e500_tlb.c revision 1.13 1 1.13 wiz /* $NetBSD: e500_tlb.c,v 1.13 2013/12/09 09:35:16 wiz Exp $ */
2 1.2 matt /*-
3 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 1.2 matt * All rights reserved.
5 1.2 matt *
6 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 1.2 matt *
10 1.2 matt * This material is based upon work supported by the Defense Advanced Research
11 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 1.2 matt * Contract No. N66001-09-C-2073.
13 1.2 matt * Approved for Public Release, Distribution Unlimited
14 1.2 matt *
15 1.2 matt * Redistribution and use in source and binary forms, with or without
16 1.2 matt * modification, are permitted provided that the following conditions
17 1.2 matt * are met:
18 1.2 matt * 1. Redistributions of source code must retain the above copyright
19 1.2 matt * notice, this list of conditions and the following disclaimer.
20 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
21 1.2 matt * notice, this list of conditions and the following disclaimer in the
22 1.2 matt * documentation and/or other materials provided with the distribution.
23 1.2 matt *
24 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
35 1.2 matt */
36 1.2 matt
37 1.8 matt #define __PMAP_PRIVATE
38 1.8 matt
39 1.2 matt #include <sys/cdefs.h>
40 1.2 matt
41 1.13 wiz __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.13 2013/12/09 09:35:16 wiz Exp $");
42 1.2 matt
43 1.2 matt #include <sys/param.h>
44 1.2 matt
45 1.2 matt #include <uvm/uvm_extern.h>
46 1.2 matt
47 1.2 matt #include <powerpc/spr.h>
48 1.2 matt #include <powerpc/booke/spr.h>
49 1.2 matt #include <powerpc/booke/cpuvar.h>
50 1.8 matt #include <powerpc/booke/e500reg.h>
51 1.2 matt #include <powerpc/booke/e500var.h>
52 1.2 matt #include <powerpc/booke/pmap.h>
53 1.2 matt
54 1.2 matt struct e500_tlb {
55 1.2 matt vaddr_t tlb_va;
56 1.2 matt uint32_t tlb_pte;
57 1.2 matt uint32_t tlb_asid;
58 1.2 matt vsize_t tlb_size;
59 1.2 matt };
60 1.2 matt
61 1.2 matt struct e500_hwtlb {
62 1.2 matt uint32_t hwtlb_mas0;
63 1.2 matt uint32_t hwtlb_mas1;
64 1.2 matt uint32_t hwtlb_mas2;
65 1.2 matt uint32_t hwtlb_mas3;
66 1.2 matt };
67 1.2 matt
68 1.2 matt struct e500_xtlb {
69 1.2 matt struct e500_tlb e_tlb;
70 1.2 matt struct e500_hwtlb e_hwtlb;
71 1.2 matt u_long e_refcnt;
72 1.2 matt };
73 1.2 matt
74 1.2 matt static struct e500_tlb1 {
75 1.2 matt uint32_t tlb1_maxsize;
76 1.2 matt uint32_t tlb1_minsize;
77 1.2 matt u_int tlb1_numentries;
78 1.2 matt u_int tlb1_numfree;
79 1.2 matt u_int tlb1_freelist[32];
80 1.2 matt struct e500_xtlb tlb1_entries[32];
81 1.2 matt } e500_tlb1;
82 1.2 matt
83 1.2 matt static inline register_t mftlb0cfg(void) __pure;
84 1.2 matt static inline register_t mftlb1cfg(void) __pure;
85 1.2 matt
86 1.2 matt static inline register_t
87 1.2 matt mftlb0cfg(void)
88 1.2 matt {
89 1.2 matt register_t tlb0cfg;
90 1.2 matt __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
91 1.2 matt return tlb0cfg;
92 1.2 matt }
93 1.2 matt
94 1.2 matt static inline register_t
95 1.2 matt mftlb1cfg(void)
96 1.2 matt {
97 1.2 matt register_t tlb1cfg;
98 1.2 matt __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
99 1.2 matt return tlb1cfg;
100 1.2 matt }
101 1.2 matt
102 1.2 matt static struct e500_tlb
103 1.2 matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
104 1.2 matt {
105 1.2 matt struct e500_tlb tlb;
106 1.2 matt register_t prot_mask;
107 1.2 matt u_int prot_shift;
108 1.2 matt
109 1.2 matt tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
110 1.2 matt tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
111 1.2 matt tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
112 1.2 matt tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
113 1.2 matt | (hwtlb.hwtlb_mas3 & MAS3_RPN);
114 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_TS) {
115 1.2 matt prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
116 1.2 matt prot_shift = PTE_RWX_SHIFT - 1;
117 1.2 matt } else {
118 1.2 matt prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
119 1.2 matt prot_shift = PTE_RWX_SHIFT;
120 1.2 matt }
121 1.2 matt tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
122 1.2 matt return tlb;
123 1.2 matt }
124 1.2 matt
125 1.2 matt static inline struct e500_hwtlb
126 1.2 matt hwtlb_read(uint32_t mas0, u_int slot)
127 1.2 matt {
128 1.2 matt struct e500_hwtlb hwtlb;
129 1.2 matt register_t tlbcfg;
130 1.2 matt
131 1.2 matt if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
132 1.2 matt tlbcfg = mftlb0cfg();
133 1.2 matt } else if (mas0 == MAS0_TLBSEL_TLB1) {
134 1.2 matt tlbcfg = mftlb1cfg();
135 1.2 matt } else {
136 1.2 matt panic("%s:%d: unexpected MAS0 %#" PRIx32,
137 1.2 matt __func__, __LINE__, mas0);
138 1.2 matt }
139 1.2 matt
140 1.2 matt /*
141 1.2 matt * ESEL is the way we want to look up.
