e500_tlb.c revision 1.18 1 1.18 matt /* $NetBSD: e500_tlb.c,v 1.18 2016/07/11 16:06:52 matt Exp $ */
2 1.2 matt /*-
3 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 1.2 matt * All rights reserved.
5 1.2 matt *
6 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 1.2 matt *
10 1.2 matt * This material is based upon work supported by the Defense Advanced Research
11 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 1.2 matt * Contract No. N66001-09-C-2073.
13 1.2 matt * Approved for Public Release, Distribution Unlimited
14 1.2 matt *
15 1.2 matt * Redistribution and use in source and binary forms, with or without
16 1.2 matt * modification, are permitted provided that the following conditions
17 1.2 matt * are met:
18 1.2 matt * 1. Redistributions of source code must retain the above copyright
19 1.2 matt * notice, this list of conditions and the following disclaimer.
20 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
21 1.2 matt * notice, this list of conditions and the following disclaimer in the
22 1.2 matt * documentation and/or other materials provided with the distribution.
23 1.2 matt *
24 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
35 1.2 matt */
36 1.2 matt
37 1.15 nonaka #include "opt_ppcparam.h"
38 1.15 nonaka
39 1.8 matt #define __PMAP_PRIVATE
40 1.8 matt
41 1.2 matt #include <sys/cdefs.h>
42 1.2 matt
43 1.18 matt __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.18 2016/07/11 16:06:52 matt Exp $");
44 1.2 matt
45 1.2 matt #include <sys/param.h>
46 1.2 matt
47 1.2 matt #include <uvm/uvm_extern.h>
48 1.2 matt
49 1.2 matt #include <powerpc/spr.h>
50 1.2 matt #include <powerpc/booke/spr.h>
51 1.2 matt #include <powerpc/booke/cpuvar.h>
52 1.8 matt #include <powerpc/booke/e500reg.h>
53 1.2 matt #include <powerpc/booke/e500var.h>
54 1.2 matt #include <powerpc/booke/pmap.h>
55 1.2 matt
56 1.2 matt struct e500_tlb {
57 1.2 matt vaddr_t tlb_va;
58 1.2 matt uint32_t tlb_pte;
59 1.2 matt uint32_t tlb_asid;
60 1.2 matt vsize_t tlb_size;
61 1.2 matt };
62 1.2 matt
63 1.2 matt struct e500_hwtlb {
64 1.2 matt uint32_t hwtlb_mas0;
65 1.2 matt uint32_t hwtlb_mas1;
66 1.2 matt uint32_t hwtlb_mas2;
67 1.2 matt uint32_t hwtlb_mas3;
68 1.2 matt };
69 1.2 matt
70 1.2 matt struct e500_xtlb {
71 1.2 matt struct e500_tlb e_tlb;
72 1.2 matt struct e500_hwtlb e_hwtlb;
73 1.2 matt u_long e_refcnt;
74 1.2 matt };
75 1.2 matt
76 1.2 matt static struct e500_tlb1 {
77 1.2 matt uint32_t tlb1_maxsize;
78 1.2 matt uint32_t tlb1_minsize;
79 1.2 matt u_int tlb1_numentries;
80 1.2 matt u_int tlb1_numfree;
81 1.2 matt u_int tlb1_freelist[32];
82 1.2 matt struct e500_xtlb tlb1_entries[32];
83 1.2 matt } e500_tlb1;
84 1.2 matt
85 1.2 matt static inline register_t mftlb0cfg(void) __pure;
86 1.2 matt static inline register_t mftlb1cfg(void) __pure;
87 1.2 matt
88 1.2 matt static inline register_t
89 1.2 matt mftlb0cfg(void)
90 1.2 matt {
91 1.2 matt register_t tlb0cfg;
92 1.2 matt __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
93 1.2 matt return tlb0cfg;
94 1.2 matt }
95 1.2 matt
96 1.2 matt static inline register_t
97 1.2 matt mftlb1cfg(void)
98 1.2 matt {
99 1.2 matt register_t tlb1cfg;
100 1.2 matt __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
101 1.2 matt return tlb1cfg;
102 1.2 matt }
103 1.2 matt
104 1.2 matt static struct e500_tlb
105 1.2 matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
106 1.2 matt {
107 1.2 matt struct e500_tlb tlb;
108 1.2 matt register_t prot_mask;
109 1.2 matt u_int prot_shift;
110 1.2 matt
111 1.2 matt tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
112 1.2 matt tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
113 1.2 matt tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
114 1.2 matt tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
115 1.2 matt | (hwtlb.hwtlb_mas3 & MAS3_RPN);
116 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_TS) {
117 1.2 matt prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
118 1.2 matt prot_shift = PTE_RWX_SHIFT - 1;
119 1.2 matt } else {
120 1.2 matt prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
121 1.2 matt prot_shift = PTE_RWX_SHIFT;
122 1.2 matt }
123 1.2 matt tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
124 1.2 matt return tlb;
125 1.2 matt }
126 1.2 matt
127 1.2 matt static inline struct e500_hwtlb
128 1.2 matt hwtlb_read(uint32_t mas0, u_int slot)
129 1.2 matt {
130 1.2 matt struct e500_hwtlb hwtlb;
131 1.2 matt register_t tlbcfg;
132 1.2 matt
133 1.2 matt if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
134 1.2 matt tlbcfg = mftlb0cfg();
135 1.2 matt } else if (mas0 == MAS0_TLBSEL_TLB1) {
136 1.2 matt tlbcfg = mftlb1cfg();
137 1.2 matt } else {
138 1.2 matt panic("%s:%d: unexpected MAS0 %#" PRIx32,
139 1.2 matt __func__, __LINE__, mas0);
140 1.2 matt }
141 1.2 matt
142 1.2 matt /*
143 1.2 matt * ESEL is the way we want to look up.
