Home | History | Annotate | Line # | Download | only in booke
e500_tlb.c revision 1.18.18.1
      1  1.18.18.1  christos /*	$NetBSD: e500_tlb.c,v 1.18.18.1 2019/06/10 22:06:38 christos Exp $	*/
      2        1.2      matt /*-
      3        1.2      matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4        1.2      matt  * All rights reserved.
      5        1.2      matt  *
      6        1.2      matt  * This code is derived from software contributed to The NetBSD Foundation
      7        1.2      matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8        1.2      matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9        1.2      matt  *
     10        1.2      matt  * This material is based upon work supported by the Defense Advanced Research
     11        1.2      matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12        1.2      matt  * Contract No. N66001-09-C-2073.
     13        1.2      matt  * Approved for Public Release, Distribution Unlimited
     14        1.2      matt  *
     15        1.2      matt  * Redistribution and use in source and binary forms, with or without
     16        1.2      matt  * modification, are permitted provided that the following conditions
     17        1.2      matt  * are met:
     18        1.2      matt  * 1. Redistributions of source code must retain the above copyright
     19        1.2      matt  *    notice, this list of conditions and the following disclaimer.
     20        1.2      matt  * 2. Redistributions in binary form must reproduce the above copyright
     21        1.2      matt  *    notice, this list of conditions and the following disclaimer in the
     22        1.2      matt  *    documentation and/or other materials provided with the distribution.
     23        1.2      matt  *
     24        1.2      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25        1.2      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26        1.2      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27        1.2      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28        1.2      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29        1.2      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30        1.2      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31        1.2      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32        1.2      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33        1.2      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34        1.2      matt  * POSSIBILITY OF SUCH DAMAGE.
     35        1.2      matt  */
     36        1.2      matt 
     37       1.15    nonaka #include "opt_ppcparam.h"
     38       1.15    nonaka 
     39        1.8      matt #define	__PMAP_PRIVATE
     40        1.8      matt 
     41        1.2      matt #include <sys/cdefs.h>
     42        1.2      matt 
     43  1.18.18.1  christos __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.18.18.1 2019/06/10 22:06:38 christos Exp $");
     44        1.2      matt 
     45        1.2      matt #include <sys/param.h>
     46        1.2      matt 
     47        1.2      matt #include <uvm/uvm_extern.h>
     48        1.2      matt 
     49        1.2      matt #include <powerpc/spr.h>
     50        1.2      matt #include <powerpc/booke/spr.h>
     51        1.2      matt #include <powerpc/booke/cpuvar.h>
     52        1.8      matt #include <powerpc/booke/e500reg.h>
     53        1.2      matt #include <powerpc/booke/e500var.h>
     54        1.2      matt #include <powerpc/booke/pmap.h>
     55        1.2      matt 
     56        1.2      matt struct e500_tlb {
     57        1.2      matt 	vaddr_t tlb_va;
     58        1.2      matt 	uint32_t tlb_pte;
     59        1.2      matt 	uint32_t tlb_asid;
     60        1.2      matt 	vsize_t tlb_size;
     61        1.2      matt };
     62        1.2      matt 
     63        1.2      matt struct e500_hwtlb {
     64        1.2      matt 	uint32_t hwtlb_mas0;
     65        1.2      matt 	uint32_t hwtlb_mas1;
     66        1.2      matt 	uint32_t hwtlb_mas2;
     67        1.2      matt 	uint32_t hwtlb_mas3;
     68        1.2      matt };
     69        1.2      matt 
     70        1.2      matt struct e500_xtlb {
     71        1.2      matt 	struct e500_tlb e_tlb;
     72        1.2      matt 	struct e500_hwtlb e_hwtlb;
     73        1.2      matt 	u_long e_refcnt;
     74        1.2      matt };
     75        1.2      matt 
     76        1.2      matt static struct e500_tlb1 {
     77        1.2      matt 	uint32_t tlb1_maxsize;
     78        1.2      matt 	uint32_t tlb1_minsize;
     79        1.2      matt 	u_int tlb1_numentries;
     80        1.2      matt 	u_int tlb1_numfree;
     81        1.2      matt 	u_int tlb1_freelist[32];
     82        1.2      matt 	struct e500_xtlb tlb1_entries[32];
     83        1.2      matt } e500_tlb1;
     84        1.2      matt 
     85        1.2      matt static inline register_t mftlb0cfg(void) __pure;
     86        1.2      matt static inline register_t mftlb1cfg(void) __pure;
     87        1.2      matt 
     88        1.2      matt static inline register_t
     89        1.2      matt mftlb0cfg(void)
     90        1.2      matt {
     91        1.2      matt 	register_t tlb0cfg;
     92        1.2      matt 	__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
     93        1.2      matt 	return tlb0cfg;
     94        1.2      matt }
     95        1.2      matt 
     96        1.2      matt static inline register_t
     97        1.2      matt mftlb1cfg(void)
     98        1.2      matt {
     99        1.2      matt 	register_t tlb1cfg;
    100        1.2      matt 	__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
    101        1.2      matt 	return tlb1cfg;
    102        1.2      matt }
    103        1.2      matt 
    104        1.2      matt static struct e500_tlb
    105        1.2      matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
    106        1.2      matt {
    107        1.2      matt 	struct e500_tlb tlb;
    108        1.2      matt 	register_t prot_mask;
    109        1.2      matt 	u_int prot_shift;
    110        1.2      matt 
    111        1.2      matt 	tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
    112        1.2      matt 	tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
    113        1.2      matt 	tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
    114        1.2      matt 	tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
    115        1.2      matt 	    | (hwtlb.hwtlb_mas3 & MAS3_RPN);
    116        1.2      matt 	if (hwtlb.hwtlb_mas1 & MAS1_TS) {
    117        1.2      matt 		prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
    118        1.2      matt 		prot_shift = PTE_RWX_SHIFT - 1;
    119        1.2      matt 	} else {
    120        1.2      matt 		prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
    121        1.2      matt 		prot_shift = PTE_RWX_SHIFT;
    122        1.2      matt 	}
    123        1.2      matt 	tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
    124        1.2      matt 	return tlb;
    125        1.2      matt }
    126        1.2      matt 
    127        1.2      matt static inline struct e500_hwtlb
    128        1.2      matt hwtlb_read(uint32_t mas0, u_int slot)
    129        1.2      matt {
    130        1.2      matt 	struct e500_hwtlb hwtlb;
    131        1.2      matt 	register_t tlbcfg;
    132        1.2      matt 
    133        1.2      matt 	if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
    134        1.2      matt 		tlbcfg = mftlb0cfg();
    135        1.2      matt 	} else if (mas0 == MAS0_TLBSEL_TLB1) {
    136        1.2      matt 		tlbcfg = mftlb1cfg();
    137        1.2      matt 	} else {
    138        1.2      matt 		panic("%s:%d: unexpected MAS0 %#" PRIx32,
    139        1.2      matt 		    __func__, __LINE__, mas0);
    140        1.2      matt 	}
    141        1.2      matt 
    142        1.2      matt 	/*
    143        1.2      matt 	 * ESEL is the way we want to look up.