142 1.2 matt * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
143 1.2 matt * fully associative, the entire slot is placed into ESEL. If tlbassoc
144 1.13 wiz * is less than the number of tlb entries, the slot is split in two
145 1.2 matt * fields. Since the TLB is M rows by N ways, the lowers bits are for
146 1.2 matt * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
147 1.2 matt */
148 1.2 matt const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
149 1.2 matt const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
150 1.2 matt const u_int esel_shift =
151 1.2 matt __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
152 1.2 matt
153 1.2 matt /*
154 1.2 matt * Disable interrupts since we don't want anyone else mucking with
155 1.2 matt * the MMU Assist registers
156 1.2 matt */
157 1.2 matt const register_t msr = wrtee(0);
158 1.2 matt const register_t saved_mas0 = mfspr(SPR_MAS0);
159 1.2 matt mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
160 1.2 matt
161 1.2 matt if (__predict_true(tlbassoc > tlbentries))
162 1.2 matt mtspr(SPR_MAS2, slot << PAGE_SHIFT);
163 1.2 matt
164 1.2 matt /*
165 1.2 matt * Now select the entry and grab its contents.
166 1.2 matt */
167 1.2 matt __asm volatile("tlbre");
168 1.2 matt
169 1.2 matt hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
170 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
171 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
172 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
173 1.2 matt
174 1.2 matt mtspr(SPR_MAS0, saved_mas0);
175 1.2 matt wrtee(msr); /* restore interrupts */
176 1.2 matt
177 1.2 matt return hwtlb;
178 1.2 matt }
179 1.2 matt
180 1.2 matt static inline void
181 1.2 matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
182 1.2 matt {
183 1.2 matt const register_t msr = wrtee(0);
184 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
185 1.2 matt
186 1.2 matt /*
187 1.2 matt * Need to always write MAS0 and MAS1
188 1.2 matt */
189 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
190 1.2 matt mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
191 1.2 matt
192 1.2 matt /*
193 1.2 matt * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
194 1.2 matt */
195 1.2 matt if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
196 1.2 matt || (hwtlb.hwtlb_mas1 & MAS1_V)) {
197 1.2 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
198 1.2 matt }
199 1.2 matt /*
200 1.2 matt * Only need to write the RPN/prot if we are dealing with a valid
201 1.2 matt * mapping.
202 1.2 matt */
203 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
204 1.2 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
205 1.12 matt //mtspr(SPR_MAS7, 0);
206 1.2 matt }
207 1.2 matt
208 1.2 matt #if 0
209 1.2 matt printf("%s->[%x,%x,%x,%x]\n",
210 1.2 matt __func__,
211 1.2 matt hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
212 1.2 matt hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
213 1.2 matt #endif
214 1.2 matt __asm volatile("tlbwe");
215 1.2 matt if (needs_sync) {
216 1.11 matt __asm volatile("tlbsync\n\tisync\n\tsync");
217 1.2 matt }
218 1.2 matt
219 1.2 matt mtspr(SPR_MAS0, saved_mas0);
220 1.2 matt wrtee(msr);
221 1.2 matt }
222 1.2 matt
223 1.2 matt static struct e500_hwtlb
224 1.2 matt tlb_to_hwtlb(const struct e500_tlb tlb)
225 1.2 matt {
226 1.2 matt struct e500_hwtlb hwtlb;
227 1.2 matt
228 1.2 matt KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
229 1.2 matt KASSERT(tlb.tlb_size != 0);
230 1.2 matt KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
231 1.2 matt const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
232 1.2 matt if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
233 1.2 matt hwtlb.hwtlb_mas0 = 0;
234 1.2 matt hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
235 1.2 matt /*
236 1.2 matt * A non-zero ASID means this is a user page so mark it as
237 1.2 matt * being in the user's address space.
238 1.2 matt */
239 1.2 matt if (tlb.tlb_asid) {
240 1.2 matt hwtlb.hwtlb_mas1 |= MAS1_TS
241 1.2 matt | MASX_TID_MAKE(tlb.tlb_asid);
242 1.2 matt hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
243 1.2 matt | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
244 1.2 matt KASSERT(prot_mask & PTE_xR);
245 1.2 matt KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
246 1.2 matt CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
247 1.2 matt CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
248 1.2 matt } else {
249 1.2 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
250 1.2 matt }
251 1.2 matt if (tlb.tlb_pte & PTE_UNMODIFIED)
252 1.2 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
253 1.2 matt if (tlb.tlb_pte & PTE_UNSYNCED)
254 1.2 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
255 1.2 matt } else {
256 1.2 matt KASSERT(tlb.tlb_asid == 0);
257 1.2 matt KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
258 1.2 matt u_int cntlz = __builtin_clz(tlb.tlb_size);
259 1.2 matt KASSERT(cntlz & 1);
260 1.2 matt KASSERT(cntlz <= 19);
261 1.2 matt hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
262 1.2 matt /*
263 1.8 matt * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
264 1.2 matt * allowed. So 1K would be 0x00000400 giving 21 leading zero
265 1.2 matt * bits. Subtracting the leading number of zero bits from 21
266 1.2 matt * and dividing by 2 gives us the number that the MMU wants.
