Home | History | Annotate | Line # | Download | only in booke
e500_tlb.c revision 1.12.2.1
      1  1.12.2.1  rmind /*	$NetBSD: e500_tlb.c,v 1.12.2.1 2014/05/18 17:45:21 rmind Exp $	*/
      2       1.2   matt /*-
      3       1.2   matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4       1.2   matt  * All rights reserved.
      5       1.2   matt  *
      6       1.2   matt  * This code is derived from software contributed to The NetBSD Foundation
      7       1.2   matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8       1.2   matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9       1.2   matt  *
     10       1.2   matt  * This material is based upon work supported by the Defense Advanced Research
     11       1.2   matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12       1.2   matt  * Contract No. N66001-09-C-2073.
     13       1.2   matt  * Approved for Public Release, Distribution Unlimited
     14       1.2   matt  *
     15       1.2   matt  * Redistribution and use in source and binary forms, with or without
     16       1.2   matt  * modification, are permitted provided that the following conditions
     17       1.2   matt  * are met:
     18       1.2   matt  * 1. Redistributions of source code must retain the above copyright
     19       1.2   matt  *    notice, this list of conditions and the following disclaimer.
     20       1.2   matt  * 2. Redistributions in binary form must reproduce the above copyright
     21       1.2   matt  *    notice, this list of conditions and the following disclaimer in the
     22       1.2   matt  *    documentation and/or other materials provided with the distribution.
     23       1.2   matt  *
     24       1.2   matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25       1.2   matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26       1.2   matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27       1.2   matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28       1.2   matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29       1.2   matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30       1.2   matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31       1.2   matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32       1.2   matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33       1.2   matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34       1.2   matt  * POSSIBILITY OF SUCH DAMAGE.
     35       1.2   matt  */
     36       1.2   matt 
     37       1.8   matt #define	__PMAP_PRIVATE
     38       1.8   matt 
     39       1.2   matt #include <sys/cdefs.h>
     40       1.2   matt 
     41  1.12.2.1  rmind __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.12.2.1 2014/05/18 17:45:21 rmind Exp $");
     42       1.2   matt 
     43       1.2   matt #include <sys/param.h>
     44       1.2   matt 
     45       1.2   matt #include <uvm/uvm_extern.h>
     46       1.2   matt 
     47       1.2   matt #include <powerpc/spr.h>
     48       1.2   matt #include <powerpc/booke/spr.h>
     49       1.2   matt #include <powerpc/booke/cpuvar.h>
     50       1.8   matt #include <powerpc/booke/e500reg.h>
     51       1.2   matt #include <powerpc/booke/e500var.h>
     52       1.2   matt #include <powerpc/booke/pmap.h>
     53       1.2   matt 
     54       1.2   matt struct e500_tlb {
     55       1.2   matt 	vaddr_t tlb_va;
     56       1.2   matt 	uint32_t tlb_pte;
     57       1.2   matt 	uint32_t tlb_asid;
     58       1.2   matt 	vsize_t tlb_size;
     59       1.2   matt };
     60       1.2   matt 
     61       1.2   matt struct e500_hwtlb {
     62       1.2   matt 	uint32_t hwtlb_mas0;
     63       1.2   matt 	uint32_t hwtlb_mas1;
     64       1.2   matt 	uint32_t hwtlb_mas2;
     65       1.2   matt 	uint32_t hwtlb_mas3;
     66       1.2   matt };
     67       1.2   matt 
     68       1.2   matt struct e500_xtlb {
     69       1.2   matt 	struct e500_tlb e_tlb;
     70       1.2   matt 	struct e500_hwtlb e_hwtlb;
     71       1.2   matt 	u_long e_refcnt;
     72       1.2   matt };
     73       1.2   matt 
     74       1.2   matt static struct e500_tlb1 {
     75       1.2   matt 	uint32_t tlb1_maxsize;
     76       1.2   matt 	uint32_t tlb1_minsize;
     77       1.2   matt 	u_int tlb1_numentries;
     78       1.2   matt 	u_int tlb1_numfree;
     79       1.2   matt 	u_int tlb1_freelist[32];
     80       1.2   matt 	struct e500_xtlb tlb1_entries[32];
     81       1.2   matt } e500_tlb1;
     82       1.2   matt 
     83       1.2   matt static inline register_t mftlb0cfg(void) __pure;
     84       1.2   matt static inline register_t mftlb1cfg(void) __pure;
     85       1.2   matt 
     86       1.2   matt static inline register_t
     87       1.2   matt mftlb0cfg(void)
     88       1.2   matt {
     89       1.2   matt 	register_t tlb0cfg;
     90       1.2   matt 	__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
     91       1.2   matt 	return tlb0cfg;
     92       1.2   matt }
     93       1.2   matt 
     94       1.2   matt static inline register_t
     95       1.2   matt mftlb1cfg(void)
     96       1.2   matt {
     97       1.2   matt 	register_t tlb1cfg;
     98       1.2   matt 	__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
     99       1.2   matt 	return tlb1cfg;
    100       1.2   matt }
    101       1.2   matt 
    102       1.2   matt static struct e500_tlb
    103       1.2   matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
    104       1.2   matt {
    105       1.2   matt 	struct e500_tlb tlb;
    106       1.2   matt 	register_t prot_mask;
    107       1.2   matt 	u_int prot_shift;
    108       1.2   matt 
    109       1.2   matt 	tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
    110       1.2   matt 	tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
    111       1.2   matt 	tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
    112       1.2   matt 	tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
    113       1.2   matt 	    | (hwtlb.hwtlb_mas3 & MAS3_RPN);
    114       1.2   matt 	if (hwtlb.hwtlb_mas1 & MAS1_TS) {
    115       1.2   matt 		prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
    116       1.2   matt 		prot_shift = PTE_RWX_SHIFT - 1;
    117       1.2   matt 	} else {
    118       1.2   matt 		prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
    119       1.2   matt 		prot_shift = PTE_RWX_SHIFT;
    120       1.2   matt 	}
    121       1.2   matt 	tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
    122       1.2   matt 	return tlb;
    123       1.2   matt }
    124       1.2   matt 
    125       1.2   matt static inline struct e500_hwtlb
    126       1.2   matt hwtlb_read(uint32_t mas0, u_int slot)
    127       1.2   matt {
    128       1.2   matt 	struct e500_hwtlb hwtlb;
    129       1.2   matt 	register_t tlbcfg;
    130       1.2   matt 
    131       1.2   matt 	if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
    132       1.2   matt 		tlbcfg = mftlb0cfg();
    133       1.2   matt 	} else if (mas0 == MAS0_TLBSEL_TLB1) {
    134       1.2   matt 		tlbcfg = mftlb1cfg();
    135       1.2   matt 	} else {
    136       1.2   matt 		panic("%s:%d: unexpected MAS0 %#" PRIx32,
    137       1.2   matt 		    __func__, __LINE__, mas0);
    138       1.2   matt 	}
    139       1.2   matt 
    140       1.2   matt 	/*
    141       1.2   matt 	 * ESEL is the way we want to look up.