144 1.2 matt * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
145 1.2 matt * fully associative, the entire slot is placed into ESEL. If tlbassoc
146 1.13 wiz * is less than the number of tlb entries, the slot is split in two
147 1.2 matt * fields. Since the TLB is M rows by N ways, the lowers bits are for
148 1.2 matt * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
149 1.2 matt */
150 1.2 matt const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
151 1.2 matt const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
152 1.2 matt const u_int esel_shift =
153 1.2 matt __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
154 1.2 matt
155 1.2 matt /*
156 1.2 matt * Disable interrupts since we don't want anyone else mucking with
157 1.2 matt * the MMU Assist registers
158 1.2 matt */
159 1.2 matt const register_t msr = wrtee(0);
160 1.2 matt const register_t saved_mas0 = mfspr(SPR_MAS0);
161 1.2 matt mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
162 1.2 matt
163 1.2 matt if (__predict_true(tlbassoc > tlbentries))
164 1.2 matt mtspr(SPR_MAS2, slot << PAGE_SHIFT);
165 1.2 matt
166 1.2 matt /*
167 1.2 matt * Now select the entry and grab its contents.
168 1.2 matt */
169 1.2 matt __asm volatile("tlbre");
170 1.2 matt
171 1.2 matt hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
172 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
173 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
174 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
175 1.2 matt
176 1.2 matt mtspr(SPR_MAS0, saved_mas0);
177 1.2 matt wrtee(msr); /* restore interrupts */
178 1.2 matt
179 1.2 matt return hwtlb;
180 1.2 matt }
181 1.2 matt
182 1.2 matt static inline void
183 1.2 matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
184 1.2 matt {
185 1.2 matt const register_t msr = wrtee(0);
186 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
187 1.2 matt
188 1.2 matt /*
189 1.2 matt * Need to always write MAS0 and MAS1
190 1.2 matt */
191 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
192 1.2 matt mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
193 1.2 matt
194 1.2 matt /*
195 1.2 matt * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
196 1.2 matt */
197 1.2 matt if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
198 1.2 matt || (hwtlb.hwtlb_mas1 & MAS1_V)) {
199 1.2 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
200 1.2 matt }
201 1.2 matt /*
202 1.2 matt * Only need to write the RPN/prot if we are dealing with a valid
203 1.2 matt * mapping.
204 1.2 matt */
205 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
206 1.2 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
207 1.12 matt //mtspr(SPR_MAS7, 0);
208 1.2 matt }
209 1.2 matt
210 1.2 matt #if 0
211 1.2 matt printf("%s->[%x,%x,%x,%x]\n",
212 1.2 matt __func__,
213 1.2 matt hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
214 1.2 matt hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
215 1.2 matt #endif
216 1.2 matt __asm volatile("tlbwe");
217 1.2 matt if (needs_sync) {
218 1.11 matt __asm volatile("tlbsync\n\tisync\n\tsync");
219 1.2 matt }
220 1.2 matt
221 1.2 matt mtspr(SPR_MAS0, saved_mas0);
222 1.2 matt wrtee(msr);
223 1.2 matt }
224 1.2 matt
225 1.2 matt static struct e500_hwtlb
226 1.2 matt tlb_to_hwtlb(const struct e500_tlb tlb)
227 1.2 matt {
228 1.2 matt struct e500_hwtlb hwtlb;
229 1.2 matt
230 1.2 matt KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
231 1.2 matt KASSERT(tlb.tlb_size != 0);
232 1.2 matt KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
233 1.2 matt const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
234 1.2 matt if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
235 1.2 matt hwtlb.hwtlb_mas0 = 0;
236 1.2 matt hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
237 1.2 matt /*
238 1.2 matt * A non-zero ASID means this is a user page so mark it as
239 1.2 matt * being in the user's address space.
240 1.2 matt */
241 1.2 matt if (tlb.tlb_asid) {
242 1.2 matt hwtlb.hwtlb_mas1 |= MAS1_TS
243 1.2 matt | MASX_TID_MAKE(tlb.tlb_asid);
244 1.2 matt hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
245 1.2 matt | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
246 1.2 matt KASSERT(prot_mask & PTE_xR);
247 1.2 matt KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
248 1.2 matt CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
249 1.2 matt CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
250 1.2 matt } else {
251 1.2 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
252 1.2 matt }
253 1.2 matt if (tlb.tlb_pte & PTE_UNMODIFIED)
254 1.2 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
255 1.2 matt if (tlb.tlb_pte & PTE_UNSYNCED)
256 1.2 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
257 1.2 matt } else {
258 1.2 matt KASSERT(tlb.tlb_asid == 0);
259 1.2 matt KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
260 1.2 matt u_int cntlz = __builtin_clz(tlb.tlb_size);
261 1.2 matt KASSERT(cntlz & 1);
262 1.2 matt KASSERT(cntlz <= 19);
263 1.2 matt hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
264 1.2 matt /*
265 1.8 matt * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
266 1.2 matt * allowed. So 1K would be 0x00000400 giving 21 leading zero
267 1.2 matt * bits. Subtracting the leading number of zero bits from 21
268 1.2 matt * and dividing by 2 gives us the number that the MMU wants.