267 1.2 matt */
268 1.2 matt hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
269 1.2 matt | MAS1_IPROT | MAS1_V;
270 1.2 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
271 1.2 matt }
272 1.2 matt /* We are done with MAS1, on to MAS2 ... */
273 1.2 matt hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
274 1.2 matt hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
275 1.2 matt
276 1.2 matt return hwtlb;
277 1.2 matt }
278 1.2 matt
279 1.3 matt void *
280 1.3 matt e500_tlb1_fetch(size_t slot)
281 1.3 matt {
282 1.3 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
283 1.3 matt
284 1.3 matt return &tlb1->tlb1_entries[slot].e_hwtlb;
285 1.3 matt }
286 1.3 matt
287 1.3 matt void
288 1.3 matt e500_tlb1_sync(void)
289 1.3 matt {
290 1.3 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
291 1.3 matt for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
292 1.3 matt const struct e500_hwtlb * const new_hwtlb =
293 1.3 matt &tlb1->tlb1_entries[slot].e_hwtlb;
294 1.3 matt const struct e500_hwtlb old_hwtlb =
295 1.3 matt hwtlb_read(MAS0_TLBSEL_TLB1, slot);
296 1.3 matt #define CHANGED(n,o,f) ((n)->f != (o).f)
297 1.3 matt bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
298 1.3 matt bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
299 1.3 matt bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
300 1.3 matt #undef CHANGED
301 1.3 matt bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
302 1.3 matt bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
303 1.3 matt if ((new_valid_p || old_valid_p)
304 1.3 matt && (mas1_changed_p
305 1.3 matt || (new_valid_p
306 1.3 matt && (mas2_changed_p || mas3_changed_p))))
307 1.3 matt hwtlb_write(*new_hwtlb, true);
308 1.3 matt }
309 1.3 matt }
310 1.3 matt
311 1.2 matt static int
312 1.2 matt e500_alloc_tlb1_entry(void)
313 1.2 matt {
314 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
315 1.2 matt
316 1.2 matt if (tlb1->tlb1_numfree == 0)
317 1.2 matt return -1;
318 1.2 matt const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
319 1.2 matt KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
320 1.2 matt tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
321 1.9 matt MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
322 1.8 matt return (int)slot;
323 1.2 matt }
324 1.2 matt
325 1.2 matt static void
326 1.2 matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
327 1.2 matt {
328 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
329 1.2 matt KASSERT(slot < tlb1->tlb1_numentries);
330 1.2 matt KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
331 1.2 matt
332 1.2 matt KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
333 1.2 matt xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
334 1.2 matt hwtlb_write(xtlb->e_hwtlb, needs_sync);
335 1.2 matt
336 1.2 matt const register_t msr = wrtee(0);
337 1.2 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
338 1.2 matt wrtee(msr);
339 1.2 matt }
340 1.2 matt
341 1.4 matt static tlb_asid_t
342 1.4 matt e500_tlb_get_asid(void)
343 1.4 matt {
344 1.4 matt return mfspr(SPR_PID0);
345 1.4 matt }
346 1.4 matt
347 1.4 matt static void
348 1.4 matt e500_tlb_set_asid(tlb_asid_t asid)
349 1.2 matt {
350 1.2 matt mtspr(SPR_PID0, asid);
351 1.2 matt }
352 1.2 matt
353 1.4 matt static void
354 1.4 matt e500_tlb_invalidate_all(void)
355 1.2 matt {
356 1.2 matt /*
357 1.2 matt * This does a flash invalidate of all entries in TLB0.
358 1.2 matt * We don't touch TLB1 since we don't expect those to be volatile.
359 1.2 matt */
360 1.2 matt #if 1
361 1.2 matt __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
362 1.11 matt __asm volatile("tlbsync\n\tisync\n\tsync");
363 1.2 matt #else
364 1.2 matt mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
365 1.2 matt while (mfspr(SPR_MMUCSR0) != 0)
366 1.2 matt ;
367 1.2 matt #endif
368 1.2 matt }
369 1.2 matt
370 1.2 matt static void
371 1.2 matt e500_tlb_invalidate_globals(void)
372 1.2 matt {
373 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
374 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
375 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
376 1.2 matt const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
377 1.2 matt const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
378 1.2 matt const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
379 1.2 matt const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
380 1.2 matt
381 1.2 matt const register_t msr = wrtee(0);
382 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
383 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
384 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
385 1.2 matt mtspr(SPR_MAS2, epn);
386 1.2 matt __asm volatile("tlbre");
387 1.2 matt uint32_t mas1 = mfspr(SPR_MAS1);
388 1.2 matt
389 1.2 matt /*
390 1.2 matt * Make sure this is a valid kernel entry first.
391 1.2 matt */
392 1.2 matt if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
393 1.2 matt continue;
394 1.2 matt
395 1.2 matt /*
396 1.2 matt * We have a valid kernel TLB entry. But if it matches
397 1.2 matt * the stack we are currently running on, it would
398 1.2 matt * unwise to invalidate it. First see if the epn
399 1.2 matt * overlaps the stack. If it does then get the
400 1.2 matt * VA and see if it really is part of the stack.
401 1.2 matt */
402 1.2 matt if (epn_kstack_lo < epn_kstack_hi
403 1.2 matt ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
404 1.2 matt : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
405 1.2 matt const uint32_t mas2_epn =
406 1.2 matt mfspr(SPR_MAS2) & MAS2_EPN;
407 1.2 matt if (kstack_lo <= mas2_epn
408 1.2 matt && mas2_epn <= kstack_hi)
409 1.2 matt continue;
410 1.2 matt }
411 1.2 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V);
412 1.2 matt __asm volatile("tlbwe");
413 1.2 matt }
414 1.2 matt }
415 1.11 matt __asm volatile("isync\n\tsync");
416 1.2 matt wrtee(msr);
417 1.2 matt }
418 1.2 matt
419 1.2 matt static void
420 1.4 matt e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
421 1.2 matt {
422 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
423 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
424 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
425 1.2 matt
426 1.2 matt asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
427 1.2 matt asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
428 1.2 matt
429 1.2 matt const register_t msr = wrtee(0);
430 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
431 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
432 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
433 1.2 matt mtspr(SPR_MAS2, epn);
434 1.2 matt __asm volatile("tlbre");
435 1.2 matt const uint32_t mas1 = mfspr(SPR_MAS1);
436 1.2 matt /*
437 1.2 matt * If this is a valid entry for AS space 1 and
438 1.2 matt * its asid matches the constraints of the caller,
439 1.2 matt * clear its valid bit.