    142       1.2   matt 	 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
    143       1.2   matt 	 * fully associative, the entire slot is placed into ESEL.  If tlbassoc
    144  1.12.2.1  rmind 	 * is less than the number of tlb entries, the slot is split in two
    145       1.2   matt 	 * fields.  Since the TLB is M rows by N ways, the lowers bits are for
    146       1.2   matt 	 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
    147       1.2   matt 	 */
    148       1.2   matt 	const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
    149       1.2   matt 	const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
    150       1.2   matt 	const u_int esel_shift =
    151       1.2   matt 	    __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
    152       1.2   matt 
    153       1.2   matt 	/*
    154       1.2   matt 	 * Disable interrupts since we don't want anyone else mucking with
    155       1.2   matt 	 * the MMU Assist registers
    156       1.2   matt 	 */
    157       1.2   matt 	const register_t msr = wrtee(0);
    158       1.2   matt 	const register_t saved_mas0 = mfspr(SPR_MAS0);
    159       1.2   matt 	mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
    160       1.2   matt 
    161       1.2   matt 	if (__predict_true(tlbassoc > tlbentries))
    162       1.2   matt 		mtspr(SPR_MAS2, slot << PAGE_SHIFT);
    163       1.2   matt 
    164       1.2   matt 	/*
    165       1.2   matt 	 * Now select the entry and grab its contents.
    166       1.2   matt 	 */
    167       1.2   matt 	__asm volatile("tlbre");
    168       1.2   matt 
    169       1.2   matt 	hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
    170       1.2   matt 	hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    171       1.2   matt 	hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    172       1.2   matt 	hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    173       1.2   matt 
    174       1.2   matt 	mtspr(SPR_MAS0, saved_mas0);
    175       1.2   matt 	wrtee(msr);	/* restore interrupts */
    176       1.2   matt 
    177       1.2   matt 	return hwtlb;
    178       1.2   matt }
    179       1.2   matt 
    180       1.2   matt static inline void
    181       1.2   matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
    182       1.2   matt {
    183       1.2   matt 	const register_t msr = wrtee(0);
    184       1.2   matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    185       1.2   matt 
    186       1.2   matt 	/*
    187       1.2   matt 	 * Need to always write MAS0 and MAS1
    188       1.2   matt 	 */
    189       1.2   matt 	mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    190       1.2   matt 	mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    191       1.2   matt 
    192       1.2   matt 	/*
    193       1.2   matt 	 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
    194       1.2   matt 	 */
    195       1.2   matt 	if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
    196       1.2   matt 	    || (hwtlb.hwtlb_mas1 & MAS1_V)) {
    197       1.2   matt 		mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    198       1.2   matt 	}
    199       1.2   matt 	/*
    200       1.2   matt 	 * Only need to write the RPN/prot if we are dealing with a valid
    201       1.2   matt 	 * mapping.
    202       1.2   matt 	 */
    203       1.2   matt 	if (hwtlb.hwtlb_mas1 & MAS1_V) {
    204       1.2   matt 		mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    205      1.12   matt 		//mtspr(SPR_MAS7, 0);
    206       1.2   matt 	}
    207       1.2   matt 
    208       1.2   matt #if 0
    209       1.2   matt 	printf("%s->[%x,%x,%x,%x]\n",
    210       1.2   matt 	    __func__,
    211       1.2   matt 	    hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
    212       1.2   matt 	    hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    213       1.2   matt #endif
    214       1.2   matt 	__asm volatile("tlbwe");
    215       1.2   matt 	if (needs_sync) {
    216      1.11   matt 		__asm volatile("tlbsync\n\tisync\n\tsync");
    217       1.2   matt 	}
    218       1.2   matt 
    219       1.2   matt 	mtspr(SPR_MAS0, saved_mas0);
    220       1.2   matt 	wrtee(msr);
    221       1.2   matt }
    222       1.2   matt 
    223       1.2   matt static struct e500_hwtlb
    224       1.2   matt tlb_to_hwtlb(const struct e500_tlb tlb)
    225       1.2   matt {
    226       1.2   matt 	struct e500_hwtlb hwtlb;
    227       1.2   matt 
    228       1.2   matt 	KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
    229       1.2   matt 	KASSERT(tlb.tlb_size != 0);
    230       1.2   matt 	KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
    231       1.2   matt 	const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
    232       1.2   matt 	if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
    233       1.2   matt 		hwtlb.hwtlb_mas0 = 0;
    234       1.2   matt 		hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
    235       1.2   matt 		/*
    236       1.2   matt 		 * A non-zero ASID means this is a user page so mark it as
    237       1.2   matt 		 * being in the user's address space.
    238       1.2   matt 		 */
    239       1.2   matt 		if (tlb.tlb_asid) {
    240       1.2   matt 			hwtlb.hwtlb_mas1 |= MAS1_TS
    241       1.2   matt 			    | MASX_TID_MAKE(tlb.tlb_asid);
    242       1.2   matt 			hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
    243       1.2   matt 			    | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
    244       1.2   matt 			KASSERT(prot_mask & PTE_xR);
    245       1.2   matt 			KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
    246       1.2   matt 			CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
    247       1.2   matt 			CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
    248       1.2   matt 		} else {
    249       1.2   matt 			hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    250       1.2   matt 		}
    251       1.2   matt 		if (tlb.tlb_pte & PTE_UNMODIFIED)
    252       1.2   matt 			hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
    253       1.2   matt 		if (tlb.tlb_pte & PTE_UNSYNCED)
    254       1.2   matt 			hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
    255       1.2   matt 	} else {
    256       1.2   matt 		KASSERT(tlb.tlb_asid == 0);
    257       1.2   matt 		KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
    258       1.2   matt 		u_int cntlz = __builtin_clz(tlb.tlb_size);
    259       1.2   matt 		KASSERT(cntlz & 1);
    260       1.2   matt 		KASSERT(cntlz <= 19);
    261       1.2   matt 		hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
    262       1.2   matt 		/*
    263       1.8   matt 		 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
    264       1.2   matt 		 * allowed.  So 1K would be 0x00000400 giving 21 leading zero
    265       1.2   matt 		 * bits.  Subtracting the leading number of zero bits from 21
    266       1.2   matt 		 * and dividing by 2 gives us the number that the MMU wants.