269 1.2 matt */
270 1.2 matt hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
271 1.2 matt | MAS1_IPROT | MAS1_V;
272 1.2 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
273 1.2 matt }
274 1.2 matt /* We are done with MAS1, on to MAS2 ... */
275 1.2 matt hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
276 1.2 matt hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
277 1.2 matt
278 1.2 matt return hwtlb;
279 1.2 matt }
280 1.2 matt
281 1.3 matt void *
282 1.3 matt e500_tlb1_fetch(size_t slot)
283 1.3 matt {
284 1.3 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
285 1.3 matt
286 1.3 matt return &tlb1->tlb1_entries[slot].e_hwtlb;
287 1.3 matt }
288 1.3 matt
289 1.3 matt void
290 1.3 matt e500_tlb1_sync(void)
291 1.3 matt {
292 1.3 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
293 1.3 matt for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
294 1.3 matt const struct e500_hwtlb * const new_hwtlb =
295 1.3 matt &tlb1->tlb1_entries[slot].e_hwtlb;
296 1.3 matt const struct e500_hwtlb old_hwtlb =
297 1.3 matt hwtlb_read(MAS0_TLBSEL_TLB1, slot);
298 1.3 matt #define CHANGED(n,o,f) ((n)->f != (o).f)
299 1.3 matt bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
300 1.3 matt bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
301 1.3 matt bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
302 1.3 matt #undef CHANGED
303 1.3 matt bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
304 1.3 matt bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
305 1.3 matt if ((new_valid_p || old_valid_p)
306 1.3 matt && (mas1_changed_p
307 1.3 matt || (new_valid_p
308 1.3 matt && (mas2_changed_p || mas3_changed_p))))
309 1.3 matt hwtlb_write(*new_hwtlb, true);
310 1.3 matt }
311 1.3 matt }
312 1.3 matt
313 1.2 matt static int
314 1.2 matt e500_alloc_tlb1_entry(void)
315 1.2 matt {
316 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
317 1.2 matt
318 1.2 matt if (tlb1->tlb1_numfree == 0)
319 1.2 matt return -1;
320 1.2 matt const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
321 1.2 matt KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
322 1.2 matt tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
323 1.9 matt MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
324 1.8 matt return (int)slot;
325 1.2 matt }
326 1.2 matt
327 1.2 matt static void
328 1.2 matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
329 1.2 matt {
330 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
331 1.2 matt KASSERT(slot < tlb1->tlb1_numentries);
332 1.2 matt KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
333 1.2 matt
334 1.2 matt KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
335 1.2 matt xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
336 1.2 matt hwtlb_write(xtlb->e_hwtlb, needs_sync);
337 1.2 matt
338 1.2 matt const register_t msr = wrtee(0);
339 1.2 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
340 1.2 matt wrtee(msr);
341 1.2 matt }
342 1.2 matt
343 1.4 matt static tlb_asid_t
344 1.4 matt e500_tlb_get_asid(void)
345 1.4 matt {
346 1.4 matt return mfspr(SPR_PID0);
347 1.4 matt }
348 1.4 matt
349 1.4 matt static void
350 1.4 matt e500_tlb_set_asid(tlb_asid_t asid)
351 1.2 matt {
352 1.2 matt mtspr(SPR_PID0, asid);
353 1.2 matt }
354 1.2 matt
355 1.4 matt static void
356 1.4 matt e500_tlb_invalidate_all(void)
357 1.2 matt {
358 1.2 matt /*
359 1.2 matt * This does a flash invalidate of all entries in TLB0.
360 1.2 matt * We don't touch TLB1 since we don't expect those to be volatile.
361 1.2 matt */
362 1.2 matt #if 1
363 1.2 matt __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
364 1.11 matt __asm volatile("tlbsync\n\tisync\n\tsync");
365 1.2 matt #else
366 1.14 nonaka mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FI);
367 1.2 matt while (mfspr(SPR_MMUCSR0) != 0)
368 1.2 matt ;
369 1.2 matt #endif
370 1.2 matt }
371 1.2 matt
372 1.2 matt static void
373 1.2 matt e500_tlb_invalidate_globals(void)
374 1.2 matt {
375 1.16 nonaka #if defined(MULTIPROCESSOR)
376 1.16 nonaka e500_tlb_invalidate_all();
377 1.16 nonaka #else /* !MULTIPROCESSOR */
378 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
379 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
380 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
381 1.2 matt const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
382 1.2 matt const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
383 1.2 matt const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
384 1.2 matt const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
385 1.2 matt
386 1.2 matt const register_t msr = wrtee(0);
387 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
388 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
389 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
390 1.2 matt mtspr(SPR_MAS2, epn);
391 1.2 matt __asm volatile("tlbre");
392 1.2 matt uint32_t mas1 = mfspr(SPR_MAS1);
393 1.2 matt
394 1.2 matt /*
395 1.2 matt * Make sure this is a valid kernel entry first.
396 1.2 matt */
397 1.2 matt if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
398 1.2 matt continue;
399 1.2 matt
400 1.2 matt /*
401 1.2 matt * We have a valid kernel TLB entry. But if it matches
402 1.2 matt * the stack we are currently running on, it would
403 1.2 matt * unwise to invalidate it. First see if the epn
404 1.2 matt * overlaps the stack. If it does then get the
405 1.2 matt * VA and see if it really is part of the stack.
406 1.2 matt */
407 1.2 matt if (epn_kstack_lo < epn_kstack_hi
408 1.2 matt ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
409 1.2 matt : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
410 1.2 matt const uint32_t mas2_epn =
411 1.2 matt mfspr(SPR_MAS2) & MAS2_EPN;
412 1.2 matt if (kstack_lo <= mas2_epn
413 1.2 matt && mas2_epn <= kstack_hi)
414 1.2 matt continue;
415 1.2 matt }
416 1.2 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V);
417 1.2 matt __asm volatile("tlbwe");
418 1.2 matt }
419 1.2 matt }
420 1.11 matt __asm volatile("isync\n\tsync");
421 1.2 matt wrtee(msr);
422 1.16 nonaka #endif /* MULTIPROCESSOR */
423 1.2 matt }
424 1.2 matt
425 1.2 matt static void
426 1.4 matt e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
427 1.2 matt {
428 1.16 nonaka #if defined(MULTIPROCESSOR)
429 1.16 nonaka e500_tlb_invalidate_all();
430 1.16 nonaka #else /* !MULTIPROCESSOR */
431 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
432 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
433 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
434 1.2 matt
435 1.2 matt asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
436 1.2 matt asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
437 1.2 matt
438 1.2 matt const register_t msr = wrtee(0);
439 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
440 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
441 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
442 1.2 matt mtspr(SPR_MAS2, epn);
443 1.2 matt __asm volatile("tlbre");
444 1.2 matt const uint32_t mas1 = mfspr(SPR_MAS1);
445 1.2 matt /*
446 1.2 matt * If this is a valid entry for AS space 1 and
447 1.2 matt * its asid matches the constraints of the caller,
448 1.2 matt * clear its valid bit.
