Home | History | Annotate | Line # | Download | only in booke
e500_tlb.c revision 1.11
      1  1.11  matt /*	$NetBSD: e500_tlb.c,v 1.11 2012/07/25 22:11:36 matt Exp $	*/
      2   1.2  matt /*-
      3   1.2  matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4   1.2  matt  * All rights reserved.
      5   1.2  matt  *
      6   1.2  matt  * This code is derived from software contributed to The NetBSD Foundation
      7   1.2  matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8   1.2  matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9   1.2  matt  *
     10   1.2  matt  * This material is based upon work supported by the Defense Advanced Research
     11   1.2  matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12   1.2  matt  * Contract No. N66001-09-C-2073.
     13   1.2  matt  * Approved for Public Release, Distribution Unlimited
     14   1.2  matt  *
     15   1.2  matt  * Redistribution and use in source and binary forms, with or without
     16   1.2  matt  * modification, are permitted provided that the following conditions
     17   1.2  matt  * are met:
     18   1.2  matt  * 1. Redistributions of source code must retain the above copyright
     19   1.2  matt  *    notice, this list of conditions and the following disclaimer.
     20   1.2  matt  * 2. Redistributions in binary form must reproduce the above copyright
     21   1.2  matt  *    notice, this list of conditions and the following disclaimer in the
     22   1.2  matt  *    documentation and/or other materials provided with the distribution.
     23   1.2  matt  *
     24   1.2  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25   1.2  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26   1.2  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27   1.2  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28   1.2  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29   1.2  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30   1.2  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31   1.2  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32   1.2  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33   1.2  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34   1.2  matt  * POSSIBILITY OF SUCH DAMAGE.
     35   1.2  matt  */
     36   1.2  matt 
     37   1.8  matt #define	__PMAP_PRIVATE
     38   1.8  matt 
     39   1.2  matt #include <sys/cdefs.h>
     40   1.2  matt 
     41  1.11  matt __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.11 2012/07/25 22:11:36 matt Exp $");
     42   1.2  matt 
     43   1.2  matt #include <sys/param.h>
     44   1.2  matt 
     45   1.2  matt #include <uvm/uvm_extern.h>
     46   1.2  matt 
     47   1.2  matt #include <powerpc/spr.h>
     48   1.2  matt #include <powerpc/booke/spr.h>
     49   1.2  matt #include <powerpc/booke/cpuvar.h>
     50   1.8  matt #include <powerpc/booke/e500reg.h>
     51   1.2  matt #include <powerpc/booke/e500var.h>
     52   1.2  matt #include <powerpc/booke/pmap.h>
     53   1.2  matt 
     54   1.2  matt struct e500_tlb {
     55   1.2  matt 	vaddr_t tlb_va;
     56   1.2  matt 	uint32_t tlb_pte;
     57   1.2  matt 	uint32_t tlb_asid;
     58   1.2  matt 	vsize_t tlb_size;
     59   1.2  matt };
     60   1.2  matt 
     61   1.2  matt struct e500_hwtlb {
     62   1.2  matt 	uint32_t hwtlb_mas0;
     63   1.2  matt 	uint32_t hwtlb_mas1;
     64   1.2  matt 	uint32_t hwtlb_mas2;
     65   1.2  matt 	uint32_t hwtlb_mas3;
     66   1.2  matt };
     67   1.2  matt 
     68   1.2  matt struct e500_xtlb {
     69   1.2  matt 	struct e500_tlb e_tlb;
     70   1.2  matt 	struct e500_hwtlb e_hwtlb;
     71   1.2  matt 	u_long e_refcnt;
     72   1.2  matt };
     73   1.2  matt 
     74   1.2  matt static struct e500_tlb1 {
     75   1.2  matt 	uint32_t tlb1_maxsize;
     76   1.2  matt 	uint32_t tlb1_minsize;
     77   1.2  matt 	u_int tlb1_numentries;
     78   1.2  matt 	u_int tlb1_numfree;
     79   1.2  matt 	u_int tlb1_freelist[32];
     80   1.2  matt 	struct e500_xtlb tlb1_entries[32];
     81   1.2  matt } e500_tlb1;
     82   1.2  matt 
     83   1.2  matt static inline register_t mftlb0cfg(void) __pure;
     84   1.2  matt static inline register_t mftlb1cfg(void) __pure;
     85   1.2  matt 
     86   1.2  matt static inline register_t
     87   1.2  matt mftlb0cfg(void)
     88   1.2  matt {
     89   1.2  matt 	register_t tlb0cfg;
     90   1.2  matt 	__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
     91   1.2  matt 	return tlb0cfg;
     92   1.2  matt }
     93   1.2  matt 
     94   1.2  matt static inline register_t
     95   1.2  matt mftlb1cfg(void)
     96   1.2  matt {
     97   1.2  matt 	register_t tlb1cfg;
     98   1.2  matt 	__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
     99   1.2  matt 	return tlb1cfg;
    100   1.2  matt }
    101   1.2  matt 
    102   1.2  matt static struct e500_tlb
    103   1.2  matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
    104   1.2  matt {
    105   1.2  matt 	struct e500_tlb tlb;
    106   1.2  matt 	register_t prot_mask;
    107   1.2  matt 	u_int prot_shift;
    108   1.2  matt 
    109   1.2  matt 	tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
    110   1.2  matt 	tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
    111   1.2  matt 	tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
    112   1.2  matt 	tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
    113   1.2  matt 	    | (hwtlb.hwtlb_mas3 & MAS3_RPN);
    114   1.2  matt 	if (hwtlb.hwtlb_mas1 & MAS1_TS) {
    115   1.2  matt 		prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
    116   1.2  matt 		prot_shift = PTE_RWX_SHIFT - 1;
    117   1.2  matt 	} else {
    118   1.2  matt 		prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
    119   1.2  matt 		prot_shift = PTE_RWX_SHIFT;
    120   1.2  matt 	}
    121   1.2  matt 	tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
    122   1.2  matt 	return tlb;
    123   1.2  matt }
    124   1.2  matt 
    125   1.2  matt static inline struct e500_hwtlb
    126   1.2  matt hwtlb_read(uint32_t mas0, u_int slot)
    127   1.2  matt {
    128   1.2  matt 	struct e500_hwtlb hwtlb;
    129   1.2  matt 	register_t tlbcfg;
    130   1.2  matt 
    131   1.2  matt 	if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
    132   1.2  matt 		tlbcfg = mftlb0cfg();
    133   1.2  matt 	} else if (mas0 == MAS0_TLBSEL_TLB1) {
    134   1.2  matt 		tlbcfg = mftlb1cfg();
    135   1.2  matt 	} else {
    136   1.2  matt 		panic("%s:%d: unexpected MAS0 %#" PRIx32,
    137   1.2  matt 		    __func__, __LINE__, mas0);
    138   1.2  matt 	}
    139   1.2  matt 
    140   1.2  matt 	/*
    141   1.2  matt 	 * ESEL is the way we want to look up.