    144        1.2      matt 	 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
    145        1.2      matt 	 * fully associative, the entire slot is placed into ESEL.  If tlbassoc
    146       1.13       wiz 	 * is less than the number of tlb entries, the slot is split in two
    147        1.2      matt 	 * fields.  Since the TLB is M rows by N ways, the lowers bits are for
    148        1.2      matt 	 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
    149        1.2      matt 	 */
    150        1.2      matt 	const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
    151        1.2      matt 	const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
    152        1.2      matt 	const u_int esel_shift =
    153        1.2      matt 	    __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
    154        1.2      matt 
    155        1.2      matt 	/*
    156        1.2      matt 	 * Disable interrupts since we don't want anyone else mucking with
    157        1.2      matt 	 * the MMU Assist registers
    158        1.2      matt 	 */
    159        1.2      matt 	const register_t msr = wrtee(0);
    160        1.2      matt 	const register_t saved_mas0 = mfspr(SPR_MAS0);
    161        1.2      matt 	mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
    162        1.2      matt 
    163        1.2      matt 	if (__predict_true(tlbassoc > tlbentries))
    164        1.2      matt 		mtspr(SPR_MAS2, slot << PAGE_SHIFT);
    165        1.2      matt 
    166        1.2      matt 	/*
    167        1.2      matt 	 * Now select the entry and grab its contents.
    168        1.2      matt 	 */
    169        1.2      matt 	__asm volatile("tlbre");
    170        1.2      matt 
    171        1.2      matt 	hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
    172        1.2      matt 	hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    173        1.2      matt 	hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    174        1.2      matt 	hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    175        1.2      matt 
    176        1.2      matt 	mtspr(SPR_MAS0, saved_mas0);
    177        1.2      matt 	wrtee(msr);	/* restore interrupts */
    178        1.2      matt 
    179        1.2      matt 	return hwtlb;
    180        1.2      matt }
    181        1.2      matt 
    182        1.2      matt static inline void
    183        1.2      matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
    184        1.2      matt {
    185        1.2      matt 	const register_t msr = wrtee(0);
    186        1.2      matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    187        1.2      matt 
    188        1.2      matt 	/*
    189        1.2      matt 	 * Need to always write MAS0 and MAS1
    190        1.2      matt 	 */
    191        1.2      matt 	mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    192        1.2      matt 	mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    193        1.2      matt 
    194        1.2      matt 	/*
    195        1.2      matt 	 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
    196        1.2      matt 	 */
    197        1.2      matt 	if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
    198        1.2      matt 	    || (hwtlb.hwtlb_mas1 & MAS1_V)) {
    199        1.2      matt 		mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    200        1.2      matt 	}
    201        1.2      matt 	/*
    202        1.2      matt 	 * Only need to write the RPN/prot if we are dealing with a valid
    203        1.2      matt 	 * mapping.
    204        1.2      matt 	 */
    205        1.2      matt 	if (hwtlb.hwtlb_mas1 & MAS1_V) {
    206        1.2      matt 		mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    207       1.12      matt 		//mtspr(SPR_MAS7, 0);
    208        1.2      matt 	}
    209        1.2      matt 
    210        1.2      matt #if 0
    211        1.2      matt 	printf("%s->[%x,%x,%x,%x]\n",
    212        1.2      matt 	    __func__,
    213        1.2      matt 	    hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
    214        1.2      matt 	    hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    215        1.2      matt #endif
    216        1.2      matt 	__asm volatile("tlbwe");
    217        1.2      matt 	if (needs_sync) {
    218       1.11      matt 		__asm volatile("tlbsync\n\tisync\n\tsync");
    219        1.2      matt 	}
    220        1.2      matt 
    221        1.2      matt 	mtspr(SPR_MAS0, saved_mas0);
    222        1.2      matt 	wrtee(msr);
    223        1.2      matt }
    224        1.2      matt 
    225        1.2      matt static struct e500_hwtlb
    226        1.2      matt tlb_to_hwtlb(const struct e500_tlb tlb)
    227        1.2      matt {
    228        1.2      matt 	struct e500_hwtlb hwtlb;
    229        1.2      matt 
    230        1.2      matt 	KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
    231        1.2      matt 	KASSERT(tlb.tlb_size != 0);
    232        1.2      matt 	KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
    233        1.2      matt 	const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
    234        1.2      matt 	if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
    235        1.2      matt 		hwtlb.hwtlb_mas0 = 0;
    236        1.2      matt 		hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
    237        1.2      matt 		/*
    238        1.2      matt 		 * A non-zero ASID means this is a user page so mark it as
    239        1.2      matt 		 * being in the user's address space.
    240        1.2      matt 		 */
    241        1.2      matt 		if (tlb.tlb_asid) {
    242        1.2      matt 			hwtlb.hwtlb_mas1 |= MAS1_TS
    243        1.2      matt 			    | MASX_TID_MAKE(tlb.tlb_asid);
    244        1.2      matt 			hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
    245        1.2      matt 			    | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
    246        1.2      matt 			KASSERT(prot_mask & PTE_xR);
    247        1.2      matt 			KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
    248        1.2      matt 			CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
    249        1.2      matt 			CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
    250        1.2      matt 		} else {
    251        1.2      matt 			hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    252        1.2      matt 		}
    253        1.2      matt 		if (tlb.tlb_pte & PTE_UNMODIFIED)
    254        1.2      matt 			hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
    255        1.2      matt 		if (tlb.tlb_pte & PTE_UNSYNCED)
    256        1.2      matt 			hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
    257        1.2      matt 	} else {
    258        1.2      matt 		KASSERT(tlb.tlb_asid == 0);
    259        1.2      matt 		KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
    260        1.2      matt 		u_int cntlz = __builtin_clz(tlb.tlb_size);
    261        1.2      matt 		KASSERT(cntlz & 1);
    262        1.2      matt 		KASSERT(cntlz <= 19);
    263        1.2      matt 		hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
    264        1.2      matt 		/*
    265        1.8      matt 		 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
    266        1.2      matt 		 * allowed.  So 1K would be 0x00000400 giving 21 leading zero
    267        1.2      matt 		 * bits.  Subtracting the leading number of zero bits from 21
    268        1.2      matt 		 * and dividing by 2 gives us the number that the MMU wants.