449 1.2 matt */
450 1.2 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
451 1.2 matt && asid_lo <= (mas1 & MAS1_TID)
452 1.5 matt && (mas1 & MAS1_TID) <= asid_hi) {
453 1.2 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V);
454 1.2 matt #if 0
455 1.2 matt printf("%s[%zu,%zu]->[%x]\n",
456 1.2 matt __func__, assoc, epn, mas1);
457 1.2 matt #endif
458 1.2 matt __asm volatile("tlbwe");
459 1.2 matt }
460 1.2 matt }
461 1.2 matt }
462 1.11 matt __asm volatile("isync\n\tsync");
463 1.2 matt wrtee(msr);
464 1.16 nonaka #endif /* MULTIPROCESSOR */
465 1.2 matt }
466 1.2 matt
467 1.2 matt static u_int
468 1.18 matt e500_tlb_record_asids(u_long *bitmap, tlb_asid_t asid_max)
469 1.2 matt {
470 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
471 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
472 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
473 1.2 matt const size_t nbits = 8 * sizeof(bitmap[0]);
474 1.2 matt u_int found = 0;
475 1.2 matt
476 1.2 matt const register_t msr = wrtee(0);
477 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
478 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
479 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
480 1.2 matt mtspr(SPR_MAS2, epn);
481 1.2 matt __asm volatile("tlbre");
482 1.2 matt const uint32_t mas1 = mfspr(SPR_MAS1);
483 1.2 matt /*
484 1.2 matt * If this is a valid entry for AS space 1 and
485 1.2 matt * its asid matches the constraints of the caller,
486 1.2 matt * clear its valid bit.
487 1.2 matt */
488 1.2 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
489 1.2 matt const uint32_t asid = MASX_TID_GET(mas1);
490 1.2 matt const u_int i = asid / nbits;
491 1.2 matt const u_long mask = 1UL << (asid & (nbits - 1));
492 1.2 matt if ((bitmap[i] & mask) == 0) {
493 1.2 matt bitmap[i] |= mask;
494 1.2 matt found++;
495 1.2 matt }
496 1.2 matt }
497 1.2 matt }
498 1.2 matt }
499 1.2 matt wrtee(msr);
500 1.2 matt
501 1.2 matt return found;
502 1.2 matt }
503 1.2 matt
504 1.2 matt static void
505 1.4 matt e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
506 1.2 matt {
507 1.2 matt KASSERT((va & PAGE_MASK) == 0);
508 1.2 matt /*
509 1.2 matt * Bits 60 & 61 have meaning
510 1.2 matt */
511 1.11 matt if (asid == KERNEL_PID) {
512 1.11 matt /*
513 1.11 matt * For data accesses, the context-synchronizing instruction
514 1.11 matt * before tlbwe or tlbivax ensures that all memory accesses
515 1.11 matt * due to preceding instructions have completed to a point
516 1.11 matt * at which they have reported all exceptions they will cause.
517 1.11 matt */
518 1.11 matt __asm volatile("isync");
519 1.11 matt }
520 1.2 matt __asm volatile("tlbivax\t0, %0" :: "b"(va));
521 1.2 matt __asm volatile("tlbsync");
522 1.11 matt __asm volatile("tlbsync"); /* Why? */
523 1.11 matt if (asid == KERNEL_PID) {
524 1.11 matt /*
525 1.11 matt * The context-synchronizing instruction after tlbwe or tlbivax
526 1.11 matt * ensures that subsequent accesses (data and instruction) use
527 1.11 matt * the updated value in any TLB entries affected.
528 1.11 matt */
529 1.11 matt __asm volatile("isync\n\tsync");
530 1.11 matt }
531 1.2 matt }
532 1.2 matt
533 1.2 matt static bool
534 1.4 matt e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
535 1.2 matt {
536 1.16 nonaka #if defined(MULTIPROCESSOR)
537 1.16 nonaka e500_tlb_invalidate_addr(va, asid);
538 1.16 nonaka return true;
539 1.16 nonaka #else /* !MULTIPROCESSOR */
540 1.2 matt struct e500_hwtlb hwtlb = tlb_to_hwtlb(
541 1.2 matt (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
542 1.2 matt .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
543 1.2 matt
544 1.2 matt register_t msr = wrtee(0);
545 1.2 matt mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
546 1.2 matt __asm volatile("tlbsx 0, %0" :: "b"(va));
547 1.2 matt register_t mas1 = mfspr(SPR_MAS1);
548 1.2 matt if ((mas1 & MAS1_V) == 0) {
549 1.2 matt if (!insert) {
550 1.2 matt wrtee(msr);
551 1.2 matt #if 0
552 1.2 matt printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
553 1.2 matt __func__, va, asid, pte, insert);
554 1.2 matt #endif
555 1.2 matt return false;
556 1.2 matt }
557 1.18 matt mas1 = hwtlb.hwtlb_mas1 | MAS1_V;
558 1.18 matt mtspr(SPR_MAS1, mas1);
559 1.2 matt }
560 1.2 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
561 1.2 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
562 1.12 matt //mtspr(SPR_MAS7, 0);
563 1.2 matt __asm volatile("tlbwe");
564 1.11 matt if (asid == KERNEL_PID)
565 1.11 matt __asm volatile("isync\n\tsync");
566 1.2 matt wrtee(msr);
567 1.2 matt #if 0
568 1.2 matt if (asid)
569 1.2 matt printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
570 1.2 matt __func__, va, asid, pte, insert,
571 1.2 matt hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
572 1.2 matt #endif
573 1.2 matt return (mas1 & MAS1_V) != 0;
574 1.16 nonaka #endif /* MULTIPROCESSOR */
575 1.2 matt }
576 1.2 matt
577 1.2 matt static void
578 1.4 matt e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
579 1.4 matt {
580 1.4 matt }
581 1.4 matt
582 1.4 matt static void
583 1.2 matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
584 1.2 matt {
585 1.2 matt }
586 1.2 matt
587 1.2 matt static void
588 1.2 matt e500_tlb_dump(void (*pr)(const char *, ...))
589 1.2 matt {
590 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
591 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
592 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
593 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
594 1.2 matt size_t valid = 0;
595 1.2 matt
596 1.2 matt if (pr == NULL)
597 1.2 matt pr = printf;
598 1.2 matt
599 1.2 matt const register_t msr = wrtee(0);
600 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
601 1.2 matt struct e500_hwtlb hwtlb;
602 1.2 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
603 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
604 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
605 1.2 matt mtspr(SPR_MAS2, epn);
606 1.2 matt __asm volatile("tlbre");
607 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
608 1.2 matt /*
609 1.2 matt * If this is a valid entry for AS space 1 and
610 1.2 matt * its asid matches the constraints of the caller,
611 1.2 matt * clear its valid bit.