    142   1.2  matt 	 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
    143   1.2  matt 	 * fully associative, the entire slot is placed into ESEL.  If tlbassoc
    144   1.2  matt 	 * is less then the number of tlb entries, the slot is split in two
    145   1.2  matt 	 * fields.  Since the TLB is M rows by N ways, the lowers bits are for
    146   1.2  matt 	 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
    147   1.2  matt 	 */
    148   1.2  matt 	const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
    149   1.2  matt 	const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
    150   1.2  matt 	const u_int esel_shift =
    151   1.2  matt 	    __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
    152   1.2  matt 
    153   1.2  matt 	/*
    154   1.2  matt 	 * Disable interrupts since we don't want anyone else mucking with
    155   1.2  matt 	 * the MMU Assist registers
    156   1.2  matt 	 */
    157   1.2  matt 	const register_t msr = wrtee(0);
    158   1.2  matt 	const register_t saved_mas0 = mfspr(SPR_MAS0);
    159   1.2  matt 	mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
    160   1.2  matt 
    161   1.2  matt 	if (__predict_true(tlbassoc > tlbentries))
    162   1.2  matt 		mtspr(SPR_MAS2, slot << PAGE_SHIFT);
    163   1.2  matt 
    164   1.2  matt 	/*
    165   1.2  matt 	 * Now select the entry and grab its contents.
    166   1.2  matt 	 */
    167   1.2  matt 	__asm volatile("tlbre");
    168   1.2  matt 
    169   1.2  matt 	hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
    170   1.2  matt 	hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    171   1.2  matt 	hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    172   1.2  matt 	hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    173   1.2  matt 
    174   1.2  matt 	mtspr(SPR_MAS0, saved_mas0);
    175   1.2  matt 	wrtee(msr);	/* restore interrupts */
    176   1.2  matt 
    177   1.2  matt 	return hwtlb;
    178   1.2  matt }
    179   1.2  matt 
    180   1.2  matt static inline void
    181   1.2  matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
    182   1.2  matt {
    183   1.2  matt 	const register_t msr = wrtee(0);
    184   1.2  matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    185   1.2  matt 
    186   1.2  matt 	/*
    187   1.2  matt 	 * Need to always write MAS0 and MAS1
    188   1.2  matt 	 */
    189   1.2  matt 	mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    190   1.2  matt 	mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    191   1.2  matt 
    192   1.2  matt 	/*
    193   1.2  matt 	 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
    194   1.2  matt 	 */
    195   1.2  matt 	if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
    196   1.2  matt 	    || (hwtlb.hwtlb_mas1 & MAS1_V)) {
    197   1.2  matt 		mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    198   1.2  matt 	}
    199   1.2  matt 	/*
    200   1.2  matt 	 * Only need to write the RPN/prot if we are dealing with a valid
    201   1.2  matt 	 * mapping.
    202   1.2  matt 	 */
    203   1.2  matt 	if (hwtlb.hwtlb_mas1 & MAS1_V) {
    204   1.2  matt 		mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    205   1.2  matt 	}
    206   1.2  matt 
    207   1.2  matt #if 0
    208   1.2  matt 	printf("%s->[%x,%x,%x,%x]\n",
    209   1.2  matt 	    __func__,
    210   1.2  matt 	    hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
    211   1.2  matt 	    hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    212   1.2  matt #endif
    213   1.2  matt 	__asm volatile("tlbwe");
    214   1.2  matt 	if (needs_sync) {
    215  1.11  matt 		__asm volatile("tlbsync\n\tisync\n\tsync");
    216   1.2  matt 	}
    217   1.2  matt 
    218   1.2  matt 	mtspr(SPR_MAS0, saved_mas0);
    219   1.2  matt 	wrtee(msr);
    220   1.2  matt }
    221   1.2  matt 
    222   1.2  matt static struct e500_hwtlb
    223   1.2  matt tlb_to_hwtlb(const struct e500_tlb tlb)
    224   1.2  matt {
    225   1.2  matt 	struct e500_hwtlb hwtlb;
    226   1.2  matt 
    227   1.2  matt 	KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
    228   1.2  matt 	KASSERT(tlb.tlb_size != 0);
    229   1.2  matt 	KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
    230   1.2  matt 	const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
    231   1.2  matt 	if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
    232   1.2  matt 		hwtlb.hwtlb_mas0 = 0;
    233   1.2  matt 		hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
    234   1.2  matt 		/*
    235   1.2  matt 		 * A non-zero ASID means this is a user page so mark it as
    236   1.2  matt 		 * being in the user's address space.
    237   1.2  matt 		 */
    238   1.2  matt 		if (tlb.tlb_asid) {
    239   1.2  matt 			hwtlb.hwtlb_mas1 |= MAS1_TS
    240   1.2  matt 			    | MASX_TID_MAKE(tlb.tlb_asid);
    241   1.2  matt 			hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
    242   1.2  matt 			    | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
    243   1.2  matt 			KASSERT(prot_mask & PTE_xR);
    244   1.2  matt 			KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
    245   1.2  matt 			CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
    246   1.2  matt 			CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
    247   1.2  matt 		} else {
    248   1.2  matt 			hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    249   1.2  matt 		}
    250   1.2  matt 		if (tlb.tlb_pte & PTE_UNMODIFIED)
    251   1.2  matt 			hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
    252   1.2  matt 		if (tlb.tlb_pte & PTE_UNSYNCED)
    253   1.2  matt 			hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
    254   1.2  matt 	} else {
    255   1.2  matt 		KASSERT(tlb.tlb_asid == 0);
    256   1.2  matt 		KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
    257   1.2  matt 		u_int cntlz = __builtin_clz(tlb.tlb_size);
    258   1.2  matt 		KASSERT(cntlz & 1);
    259   1.2  matt 		KASSERT(cntlz <= 19);
    260   1.2  matt 		hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
    261   1.2  matt 		/*
    262   1.8  matt 		 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
    263   1.2  matt 		 * allowed.  So 1K would be 0x00000400 giving 21 leading zero
    264   1.2  matt 		 * bits.  Subtracting the leading number of zero bits from 21
    265   1.2  matt 		 * and dividing by 2 gives us the number that the MMU wants.