    269        1.2      matt 		 */
    270        1.2      matt 		hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
    271        1.2      matt 		    | MAS1_IPROT | MAS1_V;
    272        1.2      matt 		hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    273        1.2      matt 	}
    274        1.2      matt 	/* We are done with MAS1, on to MAS2 ... */
    275        1.2      matt 	hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
    276        1.2      matt 	hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
    277        1.2      matt 
    278        1.2      matt 	return hwtlb;
    279        1.2      matt }
    280        1.2      matt 
    281        1.3      matt void *
    282        1.3      matt e500_tlb1_fetch(size_t slot)
    283        1.3      matt {
    284        1.3      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    285        1.3      matt 
    286        1.3      matt 	return &tlb1->tlb1_entries[slot].e_hwtlb;
    287        1.3      matt }
    288        1.3      matt 
    289        1.3      matt void
    290        1.3      matt e500_tlb1_sync(void)
    291        1.3      matt {
    292        1.3      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    293        1.3      matt 	for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
    294        1.3      matt 		const struct e500_hwtlb * const new_hwtlb =
    295        1.3      matt 		    &tlb1->tlb1_entries[slot].e_hwtlb;
    296        1.3      matt 		const struct e500_hwtlb old_hwtlb =
    297        1.3      matt 		    hwtlb_read(MAS0_TLBSEL_TLB1, slot);
    298        1.3      matt #define CHANGED(n,o,f)	((n)->f != (o).f)
    299        1.3      matt 		bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
    300        1.3      matt 		bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
    301        1.3      matt 		bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
    302        1.3      matt #undef CHANGED
    303        1.3      matt 		bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
    304        1.3      matt 		bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
    305        1.3      matt 		if ((new_valid_p || old_valid_p)
    306        1.3      matt 		    && (mas1_changed_p
    307        1.3      matt 			|| (new_valid_p
    308        1.3      matt 			    && (mas2_changed_p || mas3_changed_p))))
    309        1.3      matt 			hwtlb_write(*new_hwtlb, true);
    310        1.3      matt 	}
    311        1.3      matt }
    312        1.3      matt 
    313        1.2      matt static int
    314        1.2      matt e500_alloc_tlb1_entry(void)
    315        1.2      matt {
    316        1.2      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    317        1.2      matt 
    318        1.2      matt 	if (tlb1->tlb1_numfree == 0)
    319        1.2      matt 		return -1;
    320        1.2      matt 	const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
    321        1.2      matt 	KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
    322        1.2      matt 	tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
    323        1.9      matt 	    MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
    324        1.8      matt 	return (int)slot;
    325        1.2      matt }
    326        1.2      matt 
    327        1.2      matt static void
    328        1.2      matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
    329        1.2      matt {
    330        1.2      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    331        1.2      matt 	KASSERT(slot < tlb1->tlb1_numentries);
    332        1.2      matt 	KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
    333        1.2      matt 
    334        1.2      matt 	KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
    335        1.2      matt 	xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
    336        1.2      matt 	hwtlb_write(xtlb->e_hwtlb, needs_sync);
    337        1.2      matt 
    338        1.2      matt 	const register_t msr = wrtee(0);
    339        1.2      matt 	tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
    340        1.2      matt 	wrtee(msr);
    341        1.2      matt }
    342        1.2      matt 
    343        1.4      matt static tlb_asid_t
    344        1.4      matt e500_tlb_get_asid(void)
    345        1.4      matt {
    346        1.4      matt 	return mfspr(SPR_PID0);
    347        1.4      matt }
    348        1.4      matt 
    349        1.4      matt static void
    350        1.4      matt e500_tlb_set_asid(tlb_asid_t asid)
    351        1.2      matt {
    352        1.2      matt 	mtspr(SPR_PID0, asid);
    353        1.2      matt }
    354        1.2      matt 
    355        1.4      matt static void
    356        1.4      matt e500_tlb_invalidate_all(void)
    357        1.2      matt {
    358        1.2      matt 	/*
    359        1.2      matt 	 * This does a flash invalidate of all entries in TLB0.
    360        1.2      matt 	 * We don't touch TLB1 since we don't expect those to be volatile.
    361        1.2      matt 	 */
    362        1.2      matt #if 1
    363        1.2      matt 	__asm volatile("tlbivax\t0, %0" :: "b"(4));	/* INV_ALL */
    364       1.11      matt 	__asm volatile("tlbsync\n\tisync\n\tsync");
    365        1.2      matt #else
    366       1.14    nonaka 	mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FI);
    367        1.2      matt 	while (mfspr(SPR_MMUCSR0) != 0)
    368        1.2      matt 		;
    369        1.2      matt #endif
    370        1.2      matt }
    371        1.2      matt 
    372        1.2      matt static void
    373        1.2      matt e500_tlb_invalidate_globals(void)
    374        1.2      matt {
    375       1.16    nonaka #if defined(MULTIPROCESSOR)
    376       1.16    nonaka 	e500_tlb_invalidate_all();
    377       1.16    nonaka #else	/* !MULTIPROCESSOR */
    378        1.2      matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    379        1.2      matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    380        1.2      matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    381        1.2      matt 	const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
    382        1.2      matt 	const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
    383        1.2      matt 	const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
    384        1.2      matt 	const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
    385        1.2      matt 
    386        1.2      matt 	const register_t msr = wrtee(0);
    387        1.2      matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    388        1.2      matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    389        1.2      matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    390        1.2      matt 			mtspr(SPR_MAS2, epn);
    391        1.2      matt 			__asm volatile("tlbre");
    392        1.2      matt 			uint32_t mas1 = mfspr(SPR_MAS1);
    393        1.2      matt 
    394        1.2      matt 			/*
    395        1.2      matt 			 * Make sure this is a valid kernel entry first.
    396        1.2      matt 			 */
    397        1.2      matt 			if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
    398        1.2      matt 				continue;
    399        1.2      matt 
    400        1.2      matt 			/*
    401        1.2      matt 			 * We have a valid kernel TLB entry.  But if it matches
    402        1.2      matt 			 * the stack we are currently running on, it would
    403        1.2      matt 			 * unwise to invalidate it.  First see if the epn
    404        1.2      matt 			 * overlaps the stack.  If it does then get the
    405        1.2      matt 			 * VA and see if it really is part of the stack.