    267       1.2   matt 		 */
    268       1.2   matt 		hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
    269       1.2   matt 		    | MAS1_IPROT | MAS1_V;
    270       1.2   matt 		hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    271       1.2   matt 	}
    272       1.2   matt 	/* We are done with MAS1, on to MAS2 ... */
    273       1.2   matt 	hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
    274       1.2   matt 	hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
    275       1.2   matt 
    276       1.2   matt 	return hwtlb;
    277       1.2   matt }
    278       1.2   matt 
    279       1.3   matt void *
    280       1.3   matt e500_tlb1_fetch(size_t slot)
    281       1.3   matt {
    282       1.3   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    283       1.3   matt 
    284       1.3   matt 	return &tlb1->tlb1_entries[slot].e_hwtlb;
    285       1.3   matt }
    286       1.3   matt 
    287       1.3   matt void
    288       1.3   matt e500_tlb1_sync(void)
    289       1.3   matt {
    290       1.3   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    291       1.3   matt 	for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
    292       1.3   matt 		const struct e500_hwtlb * const new_hwtlb =
    293       1.3   matt 		    &tlb1->tlb1_entries[slot].e_hwtlb;
    294       1.3   matt 		const struct e500_hwtlb old_hwtlb =
    295       1.3   matt 		    hwtlb_read(MAS0_TLBSEL_TLB1, slot);
    296       1.3   matt #define CHANGED(n,o,f)	((n)->f != (o).f)
    297       1.3   matt 		bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
    298       1.3   matt 		bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
    299       1.3   matt 		bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
    300       1.3   matt #undef CHANGED
    301       1.3   matt 		bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
    302       1.3   matt 		bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
    303       1.3   matt 		if ((new_valid_p || old_valid_p)
    304       1.3   matt 		    && (mas1_changed_p
    305       1.3   matt 			|| (new_valid_p
    306       1.3   matt 			    && (mas2_changed_p || mas3_changed_p))))
    307       1.3   matt 			hwtlb_write(*new_hwtlb, true);
    308       1.3   matt 	}
    309       1.3   matt }
    310       1.3   matt 
    311       1.2   matt static int
    312       1.2   matt e500_alloc_tlb1_entry(void)
    313       1.2   matt {
    314       1.2   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    315       1.2   matt 
    316       1.2   matt 	if (tlb1->tlb1_numfree == 0)
    317       1.2   matt 		return -1;
    318       1.2   matt 	const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
    319       1.2   matt 	KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
    320       1.2   matt 	tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
    321       1.9   matt 	    MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
    322       1.8   matt 	return (int)slot;
    323       1.2   matt }
    324       1.2   matt 
    325       1.2   matt static void
    326       1.2   matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
    327       1.2   matt {
    328       1.2   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    329       1.2   matt 	KASSERT(slot < tlb1->tlb1_numentries);
    330       1.2   matt 	KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
    331       1.2   matt 
    332       1.2   matt 	KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
    333       1.2   matt 	xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
    334       1.2   matt 	hwtlb_write(xtlb->e_hwtlb, needs_sync);
    335       1.2   matt 
    336       1.2   matt 	const register_t msr = wrtee(0);
    337       1.2   matt 	tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
    338       1.2   matt 	wrtee(msr);
    339       1.2   matt }
    340       1.2   matt 
    341       1.4   matt static tlb_asid_t
    342       1.4   matt e500_tlb_get_asid(void)
    343       1.4   matt {
    344       1.4   matt 	return mfspr(SPR_PID0);
    345       1.4   matt }
    346       1.4   matt 
    347       1.4   matt static void
    348       1.4   matt e500_tlb_set_asid(tlb_asid_t asid)
    349       1.2   matt {
    350       1.2   matt 	mtspr(SPR_PID0, asid);
    351       1.2   matt }
    352       1.2   matt 
    353       1.4   matt static void
    354       1.4   matt e500_tlb_invalidate_all(void)
    355       1.2   matt {
    356       1.2   matt 	/*
    357       1.2   matt 	 * This does a flash invalidate of all entries in TLB0.
    358       1.2   matt 	 * We don't touch TLB1 since we don't expect those to be volatile.
    359       1.2   matt 	 */
    360       1.2   matt #if 1
    361       1.2   matt 	__asm volatile("tlbivax\t0, %0" :: "b"(4));	/* INV_ALL */
    362      1.11   matt 	__asm volatile("tlbsync\n\tisync\n\tsync");
    363       1.2   matt #else
    364       1.2   matt 	mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
    365       1.2   matt 	while (mfspr(SPR_MMUCSR0) != 0)
    366       1.2   matt 		;
    367       1.2   matt #endif
    368       1.2   matt }
    369       1.2   matt 
    370       1.2   matt static void
    371       1.2   matt e500_tlb_invalidate_globals(void)
    372       1.2   matt {
    373       1.2   matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    374       1.2   matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    375       1.2   matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    376       1.2   matt 	const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
    377       1.2   matt 	const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
    378       1.2   matt 	const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
    379       1.2   matt 	const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
    380       1.2   matt 
    381       1.2   matt 	const register_t msr = wrtee(0);
    382       1.2   matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    383       1.2   matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    384       1.2   matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    385       1.2   matt 			mtspr(SPR_MAS2, epn);
    386       1.2   matt 			__asm volatile("tlbre");
    387       1.2   matt 			uint32_t mas1 = mfspr(SPR_MAS1);
    388       1.2   matt 
    389       1.2   matt 			/*
    390       1.2   matt 			 * Make sure this is a valid kernel entry first.
    391       1.2   matt 			 */
    392       1.2   matt 			if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
    393       1.2   matt 				continue;
    394       1.2   matt 
    395       1.2   matt 			/*
    396       1.2   matt 			 * We have a valid kernel TLB entry.  But if it matches
    397       1.2   matt 			 * the stack we are currently running on, it would
    398       1.2   matt 			 * unwise to invalidate it.  First see if the epn
    399       1.2   matt 			 * overlaps the stack.  If it does then get the
    400       1.2   matt 			 * VA and see if it really is part of the stack.
    401       1.2   matt 			 */
    402       1.2   matt 			if (epn_kstack_lo < epn_kstack_hi
    403       1.2   matt 			    ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
    404       1.2   matt 			    : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
    405       1.2   matt 				const uint32_t mas2_epn =
    406       1.2   matt 				    mfspr(SPR_MAS2) & MAS2_EPN;
    407       1.2   matt 				if (kstack_lo <= mas2_epn
    408       1.2   matt 				    && mas2_epn <= kstack_hi)
    409       1.2   matt 					continue;
    410       1.2   matt 			}
    411       1.2   matt 			mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    412       1.2   matt 			__asm volatile("tlbwe");
    413       1.2   matt 		}
    414       1.2   matt 	}
    415      1.11   matt 	__asm volatile("isync\n\tsync");
    416       1.2   matt 	wrtee(msr);
    417       1.2   matt }
    418       1.2   matt 
    419       1.2   matt static void
    420       1.4   matt e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
    421       1.2   matt {
    422       1.2   matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    423       1.2   matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    424       1.2   matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    425       1.2   matt 
    426       1.2   matt 	asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
    427       1.2   matt 	asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
    428       1.2   matt 
    429       1.2   matt 	const register_t msr = wrtee(0);
    430       1.2   matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    431       1.2   matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    432       1.2   matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    433       1.2   matt 			mtspr(SPR_MAS2, epn);
    434       1.2   matt 			__asm volatile("tlbre");
    435       1.2   matt 			const uint32_t mas1 = mfspr(SPR_MAS1);
    436       1.2   matt 			/*
    437       1.2   matt 			 * If this is a valid entry for AS space 1 and
    438       1.2   matt 			 * its asid matches the constraints of the caller,
    439       1.2   matt 			 * clear its valid bit.