    266   1.2  matt 		 */
    267   1.2  matt 		hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
    268   1.2  matt 		    | MAS1_IPROT | MAS1_V;
    269   1.2  matt 		hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    270   1.2  matt 	}
    271   1.2  matt 	/* We are done with MAS1, on to MAS2 ... */
    272   1.2  matt 	hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
    273   1.2  matt 	hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
    274   1.2  matt 
    275   1.2  matt 	return hwtlb;
    276   1.2  matt }
    277   1.2  matt 
    278   1.3  matt void *
    279   1.3  matt e500_tlb1_fetch(size_t slot)
    280   1.3  matt {
    281   1.3  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    282   1.3  matt 
    283   1.3  matt 	return &tlb1->tlb1_entries[slot].e_hwtlb;
    284   1.3  matt }
    285   1.3  matt 
    286   1.3  matt void
    287   1.3  matt e500_tlb1_sync(void)
    288   1.3  matt {
    289   1.3  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    290   1.3  matt 	for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
    291   1.3  matt 		const struct e500_hwtlb * const new_hwtlb =
    292   1.3  matt 		    &tlb1->tlb1_entries[slot].e_hwtlb;
    293   1.3  matt 		const struct e500_hwtlb old_hwtlb =
    294   1.3  matt 		    hwtlb_read(MAS0_TLBSEL_TLB1, slot);
    295   1.3  matt #define CHANGED(n,o,f)	((n)->f != (o).f)
    296   1.3  matt 		bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
    297   1.3  matt 		bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
    298   1.3  matt 		bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
    299   1.3  matt #undef CHANGED
    300   1.3  matt 		bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
    301   1.3  matt 		bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
    302   1.3  matt 		if ((new_valid_p || old_valid_p)
    303   1.3  matt 		    && (mas1_changed_p
    304   1.3  matt 			|| (new_valid_p
    305   1.3  matt 			    && (mas2_changed_p || mas3_changed_p))))
    306   1.3  matt 			hwtlb_write(*new_hwtlb, true);
    307   1.3  matt 	}
    308   1.3  matt }
    309   1.3  matt 
    310   1.2  matt static int
    311   1.2  matt e500_alloc_tlb1_entry(void)
    312   1.2  matt {
    313   1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    314   1.2  matt 
    315   1.2  matt 	if (tlb1->tlb1_numfree == 0)
    316   1.2  matt 		return -1;
    317   1.2  matt 	const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
    318   1.2  matt 	KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
    319   1.2  matt 	tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
    320   1.9  matt 	    MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
    321   1.8  matt 	return (int)slot;
    322   1.2  matt }
    323   1.2  matt 
    324   1.2  matt static void
    325   1.2  matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
    326   1.2  matt {
    327   1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    328   1.2  matt 	KASSERT(slot < tlb1->tlb1_numentries);
    329   1.2  matt 	KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
    330   1.2  matt 
    331   1.2  matt 	KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
    332   1.2  matt 	xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
    333   1.2  matt 	hwtlb_write(xtlb->e_hwtlb, needs_sync);
    334   1.2  matt 
    335   1.2  matt 	const register_t msr = wrtee(0);
    336   1.2  matt 	tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
    337   1.2  matt 	wrtee(msr);
    338   1.2  matt }
    339   1.2  matt 
    340   1.4  matt static tlb_asid_t
    341   1.4  matt e500_tlb_get_asid(void)
    342   1.4  matt {
    343   1.4  matt 	return mfspr(SPR_PID0);
    344   1.4  matt }
    345   1.4  matt 
    346   1.4  matt static void
    347   1.4  matt e500_tlb_set_asid(tlb_asid_t asid)
    348   1.2  matt {
    349   1.2  matt 	mtspr(SPR_PID0, asid);
    350   1.2  matt }
    351   1.2  matt 
    352   1.4  matt static void
    353   1.4  matt e500_tlb_invalidate_all(void)
    354   1.2  matt {
    355   1.2  matt 	/*
    356   1.2  matt 	 * This does a flash invalidate of all entries in TLB0.
    357   1.2  matt 	 * We don't touch TLB1 since we don't expect those to be volatile.
    358   1.2  matt 	 */
    359   1.2  matt #if 1
    360   1.2  matt 	__asm volatile("tlbivax\t0, %0" :: "b"(4));	/* INV_ALL */
    361  1.11  matt 	__asm volatile("tlbsync\n\tisync\n\tsync");
    362   1.2  matt #else
    363   1.2  matt 	mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
    364   1.2  matt 	while (mfspr(SPR_MMUCSR0) != 0)
    365   1.2  matt 		;
    366   1.2  matt #endif
    367   1.2  matt }
    368   1.2  matt 
    369   1.2  matt static void
    370   1.2  matt e500_tlb_invalidate_globals(void)
    371   1.2  matt {
    372   1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    373   1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    374   1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    375   1.2  matt 	const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
    376   1.2  matt 	const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
    377   1.2  matt 	const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
    378   1.2  matt 	const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
    379   1.2  matt 
    380   1.2  matt 	const register_t msr = wrtee(0);
    381   1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    382   1.2  matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    383   1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    384   1.2  matt 			mtspr(SPR_MAS2, epn);
    385   1.2  matt 			__asm volatile("tlbre");
    386   1.2  matt 			uint32_t mas1 = mfspr(SPR_MAS1);
    387   1.2  matt 
    388   1.2  matt 			/*
    389   1.2  matt 			 * Make sure this is a valid kernel entry first.
    390   1.2  matt 			 */
    391   1.2  matt 			if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
    392   1.2  matt 				continue;
    393   1.2  matt 
    394   1.2  matt 			/*
    395   1.2  matt 			 * We have a valid kernel TLB entry.  But if it matches
    396   1.2  matt 			 * the stack we are currently running on, it would
    397   1.2  matt 			 * unwise to invalidate it.  First see if the epn
    398   1.2  matt 			 * overlaps the stack.  If it does then get the
    399   1.2  matt 			 * VA and see if it really is part of the stack.
    400   1.2  matt 			 */
    401   1.2  matt 			if (epn_kstack_lo < epn_kstack_hi
    402   1.2  matt 			    ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
    403   1.2  matt 			    : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
    404   1.2  matt 				const uint32_t mas2_epn =
    405   1.2  matt 				    mfspr(SPR_MAS2) & MAS2_EPN;
    406   1.2  matt 				if (kstack_lo <= mas2_epn
    407   1.2  matt 				    && mas2_epn <= kstack_hi)
    408   1.2  matt 					continue;
    409   1.2  matt 			}
    410   1.2  matt 			mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    411   1.2  matt 			__asm volatile("tlbwe");
    412   1.2  matt 		}
    413   1.2  matt 	}
    414  1.11  matt 	__asm volatile("isync\n\tsync");
    415   1.2  matt 	wrtee(msr);
    416   1.2  matt }
    417   1.2  matt 
    418   1.2  matt static void
    419   1.4  matt e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
    420   1.2  matt {
    421   1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    422   1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    423   1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    424   1.2  matt 
    425   1.2  matt 	asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
    426   1.2  matt 	asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
    427   1.2  matt 
    428   1.2  matt 	const register_t msr = wrtee(0);
    429   1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    430   1.2  matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    431   1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    432   1.2  matt 			mtspr(SPR_MAS2, epn);
    433   1.2  matt 			__asm volatile("tlbre");
    434   1.2  matt 			const uint32_t mas1 = mfspr(SPR_MAS1);
    435   1.2  matt 			/*
    436   1.2  matt 			 * If this is a valid entry for AS space 1 and
    437   1.2  matt 			 * its asid matches the constraints of the caller,
    438   1.2  matt 			 * clear its valid bit.
