1.1.2.1 matt tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
791 1.1.2.1 matt tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
792 1.1.2.1 matt
793 1.1.2.1 matt #ifdef VERBOSE_INITPPC
794 1.1.2.1 matt printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
795 1.1.2.1 matt tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
796 1.1.2.1 matt tlb1->tlb1_maxsize >> 10);
797 1.1.2.1 matt #endif
798 1.1.2.1 matt
799 1.1.2.1 matt /*
800 1.1.2.1 matt * Let's see what's in TLB1 and we need to invalidate any entry that
801 1.1.2.1 matt * would fit within the kernel's mapped address space.
802 1.1.2.1 matt */
803 1.1.2.1 matt psize_t memmapped = 0;
804 1.1.2.1 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
805 1.1.2.1 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
806 1.1.2.1 matt
807 1.1.2.1 matt xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
808 1.1.2.1 matt
809 1.1.2.1 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
810 1.1.2.1 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
811 1.1.2.1 matt #ifdef VERBOSE_INITPPC
812 1.1.2.1 matt printf(" TLB1[%u]=<unused>", i);
813 1.1.2.1 matt #endif
814 1.1.2.1 matt continue;
815 1.1.2.1 matt }
816 1.1.2.1 matt
817 1.1.2.1 matt xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
818 1.1.2.1 matt #ifdef VERBOSE_INITPPC
819 1.1.2.1 matt printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
820 1.1.2.1 matt i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
821 1.1.2.1 matt xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
822 1.1.2.1 matt #endif
823 1.1.2.1 matt if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
824 1.1.2.1 matt && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
825 1.1.2.1 matt || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
826 1.1.2.1 matt && VM_MIN_KERNEL_ADDRESS <
827 1.1.2.1 matt xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
828 1.1.2.1 matt #ifdef VERBOSE_INITPPC
829 1.1.2.1 matt printf("free");
830 1.1.2.1 matt #endif
831 1.1.2.1 matt e500_free_tlb1_entry(xtlb, i, false);
832 1.1.2.1 matt #ifdef VERBOSE_INITPPC
833 1.1.2.1 matt printf("d");
834 1.1.2.1 matt #endif
835 1.1.2.1 matt continue;
836 1.1.2.1 matt }
837 1.1.2.1 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
838 1.1.2.1 matt xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
839 1.1.2.1 matt hwtlb_write(xtlb->e_hwtlb, false);
840 1.1.2.1 matt #ifdef VERBOSE_INITPPC
841 1.1.2.1 matt printf("+iprot");
842 1.1.2.1 matt #endif
843 1.1.2.1 matt }
844 1.1.2.1 matt if (xtlb->e_tlb.tlb_pte & PTE_I)
845 1.1.2.1 matt continue;
846 1.1.2.1 matt
847 1.1.2.1 matt if (xtlb->e_tlb.tlb_va == 0
848 1.1.2.1 matt || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
849 1.1.2.1 matt memmapped += xtlb->e_tlb.tlb_size;
850 1.1.2.1 matt }
851 1.1.2.1 matt }
852 1.1.2.1 matt
853 1.1.2.1 matt cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
854 1.1.2.1 matt
855 1.1.2.1 matt if (__predict_false(memmapped < memsize)) {
856 1.1.2.1 matt /*
857 1.1.2.1 matt * Let's see how many TLB entries are needed to map memory.
858 1.1.2.1 matt */
859 1.1.2.1 matt u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
860 1.1.2.1 matt
861 1.1.2.1 matt /*
862 1.1.2.1 matt * To map main memory into the TLB, we need to flush any
863 1.1.2.1 matt * existing entries from the TLB that overlap the virtual
864 1.1.2.1 matt * address space needed to map physical memory. That may
865 1.1.2.1 matt * include the entries for the pages currently used by the
866 1.1.2.1 matt * stack or that we are executing. So to avoid problems, we
867 1.1.2.1 matt * are going to temporarily map the kernel and stack into AS 1,
868 1.1.2.1 matt * switch to it, and clear out the TLB entries from AS 0,
869 1.1.2.1 matt * install the new TLB entries to map memory, and then switch
870 1.1.2.1 matt * back to AS 0 and free the temp entry used for AS1.
871 1.1.2.1 matt */
872 1.1.2.1 matt u_int b = __builtin_clz(endkernel);
873 1.1.2.1 matt
874 1.1.2.1 matt /*
875 1.1.2.1 matt * If the kernel doesn't end on a clean power of 2, we need
876 1.1.2.1 matt * to round the size up (by decrementing the number of leading
877 1.1.2.1 matt * zero bits). If the size isn't a power of 4KB, decrement
878 1.1.2.1 matt * again to make it one.