612 1.2 matt */
613 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
614 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
615 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
616 1.2 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
617 1.2 matt (*pr)("[%zu,%zu]->[%x,%x,%x]",
618 1.2 matt assoc, atop(epn),
619 1.2 matt hwtlb.hwtlb_mas1,
620 1.2 matt hwtlb.hwtlb_mas2,
621 1.2 matt hwtlb.hwtlb_mas3);
622 1.2 matt (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
623 1.2 matt tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
624 1.2 matt (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
625 1.2 matt tlb.tlb_pte & PTE_RPN_MASK,
626 1.2 matt tlb.tlb_pte & PTE_xR ? "R" : "",
627 1.2 matt tlb.tlb_pte & PTE_xW ? "W" : "",
628 1.2 matt tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
629 1.2 matt tlb.tlb_pte & PTE_xX ? "X" : "",
630 1.2 matt tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
631 1.2 matt tlb.tlb_pte & PTE_W ? "W" : "",
632 1.2 matt tlb.tlb_pte & PTE_I ? "I" : "",
633 1.2 matt tlb.tlb_pte & PTE_M ? "M" : "",
634 1.2 matt tlb.tlb_pte & PTE_G ? "G" : "",
635 1.2 matt tlb.tlb_pte & PTE_E ? "E" : "");
636 1.2 matt valid++;
637 1.2 matt }
638 1.2 matt }
639 1.2 matt }
640 1.2 matt mtspr(SPR_MAS0, saved_mas0);
641 1.2 matt wrtee(msr);
642 1.2 matt (*pr)("%s: %zu valid entries\n", __func__, valid);
643 1.2 matt }
644 1.2 matt
645 1.2 matt static void
646 1.2 matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
647 1.2 matt {
648 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
649 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
650 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
651 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
652 1.2 matt
653 1.2 matt const register_t msr = wrtee(0);
654 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
655 1.2 matt struct e500_hwtlb hwtlb;
656 1.2 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
657 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
658 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
659 1.2 matt mtspr(SPR_MAS2, epn);
660 1.2 matt __asm volatile("tlbre");
661 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
662 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
663 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
664 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
665 1.2 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
666 1.2 matt if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
667 1.2 matt tlb.tlb_pte))
668 1.2 matt break;
669 1.2 matt }
670 1.2 matt }
671 1.2 matt }
672 1.2 matt mtspr(SPR_MAS0, saved_mas0);
673 1.2 matt wrtee(msr);
674 1.2 matt }
675 1.2 matt
676 1.2 matt static struct e500_xtlb *
677 1.9 matt e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
678 1.9 matt {
679 1.9 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
680 1.9 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
681 1.9 matt
682 1.9 matt /*
683 1.9 matt * See if we have a TLB entry for the pa.
684 1.9 matt */
685 1.9 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
686 1.9 matt psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
687 1.9 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
688 1.9 matt && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
689 1.9 matt if (slotp != NULL)
690 1.9 matt *slotp = i;
691 1.9 matt return xtlb;
692 1.9 matt }
693 1.9 matt }
694 1.9 matt
695 1.9 matt return NULL;
696 1.9 matt }
697 1.9 matt
698 1.12 matt struct e500_xtlb *
699 1.2 matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
700 1.2 matt {
701 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
702 1.2 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
703 1.2 matt
704 1.2 matt /*
705 1.9 matt * See if we have a TLB entry for the va.
706 1.2 matt */
707 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
708 1.9 matt vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
709 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
710 1.9 matt && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
711 1.2 matt if (slotp != NULL)
712 1.2 matt *slotp = i;
713 1.2 matt return xtlb;
714 1.2 matt }
715 1.2 matt }
716 1.2 matt
717 1.2 matt return NULL;
718 1.2 matt }
719 1.2 matt
720 1.2 matt static struct e500_xtlb *
721 1.2 matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
722 1.2 matt {
723 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
724 1.2 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
725 1.2 matt
726 1.2 matt /*
727 1.2 matt * See if we have a TLB entry for the pa.
728 1.2 matt */
729 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
730 1.9 matt vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
731 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
732 1.9 matt && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
733 1.9 matt && (((va + len - 1) ^ va) & mask) == 0) {
734 1.2 matt return xtlb;
735 1.2 matt }
736 1.2 matt }
737 1.2 matt
738 1.2 matt return NULL;
739 1.2 matt }
740 1.2 matt
741 1.2 matt static void *
742 1.7 matt e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
743 1.2 matt {
744 1.9 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
745 1.2 matt
746 1.2 matt /*
747 1.2 matt * See if we have a TLB entry for the pa. If completely falls within
748 1.6 matt * mark the reference and return the pa. But only if the tlb entry
749 1.6 matt * is not cacheable.