440 1.2 matt */
441 1.2 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
442 1.2 matt && asid_lo <= (mas1 & MAS1_TID)
443 1.5 matt && (mas1 & MAS1_TID) <= asid_hi) {
444 1.2 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V);
445 1.2 matt #if 0
446 1.2 matt printf("%s[%zu,%zu]->[%x]\n",
447 1.2 matt __func__, assoc, epn, mas1);
448 1.2 matt #endif
449 1.2 matt __asm volatile("tlbwe");
450 1.2 matt }
451 1.2 matt }
452 1.2 matt }
453 1.11 matt __asm volatile("isync\n\tsync");
454 1.2 matt wrtee(msr);
455 1.2 matt }
456 1.2 matt
457 1.2 matt static u_int
458 1.4 matt e500_tlb_record_asids(u_long *bitmap)
459 1.2 matt {
460 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
461 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
462 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
463 1.2 matt const size_t nbits = 8 * sizeof(bitmap[0]);
464 1.2 matt u_int found = 0;
465 1.2 matt
466 1.2 matt const register_t msr = wrtee(0);
467 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
468 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
469 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
470 1.2 matt mtspr(SPR_MAS2, epn);
471 1.2 matt __asm volatile("tlbre");
472 1.2 matt const uint32_t mas1 = mfspr(SPR_MAS1);
473 1.2 matt /*
474 1.2 matt * If this is a valid entry for AS space 1 and
475 1.2 matt * its asid matches the constraints of the caller,
476 1.2 matt * clear its valid bit.
477 1.2 matt */
478 1.2 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
479 1.2 matt const uint32_t asid = MASX_TID_GET(mas1);
480 1.2 matt const u_int i = asid / nbits;
481 1.2 matt const u_long mask = 1UL << (asid & (nbits - 1));
482 1.2 matt if ((bitmap[i] & mask) == 0) {
483 1.2 matt bitmap[i] |= mask;
484 1.2 matt found++;
485 1.2 matt }
486 1.2 matt }
487 1.2 matt }
488 1.2 matt }
489 1.2 matt wrtee(msr);
490 1.2 matt
491 1.2 matt return found;
492 1.2 matt }
493 1.2 matt
494 1.2 matt static void
495 1.4 matt e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
496 1.2 matt {
497 1.2 matt KASSERT((va & PAGE_MASK) == 0);
498 1.2 matt /*
499 1.2 matt * Bits 60 & 61 have meaning
500 1.2 matt */
501 1.11 matt if (asid == KERNEL_PID) {
502 1.11 matt /*
503 1.11 matt * For data accesses, the context-synchronizing instruction
504 1.11 matt * before tlbwe or tlbivax ensures that all memory accesses
505 1.11 matt * due to preceding instructions have completed to a point
506 1.11 matt * at which they have reported all exceptions they will cause.
507 1.11 matt */
508 1.11 matt __asm volatile("isync");
509 1.11 matt }
510 1.2 matt __asm volatile("tlbivax\t0, %0" :: "b"(va));
511 1.2 matt __asm volatile("tlbsync");
512 1.11 matt __asm volatile("tlbsync"); /* Why? */
513 1.11 matt if (asid == KERNEL_PID) {
514 1.11 matt /*
515 1.11 matt * The context-synchronizing instruction after tlbwe or tlbivax
516 1.11 matt * ensures that subsequent accesses (data and instruction) use
517 1.11 matt * the updated value in any TLB entries affected.
518 1.11 matt */
519 1.11 matt __asm volatile("isync\n\tsync");
520 1.11 matt }
521 1.2 matt }
522 1.2 matt
523 1.2 matt static bool
524 1.4 matt e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
525 1.2 matt {
526 1.2 matt struct e500_hwtlb hwtlb = tlb_to_hwtlb(
527 1.2 matt (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
528 1.2 matt .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
529 1.2 matt
530 1.2 matt register_t msr = wrtee(0);
531 1.2 matt mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
532 1.2 matt __asm volatile("tlbsx 0, %0" :: "b"(va));
533 1.2 matt register_t mas1 = mfspr(SPR_MAS1);
534 1.2 matt if ((mas1 & MAS1_V) == 0) {
535 1.2 matt if (!insert) {
536 1.2 matt wrtee(msr);
537 1.2 matt #if 0
538 1.2 matt printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
539 1.2 matt __func__, va, asid, pte, insert);
540 1.2 matt #endif
541 1.2 matt return false;
542 1.2 matt }
543 1.2 matt mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
544 1.2 matt }
545 1.2 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
546 1.2 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
547 1.12 matt //mtspr(SPR_MAS7, 0);
548 1.2 matt __asm volatile("tlbwe");
549 1.11 matt if (asid == KERNEL_PID)
550 1.11 matt __asm volatile("isync\n\tsync");
551 1.2 matt wrtee(msr);
552 1.2 matt #if 0
553 1.2 matt if (asid)
554 1.2 matt printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
555 1.2 matt __func__, va, asid, pte, insert,
556 1.2 matt hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
557 1.2 matt #endif
558 1.2 matt return (mas1 & MAS1_V) != 0;
559 1.2 matt }
560 1.2 matt
561 1.2 matt static void
562 1.4 matt e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
563 1.4 matt {
564 1.4 matt }
565 1.4 matt
566 1.4 matt static void
567 1.2 matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
568 1.2 matt {
569 1.2 matt }
570 1.2 matt
571 1.2 matt static void
572 1.2 matt e500_tlb_dump(void (*pr)(const char *, ...))
573 1.2 matt {
574 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
575 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
576 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
577 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
578 1.2 matt size_t valid = 0;
579 1.2 matt
580 1.2 matt if (pr == NULL)
581 1.2 matt pr = printf;
582 1.2 matt
583 1.2 matt const register_t msr = wrtee(0);
584 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
585 1.2 matt struct e500_hwtlb hwtlb;
586 1.2 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
587 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
588 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
589 1.2 matt mtspr(SPR_MAS2, epn);
590 1.2 matt __asm volatile("tlbre");
591 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
592 1.2 matt /*
593 1.2 matt * If this is a valid entry for AS space 1 and
594 1.2 matt * its asid matches the constraints of the caller,
595 1.2 matt * clear its valid bit.