    440       1.2   matt 			 */
    441       1.2   matt 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
    442       1.2   matt 			    && asid_lo <= (mas1 & MAS1_TID)
    443       1.5   matt 			    && (mas1 & MAS1_TID) <= asid_hi) {
    444       1.2   matt 				mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    445       1.2   matt #if 0
    446       1.2   matt 				printf("%s[%zu,%zu]->[%x]\n",
    447       1.2   matt 				    __func__, assoc, epn, mas1);
    448       1.2   matt #endif
    449       1.2   matt 				__asm volatile("tlbwe");
    450       1.2   matt 			}
    451       1.2   matt 		}
    452       1.2   matt 	}
    453      1.11   matt 	__asm volatile("isync\n\tsync");
    454       1.2   matt 	wrtee(msr);
    455       1.2   matt }
    456       1.2   matt 
    457       1.2   matt static u_int
    458       1.4   matt e500_tlb_record_asids(u_long *bitmap)
    459       1.2   matt {
    460       1.2   matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    461       1.2   matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    462       1.2   matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    463       1.2   matt 	const size_t nbits = 8 * sizeof(bitmap[0]);
    464       1.2   matt 	u_int found = 0;
    465       1.2   matt 
    466       1.2   matt 	const register_t msr = wrtee(0);
    467       1.2   matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    468       1.2   matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    469       1.2   matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    470       1.2   matt 			mtspr(SPR_MAS2, epn);
    471       1.2   matt 			__asm volatile("tlbre");
    472       1.2   matt 			const uint32_t mas1 = mfspr(SPR_MAS1);
    473       1.2   matt 			/*
    474       1.2   matt 			 * If this is a valid entry for AS space 1 and
    475       1.2   matt 			 * its asid matches the constraints of the caller,
    476       1.2   matt 			 * clear its valid bit.
    477       1.2   matt 			 */
    478       1.2   matt 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
    479       1.2   matt 				const uint32_t asid = MASX_TID_GET(mas1);
    480       1.2   matt 				const u_int i = asid / nbits;
    481       1.2   matt 				const u_long mask = 1UL << (asid & (nbits - 1));
    482       1.2   matt 				if ((bitmap[i] & mask) == 0) {
    483       1.2   matt 					bitmap[i] |= mask;
    484       1.2   matt 					found++;
    485       1.2   matt 				}
    486       1.2   matt 			}
    487       1.2   matt 		}
    488       1.2   matt 	}
    489       1.2   matt 	wrtee(msr);
    490       1.2   matt 
    491       1.2   matt 	return found;
    492       1.2   matt }
    493       1.2   matt 
    494       1.2   matt static void
    495       1.4   matt e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
    496       1.2   matt {
    497       1.2   matt 	KASSERT((va & PAGE_MASK) == 0);
    498       1.2   matt 	/*
    499       1.2   matt 	 * Bits 60 & 61 have meaning
    500       1.2   matt 	 */
    501      1.11   matt 	if (asid == KERNEL_PID) {
    502      1.11   matt 		/*
    503      1.11   matt 		 * For data accesses, the context-synchronizing instruction
    504      1.11   matt 		 * before tlbwe or tlbivax ensures that all memory accesses
    505      1.11   matt 		 * due to preceding instructions have completed to a point
    506      1.11   matt 		 * at which they have reported all exceptions they will cause.
    507      1.11   matt 		 */
    508      1.11   matt 		__asm volatile("isync");
    509      1.11   matt 	}
    510       1.2   matt 	__asm volatile("tlbivax\t0, %0" :: "b"(va));
    511       1.2   matt 	__asm volatile("tlbsync");
    512      1.11   matt 	__asm volatile("tlbsync");	/* Why? */
    513      1.11   matt 	if (asid == KERNEL_PID) {
    514      1.11   matt 		/*
    515      1.11   matt 		 * The context-synchronizing instruction after tlbwe or tlbivax
    516      1.11   matt 		 * ensures that subsequent accesses (data and instruction) use
    517      1.11   matt 		 * the updated value in any TLB entries affected.
    518      1.11   matt 		 */
    519      1.11   matt 		__asm volatile("isync\n\tsync");
    520      1.11   matt 	}
    521       1.2   matt }
    522       1.2   matt 
    523       1.2   matt static bool
    524       1.4   matt e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
    525       1.2   matt {
    526       1.2   matt 	struct e500_hwtlb hwtlb = tlb_to_hwtlb(
    527       1.2   matt 	    (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
    528       1.2   matt 		.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
    529       1.2   matt 
    530       1.2   matt 	register_t msr = wrtee(0);
    531       1.2   matt 	mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
    532       1.2   matt 	__asm volatile("tlbsx 0, %0" :: "b"(va));
    533       1.2   matt 	register_t mas1 = mfspr(SPR_MAS1);
    534       1.2   matt 	if ((mas1 & MAS1_V) == 0) {
    535       1.2   matt 		if (!insert) {
    536       1.2   matt 			wrtee(msr);
    537       1.2   matt #if 0
    538       1.2   matt 			printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
    539       1.2   matt 			    __func__, va, asid, pte, insert);
    540       1.2   matt #endif
    541       1.2   matt 			return false;
    542       1.2   matt 		}
    543       1.2   matt 		mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    544       1.2   matt 	}
    545       1.2   matt 	mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    546       1.2   matt 	mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    547      1.12   matt 	//mtspr(SPR_MAS7, 0);
    548       1.2   matt 	__asm volatile("tlbwe");
    549      1.11   matt 	if (asid == KERNEL_PID)
    550      1.11   matt 		__asm volatile("isync\n\tsync");
    551       1.2   matt 	wrtee(msr);
    552       1.2   matt #if 0
    553       1.2   matt 	if (asid)
    554       1.2   matt 	printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
    555       1.2   matt 	    __func__, va, asid, pte, insert,
    556       1.2   matt 	    hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    557       1.2   matt #endif
    558       1.2   matt 	return (mas1 & MAS1_V) != 0;
    559       1.2   matt }
    560       1.2   matt 
    561       1.2   matt static void
    562       1.4   matt e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
    563       1.4   matt {
    564       1.4   matt }
    565       1.4   matt 
    566       1.4   matt static void
    567       1.2   matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
    568       1.2   matt {
    569       1.2   matt }
    570       1.2   matt 
    571       1.2   matt static void
    572       1.2   matt e500_tlb_dump(void (*pr)(const char *, ...))
    573       1.2   matt {
    574       1.2   matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    575       1.2   matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    576       1.2   matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    577       1.2   matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    578       1.2   matt 	size_t valid = 0;
    579       1.2   matt 
    580       1.2   matt 	if (pr == NULL)
    581       1.2   matt 		pr = printf;
    582       1.2   matt 
    583       1.2   matt 	const register_t msr = wrtee(0);
    584       1.2   matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    585       1.2   matt 		struct e500_hwtlb hwtlb;
    586       1.2   matt 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    587       1.2   matt 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    588       1.2   matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    589       1.2   matt 			mtspr(SPR_MAS2, epn);
    590       1.2   matt 			__asm volatile("tlbre");
    591       1.2   matt 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    592       1.2   matt 			/*
    593       1.2   matt 			 * If this is a valid entry for AS space 1 and
    594       1.2   matt 			 * its asid matches the constraints of the caller,
    595       1.2   matt 			 * clear its valid bit.