    406        1.2      matt 			 */
    407        1.2      matt 			if (epn_kstack_lo < epn_kstack_hi
    408        1.2      matt 			    ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
    409        1.2      matt 			    : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
    410        1.2      matt 				const uint32_t mas2_epn =
    411        1.2      matt 				    mfspr(SPR_MAS2) & MAS2_EPN;
    412        1.2      matt 				if (kstack_lo <= mas2_epn
    413        1.2      matt 				    && mas2_epn <= kstack_hi)
    414        1.2      matt 					continue;
    415        1.2      matt 			}
    416        1.2      matt 			mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    417        1.2      matt 			__asm volatile("tlbwe");
    418        1.2      matt 		}
    419        1.2      matt 	}
    420       1.11      matt 	__asm volatile("isync\n\tsync");
    421        1.2      matt 	wrtee(msr);
    422       1.16    nonaka #endif	/* MULTIPROCESSOR */
    423        1.2      matt }
    424        1.2      matt 
    425        1.2      matt static void
    426        1.4      matt e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
    427        1.2      matt {
    428       1.16    nonaka #if defined(MULTIPROCESSOR)
    429       1.16    nonaka 	e500_tlb_invalidate_all();
    430       1.16    nonaka #else	/* !MULTIPROCESSOR */
    431        1.2      matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    432        1.2      matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    433        1.2      matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    434        1.2      matt 
    435        1.2      matt 	asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
    436        1.2      matt 	asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
    437        1.2      matt 
    438        1.2      matt 	const register_t msr = wrtee(0);
    439        1.2      matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    440        1.2      matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    441        1.2      matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    442        1.2      matt 			mtspr(SPR_MAS2, epn);
    443        1.2      matt 			__asm volatile("tlbre");
    444        1.2      matt 			const uint32_t mas1 = mfspr(SPR_MAS1);
    445        1.2      matt 			/*
    446        1.2      matt 			 * If this is a valid entry for AS space 1 and
    447        1.2      matt 			 * its asid matches the constraints of the caller,
    448        1.2      matt 			 * clear its valid bit.
    449        1.2      matt 			 */
    450        1.2      matt 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
    451        1.2      matt 			    && asid_lo <= (mas1 & MAS1_TID)
    452        1.5      matt 			    && (mas1 & MAS1_TID) <= asid_hi) {
    453        1.2      matt 				mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    454        1.2      matt #if 0
    455        1.2      matt 				printf("%s[%zu,%zu]->[%x]\n",
    456        1.2      matt 				    __func__, assoc, epn, mas1);
    457        1.2      matt #endif
    458        1.2      matt 				__asm volatile("tlbwe");
    459        1.2      matt 			}
    460        1.2      matt 		}
    461        1.2      matt 	}
    462       1.11      matt 	__asm volatile("isync\n\tsync");
    463        1.2      matt 	wrtee(msr);
    464       1.16    nonaka #endif	/* MULTIPROCESSOR */
    465        1.2      matt }
    466        1.2      matt 
    467        1.2      matt static u_int
    468       1.18      matt e500_tlb_record_asids(u_long *bitmap, tlb_asid_t asid_max)
    469        1.2      matt {
    470        1.2      matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    471        1.2      matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    472        1.2      matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    473        1.2      matt 	const size_t nbits = 8 * sizeof(bitmap[0]);
    474        1.2      matt 	u_int found = 0;
    475        1.2      matt 
    476        1.2      matt 	const register_t msr = wrtee(0);
    477        1.2      matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    478        1.2      matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    479        1.2      matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    480        1.2      matt 			mtspr(SPR_MAS2, epn);
    481        1.2      matt 			__asm volatile("tlbre");
    482        1.2      matt 			const uint32_t mas1 = mfspr(SPR_MAS1);
    483        1.2      matt 			/*
    484        1.2      matt 			 * If this is a valid entry for AS space 1 and
    485        1.2      matt 			 * its asid matches the constraints of the caller,
    486        1.2      matt 			 * clear its valid bit.
    487        1.2      matt 			 */
    488        1.2      matt 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
    489        1.2      matt 				const uint32_t asid = MASX_TID_GET(mas1);
    490        1.2      matt 				const u_int i = asid / nbits;
    491        1.2      matt 				const u_long mask = 1UL << (asid & (nbits - 1));
    492        1.2      matt 				if ((bitmap[i] & mask) == 0) {
    493        1.2      matt 					bitmap[i] |= mask;
    494        1.2      matt 					found++;
    495        1.2      matt 				}
    496        1.2      matt 			}
    497        1.2      matt 		}
    498        1.2      matt 	}
    499        1.2      matt 	wrtee(msr);
    500        1.2      matt 
    501        1.2      matt 	return found;
    502        1.2      matt }
    503        1.2      matt 
    504        1.2      matt static void
    505        1.4      matt e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
    506        1.2      matt {
    507        1.2      matt 	KASSERT((va & PAGE_MASK) == 0);
    508        1.2      matt 	/*
    509        1.2      matt 	 * Bits 60 & 61 have meaning
    510        1.2      matt 	 */
    511       1.11      matt 	if (asid == KERNEL_PID) {
    512       1.11      matt 		/*
    513       1.11      matt 		 * For data accesses, the context-synchronizing instruction
    514       1.11      matt 		 * before tlbwe or tlbivax ensures that all memory accesses
    515       1.11      matt 		 * due to preceding instructions have completed to a point
    516       1.11      matt 		 * at which they have reported all exceptions they will cause.
    517       1.11      matt 		 */
    518       1.11      matt 		__asm volatile("isync");
    519       1.11      matt 	}
    520        1.2      matt 	__asm volatile("tlbivax\t0, %0" :: "b"(va));
    521        1.2      matt 	__asm volatile("tlbsync");
    522       1.11      matt 	__asm volatile("tlbsync");	/* Why? */
    523       1.11      matt 	if (asid == KERNEL_PID) {
    524       1.11      matt 		/*
    525       1.11      matt 		 * The context-synchronizing instruction after tlbwe or tlbivax
    526       1.11      matt 		 * ensures that subsequent accesses (data and instruction) use
    527       1.11      matt 		 * the updated value in any TLB entries affected.