596 1.2 matt */
597 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
598 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
599 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
600 1.2 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
601 1.2 matt (*pr)("[%zu,%zu]->[%x,%x,%x]",
602 1.2 matt assoc, atop(epn),
603 1.2 matt hwtlb.hwtlb_mas1,
604 1.2 matt hwtlb.hwtlb_mas2,
605 1.2 matt hwtlb.hwtlb_mas3);
606 1.2 matt (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
607 1.2 matt tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
608 1.2 matt (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
609 1.2 matt tlb.tlb_pte & PTE_RPN_MASK,
610 1.2 matt tlb.tlb_pte & PTE_xR ? "R" : "",
611 1.2 matt tlb.tlb_pte & PTE_xW ? "W" : "",
612 1.2 matt tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
613 1.2 matt tlb.tlb_pte & PTE_xX ? "X" : "",
614 1.2 matt tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
615 1.2 matt tlb.tlb_pte & PTE_W ? "W" : "",
616 1.2 matt tlb.tlb_pte & PTE_I ? "I" : "",
617 1.2 matt tlb.tlb_pte & PTE_M ? "M" : "",
618 1.2 matt tlb.tlb_pte & PTE_G ? "G" : "",
619 1.2 matt tlb.tlb_pte & PTE_E ? "E" : "");
620 1.2 matt valid++;
621 1.2 matt }
622 1.2 matt }
623 1.2 matt }
624 1.2 matt mtspr(SPR_MAS0, saved_mas0);
625 1.2 matt wrtee(msr);
626 1.2 matt (*pr)("%s: %zu valid entries\n", __func__, valid);
627 1.2 matt }
628 1.2 matt
629 1.2 matt static void
630 1.2 matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
631 1.2 matt {
632 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
633 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
634 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
635 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
636 1.2 matt
637 1.2 matt const register_t msr = wrtee(0);
638 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
639 1.2 matt struct e500_hwtlb hwtlb;
640 1.2 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
641 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
642 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
643 1.2 matt mtspr(SPR_MAS2, epn);
644 1.2 matt __asm volatile("tlbre");
645 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
646 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
647 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
648 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
649 1.2 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
650 1.2 matt if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
651 1.2 matt tlb.tlb_pte))
652 1.2 matt break;
653 1.2 matt }
654 1.2 matt }
655 1.2 matt }
656 1.2 matt mtspr(SPR_MAS0, saved_mas0);
657 1.2 matt wrtee(msr);
658 1.2 matt }
659 1.2 matt
660 1.2 matt static struct e500_xtlb *
661 1.9 matt e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
662 1.9 matt {
663 1.9 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
664 1.9 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
665 1.9 matt
666 1.9 matt /*
667 1.9 matt * See if we have a TLB entry for the pa.
668 1.9 matt */
669 1.9 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
670 1.9 matt psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
671 1.9 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
672 1.9 matt && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
673 1.9 matt if (slotp != NULL)
674 1.9 matt *slotp = i;
675 1.9 matt return xtlb;
676 1.9 matt }
677 1.9 matt }
678 1.9 matt
679 1.9 matt return NULL;
680 1.9 matt }
681 1.9 matt
682 1.12 matt struct e500_xtlb *
683 1.2 matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
684 1.2 matt {
685 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
686 1.2 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
687 1.2 matt
688 1.2 matt /*
689 1.9 matt * See if we have a TLB entry for the va.
690 1.2 matt */
691 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
692 1.9 matt vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
693 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
694 1.9 matt && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
695 1.2 matt if (slotp != NULL)
696 1.2 matt *slotp = i;
697 1.2 matt return xtlb;
698 1.2 matt }
699 1.2 matt }
700 1.2 matt
701 1.2 matt return NULL;
702 1.2 matt }
703 1.2 matt
704 1.2 matt static struct e500_xtlb *
705 1.2 matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
706 1.2 matt {
707 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
708 1.2 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
709 1.2 matt
710 1.2 matt /*
711 1.2 matt * See if we have a TLB entry for the pa.
712 1.2 matt */
713 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
714 1.9 matt vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
715 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
716 1.9 matt && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
717 1.9 matt && (((va + len - 1) ^ va) & mask) == 0) {
718 1.2 matt return xtlb;
719 1.2 matt }
720 1.2 matt }
721 1.2 matt
722 1.2 matt return NULL;
723 1.2 matt }
724 1.2 matt
725 1.2 matt static void *
726 1.7 matt e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
727 1.2 matt {
728 1.9 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
729 1.2 matt
730 1.2 matt /*
731 1.2 matt * See if we have a TLB entry for the pa. If completely falls within
732 1.6 matt * mark the reference and return the pa. But only if the tlb entry
733 1.6 matt * is not cacheable.