879 1.1.2.1 matt */
880 1.1.2.1 matt if (endkernel & (endkernel - 1))
881 1.1.2.1 matt b--;
882 1.1.2.1 matt if ((b & 1) == 0)
883 1.1.2.1 matt b--;
884 1.1.2.1 matt
885 1.1.2.1 matt /*
886 1.1.2.1 matt * Create a TLB1 mapping for the kernel in AS1.
887 1.1.2.1 matt */
888 1.1.2.1 matt const u_int kslot = e500_alloc_tlb1_entry();
889 1.1.2.1 matt struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
890 1.1.2.1 matt kxtlb->e_tlb.tlb_va = 0;
891 1.1.2.1 matt kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
892 1.1.2.1 matt kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
893 1.1.2.1 matt kxtlb->e_tlb.tlb_asid = KERNEL_PID;
894 1.1.2.1 matt
895 1.1.2.1 matt kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
896 1.1.2.1 matt kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
897 1.1.2.1 matt kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
898 1.1.2.1 matt hwtlb_write(kxtlb->e_hwtlb, true);
899 1.1.2.1 matt
900 1.1.2.1 matt /*
901 1.1.2.1 matt * Now that we have a TLB mapping in AS1 for the kernel and its
902 1.1.2.1 matt * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
903 1.1.2.1 matt */
904 1.1.2.1 matt const register_t saved_msr = mfmsr();
905 1.1.2.1 matt mtmsr(saved_msr | PSL_DS | PSL_IS);
906 1.1.2.1 matt __asm volatile("isync");
907 1.1.2.1 matt
908 1.1.2.1 matt /*
909 1.1.2.1 matt *** Invalidate all the TLB0 entries.
910 1.1.2.1 matt */
911 1.1.2.1 matt e500_tlb_invalidate_all();
912 1.1.2.1 matt
913 1.1.2.1 matt /*
914 1.1.2.1 matt *** Now let's see if we have any entries in TLB1 that would
915 1.1.2.1 matt *** overlap the ones we are about to install. If so, nuke 'em.
916 1.1.2.1 matt */
917 1.1.2.1 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
918 1.1.2.1 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
919 1.1.2.1 matt struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
920 1.1.2.1 matt if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
921 1.1.2.1 matt && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
922 1.1.2.1 matt e500_free_tlb1_entry(xtlb, i, false);
923 1.1.2.1 matt }
924 1.1.2.1 matt }
925 1.1.2.1 matt
926 1.1.2.1 matt /*
927 1.1.2.1 matt *** Now we can add the TLB entries that will map physical
928 1.1.2.1 matt *** memory. If bit 0 [MSB] in slotmask is set, then tlb
929 1.1.2.1 matt *** entry 0 contains a mapping for physical memory...
930 1.1.2.1 matt */
931 1.1.2.1 matt struct e500_xtlb *entries = tlb1->tlb1_entries;
932 1.1.2.1 matt while (slotmask != 0) {
933 1.1.2.1 matt const u_int slot = __builtin_clz(slotmask);
934 1.1.2.1 matt hwtlb_write(entries[slot].e_hwtlb, false);
935 1.1.2.1 matt entries += slot + 1;
936 1.1.2.1 matt slotmask <<= slot + 1;
937 1.1.2.1 matt }
938 1.1.2.1 matt
939 1.1.2.1 matt /*
940 1.1.2.1 matt *** Synchronize the TLB and the instruction stream.
941 1.1.2.1 matt */
942 1.1.2.1 matt __asm volatile("tlbsync");
943 1.1.2.1 matt __asm volatile("isync");
944 1.1.2.1 matt
945 1.1.2.1 matt /*
946 1.1.2.1 matt *** Switch back to AS 0.
947 1.1.2.1 matt */
948 1.1.2.1 matt mtmsr(saved_msr);
949 1.1.2.1 matt __asm volatile("isync");
950 1.1.2.1 matt
951 1.1.2.1 matt /*
952 1.1.2.1 matt * Free the temporary TLB1 entry.
953 1.1.2.1 matt */
954 1.1.2.1 matt e500_free_tlb1_entry(kxtlb, kslot, true);
955 1.1.2.1 matt }
956 1.1.2.1 matt
957 1.1.2.1 matt /*
958 1.1.2.1 matt * Finally set the MAS4 defaults.
959 1.1.2.1 matt */
960 1.1.2.1 matt mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
961 1.1.2.1 matt
962 1.1.2.1 matt /*
963 1.1.2.1 matt * Invalidate all the TLB0 entries.
964 1.1.2.1 matt */
965 1.1.2.1 matt e500_tlb_invalidate_all();
966 1.1.2.1 matt }
967