750 1.2 matt */
751 1.6 matt if (xtlb
752 1.7 matt && (prefetchable
753 1.7 matt || (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
754 1.2 matt xtlb->e_refcnt++;
755 1.10 matt return (void *) (xtlb->e_tlb.tlb_va
756 1.10 matt + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
757 1.2 matt }
758 1.2 matt return NULL;
759 1.2 matt }
760 1.2 matt
761 1.2 matt static void
762 1.2 matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
763 1.2 matt {
764 1.2 matt if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
765 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
766 1.2 matt if (xtlb)
767 1.2 matt xtlb->e_refcnt--;
768 1.2 matt }
769 1.2 matt }
770 1.2 matt
771 1.2 matt static int
772 1.4 matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
773 1.2 matt {
774 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
775 1.2 matt struct e500_xtlb *xtlb;
776 1.2 matt
777 1.2 matt KASSERT(len & 0x55555000);
778 1.2 matt KASSERT((len & ~0x55555000) == 0);
779 1.2 matt KASSERT(len >= PAGE_SIZE);
780 1.2 matt KASSERT((len & (len - 1)) == 0);
781 1.2 matt KASSERT((va & (len - 1)) == 0);
782 1.9 matt KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
783 1.2 matt
784 1.2 matt if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
785 1.17 nonaka psize_t mask __diagused = ~(xtlb->e_tlb.tlb_size - 1);
786 1.9 matt KASSERT(len <= xtlb->e_tlb.tlb_size);
787 1.9 matt KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
788 1.2 matt xtlb->e_refcnt++;
789 1.2 matt return 0;
790 1.2 matt }
791 1.2 matt
792 1.2 matt const int slot = e500_alloc_tlb1_entry();
793 1.2 matt if (slot < 0)
794 1.2 matt return ENOMEM;
795 1.2 matt
796 1.2 matt xtlb = &tlb1->tlb1_entries[slot];
797 1.2 matt xtlb->e_tlb.tlb_va = va;
798 1.2 matt xtlb->e_tlb.tlb_size = len;
799 1.2 matt xtlb->e_tlb.tlb_pte = pte;
800 1.2 matt xtlb->e_tlb.tlb_asid = KERNEL_PID;
801 1.2 matt
802 1.2 matt xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
803 1.9 matt xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
804 1.2 matt hwtlb_write(xtlb->e_hwtlb, true);
805 1.16 nonaka
806 1.16 nonaka #if defined(MULTIPROCESSOR)
807 1.16 nonaka cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
808 1.16 nonaka #endif
809 1.16 nonaka
810 1.2 matt return 0;
811 1.2 matt }
812 1.2 matt
813 1.2 matt static int
814 1.2 matt e500_tlb_iorelease(vaddr_t va)
815 1.2 matt {
816 1.2 matt u_int slot;
817 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
818 1.2 matt
819 1.2 matt if (xtlb == NULL)
820 1.2 matt return ENOENT;
821 1.2 matt
822 1.2 matt if (xtlb->e_refcnt)
823 1.2 matt return EBUSY;
824 1.2 matt
825 1.2 matt e500_free_tlb1_entry(xtlb, slot, true);
826 1.2 matt
827 1.16 nonaka #if defined(MULTIPROCESSOR)
828 1.16 nonaka cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
829 1.16 nonaka #endif
830 1.16 nonaka
831 1.2 matt return 0;
832 1.2 matt }
833 1.2 matt
834 1.2 matt static u_int
835 1.2 matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
836 1.2 matt {
837 1.2 matt u_int slotmask = 0;
838 1.2 matt u_int slots = 0, nextslot = 0;
839 1.2 matt KASSERT(tlb1->tlb1_numfree > 1);
840 1.2 matt KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
841 1.2 matt for (paddr_t lastaddr = memstart; 0 < memsize; ) {
842 1.2 matt u_int cnt = __builtin_clz(memsize);
843 1.2 matt psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
844 1.2 matt slots += memsize / size;
845 1.2 matt if (slots > 4)
846 1.2 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
847 1.2 matt __func__, __LINE__, memsize, "too fragmented");
848 1.2 matt if (slots > tlb1->tlb1_numfree - 1)
849 1.2 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
850 1.2 matt __func__, __LINE__, memsize,
851 1.2 matt "insufficent TLB entries");
852 1.2 matt for (; nextslot < slots; nextslot++) {
853 1.2 matt const u_int freeslot = e500_alloc_tlb1_entry();
854 1.2 matt struct e500_xtlb * const xtlb =
855 1.2 matt &tlb1->tlb1_entries[freeslot];
856 1.2 matt xtlb->e_tlb.tlb_asid = KERNEL_PID;
857 1.2 matt xtlb->e_tlb.tlb_size = size;
858 1.2 matt xtlb->e_tlb.tlb_va = lastaddr;
859 1.2 matt xtlb->e_tlb.tlb_pte = lastaddr
860 1.2 matt | PTE_M | PTE_xX | PTE_xW | PTE_xR;
861 1.2 matt lastaddr += size;
862 1.2 matt memsize -= size;
863 1.2 matt slotmask |= 1 << (31 - freeslot); /* clz friendly */
864 1.2 matt }
865 1.2 matt }
866 1.2 matt
867 1.16 nonaka #if defined(MULTIPROCESSOR)
868 1.16 nonaka cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
869 1.16 nonaka #endif
870 1.16 nonaka
871 1.2 matt return nextslot;
872 1.2 matt }
873 1.15 nonaka
874 1.2 matt static const struct tlb_md_ops e500_tlb_ops = {
875 1.4 matt .md_tlb_get_asid = e500_tlb_get_asid,
876 1.2 matt .md_tlb_set_asid = e500_tlb_set_asid,
877 1.2 matt .md_tlb_invalidate_all = e500_tlb_invalidate_all,
878 1.2 matt .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
879 1.2 matt .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
880 1.2 matt .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
881 1.2 matt .md_tlb_update_addr = e500_tlb_update_addr,
882 1.2 matt .md_tlb_record_asids = e500_tlb_record_asids,
883 1.4 matt .md_tlb_write_entry = e500_tlb_write_entry,
884 1.2 matt .md_tlb_read_entry = e500_tlb_read_entry,
885 1.4 matt .md_tlb_dump = e500_tlb_dump,
886 1.4 matt .md_tlb_walk = e500_tlb_walk,
887 1.4 matt };
888 1.4 matt
889 1.4 matt static const struct tlb_md_io_ops e500_tlb_io_ops = {
890 1.2 matt .md_tlb_mapiodev = e500_tlb_mapiodev,
891 1.2 matt .md_tlb_unmapiodev = e500_tlb_unmapiodev,
892 1.2 matt .md_tlb_ioreserve = e500_tlb_ioreserve,
893 1.2 matt .md_tlb_iorelease = e500_tlb_iorelease,
894 1.2 matt };
895 1.2 matt
896 1.2 matt void
897 1.2 matt e500_tlb_init(vaddr_t endkernel, psize_t memsize)
898 1.2 matt {
899 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
900 1.2 matt
901 1.2 matt #if 0
902 1.2 matt register_t mmucfg = mfspr(SPR_MMUCFG);
903 1.2 matt register_t mas4 = mfspr(SPR_MAS4);
904 1.2 matt #endif
905 1.2 matt
906 1.2 matt const uint32_t tlb1cfg = mftlb1cfg();
907 1.2 matt tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
908 1.2 matt KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
909 1.2 matt /*
910 1.2 matt * Limit maxsize to 1G since 4G isn't really useful to us.