734 1.2 matt */
735 1.6 matt if (xtlb
736 1.7 matt && (prefetchable
737 1.7 matt || (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
738 1.2 matt xtlb->e_refcnt++;
739 1.10 matt return (void *) (xtlb->e_tlb.tlb_va
740 1.10 matt + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
741 1.2 matt }
742 1.2 matt return NULL;
743 1.2 matt }
744 1.2 matt
745 1.2 matt static void
746 1.2 matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
747 1.2 matt {
748 1.2 matt if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
749 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
750 1.2 matt if (xtlb)
751 1.2 matt xtlb->e_refcnt--;
752 1.2 matt }
753 1.2 matt }
754 1.2 matt
755 1.2 matt static int
756 1.4 matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
757 1.2 matt {
758 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
759 1.2 matt struct e500_xtlb *xtlb;
760 1.2 matt
761 1.2 matt KASSERT(len & 0x55555000);
762 1.2 matt KASSERT((len & ~0x55555000) == 0);
763 1.2 matt KASSERT(len >= PAGE_SIZE);
764 1.2 matt KASSERT((len & (len - 1)) == 0);
765 1.2 matt KASSERT((va & (len - 1)) == 0);
766 1.9 matt KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
767 1.2 matt
768 1.2 matt if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
769 1.9 matt psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
770 1.9 matt KASSERT(len <= xtlb->e_tlb.tlb_size);
771 1.9 matt KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
772 1.2 matt xtlb->e_refcnt++;
773 1.2 matt return 0;
774 1.2 matt }
775 1.2 matt
776 1.2 matt const int slot = e500_alloc_tlb1_entry();
777 1.2 matt if (slot < 0)
778 1.2 matt return ENOMEM;
779 1.2 matt
780 1.2 matt xtlb = &tlb1->tlb1_entries[slot];
781 1.2 matt xtlb->e_tlb.tlb_va = va;
782 1.2 matt xtlb->e_tlb.tlb_size = len;
783 1.2 matt xtlb->e_tlb.tlb_pte = pte;
784 1.2 matt xtlb->e_tlb.tlb_asid = KERNEL_PID;
785 1.2 matt
786 1.2 matt xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
787 1.9 matt xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
788 1.2 matt hwtlb_write(xtlb->e_hwtlb, true);
789 1.2 matt return 0;
790 1.2 matt }
791 1.2 matt
792 1.2 matt static int
793 1.2 matt e500_tlb_iorelease(vaddr_t va)
794 1.2 matt {
795 1.2 matt u_int slot;
796 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
797 1.2 matt
798 1.2 matt if (xtlb == NULL)
799 1.2 matt return ENOENT;
800 1.2 matt
801 1.2 matt if (xtlb->e_refcnt)
802 1.2 matt return EBUSY;
803 1.2 matt
804 1.2 matt e500_free_tlb1_entry(xtlb, slot, true);
805 1.2 matt
806 1.2 matt return 0;
807 1.2 matt }
808 1.2 matt
809 1.2 matt static u_int
810 1.2 matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
811 1.2 matt {
812 1.2 matt u_int slotmask = 0;
813 1.2 matt u_int slots = 0, nextslot = 0;
814 1.2 matt KASSERT(tlb1->tlb1_numfree > 1);
815 1.2 matt KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
816 1.2 matt for (paddr_t lastaddr = memstart; 0 < memsize; ) {
817 1.2 matt u_int cnt = __builtin_clz(memsize);
818 1.2 matt psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
819 1.2 matt slots += memsize / size;
820 1.2 matt if (slots > 4)
821 1.2 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
822 1.2 matt __func__, __LINE__, memsize, "too fragmented");
823 1.2 matt if (slots > tlb1->tlb1_numfree - 1)
824 1.2 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
825 1.2 matt __func__, __LINE__, memsize,
826 1.2 matt "insufficent TLB entries");
827 1.2 matt for (; nextslot < slots; nextslot++) {
828 1.2 matt const u_int freeslot = e500_alloc_tlb1_entry();
829 1.2 matt struct e500_xtlb * const xtlb =
830 1.2 matt &tlb1->tlb1_entries[freeslot];
831 1.2 matt xtlb->e_tlb.tlb_asid = KERNEL_PID;
832 1.2 matt xtlb->e_tlb.tlb_size = size;
833 1.2 matt xtlb->e_tlb.tlb_va = lastaddr;
834 1.2 matt xtlb->e_tlb.tlb_pte = lastaddr
835 1.2 matt | PTE_M | PTE_xX | PTE_xW | PTE_xR;
836 1.2 matt lastaddr += size;
837 1.2 matt memsize -= size;
838 1.2 matt slotmask |= 1 << (31 - freeslot); /* clz friendly */
839 1.2 matt }
840 1.2 matt }
841 1.2 matt
842 1.2 matt return nextslot;
843 1.2 matt }
844 1.2 matt static const struct tlb_md_ops e500_tlb_ops = {
845 1.4 matt .md_tlb_get_asid = e500_tlb_get_asid,
846 1.2 matt .md_tlb_set_asid = e500_tlb_set_asid,
847 1.2 matt .md_tlb_invalidate_all = e500_tlb_invalidate_all,
848 1.2 matt .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
849 1.2 matt .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
850 1.2 matt .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
851 1.2 matt .md_tlb_update_addr = e500_tlb_update_addr,
852 1.2 matt .md_tlb_record_asids = e500_tlb_record_asids,
853 1.4 matt .md_tlb_write_entry = e500_tlb_write_entry,
854 1.2 matt .md_tlb_read_entry = e500_tlb_read_entry,
855 1.4 matt .md_tlb_dump = e500_tlb_dump,
856 1.4 matt .md_tlb_walk = e500_tlb_walk,
857 1.4 matt };
858 1.4 matt
859 1.4 matt static const struct tlb_md_io_ops e500_tlb_io_ops = {
860 1.2 matt .md_tlb_mapiodev = e500_tlb_mapiodev,
861 1.2 matt .md_tlb_unmapiodev = e500_tlb_unmapiodev,
862 1.2 matt .md_tlb_ioreserve = e500_tlb_ioreserve,
863 1.2 matt .md_tlb_iorelease = e500_tlb_iorelease,
864 1.2 matt };
865 1.2 matt
866 1.2 matt void
867 1.2 matt e500_tlb_init(vaddr_t endkernel, psize_t memsize)
868 1.2 matt {
869 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
870 1.2 matt
871 1.2 matt #if 0
872 1.2 matt register_t mmucfg = mfspr(SPR_MMUCFG);
873 1.2 matt register_t mas4 = mfspr(SPR_MAS4);
874 1.2 matt #endif
875 1.2 matt
876 1.2 matt const uint32_t tlb1cfg = mftlb1cfg();
877 1.2 matt tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
878 1.2 matt KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
879 1.2 matt /*
880 1.2 matt * Limit maxsize to 1G since 4G isn't really useful to us.
881 1.2 matt */
882 1.2 matt tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
883 1.2 matt tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
884 1.2 matt
885 1.2 matt #ifdef VERBOSE_INITPPC
886 1.2 matt printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
887 1.2 matt tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
888 1.2 matt tlb1->tlb1_maxsize >> 10);
889 1.2 matt #endif
890 1.2 matt
891 1.2 matt /*
892 1.2 matt * Let's see what's in TLB1 and we need to invalidate any entry that
893 1.2 matt * would fit within the kernel's mapped address space.