    439   1.2  matt 			 */
    440   1.2  matt 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
    441   1.2  matt 			    && asid_lo <= (mas1 & MAS1_TID)
    442   1.5  matt 			    && (mas1 & MAS1_TID) <= asid_hi) {
    443   1.2  matt 				mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    444   1.2  matt #if 0
    445   1.2  matt 				printf("%s[%zu,%zu]->[%x]\n",
    446   1.2  matt 				    __func__, assoc, epn, mas1);
    447   1.2  matt #endif
    448   1.2  matt 				__asm volatile("tlbwe");
    449   1.2  matt 			}
    450   1.2  matt 		}
    451   1.2  matt 	}
    452  1.11  matt 	__asm volatile("isync\n\tsync");
    453   1.2  matt 	wrtee(msr);
    454   1.2  matt }
    455   1.2  matt 
    456   1.2  matt static u_int
    457   1.4  matt e500_tlb_record_asids(u_long *bitmap)
    458   1.2  matt {
    459   1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    460   1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    461   1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    462   1.2  matt 	const size_t nbits = 8 * sizeof(bitmap[0]);
    463   1.2  matt 	u_int found = 0;
    464   1.2  matt 
    465   1.2  matt 	const register_t msr = wrtee(0);
    466   1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    467   1.2  matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    468   1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    469   1.2  matt 			mtspr(SPR_MAS2, epn);
    470   1.2  matt 			__asm volatile("tlbre");
    471   1.2  matt 			const uint32_t mas1 = mfspr(SPR_MAS1);
    472   1.2  matt 			/*
    473   1.2  matt 			 * If this is a valid entry for AS space 1 and
    474   1.2  matt 			 * its asid matches the constraints of the caller,
    475   1.2  matt 			 * clear its valid bit.
    476   1.2  matt 			 */
    477   1.2  matt 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
    478   1.2  matt 				const uint32_t asid = MASX_TID_GET(mas1);
    479   1.2  matt 				const u_int i = asid / nbits;
    480   1.2  matt 				const u_long mask = 1UL << (asid & (nbits - 1));
    481   1.2  matt 				if ((bitmap[i] & mask) == 0) {
    482   1.2  matt 					bitmap[i] |= mask;
    483   1.2  matt 					found++;
    484   1.2  matt 				}
    485   1.2  matt 			}
    486   1.2  matt 		}
    487   1.2  matt 	}
    488   1.2  matt 	wrtee(msr);
    489   1.2  matt 
    490   1.2  matt 	return found;
    491   1.2  matt }
    492   1.2  matt 
    493   1.2  matt static void
    494   1.4  matt e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
    495   1.2  matt {
    496   1.2  matt 	KASSERT((va & PAGE_MASK) == 0);
    497   1.2  matt 	/*
    498   1.2  matt 	 * Bits 60 & 61 have meaning
    499   1.2  matt 	 */
    500  1.11  matt 	if (asid == KERNEL_PID) {
    501  1.11  matt 		/*
    502  1.11  matt 		 * For data accesses, the context-synchronizing instruction
    503  1.11  matt 		 * before tlbwe or tlbivax ensures that all memory accesses
    504  1.11  matt 		 * due to preceding instructions have completed to a point
    505  1.11  matt 		 * at which they have reported all exceptions they will cause.
    506  1.11  matt 		 */
    507  1.11  matt 		__asm volatile("isync");
    508  1.11  matt 	}
    509   1.2  matt 	__asm volatile("tlbivax\t0, %0" :: "b"(va));
    510   1.2  matt 	__asm volatile("tlbsync");
    511  1.11  matt 	__asm volatile("tlbsync");	/* Why? */
    512  1.11  matt 	if (asid == KERNEL_PID) {
    513  1.11  matt 		/*
    514  1.11  matt 		 * The context-synchronizing instruction after tlbwe or tlbivax
    515  1.11  matt 		 * ensures that subsequent accesses (data and instruction) use
    516  1.11  matt 		 * the updated value in any TLB entries affected.
    517  1.11  matt 		 */
    518  1.11  matt 		__asm volatile("isync\n\tsync");
    519  1.11  matt 	}
    520   1.2  matt }
    521   1.2  matt 
    522   1.2  matt static bool
    523   1.4  matt e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
    524   1.2  matt {
    525   1.2  matt 	struct e500_hwtlb hwtlb = tlb_to_hwtlb(
    526   1.2  matt 	    (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
    527   1.2  matt 		.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
    528   1.2  matt 
    529   1.2  matt 	register_t msr = wrtee(0);
    530   1.2  matt 	mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
    531   1.2  matt 	__asm volatile("tlbsx 0, %0" :: "b"(va));
    532   1.2  matt 	register_t mas1 = mfspr(SPR_MAS1);
    533   1.2  matt 	if ((mas1 & MAS1_V) == 0) {
    534   1.2  matt 		if (!insert) {
    535   1.2  matt 			wrtee(msr);
    536   1.2  matt #if 0
    537   1.2  matt 			printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
    538   1.2  matt 			    __func__, va, asid, pte, insert);
    539   1.2  matt #endif
    540   1.2  matt 			return false;
    541   1.2  matt 		}
    542   1.2  matt 		mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    543   1.2  matt 	}
    544   1.2  matt 	mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    545   1.2  matt 	mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    546   1.2  matt 	__asm volatile("tlbwe");
    547  1.11  matt 	if (asid == KERNEL_PID)
    548  1.11  matt 		__asm volatile("isync\n\tsync");
    549   1.2  matt 	wrtee(msr);
    550   1.2  matt #if 0
    551   1.2  matt 	if (asid)
    552   1.2  matt 	printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
    553   1.2  matt 	    __func__, va, asid, pte, insert,
    554   1.2  matt 	    hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    555   1.2  matt #endif
    556   1.2  matt 	return (mas1 & MAS1_V) != 0;
    557   1.2  matt }
    558   1.2  matt 
    559   1.2  matt static void
    560   1.4  matt e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
    561   1.4  matt {
    562   1.4  matt }
    563   1.4  matt 
    564   1.4  matt static void
    565   1.2  matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
    566   1.2  matt {
    567   1.2  matt }
    568   1.2  matt 
    569   1.2  matt static void
    570   1.2  matt e500_tlb_dump(void (*pr)(const char *, ...))
    571   1.2  matt {
    572   1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    573   1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    574   1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    575   1.2  matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    576   1.2  matt 	size_t valid = 0;
    577   1.2  matt 
    578   1.2  matt 	if (pr == NULL)
    579   1.2  matt 		pr = printf;
    580   1.2  matt 
    581   1.2  matt 	const register_t msr = wrtee(0);
    582   1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    583   1.2  matt 		struct e500_hwtlb hwtlb;
    584   1.2  matt 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    585   1.2  matt 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    586   1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    587   1.2  matt 			mtspr(SPR_MAS2, epn);
    588   1.2  matt 			__asm volatile("tlbre");
    589   1.2  matt 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    590   1.2  matt 			/*
    591   1.2  matt 			 * If this is a valid entry for AS space 1 and
    592   1.2  matt 			 * its asid matches the constraints of the caller,
    593   1.2  matt 			 * clear its valid bit.