    528       1.11      matt 		 */
    529       1.11      matt 		__asm volatile("isync\n\tsync");
    530       1.11      matt 	}
    531        1.2      matt }
    532        1.2      matt 
    533        1.2      matt static bool
    534        1.4      matt e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
    535        1.2      matt {
    536       1.16    nonaka #if defined(MULTIPROCESSOR)
    537       1.16    nonaka 	e500_tlb_invalidate_addr(va, asid);
    538       1.16    nonaka 	return true;
    539       1.16    nonaka #else	/* !MULTIPROCESSOR */
    540        1.2      matt 	struct e500_hwtlb hwtlb = tlb_to_hwtlb(
    541        1.2      matt 	    (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
    542        1.2      matt 		.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
    543        1.2      matt 
    544        1.2      matt 	register_t msr = wrtee(0);
    545        1.2      matt 	mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
    546        1.2      matt 	__asm volatile("tlbsx 0, %0" :: "b"(va));
    547        1.2      matt 	register_t mas1 = mfspr(SPR_MAS1);
    548        1.2      matt 	if ((mas1 & MAS1_V) == 0) {
    549        1.2      matt 		if (!insert) {
    550        1.2      matt 			wrtee(msr);
    551        1.2      matt #if 0
    552        1.2      matt 			printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
    553        1.2      matt 			    __func__, va, asid, pte, insert);
    554        1.2      matt #endif
    555        1.2      matt 			return false;
    556        1.2      matt 		}
    557       1.18      matt 		mas1 = hwtlb.hwtlb_mas1 | MAS1_V;
    558       1.18      matt 		mtspr(SPR_MAS1, mas1);
    559        1.2      matt 	}
    560        1.2      matt 	mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    561        1.2      matt 	mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    562       1.12      matt 	//mtspr(SPR_MAS7, 0);
    563        1.2      matt 	__asm volatile("tlbwe");
    564       1.11      matt 	if (asid == KERNEL_PID)
    565       1.11      matt 		__asm volatile("isync\n\tsync");
    566        1.2      matt 	wrtee(msr);
    567        1.2      matt #if 0
    568        1.2      matt 	if (asid)
    569        1.2      matt 	printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
    570        1.2      matt 	    __func__, va, asid, pte, insert,
    571        1.2      matt 	    hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    572        1.2      matt #endif
    573        1.2      matt 	return (mas1 & MAS1_V) != 0;
    574       1.16    nonaka #endif	/* MULTIPROCESSOR */
    575        1.2      matt }
    576        1.2      matt 
    577        1.2      matt static void
    578        1.4      matt e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
    579        1.4      matt {
    580        1.4      matt }
    581        1.4      matt 
    582        1.4      matt static void
    583        1.2      matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
    584        1.2      matt {
    585        1.2      matt }
    586        1.2      matt 
    587        1.2      matt static void
    588        1.2      matt e500_tlb_dump(void (*pr)(const char *, ...))
    589        1.2      matt {
    590        1.2      matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    591        1.2      matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    592        1.2      matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    593        1.2      matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    594        1.2      matt 	size_t valid = 0;
    595        1.2      matt 
    596        1.2      matt 	if (pr == NULL)
    597        1.2      matt 		pr = printf;
    598        1.2      matt 
    599        1.2      matt 	const register_t msr = wrtee(0);
    600        1.2      matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    601        1.2      matt 		struct e500_hwtlb hwtlb;
    602        1.2      matt 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    603        1.2      matt 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    604        1.2      matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    605        1.2      matt 			mtspr(SPR_MAS2, epn);
    606        1.2      matt 			__asm volatile("tlbre");
    607        1.2      matt 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    608        1.2      matt 			/*
    609        1.2      matt 			 * If this is a valid entry for AS space 1 and
    610        1.2      matt 			 * its asid matches the constraints of the caller,
    611        1.2      matt 			 * clear its valid bit.
    612        1.2      matt 			 */
    613        1.2      matt 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    614        1.2      matt 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    615        1.2      matt 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    616        1.2      matt 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    617        1.2      matt 				(*pr)("[%zu,%zu]->[%x,%x,%x]",
    618        1.2      matt 				    assoc, atop(epn),
    619        1.2      matt 				    hwtlb.hwtlb_mas1,
    620        1.2      matt 				    hwtlb.hwtlb_mas2,
    621        1.2      matt 				    hwtlb.hwtlb_mas3);
    622        1.2      matt 				(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
    623        1.2      matt 				    tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
    624        1.2      matt 				(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
    625        1.2      matt 				    tlb.tlb_pte & PTE_RPN_MASK,
    626        1.2      matt 				    tlb.tlb_pte & PTE_xR ? "R" : "",
    627        1.2      matt 				    tlb.tlb_pte & PTE_xW ? "W" : "",
    628        1.2      matt 				    tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
    629        1.2      matt 				    tlb.tlb_pte & PTE_xX ? "X" : "",
    630        1.2      matt 				    tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
    631        1.2      matt 				    tlb.tlb_pte & PTE_W ? "W" : "",
    632        1.2      matt 				    tlb.tlb_pte & PTE_I ? "I" : "",
    633        1.2      matt 				    tlb.tlb_pte & PTE_M ? "M" : "",
    634        1.2      matt 				    tlb.tlb_pte & PTE_G ? "G" : "",
    635        1.2      matt 				    tlb.tlb_pte & PTE_E ? "E" : "");
    636        1.2      matt 				valid++;
    637        1.2      matt 			}
    638        1.2      matt 		}
    639        1.2      matt 	}
    640        1.2      matt 	mtspr(SPR_MAS0, saved_mas0);
    641        1.2      matt 	wrtee(msr);
    642        1.2      matt 	(*pr)("%s: %zu valid entries\n", __func__, valid);
    643        1.2      matt }
    644        1.2      matt 
    645        1.2      matt static void
    646        1.2      matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
    647        1.2      matt {
    648        1.2      matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    649        1.2      matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    650        1.2      matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    651        1.2      matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    652        1.2      matt 
    653        1.2      matt 	const register_t msr = wrtee(0);
    654        1.2      matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    655        1.2      matt 		struct e500_hwtlb hwtlb;
    656        1.2      matt 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    657        1.2      matt 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    658        1.2      matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    659        1.2      matt 			mtspr(SPR_MAS2, epn);
    660        1.2      matt 			__asm volatile("tlbre");
    661        1.2      matt 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    662        1.2      matt 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    663        1.2      matt 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    664        1.2      matt 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    665        1.2      matt 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    666        1.2      matt 				if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
    667        1.2      matt 				    tlb.tlb_pte))
    668        1.2      matt 					break;
    669        1.2      matt 			}
    670        1.2      matt 		}
    671        1.2      matt 	}
    672        1.2      matt 	mtspr(SPR_MAS0, saved_mas0);
    673        1.2      matt 	wrtee(msr);
    674        1.2      matt }
    675        1.2      matt 
    676        1.2      matt static struct e500_xtlb *
    677        1.9      matt e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
    678        1.9      matt {
    679        1.9      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    680        1.9      matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    681        1.9      matt 
    682        1.9      matt 	/*
    683        1.9      matt 	 * See if we have a TLB entry for the pa.
    684        1.9      matt 	 */
    685        1.9      matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    686        1.9      matt 		psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    687        1.9      matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    688        1.9      matt 		    && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
    689        1.9      matt 			if (slotp != NULL)
    690        1.9      matt 				*slotp = i;
    691        1.9      matt 			return xtlb;
    692        1.9      matt 		}
    693        1.9      matt 	}
    694        1.9      matt 
    695        1.9      matt 	return NULL;
    696        1.9      matt }
    697        1.9      matt 
    698       1.12      matt struct e500_xtlb *
    699        1.2      matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
    700        1.2      matt {
    701        1.2      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    702        1.2      matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    703        1.2      matt 
    704        1.2      matt 	/*
    705        1.9      matt 	 * See if we have a TLB entry for the va.