894 1.2 matt */
895 1.2 matt psize_t memmapped = 0;
896 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
897 1.2 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
898 1.2 matt
899 1.2 matt xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
900 1.2 matt
901 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
902 1.2 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
903 1.2 matt #ifdef VERBOSE_INITPPC
904 1.2 matt printf(" TLB1[%u]=<unused>", i);
905 1.2 matt #endif
906 1.2 matt continue;
907 1.2 matt }
908 1.2 matt
909 1.2 matt xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
910 1.2 matt #ifdef VERBOSE_INITPPC
911 1.2 matt printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
912 1.2 matt i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
913 1.2 matt xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
914 1.2 matt #endif
915 1.2 matt if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
916 1.2 matt && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
917 1.2 matt || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
918 1.2 matt && VM_MIN_KERNEL_ADDRESS <
919 1.2 matt xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
920 1.2 matt #ifdef VERBOSE_INITPPC
921 1.2 matt printf("free");
922 1.2 matt #endif
923 1.2 matt e500_free_tlb1_entry(xtlb, i, false);
924 1.2 matt #ifdef VERBOSE_INITPPC
925 1.2 matt printf("d");
926 1.2 matt #endif
927 1.2 matt continue;
928 1.2 matt }
929 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
930 1.2 matt xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
931 1.2 matt hwtlb_write(xtlb->e_hwtlb, false);
932 1.2 matt #ifdef VERBOSE_INITPPC
933 1.2 matt printf("+iprot");
934 1.2 matt #endif
935 1.2 matt }
936 1.2 matt if (xtlb->e_tlb.tlb_pte & PTE_I)
937 1.2 matt continue;
938 1.2 matt
939 1.2 matt if (xtlb->e_tlb.tlb_va == 0
940 1.2 matt || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
941 1.2 matt memmapped += xtlb->e_tlb.tlb_size;
942 1.12 matt /*
943 1.12 matt * Let make sure main memory is setup so it's memory
944 1.12 matt * coherent. For some reason u-boot doesn't set it up
945 1.12 matt * that way.
946 1.12 matt */
947 1.12 matt if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) {
948 1.12 matt xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M;
949 1.12 matt hwtlb_write(xtlb->e_hwtlb, true);
950 1.12 matt }
951 1.2 matt }
952 1.2 matt }
953 1.2 matt
954 1.2 matt cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
955 1.4 matt cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
956 1.2 matt
957 1.2 matt if (__predict_false(memmapped < memsize)) {
958 1.2 matt /*
959 1.2 matt * Let's see how many TLB entries are needed to map memory.
960 1.2 matt */
961 1.2 matt u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
962 1.2 matt
963 1.2 matt /*
964 1.2 matt * To map main memory into the TLB, we need to flush any
965 1.2 matt * existing entries from the TLB that overlap the virtual
966 1.2 matt * address space needed to map physical memory. That may
967 1.2 matt * include the entries for the pages currently used by the
968 1.2 matt * stack or that we are executing. So to avoid problems, we
969 1.2 matt * are going to temporarily map the kernel and stack into AS 1,
970 1.2 matt * switch to it, and clear out the TLB entries from AS 0,
971 1.2 matt * install the new TLB entries to map memory, and then switch
972 1.2 matt * back to AS 0 and free the temp entry used for AS1.
973 1.2 matt */
974 1.2 matt u_int b = __builtin_clz(endkernel);
975 1.2 matt
976 1.2 matt /*
977 1.2 matt * If the kernel doesn't end on a clean power of 2, we need
978 1.2 matt * to round the size up (by decrementing the number of leading
979 1.2 matt * zero bits). If the size isn't a power of 4KB, decrement
980 1.2 matt * again to make it one.
981 1.2 matt */
982 1.2 matt if (endkernel & (endkernel - 1))
983 1.2 matt b--;
984 1.2 matt if ((b & 1) == 0)
985 1.2 matt b--;
986 1.2 matt
987 1.2 matt /*
988 1.2 matt * Create a TLB1 mapping for the kernel in AS1.
989 1.2 matt */
990 1.2 matt const u_int kslot = e500_alloc_tlb1_entry();
991 1.2 matt struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
992 1.2 matt kxtlb->e_tlb.tlb_va = 0;
993 1.2 matt kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
994 1.2 matt kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
995 1.2 matt kxtlb->e_tlb.tlb_asid = KERNEL_PID;
996 1.2 matt
997 1.2 matt kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
998 1.9 matt kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
999 1.2 matt kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1000 1.2 matt hwtlb_write(kxtlb->e_hwtlb, true);
1001 1.2 matt
1002 1.2 matt /*
1003 1.2 matt * Now that we have a TLB mapping in AS1 for the kernel and its
1004 1.2 matt * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
1005 1.2 matt */
1006 1.2 matt const register_t saved_msr = mfmsr();
1007 1.2 matt mtmsr(saved_msr | PSL_DS | PSL_IS);
1008 1.2 matt __asm volatile("isync");
1009 1.2 matt
1010 1.2 matt /*
1011 1.2 matt *** Invalidate all the TLB0 entries.
1012 1.2 matt */
1013 1.2 matt e500_tlb_invalidate_all();
1014 1.2 matt
1015 1.2 matt /*
1016 1.2 matt *** Now let's see if we have any entries in TLB1 that would
1017 1.2 matt *** overlap the ones we are about to install. If so, nuke 'em.
1018 1.2 matt */
1019 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
1020 1.2 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
1021 1.2 matt struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
1022 1.2 matt if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
1023 1.2 matt && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
1024 1.2 matt e500_free_tlb1_entry(xtlb, i, false);
1025 1.2 matt }
1026 1.2 matt }
1027 1.2 matt
1028 1.2 matt /*
1029 1.2 matt *** Now we can add the TLB entries that will map physical
1030 1.2 matt *** memory. If bit 0 [MSB] in slotmask is set, then tlb
1031 1.2 matt *** entry 0 contains a mapping for physical memory...