    596       1.2   matt 			 */
    597       1.2   matt 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    598       1.2   matt 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    599       1.2   matt 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    600       1.2   matt 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    601       1.2   matt 				(*pr)("[%zu,%zu]->[%x,%x,%x]",
    602       1.2   matt 				    assoc, atop(epn),
    603       1.2   matt 				    hwtlb.hwtlb_mas1,
    604       1.2   matt 				    hwtlb.hwtlb_mas2,
    605       1.2   matt 				    hwtlb.hwtlb_mas3);
    606       1.2   matt 				(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
    607       1.2   matt 				    tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
    608       1.2   matt 				(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
    609       1.2   matt 				    tlb.tlb_pte & PTE_RPN_MASK,
    610       1.2   matt 				    tlb.tlb_pte & PTE_xR ? "R" : "",
    611       1.2   matt 				    tlb.tlb_pte & PTE_xW ? "W" : "",
    612       1.2   matt 				    tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
    613       1.2   matt 				    tlb.tlb_pte & PTE_xX ? "X" : "",
    614       1.2   matt 				    tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
    615       1.2   matt 				    tlb.tlb_pte & PTE_W ? "W" : "",
    616       1.2   matt 				    tlb.tlb_pte & PTE_I ? "I" : "",
    617       1.2   matt 				    tlb.tlb_pte & PTE_M ? "M" : "",
    618       1.2   matt 				    tlb.tlb_pte & PTE_G ? "G" : "",
    619       1.2   matt 				    tlb.tlb_pte & PTE_E ? "E" : "");
    620       1.2   matt 				valid++;
    621       1.2   matt 			}
    622       1.2   matt 		}
    623       1.2   matt 	}
    624       1.2   matt 	mtspr(SPR_MAS0, saved_mas0);
    625       1.2   matt 	wrtee(msr);
    626       1.2   matt 	(*pr)("%s: %zu valid entries\n", __func__, valid);
    627       1.2   matt }
    628       1.2   matt 
    629       1.2   matt static void
    630       1.2   matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
    631       1.2   matt {
    632       1.2   matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    633       1.2   matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    634       1.2   matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    635       1.2   matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    636       1.2   matt 
    637       1.2   matt 	const register_t msr = wrtee(0);
    638       1.2   matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    639       1.2   matt 		struct e500_hwtlb hwtlb;
    640       1.2   matt 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    641       1.2   matt 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    642       1.2   matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    643       1.2   matt 			mtspr(SPR_MAS2, epn);
    644       1.2   matt 			__asm volatile("tlbre");
    645       1.2   matt 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    646       1.2   matt 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    647       1.2   matt 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    648       1.2   matt 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    649       1.2   matt 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    650       1.2   matt 				if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
    651       1.2   matt 				    tlb.tlb_pte))
    652       1.2   matt 					break;
    653       1.2   matt 			}
    654       1.2   matt 		}
    655       1.2   matt 	}
    656       1.2   matt 	mtspr(SPR_MAS0, saved_mas0);
    657       1.2   matt 	wrtee(msr);
    658       1.2   matt }
    659       1.2   matt 
    660       1.2   matt static struct e500_xtlb *
    661       1.9   matt e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
    662       1.9   matt {
    663       1.9   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    664       1.9   matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    665       1.9   matt 
    666       1.9   matt 	/*
    667       1.9   matt 	 * See if we have a TLB entry for the pa.
    668       1.9   matt 	 */
    669       1.9   matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    670       1.9   matt 		psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    671       1.9   matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    672       1.9   matt 		    && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
    673       1.9   matt 			if (slotp != NULL)
    674       1.9   matt 				*slotp = i;
    675       1.9   matt 			return xtlb;
    676       1.9   matt 		}
    677       1.9   matt 	}
    678       1.9   matt 
    679       1.9   matt 	return NULL;
    680       1.9   matt }
    681       1.9   matt 
    682      1.12   matt struct e500_xtlb *
    683       1.2   matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
    684       1.2   matt {
    685       1.2   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    686       1.2   matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    687       1.2   matt 
    688       1.2   matt 	/*
    689       1.9   matt 	 * See if we have a TLB entry for the va.
    690       1.2   matt 	 */
    691       1.2   matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    692       1.9   matt 		vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    693       1.2   matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    694       1.9   matt 		    && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
    695       1.2   matt 			if (slotp != NULL)
    696       1.2   matt 				*slotp = i;
    697       1.2   matt 			return xtlb;
    698       1.2   matt 		}
    699       1.2   matt 	}
    700       1.2   matt 
    701       1.2   matt 	return NULL;
    702       1.2   matt }
    703       1.2   matt 
    704       1.2   matt static struct e500_xtlb *
    705       1.2   matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
    706       1.2   matt {
    707       1.2   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    708       1.2   matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    709       1.2   matt 
    710       1.2   matt 	/*
    711       1.2   matt 	 * See if we have a TLB entry for the pa.
    712       1.2   matt 	 */
    713       1.2   matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    714       1.9   matt 		vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    715       1.2   matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    716       1.9   matt 		    && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
    717       1.9   matt 		    && (((va + len - 1) ^ va) & mask) == 0) {
    718       1.2   matt 			return xtlb;
    719       1.2   matt 		}
    720       1.2   matt 	}
    721       1.2   matt 
    722       1.2   matt 	return NULL;
    723       1.2   matt }
    724       1.2   matt 
    725       1.2   matt static void *
    726       1.7   matt e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
    727       1.2   matt {
    728       1.9   matt 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
    729       1.2   matt 
    730       1.2   matt 	/*
    731       1.2   matt 	 * See if we have a TLB entry for the pa.  If completely falls within
    732       1.6   matt 	 * mark the reference and return the pa.  But only if the tlb entry
    733       1.6   matt 	 * is not cacheable.