    706        1.2      matt 	 */
    707        1.2      matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    708        1.9      matt 		vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    709        1.2      matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    710        1.9      matt 		    && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
    711        1.2      matt 			if (slotp != NULL)
    712        1.2      matt 				*slotp = i;
    713        1.2      matt 			return xtlb;
    714        1.2      matt 		}
    715        1.2      matt 	}
    716        1.2      matt 
    717        1.2      matt 	return NULL;
    718        1.2      matt }
    719        1.2      matt 
    720        1.2      matt static struct e500_xtlb *
    721        1.2      matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
    722        1.2      matt {
    723        1.2      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    724        1.2      matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    725        1.2      matt 
    726        1.2      matt 	/*
    727        1.2      matt 	 * See if we have a TLB entry for the pa.
    728        1.2      matt 	 */
    729        1.2      matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    730        1.9      matt 		vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    731        1.2      matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    732        1.9      matt 		    && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
    733        1.9      matt 		    && (((va + len - 1) ^ va) & mask) == 0) {
    734        1.2      matt 			return xtlb;
    735        1.2      matt 		}
    736        1.2      matt 	}
    737        1.2      matt 
    738        1.2      matt 	return NULL;
    739        1.2      matt }
    740        1.2      matt 
    741        1.2      matt static void *
    742        1.7      matt e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
    743        1.2      matt {
    744        1.9      matt 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
    745        1.2      matt 
    746        1.2      matt 	/*
    747        1.2      matt 	 * See if we have a TLB entry for the pa.  If completely falls within
    748        1.6      matt 	 * mark the reference and return the pa.  But only if the tlb entry
    749        1.6      matt 	 * is not cacheable.
    750        1.2      matt 	 */
    751        1.6      matt 	if (xtlb
    752        1.7      matt 	    && (prefetchable
    753        1.7      matt 		|| (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
    754        1.2      matt 		xtlb->e_refcnt++;
    755       1.10      matt 		return (void *) (xtlb->e_tlb.tlb_va
    756       1.10      matt 		    + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
    757        1.2      matt 	}
    758        1.2      matt 	return NULL;
    759        1.2      matt }
    760        1.2      matt 
    761        1.2      matt static void
    762        1.2      matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
    763        1.2      matt {
    764        1.2      matt 	if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
    765        1.2      matt 		struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
    766        1.2      matt 		if (xtlb)
    767        1.2      matt 			xtlb->e_refcnt--;
    768        1.2      matt 	}
    769        1.2      matt }
    770        1.2      matt 
    771        1.2      matt static int
    772        1.4      matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
    773        1.2      matt {
    774        1.2      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    775        1.2      matt 	struct e500_xtlb *xtlb;
    776        1.2      matt 
    777        1.2      matt 	KASSERT(len & 0x55555000);
    778        1.2      matt 	KASSERT((len & ~0x55555000) == 0);
    779        1.2      matt 	KASSERT(len >= PAGE_SIZE);
    780        1.2      matt 	KASSERT((len & (len - 1)) == 0);
    781        1.2      matt 	KASSERT((va & (len - 1)) == 0);
    782        1.9      matt 	KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
    783        1.2      matt 
    784        1.2      matt 	if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
    785       1.17    nonaka 		psize_t mask __diagused = ~(xtlb->e_tlb.tlb_size - 1);
    786        1.9      matt 		KASSERT(len <= xtlb->e_tlb.tlb_size);
    787        1.9      matt 		KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
    788        1.2      matt 		xtlb->e_refcnt++;
    789        1.2      matt 		return 0;
    790        1.2      matt 	}
    791        1.2      matt 
    792        1.2      matt 	const int slot = e500_alloc_tlb1_entry();
    793        1.2      matt 	if (slot < 0)
    794        1.2      matt 		return ENOMEM;
    795        1.2      matt 
    796        1.2      matt 	xtlb = &tlb1->tlb1_entries[slot];
    797        1.2      matt 	xtlb->e_tlb.tlb_va = va;
    798        1.2      matt 	xtlb->e_tlb.tlb_size = len;
    799        1.2      matt 	xtlb->e_tlb.tlb_pte = pte;
    800        1.2      matt 	xtlb->e_tlb.tlb_asid = KERNEL_PID;
    801        1.2      matt 
    802        1.2      matt 	xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
    803        1.9      matt 	xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
    804        1.2      matt 	hwtlb_write(xtlb->e_hwtlb, true);
    805       1.16    nonaka 
    806       1.16    nonaka #if defined(MULTIPROCESSOR)
    807       1.16    nonaka 	cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
    808       1.16    nonaka #endif
    809       1.16    nonaka 
    810        1.2      matt 	return 0;
    811        1.2      matt }
    812        1.2      matt 
    813        1.2      matt static int
    814        1.2      matt e500_tlb_iorelease(vaddr_t va)
    815        1.2      matt {
    816        1.2      matt 	u_int slot;
    817        1.2      matt 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
    818        1.2      matt 
    819        1.2      matt 	if (xtlb == NULL)
    820        1.2      matt 		return ENOENT;
    821        1.2      matt 
    822        1.2      matt 	if (xtlb->e_refcnt)
    823        1.2      matt 		return EBUSY;
    824        1.2      matt 
    825        1.2      matt 	e500_free_tlb1_entry(xtlb, slot, true);
    826        1.2      matt 
    827       1.16    nonaka #if defined(MULTIPROCESSOR)
    828       1.16    nonaka 	cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
    829       1.16    nonaka #endif
    830       1.16    nonaka 
    831        1.2      matt 	return 0;
    832        1.2      matt }
    833        1.2      matt 
    834        1.2      matt static u_int
    835        1.2      matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
    836        1.2      matt {
    837        1.2      matt 	u_int slotmask = 0;
    838        1.2      matt 	u_int slots = 0, nextslot = 0;
    839        1.2      matt 	KASSERT(tlb1->tlb1_numfree > 1);
    840        1.2      matt 	KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
    841        1.2      matt 	for (paddr_t lastaddr = memstart; 0 < memsize; ) {
    842        1.2      matt 		u_int cnt = __builtin_clz(memsize);
    843  1.18.18.1  christos 		psize_t size = uimin(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
    844        1.2      matt 		slots += memsize / size;
    845        1.2      matt 		if (slots > 4)
    846        1.2      matt 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    847        1.2      matt 			    __func__, __LINE__, memsize, "too fragmented");
    848        1.2      matt 		if (slots > tlb1->tlb1_numfree - 1)
    849        1.2      matt 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    850        1.2      matt 			    __func__, __LINE__, memsize,
    851        1.2      matt 			    "insufficent TLB entries");
    852        1.2      matt 		for (; nextslot < slots; nextslot++) {
    853        1.2      matt 			const u_int freeslot = e500_alloc_tlb1_entry();