    594   1.2  matt 			 */
    595   1.2  matt 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    596   1.2  matt 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    597   1.2  matt 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    598   1.2  matt 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    599   1.2  matt 				(*pr)("[%zu,%zu]->[%x,%x,%x]",
    600   1.2  matt 				    assoc, atop(epn),
    601   1.2  matt 				    hwtlb.hwtlb_mas1,
    602   1.2  matt 				    hwtlb.hwtlb_mas2,
    603   1.2  matt 				    hwtlb.hwtlb_mas3);
    604   1.2  matt 				(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
    605   1.2  matt 				    tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
    606   1.2  matt 				(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
    607   1.2  matt 				    tlb.tlb_pte & PTE_RPN_MASK,
    608   1.2  matt 				    tlb.tlb_pte & PTE_xR ? "R" : "",
    609   1.2  matt 				    tlb.tlb_pte & PTE_xW ? "W" : "",
    610   1.2  matt 				    tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
    611   1.2  matt 				    tlb.tlb_pte & PTE_xX ? "X" : "",
    612   1.2  matt 				    tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
    613   1.2  matt 				    tlb.tlb_pte & PTE_W ? "W" : "",
    614   1.2  matt 				    tlb.tlb_pte & PTE_I ? "I" : "",
    615   1.2  matt 				    tlb.tlb_pte & PTE_M ? "M" : "",
    616   1.2  matt 				    tlb.tlb_pte & PTE_G ? "G" : "",
    617   1.2  matt 				    tlb.tlb_pte & PTE_E ? "E" : "");
    618   1.2  matt 				valid++;
    619   1.2  matt 			}
    620   1.2  matt 		}
    621   1.2  matt 	}
    622   1.2  matt 	mtspr(SPR_MAS0, saved_mas0);
    623   1.2  matt 	wrtee(msr);
    624   1.2  matt 	(*pr)("%s: %zu valid entries\n", __func__, valid);
    625   1.2  matt }
    626   1.2  matt 
    627   1.2  matt static void
    628   1.2  matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
    629   1.2  matt {
    630   1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    631   1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    632   1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    633   1.2  matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    634   1.2  matt 
    635   1.2  matt 	const register_t msr = wrtee(0);
    636   1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    637   1.2  matt 		struct e500_hwtlb hwtlb;
    638   1.2  matt 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    639   1.2  matt 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    640   1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    641   1.2  matt 			mtspr(SPR_MAS2, epn);
    642   1.2  matt 			__asm volatile("tlbre");
    643   1.2  matt 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    644   1.2  matt 			/*
    645   1.2  matt 			 * If this is a valid entry for AS space 1 and
    646   1.2  matt 			 * its asid matches the constraints of the caller,
    647   1.2  matt 			 * clear its valid bit.
    648   1.2  matt 			 */
    649   1.2  matt 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    650   1.2  matt 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    651   1.2  matt 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    652   1.2  matt 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    653   1.2  matt 				if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
    654   1.2  matt 				    tlb.tlb_pte))
    655   1.2  matt 					break;
    656   1.2  matt 			}
    657   1.2  matt 		}
    658   1.2  matt 	}
    659   1.2  matt 	mtspr(SPR_MAS0, saved_mas0);
    660   1.2  matt 	wrtee(msr);
    661   1.2  matt }
    662   1.2  matt 
    663   1.2  matt static struct e500_xtlb *
    664   1.9  matt e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
    665   1.9  matt {
    666   1.9  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    667   1.9  matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    668   1.9  matt 
    669   1.9  matt 	/*
    670   1.9  matt 	 * See if we have a TLB entry for the pa.
    671   1.9  matt 	 */
    672   1.9  matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    673   1.9  matt 		psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    674   1.9  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    675   1.9  matt 		    && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
    676   1.9  matt 			if (slotp != NULL)
    677   1.9  matt 				*slotp = i;
    678   1.9  matt 			return xtlb;
    679   1.9  matt 		}
    680   1.9  matt 	}
    681   1.9  matt 
    682   1.9  matt 	return NULL;
    683   1.9  matt }
    684   1.9  matt 
    685   1.9  matt static struct e500_xtlb *
    686   1.2  matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
    687   1.2  matt {
    688   1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    689   1.2  matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    690   1.2  matt 
    691   1.2  matt 	/*
    692   1.9  matt 	 * See if we have a TLB entry for the va.
    693   1.2  matt 	 */
    694   1.2  matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    695   1.9  matt 		vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    696   1.2  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    697   1.9  matt 		    && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
    698   1.2  matt 			if (slotp != NULL)
    699   1.2  matt 				*slotp = i;
    700   1.2  matt 			return xtlb;
    701   1.2  matt 		}
    702   1.2  matt 	}
    703   1.2  matt 
    704   1.2  matt 	return NULL;
    705   1.2  matt }
    706   1.2  matt 
    707   1.2  matt static struct e500_xtlb *
    708   1.2  matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
    709   1.2  matt {
    710   1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    711   1.2  matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    712   1.2  matt 
    713   1.2  matt 	/*
    714   1.2  matt 	 * See if we have a TLB entry for the pa.
    715   1.2  matt 	 */
    716   1.2  matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    717   1.9  matt 		vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    718   1.2  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    719   1.9  matt 		    && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
    720   1.9  matt 		    && (((va + len - 1) ^ va) & mask) == 0) {
    721   1.2  matt 			return xtlb;
    722   1.2  matt 		}
    723   1.2  matt 	}
    724   1.2  matt 
    725   1.2  matt 	return NULL;
    726   1.2  matt }
    727   1.2  matt 
    728   1.2  matt static void *
    729   1.7  matt e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
    730   1.2  matt {
    731   1.9  matt 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
    732   1.2  matt 
    733   1.2  matt 	/*
    734   1.2  matt 	 * See if we have a TLB entry for the pa.  If completely falls within
    735   1.6  matt 	 * mark the reference and return the pa.  But only if the tlb entry
    736   1.6  matt 	 * is not cacheable.