    734       1.2   matt 	 */
    735       1.6   matt 	if (xtlb
    736       1.7   matt 	    && (prefetchable
    737       1.7   matt 		|| (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
    738       1.2   matt 		xtlb->e_refcnt++;
    739      1.10   matt 		return (void *) (xtlb->e_tlb.tlb_va
    740      1.10   matt 		    + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
    741       1.2   matt 	}
    742       1.2   matt 	return NULL;
    743       1.2   matt }
    744       1.2   matt 
    745       1.2   matt static void
    746       1.2   matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
    747       1.2   matt {
    748       1.2   matt 	if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
    749       1.2   matt 		struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
    750       1.2   matt 		if (xtlb)
    751       1.2   matt 			xtlb->e_refcnt--;
    752       1.2   matt 	}
    753       1.2   matt }
    754       1.2   matt 
    755       1.2   matt static int
    756       1.4   matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
    757       1.2   matt {
    758       1.2   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    759       1.2   matt 	struct e500_xtlb *xtlb;
    760       1.2   matt 
    761       1.2   matt 	KASSERT(len & 0x55555000);
    762       1.2   matt 	KASSERT((len & ~0x55555000) == 0);
    763       1.2   matt 	KASSERT(len >= PAGE_SIZE);
    764       1.2   matt 	KASSERT((len & (len - 1)) == 0);
    765       1.2   matt 	KASSERT((va & (len - 1)) == 0);
    766       1.9   matt 	KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
    767       1.2   matt 
    768       1.2   matt 	if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
    769       1.9   matt 		psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    770       1.9   matt 		KASSERT(len <= xtlb->e_tlb.tlb_size);
    771       1.9   matt 		KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
    772       1.2   matt 		xtlb->e_refcnt++;
    773       1.2   matt 		return 0;
    774       1.2   matt 	}
    775       1.2   matt 
    776       1.2   matt 	const int slot = e500_alloc_tlb1_entry();
    777       1.2   matt 	if (slot < 0)
    778       1.2   matt 		return ENOMEM;
    779       1.2   matt 
    780       1.2   matt 	xtlb = &tlb1->tlb1_entries[slot];
    781       1.2   matt 	xtlb->e_tlb.tlb_va = va;
    782       1.2   matt 	xtlb->e_tlb.tlb_size = len;
    783       1.2   matt 	xtlb->e_tlb.tlb_pte = pte;
    784       1.2   matt 	xtlb->e_tlb.tlb_asid = KERNEL_PID;
    785       1.2   matt 
    786       1.2   matt 	xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
    787       1.9   matt 	xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
    788       1.2   matt 	hwtlb_write(xtlb->e_hwtlb, true);
    789       1.2   matt 	return 0;
    790       1.2   matt }
    791       1.2   matt 
    792       1.2   matt static int
    793       1.2   matt e500_tlb_iorelease(vaddr_t va)
    794       1.2   matt {
    795       1.2   matt 	u_int slot;
    796       1.2   matt 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
    797       1.2   matt 
    798       1.2   matt 	if (xtlb == NULL)
    799       1.2   matt 		return ENOENT;
    800       1.2   matt 
    801       1.2   matt 	if (xtlb->e_refcnt)
    802       1.2   matt 		return EBUSY;
    803       1.2   matt 
    804       1.2   matt 	e500_free_tlb1_entry(xtlb, slot, true);
    805       1.2   matt 
    806       1.2   matt 	return 0;
    807       1.2   matt }
    808       1.2   matt 
    809       1.2   matt static u_int
    810       1.2   matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
    811       1.2   matt {
    812       1.2   matt 	u_int slotmask = 0;
    813       1.2   matt 	u_int slots = 0, nextslot = 0;
    814       1.2   matt 	KASSERT(tlb1->tlb1_numfree > 1);
    815       1.2   matt 	KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
    816       1.2   matt 	for (paddr_t lastaddr = memstart; 0 < memsize; ) {
    817       1.2   matt 		u_int cnt = __builtin_clz(memsize);
    818       1.2   matt 		psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
    819       1.2   matt 		slots += memsize / size;
    820       1.2   matt 		if (slots > 4)
    821       1.2   matt 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    822       1.2   matt 			    __func__, __LINE__, memsize, "too fragmented");
    823       1.2   matt 		if (slots > tlb1->tlb1_numfree - 1)
    824       1.2   matt 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    825       1.2   matt 			    __func__, __LINE__, memsize,
    826       1.2   matt 			    "insufficent TLB entries");
    827       1.2   matt 		for (; nextslot < slots; nextslot++) {
    828       1.2   matt 			const u_int freeslot = e500_alloc_tlb1_entry();
    829       1.2   matt 			struct e500_xtlb * const xtlb =
    830       1.2   matt 			    &tlb1->tlb1_entries[freeslot];
    831       1.2   matt 			xtlb->e_tlb.tlb_asid = KERNEL_PID;
    832       1.2   matt 			xtlb->e_tlb.tlb_size = size;
    833       1.2   matt 			xtlb->e_tlb.tlb_va = lastaddr;
    834       1.2   matt 			xtlb->e_tlb.tlb_pte = lastaddr
    835       1.2   matt 			    | PTE_M | PTE_xX | PTE_xW | PTE_xR;
    836       1.2   matt 			lastaddr += size;
    837       1.2   matt 			memsize -= size;
    838       1.2   matt 			slotmask |= 1 << (31 - freeslot); /* clz friendly */
    839       1.2   matt 		}
    840       1.2   matt 	}
    841       1.2   matt 
    842       1.2   matt 	return nextslot;
    843       1.2   matt }
    844       1.2   matt static const struct tlb_md_ops e500_tlb_ops = {
    845       1.4   matt 	.md_tlb_get_asid = e500_tlb_get_asid,
    846       1.2   matt 	.md_tlb_set_asid = e500_tlb_set_asid,
    847       1.2   matt 	.md_tlb_invalidate_all = e500_tlb_invalidate_all,
    848       1.2   matt 	.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
    849       1.2   matt 	.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
    850       1.2   matt 	.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
    851       1.2   matt 	.md_tlb_update_addr = e500_tlb_update_addr,
    852       1.2   matt 	.md_tlb_record_asids = e500_tlb_record_asids,
    853       1.4   matt 	.md_tlb_write_entry = e500_tlb_write_entry,
    854       1.2   matt 	.md_tlb_read_entry = e500_tlb_read_entry,
    855       1.4   matt 	.md_tlb_dump = e500_tlb_dump,
    856       1.4   matt 	.md_tlb_walk = e500_tlb_walk,
    857       1.4   matt };
    858       1.4   matt 
    859       1.4   matt static const struct tlb_md_io_ops e500_tlb_io_ops = {
    860       1.2   matt 	.md_tlb_mapiodev = e500_tlb_mapiodev,
    861       1.2   matt 	.md_tlb_unmapiodev = e500_tlb_unmapiodev,
    862       1.2   matt 	.md_tlb_ioreserve = e500_tlb_ioreserve,
    863       1.2   matt 	.md_tlb_iorelease = e500_tlb_iorelease,
    864       1.2   matt };
    865       1.2   matt 
    866       1.2   matt void
    867       1.2   matt e500_tlb_init(vaddr_t endkernel, psize_t memsize)
    868       1.2   matt {
    869       1.2   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    870       1.2   matt 
    871       1.2   matt #if 0
    872       1.2   matt 	register_t mmucfg = mfspr(SPR_MMUCFG);
    873       1.2   matt 	register_t mas4 = mfspr(SPR_MAS4);
    874       1.2   matt #endif
    875       1.2   matt 
    876       1.2   matt 	const uint32_t tlb1cfg = mftlb1cfg();
    877       1.2   matt 	tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
    878       1.2   matt 	KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
    879       1.2   matt 	/*
    880       1.2   matt 	 * Limit maxsize to 1G since 4G isn't really useful to us.