    854        1.2      matt 			struct e500_xtlb * const xtlb =
    855        1.2      matt 			    &tlb1->tlb1_entries[freeslot];
    856        1.2      matt 			xtlb->e_tlb.tlb_asid = KERNEL_PID;
    857        1.2      matt 			xtlb->e_tlb.tlb_size = size;
    858        1.2      matt 			xtlb->e_tlb.tlb_va = lastaddr;
    859        1.2      matt 			xtlb->e_tlb.tlb_pte = lastaddr
    860        1.2      matt 			    | PTE_M | PTE_xX | PTE_xW | PTE_xR;
    861        1.2      matt 			lastaddr += size;
    862        1.2      matt 			memsize -= size;
    863        1.2      matt 			slotmask |= 1 << (31 - freeslot); /* clz friendly */
    864        1.2      matt 		}
    865        1.2      matt 	}
    866        1.2      matt 
    867       1.16    nonaka #if defined(MULTIPROCESSOR)
    868       1.16    nonaka 	cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
    869       1.16    nonaka #endif
    870       1.16    nonaka 
    871        1.2      matt 	return nextslot;
    872        1.2      matt }
    873       1.15    nonaka 
    874        1.2      matt static const struct tlb_md_ops e500_tlb_ops = {
    875        1.4      matt 	.md_tlb_get_asid = e500_tlb_get_asid,
    876        1.2      matt 	.md_tlb_set_asid = e500_tlb_set_asid,
    877        1.2      matt 	.md_tlb_invalidate_all = e500_tlb_invalidate_all,
    878        1.2      matt 	.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
    879        1.2      matt 	.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
    880        1.2      matt 	.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
    881        1.2      matt 	.md_tlb_update_addr = e500_tlb_update_addr,
    882        1.2      matt 	.md_tlb_record_asids = e500_tlb_record_asids,
    883        1.4      matt 	.md_tlb_write_entry = e500_tlb_write_entry,
    884        1.2      matt 	.md_tlb_read_entry = e500_tlb_read_entry,
    885        1.4      matt 	.md_tlb_dump = e500_tlb_dump,
    886        1.4      matt 	.md_tlb_walk = e500_tlb_walk,
    887        1.4      matt };
    888        1.4      matt 
    889        1.4      matt static const struct tlb_md_io_ops e500_tlb_io_ops = {
    890        1.2      matt 	.md_tlb_mapiodev = e500_tlb_mapiodev,
    891        1.2      matt 	.md_tlb_unmapiodev = e500_tlb_unmapiodev,
    892        1.2      matt 	.md_tlb_ioreserve = e500_tlb_ioreserve,
    893        1.2      matt 	.md_tlb_iorelease = e500_tlb_iorelease,
    894        1.2      matt };
    895        1.2      matt 
    896        1.2      matt void
    897        1.2      matt e500_tlb_init(vaddr_t endkernel, psize_t memsize)
    898        1.2      matt {
    899        1.2      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    900        1.2      matt 
    901        1.2      matt #if 0
    902        1.2      matt 	register_t mmucfg = mfspr(SPR_MMUCFG);
    903        1.2      matt 	register_t mas4 = mfspr(SPR_MAS4);
    904        1.2      matt #endif
    905        1.2      matt 
    906        1.2      matt 	const uint32_t tlb1cfg = mftlb1cfg();
    907        1.2      matt 	tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
    908        1.2      matt 	KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
    909        1.2      matt 	/*
    910        1.2      matt 	 * Limit maxsize to 1G since 4G isn't really useful to us.
    911        1.2      matt 	 */
    912        1.2      matt 	tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
    913  1.18.18.1  christos 	tlb1->tlb1_maxsize = 1024 << (2 * uimin(10, TLBCFG_MAXSIZE(tlb1cfg)));
    914        1.2      matt 
    915        1.2      matt #ifdef VERBOSE_INITPPC
    916        1.2      matt 	printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
    917        1.2      matt 	    tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
    918        1.2      matt 	    tlb1->tlb1_maxsize >> 10);
    919        1.2      matt #endif
    920        1.2      matt 
    921        1.2      matt 	/*
    922        1.2      matt 	 * Let's see what's in TLB1 and we need to invalidate any entry that
    923        1.2      matt 	 * would fit within the kernel's mapped address space.
    924        1.2      matt 	 */
    925        1.2      matt 	psize_t memmapped = 0;
    926        1.2      matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    927        1.2      matt 		struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    928        1.2      matt 
    929        1.2      matt 		xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
    930        1.2      matt 
    931        1.2      matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
    932        1.2      matt 			tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
    933        1.2      matt #ifdef VERBOSE_INITPPC
    934        1.2      matt 			printf(" TLB1[%u]=<unused>", i);
    935        1.2      matt #endif
    936        1.2      matt 			continue;
    937        1.2      matt 		}
    938        1.2      matt 
    939        1.2      matt 		xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
    940        1.2      matt #ifdef VERBOSE_INITPPC
    941        1.2      matt 		printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
    942        1.2      matt 		    i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
    943        1.2      matt 		    xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
    944        1.2      matt #endif
    945        1.2      matt 		if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
    946        1.2      matt 		    && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
    947        1.2      matt 		    || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
    948        1.2      matt 		        && VM_MIN_KERNEL_ADDRESS <
    949        1.2      matt 			   xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
    950        1.2      matt #ifdef VERBOSE_INITPPC
    951        1.2      matt 			printf("free");
    952        1.2      matt #endif
    953        1.2      matt 			e500_free_tlb1_entry(xtlb, i, false);
    954        1.2      matt #ifdef VERBOSE_INITPPC
    955        1.2      matt 			printf("d");
    956        1.2      matt #endif
    957        1.2      matt 			continue;
    958        1.2      matt 		}
    959        1.2      matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
    960        1.2      matt 			xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
    961        1.2      matt 			hwtlb_write(xtlb->e_hwtlb, false);
    962        1.2      matt #ifdef VERBOSE_INITPPC
    963        1.2      matt 			printf("+iprot");
    964        1.2      matt #endif
    965        1.2      matt 		}
    966        1.2      matt 		if (xtlb->e_tlb.tlb_pte & PTE_I)
    967        1.2      matt 			continue;
    968        1.2      matt 
    969        1.2      matt 		if (xtlb->e_tlb.tlb_va == 0
    970        1.2      matt 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
    971        1.2      matt 			memmapped += xtlb->e_tlb.tlb_size;
    972       1.12      matt 			/*
    973       1.12      matt 			 * Let make sure main memory is setup so it's memory
    974       1.12      matt 			 * coherent.  For some reason u-boot doesn't set it up
    975       1.12      matt 			 * that way.
    976       1.12      matt 			 */
    977       1.12      matt 			if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) {
    978       1.12      matt 				xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M;
    979       1.12      matt 				hwtlb_write(xtlb->e_hwtlb, true);
    980       1.12      matt 			}
    981        1.2      matt 		}
    982        1.2      matt 	}
    983        1.2      matt 
    984        1.2      matt 	cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
    985        1.4      matt 	cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
    986        1.2      matt 
    987        1.2      matt 	if (__predict_false(memmapped < memsize)) {
    988        1.2      matt 		/*
    989        1.2      matt 		 * Let's see how many TLB entries are needed to map memory.