1032 1.2 matt */
1033 1.2 matt struct e500_xtlb *entries = tlb1->tlb1_entries;
1034 1.2 matt while (slotmask != 0) {
1035 1.2 matt const u_int slot = __builtin_clz(slotmask);
1036 1.2 matt hwtlb_write(entries[slot].e_hwtlb, false);
1037 1.2 matt entries += slot + 1;
1038 1.2 matt slotmask <<= slot + 1;
1039 1.2 matt }
1040 1.2 matt
1041 1.2 matt /*
1042 1.2 matt *** Synchronize the TLB and the instruction stream.
1043 1.2 matt */
1044 1.2 matt __asm volatile("tlbsync");
1045 1.2 matt __asm volatile("isync");
1046 1.2 matt
1047 1.2 matt /*
1048 1.2 matt *** Switch back to AS 0.
1049 1.2 matt */
1050 1.2 matt mtmsr(saved_msr);
1051 1.2 matt __asm volatile("isync");
1052 1.2 matt
1053 1.2 matt /*
1054 1.2 matt * Free the temporary TLB1 entry.
1055 1.2 matt */
1056 1.2 matt e500_free_tlb1_entry(kxtlb, kslot, true);
1057 1.2 matt }
1058 1.2 matt
1059 1.2 matt /*
1060 1.2 matt * Finally set the MAS4 defaults.
1061 1.2 matt */
1062 1.2 matt mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
1063 1.2 matt
1064 1.2 matt /*
1065 1.2 matt * Invalidate all the TLB0 entries.
1066 1.2 matt */
1067 1.2 matt e500_tlb_invalidate_all();
1068 1.2 matt }
1069 1.8 matt
1070 1.8 matt void
1071 1.8 matt e500_tlb_minimize(vaddr_t endkernel)
1072 1.8 matt {
1073 1.8 matt #ifdef PMAP_MINIMALTLB
1074 1.8 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
1075 1.8 matt extern uint32_t _fdata[];
1076 1.8 matt
1077 1.8 matt u_int slot;
1078 1.8 matt
1079 1.8 matt paddr_t boot_page = cpu_read_4(GUR_BPTR);
1080 1.8 matt if (boot_page & BPTR_EN) {
1081 1.8 matt /*
1082 1.8 matt * shift it to an address
1083 1.8 matt */
1084 1.8 matt boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
1085 1.8 matt pmap_kvptefill(boot_page, boot_page + NBPG,
1086 1.8 matt PTE_M | PTE_xR | PTE_xW | PTE_xX);
1087 1.8 matt }
1088 1.8 matt
1089 1.8 matt
1090 1.8 matt KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
1091 1.8 matt KASSERT((uintptr_t)_fdata == 0x400000);
1092 1.8 matt
1093 1.8 matt struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
1094 1.8 matt
1095 1.8 matt KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
1096 1.8 matt const u_int tmp_slot = e500_alloc_tlb1_entry();
1097 1.8 matt KASSERT(tmp_slot != (u_int) -1);
1098 1.8 matt
1099 1.8 matt struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
1100 1.8 matt tmp_xtlb->e_tlb = xtlb->e_tlb;
1101 1.8 matt tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
1102 1.8 matt tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1103 1.8 matt KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1104 1.8 matt tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
1105 1.8 matt hwtlb_write(tmp_xtlb->e_hwtlb, true);
1106 1.8 matt
1107 1.8 matt const u_int text_slot = e500_alloc_tlb1_entry();
1108 1.8 matt KASSERT(text_slot != (u_int)-1);
1109 1.8 matt struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
1110 1.8 matt text_xtlb->e_tlb.tlb_va = 0;
1111 1.8 matt text_xtlb->e_tlb.tlb_size = 0x400000;
1112 1.8 matt text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
1113 1.8 matt text_xtlb->e_tlb.tlb_asid = 0;
1114 1.8 matt text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
1115 1.8 matt KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1116 1.8 matt text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
1117 1.8 matt
1118 1.8 matt const u_int data_slot = e500_alloc_tlb1_entry();
1119 1.8 matt KASSERT(data_slot != (u_int)-1);
1120 1.8 matt struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
1121 1.8 matt data_xtlb->e_tlb.tlb_va = 0x400000;
1122 1.8 matt data_xtlb->e_tlb.tlb_size = 0x400000;
1123 1.8 matt data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
1124 1.8 matt data_xtlb->e_tlb.tlb_asid = 0;
1125 1.8 matt data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
1126 1.8 matt KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1127 1.8 matt data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
1128 1.8 matt
1129 1.8 matt const register_t msr = mfmsr();
1130 1.8 matt const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
1131 1.8 matt
1132 1.8 matt __asm __volatile(
1133 1.8 matt "mtmsr %[ts_msr]" "\n\t"
1134 1.8 matt "sync" "\n\t"
1135 1.8 matt "isync"
1136 1.8 matt :: [ts_msr] "r" (ts_msr));
1137 1.8 matt
1138 1.8 matt #if 0
1139 1.8 matt hwtlb_write(text_xtlb->e_hwtlb, false);
1140 1.8 matt hwtlb_write(data_xtlb->e_hwtlb, false);
1141 1.8 matt e500_free_tlb1_entry(xtlb, slot, true);
1142 1.8 matt #endif
1143 1.8 matt
1144 1.8 matt __asm __volatile(
1145 1.8 matt "mtmsr %[msr]" "\n\t"
1146 1.8 matt "sync" "\n\t"
1147 1.8 matt "isync"
1148 1.8 matt :: [msr] "r" (msr));
1149 1.8 matt
1150 1.8 matt e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
1151 1.8 matt #endif /* PMAP_MINIMALTLB */
1152 1.8 matt }
1153