    881       1.2   matt 	 */
    882       1.2   matt 	tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
    883       1.2   matt 	tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
    884       1.2   matt 
    885       1.2   matt #ifdef VERBOSE_INITPPC
    886       1.2   matt 	printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
    887       1.2   matt 	    tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
    888       1.2   matt 	    tlb1->tlb1_maxsize >> 10);
    889       1.2   matt #endif
    890       1.2   matt 
    891       1.2   matt 	/*
    892       1.2   matt 	 * Let's see what's in TLB1 and we need to invalidate any entry that
    893       1.2   matt 	 * would fit within the kernel's mapped address space.
    894       1.2   matt 	 */
    895       1.2   matt 	psize_t memmapped = 0;
    896       1.2   matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    897       1.2   matt 		struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    898       1.2   matt 
    899       1.2   matt 		xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
    900       1.2   matt 
    901       1.2   matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
    902       1.2   matt 			tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
    903       1.2   matt #ifdef VERBOSE_INITPPC
    904       1.2   matt 			printf(" TLB1[%u]=<unused>", i);
    905       1.2   matt #endif
    906       1.2   matt 			continue;
    907       1.2   matt 		}
    908       1.2   matt 
    909       1.2   matt 		xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
    910       1.2   matt #ifdef VERBOSE_INITPPC
    911       1.2   matt 		printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
    912       1.2   matt 		    i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
    913       1.2   matt 		    xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
    914       1.2   matt #endif
    915       1.2   matt 		if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
    916       1.2   matt 		    && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
    917       1.2   matt 		    || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
    918       1.2   matt 		        && VM_MIN_KERNEL_ADDRESS <
    919       1.2   matt 			   xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
    920       1.2   matt #ifdef VERBOSE_INITPPC
    921       1.2   matt 			printf("free");
    922       1.2   matt #endif
    923       1.2   matt 			e500_free_tlb1_entry(xtlb, i, false);
    924       1.2   matt #ifdef VERBOSE_INITPPC
    925       1.2   matt 			printf("d");
    926       1.2   matt #endif
    927       1.2   matt 			continue;
    928       1.2   matt 		}
    929       1.2   matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
    930       1.2   matt 			xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
    931       1.2   matt 			hwtlb_write(xtlb->e_hwtlb, false);
    932       1.2   matt #ifdef VERBOSE_INITPPC
    933       1.2   matt 			printf("+iprot");
    934       1.2   matt #endif
    935       1.2   matt 		}
    936       1.2   matt 		if (xtlb->e_tlb.tlb_pte & PTE_I)
    937       1.2   matt 			continue;
    938       1.2   matt 
    939       1.2   matt 		if (xtlb->e_tlb.tlb_va == 0
    940       1.2   matt 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
    941       1.2   matt 			memmapped += xtlb->e_tlb.tlb_size;
    942      1.12   matt 			/*
    943      1.12   matt 			 * Let make sure main memory is setup so it's memory
    944      1.12   matt 			 * coherent.  For some reason u-boot doesn't set it up
    945      1.12   matt 			 * that way.
    946      1.12   matt 			 */
    947      1.12   matt 			if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) {
    948      1.12   matt 				xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M;
    949      1.12   matt 				hwtlb_write(xtlb->e_hwtlb, true);
    950      1.12   matt 			}
    951       1.2   matt 		}
    952       1.2   matt 	}
    953       1.2   matt 
    954       1.2   matt 	cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
    955       1.4   matt 	cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
    956       1.2   matt 
    957       1.2   matt 	if (__predict_false(memmapped < memsize)) {
    958       1.2   matt 		/*
    959       1.2   matt 		 * Let's see how many TLB entries are needed to map memory.
    960       1.2   matt 		 */
    961       1.2   matt 		u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
    962       1.2   matt 
    963       1.2   matt 		/*
    964       1.2   matt 		 * To map main memory into the TLB, we need to flush any
    965       1.2   matt 		 * existing entries from the TLB that overlap the virtual
    966       1.2   matt 		 * address space needed to map physical memory.  That may
    967       1.2   matt 		 * include the entries for the pages currently used by the
    968       1.2   matt 		 * stack or that we are executing.  So to avoid problems, we
    969       1.2   matt 		 * are going to temporarily map the kernel and stack into AS 1,
    970       1.2   matt 		 * switch to it, and clear out the TLB entries from AS 0,
    971       1.2   matt 		 * install the new TLB entries to map memory, and then switch
    972       1.2   matt 		 * back to AS 0 and free the temp entry used for AS1.
    973       1.2   matt 		 */
    974       1.2   matt 		u_int b = __builtin_clz(endkernel);
    975       1.2   matt 
    976       1.2   matt 		/*
    977       1.2   matt 		 * If the kernel doesn't end on a clean power of 2, we need
    978       1.2   matt 		 * to round the size up (by decrementing the number of leading
    979       1.2   matt 		 * zero bits).  If the size isn't a power of 4KB, decrement
    980       1.2   matt 		 * again to make it one.
    981       1.2   matt 		 */
    982       1.2   matt 		if (endkernel & (endkernel - 1))
    983       1.2   matt 			b--;
    984       1.2   matt 		if ((b & 1) == 0)
    985       1.2   matt 			b--;
    986       1.2   matt 
    987       1.2   matt 		/*
    988       1.2   matt 		 * Create a TLB1 mapping for the kernel in AS1.
    989       1.2   matt 		 */
    990       1.2   matt 		const u_int kslot = e500_alloc_tlb1_entry();
    991       1.2   matt 		struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
    992       1.2   matt 		kxtlb->e_tlb.tlb_va = 0;
    993       1.2   matt 		kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
    994       1.2   matt 		kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
    995       1.2   matt 		kxtlb->e_tlb.tlb_asid = KERNEL_PID;
    996       1.2   matt 
    997       1.2   matt 		kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
    998       1.9   matt 		kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
    999       1.2   matt 		kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
   1000       1.2   matt 		hwtlb_write(kxtlb->e_hwtlb, true);
   1001       1.2   matt 
   1002       1.2   matt 		/*
   1003       1.2   matt 		 * Now that we have a TLB mapping in AS1 for the kernel and its
   1004       1.2   matt 		 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
   1005       1.2   matt 		 */
   1006       1.2   matt 		const register_t saved_msr = mfmsr();
   1007       1.2   matt 		mtmsr(saved_msr | PSL_DS | PSL_IS);
   1008       1.2   matt 		__asm volatile("isync");
   1009       1.2   matt 
   1010       1.2   matt 		/*
   1011       1.2   matt 		 *** Invalidate all the TLB0 entries.
   1012       1.2   matt 		 */
   1013       1.2   matt 		e500_tlb_invalidate_all();
   1014       1.2   matt 
   1015       1.2   matt 		/*
   1016       1.2   matt 		 *** Now let's see if we have any entries in TLB1 that would
   1017       1.2   matt 		 *** overlap the ones we are about to install.  If so, nuke 'em.