911 1.2 matt */
912 1.2 matt tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
913 1.2 matt tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
914 1.2 matt
915 1.2 matt #ifdef VERBOSE_INITPPC
916 1.2 matt printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
917 1.2 matt tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
918 1.2 matt tlb1->tlb1_maxsize >> 10);
919 1.2 matt #endif
920 1.2 matt
921 1.2 matt /*
922 1.2 matt * Let's see what's in TLB1 and we need to invalidate any entry that
923 1.2 matt * would fit within the kernel's mapped address space.
924 1.2 matt */
925 1.2 matt psize_t memmapped = 0;
926 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
927 1.2 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
928 1.2 matt
929 1.2 matt xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
930 1.2 matt
931 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
932 1.2 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
933 1.2 matt #ifdef VERBOSE_INITPPC
934 1.2 matt printf(" TLB1[%u]=<unused>", i);
935 1.2 matt #endif
936 1.2 matt continue;
937 1.2 matt }
938 1.2 matt
939 1.2 matt xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
940 1.2 matt #ifdef VERBOSE_INITPPC
941 1.2 matt printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
942 1.2 matt i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
943 1.2 matt xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
944 1.2 matt #endif
945 1.2 matt if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
946 1.2 matt && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
947 1.2 matt || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
948 1.2 matt && VM_MIN_KERNEL_ADDRESS <
949 1.2 matt xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
950 1.2 matt #ifdef VERBOSE_INITPPC
951 1.2 matt printf("free");
952 1.2 matt #endif
953 1.2 matt e500_free_tlb1_entry(xtlb, i, false);
954 1.2 matt #ifdef VERBOSE_INITPPC
955 1.2 matt printf("d");
956 1.2 matt #endif
957 1.2 matt continue;
958 1.2 matt }
959 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
960 1.2 matt xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
961 1.2 matt hwtlb_write(xtlb->e_hwtlb, false);
962 1.2 matt #ifdef VERBOSE_INITPPC
963 1.2 matt printf("+iprot");
964 1.2 matt #endif
965 1.2 matt }
966 1.2 matt if (xtlb->e_tlb.tlb_pte & PTE_I)
967 1.2 matt continue;
968 1.2 matt
969 1.2 matt if (xtlb->e_tlb.tlb_va == 0
970 1.2 matt || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
971 1.2 matt memmapped += xtlb->e_tlb.tlb_size;
972 1.12 matt /*
973 1.12 matt * Let make sure main memory is setup so it's memory
974 1.12 matt * coherent. For some reason u-boot doesn't set it up
975 1.12 matt * that way.
976 1.12 matt */
977 1.12 matt if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) {
978 1.12 matt xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M;
979 1.12 matt hwtlb_write(xtlb->e_hwtlb, true);
980 1.12 matt }
981 1.2 matt }
982 1.2 matt }
983 1.2 matt
984 1.2 matt cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
985 1.4 matt cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
986 1.2 matt
987 1.2 matt if (__predict_false(memmapped < memsize)) {
988 1.2 matt /*
989 1.2 matt * Let's see how many TLB entries are needed to map memory.
990 1.2 matt */
991 1.2 matt u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
992 1.2 matt
993 1.2 matt /*
994 1.2 matt * To map main memory into the TLB, we need to flush any
995 1.2 matt * existing entries from the TLB that overlap the virtual
996 1.2 matt * address space needed to map physical memory. That may
997 1.2 matt * include the entries for the pages currently used by the
998 1.2 matt * stack or that we are executing. So to avoid problems, we
999 1.2 matt * are going to temporarily map the kernel and stack into AS 1,
1000 1.2 matt * switch to it, and clear out the TLB entries from AS 0,
1001 1.2 matt * install the new TLB entries to map memory, and then switch
1002 1.2 matt * back to AS 0 and free the temp entry used for AS1.
1003 1.2 matt */
1004 1.2 matt u_int b = __builtin_clz(endkernel);
1005 1.2 matt
1006 1.2 matt /*
1007 1.2 matt * If the kernel doesn't end on a clean power of 2, we need
1008 1.2 matt * to round the size up (by decrementing the number of leading
1009 1.2 matt * zero bits). If the size isn't a power of 4KB, decrement
1010 1.2 matt * again to make it one.
1011 1.2 matt */
1012 1.2 matt if (endkernel & (endkernel - 1))
1013 1.2 matt b--;
1014 1.2 matt if ((b & 1) == 0)
1015 1.2 matt b--;
1016 1.2 matt
1017 1.2 matt /*
1018 1.2 matt * Create a TLB1 mapping for the kernel in AS1.
1019 1.2 matt */
1020 1.2 matt const u_int kslot = e500_alloc_tlb1_entry();
1021 1.2 matt struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
1022 1.2 matt kxtlb->e_tlb.tlb_va = 0;
1023 1.2 matt kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
1024 1.2 matt kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
1025 1.2 matt kxtlb->e_tlb.tlb_asid = KERNEL_PID;
1026 1.2 matt
1027 1.2 matt kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
1028 1.9 matt kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
1029 1.2 matt kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1030 1.2 matt hwtlb_write(kxtlb->e_hwtlb, true);
1031 1.2 matt
1032 1.2 matt /*
1033 1.2 matt * Now that we have a TLB mapping in AS1 for the kernel and its
1034 1.2 matt * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
1035 1.2 matt */
1036 1.2 matt const register_t saved_msr = mfmsr();
1037 1.2 matt mtmsr(saved_msr | PSL_DS | PSL_IS);
1038 1.2 matt __asm volatile("isync");
1039 1.2 matt
1040 1.2 matt /*
1041 1.2 matt *** Invalidate all the TLB0 entries.
1042 1.2 matt */
1043 1.2 matt e500_tlb_invalidate_all();
1044 1.2 matt
1045 1.2 matt /*
1046 1.2 matt *** Now let's see if we have any entries in TLB1 that would
1047 1.2 matt *** overlap the ones we are about to install. If so, nuke 'em.