    737   1.2  matt 	 */
    738   1.6  matt 	if (xtlb
    739   1.7  matt 	    && (prefetchable
    740   1.7  matt 		|| (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
    741   1.2  matt 		xtlb->e_refcnt++;
    742  1.10  matt 		return (void *) (xtlb->e_tlb.tlb_va
    743  1.10  matt 		    + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
    744   1.2  matt 	}
    745   1.2  matt 	return NULL;
    746   1.2  matt }
    747   1.2  matt 
    748   1.2  matt static void
    749   1.2  matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
    750   1.2  matt {
    751   1.2  matt 	if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
    752   1.2  matt 		struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
    753   1.2  matt 		if (xtlb)
    754   1.2  matt 			xtlb->e_refcnt--;
    755   1.2  matt 	}
    756   1.2  matt }
    757   1.2  matt 
    758   1.2  matt static int
    759   1.4  matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
    760   1.2  matt {
    761   1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    762   1.2  matt 	struct e500_xtlb *xtlb;
    763   1.2  matt 
    764   1.2  matt 	KASSERT(len & 0x55555000);
    765   1.2  matt 	KASSERT((len & ~0x55555000) == 0);
    766   1.2  matt 	KASSERT(len >= PAGE_SIZE);
    767   1.2  matt 	KASSERT((len & (len - 1)) == 0);
    768   1.2  matt 	KASSERT((va & (len - 1)) == 0);
    769   1.9  matt 	KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
    770   1.2  matt 
    771   1.2  matt 	if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
    772   1.9  matt 		psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    773   1.9  matt 		KASSERT(len <= xtlb->e_tlb.tlb_size);
    774   1.9  matt 		KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
    775   1.2  matt 		xtlb->e_refcnt++;
    776   1.2  matt 		return 0;
    777   1.2  matt 	}
    778   1.2  matt 
    779   1.2  matt 	const int slot = e500_alloc_tlb1_entry();
    780   1.2  matt 	if (slot < 0)
    781   1.2  matt 		return ENOMEM;
    782   1.2  matt 
    783   1.2  matt 	xtlb = &tlb1->tlb1_entries[slot];
    784   1.2  matt 	xtlb->e_tlb.tlb_va = va;
    785   1.2  matt 	xtlb->e_tlb.tlb_size = len;
    786   1.2  matt 	xtlb->e_tlb.tlb_pte = pte;
    787   1.2  matt 	xtlb->e_tlb.tlb_asid = KERNEL_PID;
    788   1.2  matt 
    789   1.2  matt 	xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
    790   1.9  matt 	xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
    791   1.2  matt 	hwtlb_write(xtlb->e_hwtlb, true);
    792   1.2  matt 	return 0;
    793   1.2  matt }
    794   1.2  matt 
    795   1.2  matt static int
    796   1.2  matt e500_tlb_iorelease(vaddr_t va)
    797   1.2  matt {
    798   1.2  matt 	u_int slot;
    799   1.2  matt 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
    800   1.2  matt 
    801   1.2  matt 	if (xtlb == NULL)
    802   1.2  matt 		return ENOENT;
    803   1.2  matt 
    804   1.2  matt 	if (xtlb->e_refcnt)
    805   1.2  matt 		return EBUSY;
    806   1.2  matt 
    807   1.2  matt 	e500_free_tlb1_entry(xtlb, slot, true);
    808   1.2  matt 
    809   1.2  matt 	return 0;
    810   1.2  matt }
    811   1.2  matt 
    812   1.2  matt static u_int
    813   1.2  matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
    814   1.2  matt {
    815   1.2  matt 	u_int slotmask = 0;
    816   1.2  matt 	u_int slots = 0, nextslot = 0;
    817   1.2  matt 	KASSERT(tlb1->tlb1_numfree > 1);
    818   1.2  matt 	KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
    819   1.2  matt 	for (paddr_t lastaddr = memstart; 0 < memsize; ) {
    820   1.2  matt 		u_int cnt = __builtin_clz(memsize);
    821   1.2  matt 		psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
    822   1.2  matt 		slots += memsize / size;
    823   1.2  matt 		if (slots > 4)
    824   1.2  matt 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    825   1.2  matt 			    __func__, __LINE__, memsize, "too fragmented");
    826   1.2  matt 		if (slots > tlb1->tlb1_numfree - 1)
    827   1.2  matt 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    828   1.2  matt 			    __func__, __LINE__, memsize,
    829   1.2  matt 			    "insufficent TLB entries");
    830   1.2  matt 		for (; nextslot < slots; nextslot++) {
    831   1.2  matt 			const u_int freeslot = e500_alloc_tlb1_entry();
    832   1.2  matt 			struct e500_xtlb * const xtlb =
    833   1.2  matt 			    &tlb1->tlb1_entries[freeslot];
    834   1.2  matt 			xtlb->e_tlb.tlb_asid = KERNEL_PID;
    835   1.2  matt 			xtlb->e_tlb.tlb_size = size;
    836   1.2  matt 			xtlb->e_tlb.tlb_va = lastaddr;
    837   1.2  matt 			xtlb->e_tlb.tlb_pte = lastaddr
    838   1.2  matt 			    | PTE_M | PTE_xX | PTE_xW | PTE_xR;
    839   1.2  matt 			lastaddr += size;
    840   1.2  matt 			memsize -= size;
    841   1.2  matt 			slotmask |= 1 << (31 - freeslot); /* clz friendly */
    842   1.2  matt 		}
    843   1.2  matt 	}
    844   1.2  matt 
    845   1.2  matt 	return nextslot;
    846   1.2  matt }
    847   1.2  matt static const struct tlb_md_ops e500_tlb_ops = {
    848   1.4  matt 	.md_tlb_get_asid = e500_tlb_get_asid,
    849   1.2  matt 	.md_tlb_set_asid = e500_tlb_set_asid,
    850   1.2  matt 	.md_tlb_invalidate_all = e500_tlb_invalidate_all,
    851   1.2  matt 	.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
    852   1.2  matt 	.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
    853   1.2  matt 	.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
    854   1.2  matt 	.md_tlb_update_addr = e500_tlb_update_addr,
    855   1.2  matt 	.md_tlb_record_asids = e500_tlb_record_asids,
    856   1.4  matt 	.md_tlb_write_entry = e500_tlb_write_entry,
    857   1.2  matt 	.md_tlb_read_entry = e500_tlb_read_entry,
    858   1.4  matt 	.md_tlb_dump = e500_tlb_dump,
    859   1.4  matt 	.md_tlb_walk = e500_tlb_walk,
    860   1.4  matt };
    861   1.4  matt 
    862   1.4  matt static const struct tlb_md_io_ops e500_tlb_io_ops = {
    863   1.2  matt 	.md_tlb_mapiodev = e500_tlb_mapiodev,
    864   1.2  matt 	.md_tlb_unmapiodev = e500_tlb_unmapiodev,
    865   1.2  matt 	.md_tlb_ioreserve = e500_tlb_ioreserve,
    866   1.2  matt 	.md_tlb_iorelease = e500_tlb_iorelease,
    867   1.2  matt };
    868   1.2  matt 
    869   1.2  matt void
    870   1.2  matt e500_tlb_init(vaddr_t endkernel, psize_t memsize)
    871   1.2  matt {
    872   1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    873   1.2  matt 
    874   1.2  matt #if 0
    875   1.2  matt 	register_t mmucfg = mfspr(SPR_MMUCFG);
    876   1.2  matt 	register_t mas4 = mfspr(SPR_MAS4);
    877   1.2  matt #endif
    878   1.2  matt 
    879   1.2  matt 	const uint32_t tlb1cfg = mftlb1cfg();
    880   1.2  matt 	tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
    881   1.2  matt 	KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
    882   1.2  matt 	/*
    883   1.2  matt 	 * Limit maxsize to 1G since 4G isn't really useful to us.