   1018       1.2   matt 		 */
   1019       1.2   matt 		for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
   1020       1.2   matt 			struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
   1021       1.2   matt 			struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
   1022       1.2   matt 			if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
   1023       1.2   matt 			    && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
   1024       1.2   matt 				e500_free_tlb1_entry(xtlb, i, false);
   1025       1.2   matt 			}
   1026       1.2   matt 		}
   1027       1.2   matt 
   1028       1.2   matt 		/*
   1029       1.2   matt 		 *** Now we can add the TLB entries that will map physical
   1030       1.2   matt 		 *** memory.  If bit 0 [MSB] in slotmask is set, then tlb
   1031       1.2   matt 		 *** entry 0 contains a mapping for physical memory...
   1032       1.2   matt 		 */
   1033       1.2   matt 		struct e500_xtlb *entries = tlb1->tlb1_entries;
   1034       1.2   matt 		while (slotmask != 0) {
   1035       1.2   matt 			const u_int slot = __builtin_clz(slotmask);
   1036       1.2   matt 			hwtlb_write(entries[slot].e_hwtlb, false);
   1037       1.2   matt 			entries += slot + 1;
   1038       1.2   matt 			slotmask <<= slot + 1;
   1039       1.2   matt 		}
   1040       1.2   matt 
   1041       1.2   matt 		/*
   1042       1.2   matt 		 *** Synchronize the TLB and the instruction stream.
   1043       1.2   matt 		 */
   1044       1.2   matt 		__asm volatile("tlbsync");
   1045       1.2   matt 		__asm volatile("isync");
   1046       1.2   matt 
   1047       1.2   matt 		/*
   1048       1.2   matt 		 *** Switch back to AS 0.
   1049       1.2   matt 		 */
   1050       1.2   matt 		mtmsr(saved_msr);
   1051       1.2   matt 		__asm volatile("isync");
   1052       1.2   matt 
   1053       1.2   matt 		/*
   1054       1.2   matt 		 * Free the temporary TLB1 entry.
   1055       1.2   matt 		 */
   1056       1.2   matt 		e500_free_tlb1_entry(kxtlb, kslot, true);
   1057       1.2   matt 	}
   1058       1.2   matt 
   1059       1.2   matt 	/*
   1060       1.2   matt 	 * Finally set the MAS4 defaults.
   1061       1.2   matt 	 */
   1062       1.2   matt 	mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
   1063       1.2   matt 
   1064       1.2   matt 	/*
   1065       1.2   matt 	 * Invalidate all the TLB0 entries.
   1066       1.2   matt 	 */
   1067       1.2   matt 	e500_tlb_invalidate_all();
   1068       1.2   matt }
   1069       1.8   matt 
   1070       1.8   matt void
   1071       1.8   matt e500_tlb_minimize(vaddr_t endkernel)
   1072       1.8   matt {
   1073       1.8   matt #ifdef PMAP_MINIMALTLB
   1074       1.8   matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
   1075       1.8   matt 	extern uint32_t _fdata[];
   1076       1.8   matt 
   1077       1.8   matt 	u_int slot;
   1078       1.8   matt 
   1079       1.8   matt 	paddr_t boot_page = cpu_read_4(GUR_BPTR);
   1080       1.8   matt 	if (boot_page & BPTR_EN) {
   1081       1.8   matt 		/*
   1082       1.8   matt 		 * shift it to an address
   1083       1.8   matt 		 */
   1084       1.8   matt 		boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
   1085       1.8   matt 		pmap_kvptefill(boot_page, boot_page + NBPG,
   1086       1.8   matt 		    PTE_M | PTE_xR | PTE_xW | PTE_xX);
   1087       1.8   matt 	}
   1088       1.8   matt 
   1089       1.8   matt 
   1090       1.8   matt 	KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
   1091       1.8   matt 	KASSERT((uintptr_t)_fdata == 0x400000);
   1092       1.8   matt 
   1093       1.8   matt 	struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
   1094       1.8   matt 
   1095       1.8   matt 	KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
   1096       1.8   matt 	const u_int tmp_slot = e500_alloc_tlb1_entry();
   1097       1.8   matt 	KASSERT(tmp_slot != (u_int) -1);
   1098       1.8   matt 
   1099       1.8   matt 	struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
   1100       1.8   matt 	tmp_xtlb->e_tlb = xtlb->e_tlb;
   1101       1.8   matt 	tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
   1102       1.8   matt 	tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
   1103       1.8   matt 	KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1104       1.8   matt 	tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
   1105       1.8   matt 	hwtlb_write(tmp_xtlb->e_hwtlb, true);
   1106       1.8   matt 
   1107       1.8   matt 	const u_int text_slot = e500_alloc_tlb1_entry();
   1108       1.8   matt 	KASSERT(text_slot != (u_int)-1);
   1109       1.8   matt 	struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
   1110       1.8   matt 	text_xtlb->e_tlb.tlb_va = 0;
   1111       1.8   matt 	text_xtlb->e_tlb.tlb_size = 0x400000;
   1112       1.8   matt 	text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
   1113       1.8   matt 	text_xtlb->e_tlb.tlb_asid = 0;
   1114       1.8   matt 	text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
   1115       1.8   matt 	KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1116       1.8   matt 	text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
   1117       1.8   matt 
   1118       1.8   matt 	const u_int data_slot = e500_alloc_tlb1_entry();
   1119       1.8   matt 	KASSERT(data_slot != (u_int)-1);
   1120       1.8   matt 	struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
   1121       1.8   matt 	data_xtlb->e_tlb.tlb_va = 0x400000;
   1122       1.8   matt 	data_xtlb->e_tlb.tlb_size = 0x400000;
   1123       1.8   matt 	data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
   1124       1.8   matt 	data_xtlb->e_tlb.tlb_asid = 0;
   1125       1.8   matt 	data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
   1126       1.8   matt 	KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1127       1.8   matt 	data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
   1128       1.8   matt 
   1129       1.8   matt 	const register_t msr = mfmsr();
   1130       1.8   matt 	const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
   1131       1.8   matt 
   1132       1.8   matt 	__asm __volatile(
   1133       1.8   matt 		"mtmsr	%[ts_msr]"	"\n\t"
   1134       1.8   matt 		"sync"			"\n\t"
   1135       1.8   matt 		"isync"
   1136       1.8   matt 	    ::	[ts_msr] "r" (ts_msr));
   1137       1.8   matt 
   1138       1.8   matt #if 0
   1139       1.8   matt 	hwtlb_write(text_xtlb->e_hwtlb, false);
   1140       1.8   matt 	hwtlb_write(data_xtlb->e_hwtlb, false);
   1141       1.8   matt 	e500_free_tlb1_entry(xtlb, slot, true);
   1142       1.8   matt #endif
   1143       1.8   matt 
   1144       1.8   matt 	__asm __volatile(
   1145       1.8   matt 		"mtmsr	%[msr]"		"\n\t"
   1146       1.8   matt 		"sync"			"\n\t"
   1147       1.8   matt 		"isync"
   1148       1.8   matt 	    ::	[msr] "r" (msr));
   1149       1.8   matt 
   1150       1.8   matt 	e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
   1151       1.8   matt #endif	/* PMAP_MINIMALTLB */
   1152       1.8   matt }
   1153