1048 1.2 matt */
1049 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
1050 1.2 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
1051 1.2 matt struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
1052 1.2 matt if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
1053 1.2 matt && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
1054 1.2 matt e500_free_tlb1_entry(xtlb, i, false);
1055 1.2 matt }
1056 1.2 matt }
1057 1.2 matt
1058 1.2 matt /*
1059 1.2 matt *** Now we can add the TLB entries that will map physical
1060 1.2 matt *** memory. If bit 0 [MSB] in slotmask is set, then tlb
1061 1.2 matt *** entry 0 contains a mapping for physical memory...
1062 1.2 matt */
1063 1.2 matt struct e500_xtlb *entries = tlb1->tlb1_entries;
1064 1.2 matt while (slotmask != 0) {
1065 1.2 matt const u_int slot = __builtin_clz(slotmask);
1066 1.2 matt hwtlb_write(entries[slot].e_hwtlb, false);
1067 1.2 matt entries += slot + 1;
1068 1.2 matt slotmask <<= slot + 1;
1069 1.2 matt }
1070 1.2 matt
1071 1.2 matt /*
1072 1.2 matt *** Synchronize the TLB and the instruction stream.
1073 1.2 matt */
1074 1.2 matt __asm volatile("tlbsync");
1075 1.2 matt __asm volatile("isync");
1076 1.2 matt
1077 1.2 matt /*
1078 1.2 matt *** Switch back to AS 0.
1079 1.2 matt */
1080 1.2 matt mtmsr(saved_msr);
1081 1.2 matt __asm volatile("isync");
1082 1.2 matt
1083 1.2 matt /*
1084 1.2 matt * Free the temporary TLB1 entry.
1085 1.2 matt */
1086 1.2 matt e500_free_tlb1_entry(kxtlb, kslot, true);
1087 1.2 matt }
1088 1.2 matt
1089 1.2 matt /*
1090 1.2 matt * Finally set the MAS4 defaults.
1091 1.2 matt */
1092 1.2 matt mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
1093 1.2 matt
1094 1.2 matt /*
1095 1.2 matt * Invalidate all the TLB0 entries.
1096 1.2 matt */
1097 1.2 matt e500_tlb_invalidate_all();
1098 1.2 matt }
1099 1.8 matt
1100 1.8 matt void
1101 1.8 matt e500_tlb_minimize(vaddr_t endkernel)
1102 1.8 matt {
1103 1.8 matt #ifdef PMAP_MINIMALTLB
1104 1.8 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
1105 1.8 matt extern uint32_t _fdata[];
1106 1.8 matt
1107 1.8 matt u_int slot;
1108 1.8 matt
1109 1.8 matt paddr_t boot_page = cpu_read_4(GUR_BPTR);
1110 1.8 matt if (boot_page & BPTR_EN) {
1111 1.8 matt /*
1112 1.8 matt * shift it to an address
1113 1.8 matt */
1114 1.8 matt boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
1115 1.8 matt pmap_kvptefill(boot_page, boot_page + NBPG,
1116 1.8 matt PTE_M | PTE_xR | PTE_xW | PTE_xX);
1117 1.8 matt }
1118 1.8 matt
1119 1.8 matt
1120 1.8 matt KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
1121 1.8 matt KASSERT((uintptr_t)_fdata == 0x400000);
1122 1.8 matt
1123 1.8 matt struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
1124 1.8 matt
1125 1.8 matt KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
1126 1.8 matt const u_int tmp_slot = e500_alloc_tlb1_entry();
1127 1.8 matt KASSERT(tmp_slot != (u_int) -1);
1128 1.8 matt
1129 1.8 matt struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
1130 1.8 matt tmp_xtlb->e_tlb = xtlb->e_tlb;
1131 1.8 matt tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
1132 1.8 matt tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1133 1.8 matt KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1134 1.8 matt tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
1135 1.8 matt hwtlb_write(tmp_xtlb->e_hwtlb, true);
1136 1.8 matt
1137 1.8 matt const u_int text_slot = e500_alloc_tlb1_entry();
1138 1.8 matt KASSERT(text_slot != (u_int)-1);
1139 1.8 matt struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
1140 1.8 matt text_xtlb->e_tlb.tlb_va = 0;
1141 1.8 matt text_xtlb->e_tlb.tlb_size = 0x400000;
1142 1.8 matt text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
1143 1.8 matt text_xtlb->e_tlb.tlb_asid = 0;
1144 1.8 matt text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
1145 1.8 matt KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1146 1.8 matt text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
1147 1.8 matt
1148 1.8 matt const u_int data_slot = e500_alloc_tlb1_entry();
1149 1.8 matt KASSERT(data_slot != (u_int)-1);
1150 1.8 matt struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
1151 1.8 matt data_xtlb->e_tlb.tlb_va = 0x400000;
1152 1.8 matt data_xtlb->e_tlb.tlb_size = 0x400000;
1153 1.8 matt data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
1154 1.8 matt data_xtlb->e_tlb.tlb_asid = 0;
1155 1.8 matt data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
1156 1.8 matt KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1157 1.8 matt data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
1158 1.8 matt
1159 1.8 matt const register_t msr = mfmsr();
1160 1.8 matt const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
1161 1.8 matt
1162 1.8 matt __asm __volatile(
1163 1.8 matt "mtmsr %[ts_msr]" "\n\t"
1164 1.8 matt "sync" "\n\t"
1165 1.8 matt "isync"
1166 1.8 matt :: [ts_msr] "r" (ts_msr));
1167 1.8 matt
1168 1.8 matt #if 0
1169 1.8 matt hwtlb_write(text_xtlb->e_hwtlb, false);
1170 1.8 matt hwtlb_write(data_xtlb->e_hwtlb, false);
1171 1.8 matt e500_free_tlb1_entry(xtlb, slot, true);
1172 1.8 matt #endif
1173 1.8 matt
1174 1.8 matt __asm __volatile(
1175 1.8 matt "mtmsr %[msr]" "\n\t"
1176 1.8 matt "sync" "\n\t"
1177 1.8 matt "isync"
1178 1.8 matt :: [msr] "r" (msr));
1179 1.8 matt
1180 1.8 matt e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
1181 1.8 matt #endif /* PMAP_MINIMALTLB */
1182 1.8 matt }
1183