    884   1.2  matt 	 */
    885   1.2  matt 	tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
    886   1.2  matt 	tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
    887   1.2  matt 
    888   1.2  matt #ifdef VERBOSE_INITPPC
    889   1.2  matt 	printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
    890   1.2  matt 	    tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
    891   1.2  matt 	    tlb1->tlb1_maxsize >> 10);
    892   1.2  matt #endif
    893   1.2  matt 
    894   1.2  matt 	/*
    895   1.2  matt 	 * Let's see what's in TLB1 and we need to invalidate any entry that
    896   1.2  matt 	 * would fit within the kernel's mapped address space.
    897   1.2  matt 	 */
    898   1.2  matt 	psize_t memmapped = 0;
    899   1.2  matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    900   1.2  matt 		struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    901   1.2  matt 
    902   1.2  matt 		xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
    903   1.2  matt 
    904   1.2  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
    905   1.2  matt 			tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
    906   1.2  matt #ifdef VERBOSE_INITPPC
    907   1.2  matt 			printf(" TLB1[%u]=<unused>", i);
    908   1.2  matt #endif
    909   1.2  matt 			continue;
    910   1.2  matt 		}
    911   1.2  matt 
    912   1.2  matt 		xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
    913   1.2  matt #ifdef VERBOSE_INITPPC
    914   1.2  matt 		printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
    915   1.2  matt 		    i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
    916   1.2  matt 		    xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
    917   1.2  matt #endif
    918   1.2  matt 		if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
    919   1.2  matt 		    && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
    920   1.2  matt 		    || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
    921   1.2  matt 		        && VM_MIN_KERNEL_ADDRESS <
    922   1.2  matt 			   xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
    923   1.2  matt #ifdef VERBOSE_INITPPC
    924   1.2  matt 			printf("free");
    925   1.2  matt #endif
    926   1.2  matt 			e500_free_tlb1_entry(xtlb, i, false);
    927   1.2  matt #ifdef VERBOSE_INITPPC
    928   1.2  matt 			printf("d");
    929   1.2  matt #endif
    930   1.2  matt 			continue;
    931   1.2  matt 		}
    932   1.2  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
    933   1.2  matt 			xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
    934   1.2  matt 			hwtlb_write(xtlb->e_hwtlb, false);
    935   1.2  matt #ifdef VERBOSE_INITPPC
    936   1.2  matt 			printf("+iprot");
    937   1.2  matt #endif
    938   1.2  matt 		}
    939   1.2  matt 		if (xtlb->e_tlb.tlb_pte & PTE_I)
    940   1.2  matt 			continue;
    941   1.2  matt 
    942   1.2  matt 		if (xtlb->e_tlb.tlb_va == 0
    943   1.2  matt 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
    944   1.2  matt 			memmapped += xtlb->e_tlb.tlb_size;
    945   1.2  matt 		}
    946   1.2  matt 	}
    947   1.2  matt 
    948   1.2  matt 	cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
    949   1.4  matt 	cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
    950   1.2  matt 
    951   1.2  matt 	if (__predict_false(memmapped < memsize)) {
    952   1.2  matt 		/*
    953   1.2  matt 		 * Let's see how many TLB entries are needed to map memory.
    954   1.2  matt 		 */
    955   1.2  matt 		u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
    956   1.2  matt 
    957   1.2  matt 		/*
    958   1.2  matt 		 * To map main memory into the TLB, we need to flush any
    959   1.2  matt 		 * existing entries from the TLB that overlap the virtual
    960   1.2  matt 		 * address space needed to map physical memory.  That may
    961   1.2  matt 		 * include the entries for the pages currently used by the
    962   1.2  matt 		 * stack or that we are executing.  So to avoid problems, we
    963   1.2  matt 		 * are going to temporarily map the kernel and stack into AS 1,
    964   1.2  matt 		 * switch to it, and clear out the TLB entries from AS 0,
    965   1.2  matt 		 * install the new TLB entries to map memory, and then switch
    966   1.2  matt 		 * back to AS 0 and free the temp entry used for AS1.
    967   1.2  matt 		 */
    968   1.2  matt 		u_int b = __builtin_clz(endkernel);
    969   1.2  matt 
    970   1.2  matt 		/*
    971   1.2  matt 		 * If the kernel doesn't end on a clean power of 2, we need
    972   1.2  matt 		 * to round the size up (by decrementing the number of leading
    973   1.2  matt 		 * zero bits).  If the size isn't a power of 4KB, decrement
    974   1.2  matt 		 * again to make it one.
    975   1.2  matt 		 */
    976   1.2  matt 		if (endkernel & (endkernel - 1))
    977   1.2  matt 			b--;
    978   1.2  matt 		if ((b & 1) == 0)
    979   1.2  matt 			b--;
    980   1.2  matt 
    981   1.2  matt 		/*
    982   1.2  matt 		 * Create a TLB1 mapping for the kernel in AS1.
    983   1.2  matt 		 */
    984   1.2  matt 		const u_int kslot = e500_alloc_tlb1_entry();
    985   1.2  matt 		struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
    986   1.2  matt 		kxtlb->e_tlb.tlb_va = 0;
    987   1.2  matt 		kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
    988   1.2  matt 		kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
    989   1.2  matt 		kxtlb->e_tlb.tlb_asid = KERNEL_PID;
    990   1.2  matt 
    991   1.2  matt 		kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
    992   1.9  matt 		kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
    993   1.2  matt 		kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
    994   1.2  matt 		hwtlb_write(kxtlb->e_hwtlb, true);
    995   1.2  matt 
    996   1.2  matt 		/*
    997   1.2  matt 		 * Now that we have a TLB mapping in AS1 for the kernel and its
    998   1.2  matt 		 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
    999   1.2  matt 		 */
   1000   1.2  matt 		const register_t saved_msr = mfmsr();
   1001   1.2  matt 		mtmsr(saved_msr | PSL_DS | PSL_IS);
   1002   1.2  matt 		__asm volatile("isync");
   1003   1.2  matt 
   1004   1.2  matt 		/*
   1005   1.2  matt 		 *** Invalidate all the TLB0 entries.
   1006   1.2  matt 		 */
   1007   1.2  matt 		e500_tlb_invalidate_all();
   1008   1.2  matt 
   1009   1.2  matt 		/*
   1010   1.2  matt 		 *** Now let's see if we have any entries in TLB1 that would
   1011   1.2  matt 		 *** overlap the ones we are about to install.  If so, nuke 'em.
   1012   1.2  matt 		 */
   1013   1.2  matt 		for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
   1014   1.2  matt 			struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
   1015   1.2  matt 			struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
   1016   1.2  matt 			if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
   1017   1.2  matt 			    && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
   1018   1.2  matt 				e500_free_tlb1_entry(xtlb, i, false);
   1019   1.2  matt 			}
   1020   1.2  matt 		}
   1021   1.2  matt 
   1022   1.2  matt 		/*
   1023   1.2  matt 		 *** Now we can add the TLB entries that will map physical
   1024   1.2  matt 		 *** memory.  If bit 0 [MSB] in slotmask is set, then tlb
   1025   1.2  matt 		 *** entry 0 contains a mapping for physical memory...
   1026   1.2  matt 		 */
   1027   1.2  matt 		struct e500_xtlb *entries = tlb1->tlb1_entries;
   1028   1.2  matt 		while (slotmask != 0) {
   1029   1.2  matt 			const u_int slot = __builtin_clz(slotmask);
   1030   1.2  matt 			hwtlb_write(entries[slot].e_hwtlb, false);
   1031   1.2  matt 			entries += slot + 1;
   1032   1.2  matt 			slotmask <<= slot + 1;
   1033   1.2  matt 		}
   1034   1.2  matt 
   1035   1.2  matt 		/*
   1036   1.2  matt 		 *** Synchronize the TLB and the instruction stream.
   1037   1.2  matt 		 */
   1038   1.2  matt 		__asm volatile("tlbsync");
   1039   1.2  matt 		__asm volatile("isync");
   1040   1.2  matt 
   1041   1.2  matt 		/*
   1042   1.2  matt 		 *** Switch back to AS 0.
   1043   1.2  matt 		 */
   1044   1.2  matt 		mtmsr(saved_msr);
   1045   1.2  matt 		__asm volatile("isync");
   1046   1.2  matt 
   1047   1.2  matt 		/*
   1048   1.2  matt 		 * Free the temporary TLB1 entry.
   1049   1.2  matt 		 */
   1050   1.2  matt 		e500_free_tlb1_entry(kxtlb, kslot, true);
   1051   1.2  matt 	}
   1052   1.2  matt 
   1053   1.2  matt 	/*
   1054   1.2  matt 	 * Finally set the MAS4 defaults.
   1055   1.2  matt 	 */
   1056   1.2  matt 	mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
   1057   1.2  matt 
   1058   1.2  matt 	/*
   1059   1.2  matt 	 * Invalidate all the TLB0 entries.
   1060   1.2  matt 	 */
   1061   1.2  matt 	e500_tlb_invalidate_all();
   1062   1.2  matt }
   1063   1.8  matt 
   1064   1.8  matt void
   1065   1.8  matt e500_tlb_minimize(vaddr_t endkernel)
   1066   1.8  matt {
   1067   1.8  matt #ifdef PMAP_MINIMALTLB
   1068   1.8  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
   1069   1.8  matt 	extern uint32_t _fdata[];
   1070   1.8  matt 
   1071   1.8  matt 	u_int slot;
   1072   1.8  matt 
   1073   1.8  matt 	paddr_t boot_page = cpu_read_4(GUR_BPTR);
   1074   1.8  matt 	if (boot_page & BPTR_EN) {
   1075   1.8  matt 		/*
   1076   1.8  matt 		 * shift it to an address
   1077   1.8  matt 		 */
   1078   1.8  matt 		boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
   1079   1.8  matt 		pmap_kvptefill(boot_page, boot_page + NBPG,
   1080   1.8  matt 		    PTE_M | PTE_xR | PTE_xW | PTE_xX);
   1081   1.8  matt 	}
   1082   1.8  matt 
   1083   1.8  matt 
   1084   1.8  matt 	KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
   1085   1.8  matt 	KASSERT((uintptr_t)_fdata == 0x400000);
   1086   1.8  matt 
   1087   1.8  matt 	struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
   1088   1.8  matt 
   1089   1.8  matt 	KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
   1090   1.8  matt 	const u_int tmp_slot = e500_alloc_tlb1_entry();
   1091   1.8  matt 	KASSERT(tmp_slot != (u_int) -1);
   1092   1.8  matt 
   1093   1.8  matt 	struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
   1094   1.8  matt 	tmp_xtlb->e_tlb = xtlb->e_tlb;
   1095   1.8  matt 	tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
   1096   1.8  matt 	tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
   1097   1.8  matt 	KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1098   1.8  matt 	tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
   1099   1.8  matt 	hwtlb_write(tmp_xtlb->e_hwtlb, true);
   1100   1.8  matt 
   1101   1.8  matt 	const u_int text_slot = e500_alloc_tlb1_entry();
   1102   1.8  matt 	KASSERT(text_slot != (u_int)-1);
   1103   1.8  matt 	struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
   1104   1.8  matt 	text_xtlb->e_tlb.tlb_va = 0;
   1105   1.8  matt 	text_xtlb->e_tlb.tlb_size = 0x400000;
   1106   1.8  matt 	text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
   1107   1.8  matt 	text_xtlb->e_tlb.tlb_asid = 0;
   1108   1.8  matt 	text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
   1109   1.8  matt 	KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1110   1.8  matt 	text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
   1111   1.8  matt 
   1112   1.8  matt 	const u_int data_slot = e500_alloc_tlb1_entry();
   1113   1.8  matt 	KASSERT(data_slot != (u_int)-1);
   1114   1.8  matt 	struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
   1115   1.8  matt 	data_xtlb->e_tlb.tlb_va = 0x400000;
   1116   1.8  matt 	data_xtlb->e_tlb.tlb_size = 0x400000;
   1117   1.8  matt 	data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
   1118   1.8  matt 	data_xtlb->e_tlb.tlb_asid = 0;
   1119   1.8  matt 	data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
   1120   1.8  matt 	KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1121   1.8  matt 	data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
   1122   1.8  matt 
   1123   1.8  matt 	const register_t msr = mfmsr();
   1124   1.8  matt 	const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
   1125   1.8  matt 
   1126   1.8  matt 	__asm __volatile(
   1127   1.8  matt 		"mtmsr	%[ts_msr]"	"\n\t"
   1128   1.8  matt 		"sync"			"\n\t"
   1129   1.8  matt 		"isync"
   1130   1.8  matt 	    ::	[ts_msr] "r" (ts_msr));
   1131   1.8  matt 
   1132   1.8  matt #if 0
   1133   1.8  matt 	hwtlb_write(text_xtlb->e_hwtlb, false);
   1134   1.8  matt 	hwtlb_write(data_xtlb->e_hwtlb, false);
   1135   1.8  matt 	e500_free_tlb1_entry(xtlb, slot, true);
   1136   1.8  matt #endif
   1137   1.8  matt 
   1138   1.8  matt 	__asm __volatile(
   1139   1.8  matt 		"mtmsr	%[msr]"		"\n\t"
   1140   1.8  matt 		"sync"			"\n\t"
   1141   1.8  matt 		"isync"
   1142   1.8  matt 	    ::	[msr] "r" (msr));
   1143   1.8  matt 
   1144   1.8  matt 	e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
   1145   1.8  matt #endif	/* PMAP_MINIMALTLB */
   1146   1.8  matt }
   1147