    990        1.2      matt 		 */
    991        1.2      matt 		u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
    992        1.2      matt 
    993        1.2      matt 		/*
    994        1.2      matt 		 * To map main memory into the TLB, we need to flush any
    995        1.2      matt 		 * existing entries from the TLB that overlap the virtual
    996        1.2      matt 		 * address space needed to map physical memory.  That may
    997        1.2      matt 		 * include the entries for the pages currently used by the
    998        1.2      matt 		 * stack or that we are executing.  So to avoid problems, we
    999        1.2      matt 		 * are going to temporarily map the kernel and stack into AS 1,
   1000        1.2      matt 		 * switch to it, and clear out the TLB entries from AS 0,
   1001        1.2      matt 		 * install the new TLB entries to map memory, and then switch
   1002        1.2      matt 		 * back to AS 0 and free the temp entry used for AS1.
   1003        1.2      matt 		 */
   1004        1.2      matt 		u_int b = __builtin_clz(endkernel);
   1005        1.2      matt 
   1006        1.2      matt 		/*
   1007        1.2      matt 		 * If the kernel doesn't end on a clean power of 2, we need
   1008        1.2      matt 		 * to round the size up (by decrementing the number of leading
   1009        1.2      matt 		 * zero bits).  If the size isn't a power of 4KB, decrement
   1010        1.2      matt 		 * again to make it one.
   1011        1.2      matt 		 */
   1012        1.2      matt 		if (endkernel & (endkernel - 1))
   1013        1.2      matt 			b--;
   1014        1.2      matt 		if ((b & 1) == 0)
   1015        1.2      matt 			b--;
   1016        1.2      matt 
   1017        1.2      matt 		/*
   1018        1.2      matt 		 * Create a TLB1 mapping for the kernel in AS1.
   1019        1.2      matt 		 */
   1020        1.2      matt 		const u_int kslot = e500_alloc_tlb1_entry();
   1021        1.2      matt 		struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
   1022        1.2      matt 		kxtlb->e_tlb.tlb_va = 0;
   1023        1.2      matt 		kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
   1024        1.2      matt 		kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
   1025        1.2      matt 		kxtlb->e_tlb.tlb_asid = KERNEL_PID;
   1026        1.2      matt 
   1027        1.2      matt 		kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
   1028        1.9      matt 		kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
   1029        1.2      matt 		kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
   1030        1.2      matt 		hwtlb_write(kxtlb->e_hwtlb, true);
   1031        1.2      matt 
   1032        1.2      matt 		/*
   1033        1.2      matt 		 * Now that we have a TLB mapping in AS1 for the kernel and its
   1034        1.2      matt 		 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
   1035        1.2      matt 		 */
   1036        1.2      matt 		const register_t saved_msr = mfmsr();
   1037        1.2      matt 		mtmsr(saved_msr | PSL_DS | PSL_IS);
   1038        1.2      matt 		__asm volatile("isync");
   1039        1.2      matt 
   1040        1.2      matt 		/*
   1041        1.2      matt 		 *** Invalidate all the TLB0 entries.
   1042        1.2      matt 		 */
   1043        1.2      matt 		e500_tlb_invalidate_all();
   1044        1.2      matt 
   1045        1.2      matt 		/*
   1046        1.2      matt 		 *** Now let's see if we have any entries in TLB1 that would
   1047        1.2      matt 		 *** overlap the ones we are about to install.  If so, nuke 'em.
   1048        1.2      matt 		 */
   1049        1.2      matt 		for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
   1050        1.2      matt 			struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
   1051        1.2      matt 			struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
   1052        1.2      matt 			if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
   1053        1.2      matt 			    && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
   1054        1.2      matt 				e500_free_tlb1_entry(xtlb, i, false);
   1055        1.2      matt 			}
   1056        1.2      matt 		}
   1057        1.2      matt 
   1058        1.2      matt 		/*
   1059        1.2      matt 		 *** Now we can add the TLB entries that will map physical
   1060        1.2      matt 		 *** memory.  If bit 0 [MSB] in slotmask is set, then tlb
   1061        1.2      matt 		 *** entry 0 contains a mapping for physical memory...
   1062        1.2      matt 		 */
   1063        1.2      matt 		struct e500_xtlb *entries = tlb1->tlb1_entries;
   1064        1.2      matt 		while (slotmask != 0) {
   1065        1.2      matt 			const u_int slot = __builtin_clz(slotmask);
   1066        1.2      matt 			hwtlb_write(entries[slot].e_hwtlb, false);
   1067        1.2      matt 			entries += slot + 1;
   1068        1.2      matt 			slotmask <<= slot + 1;
   1069        1.2      matt 		}
   1070        1.2      matt 
   1071        1.2      matt 		/*
   1072        1.2      matt 		 *** Synchronize the TLB and the instruction stream.
   1073        1.2      matt 		 */
   1074        1.2      matt 		__asm volatile("tlbsync");
   1075        1.2      matt 		__asm volatile("isync");
   1076        1.2      matt 
   1077        1.2      matt 		/*
   1078        1.2      matt 		 *** Switch back to AS 0.
   1079        1.2      matt 		 */
   1080        1.2      matt 		mtmsr(saved_msr);
   1081        1.2      matt 		__asm volatile("isync");
   1082        1.2      matt 
   1083        1.2      matt 		/*
   1084        1.2      matt 		 * Free the temporary TLB1 entry.
   1085        1.2      matt 		 */
   1086        1.2      matt 		e500_free_tlb1_entry(kxtlb, kslot, true);
   1087        1.2      matt 	}
   1088        1.2      matt 
   1089        1.2      matt 	/*
   1090        1.2      matt 	 * Finally set the MAS4 defaults.
   1091        1.2      matt 	 */
   1092        1.2      matt 	mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
   1093        1.2      matt 
   1094        1.2      matt 	/*
   1095        1.2      matt 	 * Invalidate all the TLB0 entries.
   1096        1.2      matt 	 */
   1097        1.2      matt 	e500_tlb_invalidate_all();
   1098        1.2      matt }
   1099        1.8      matt 
   1100        1.8      matt void
   1101        1.8      matt e500_tlb_minimize(vaddr_t endkernel)
   1102        1.8      matt {
   1103        1.8      matt #ifdef PMAP_MINIMALTLB
   1104        1.8      matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
   1105        1.8      matt 	extern uint32_t _fdata[];
   1106        1.8      matt 
   1107        1.8      matt 	u_int slot;
   1108        1.8      matt 
   1109        1.8      matt 	paddr_t boot_page = cpu_read_4(GUR_BPTR);
   1110        1.8      matt 	if (boot_page & BPTR_EN) {
   1111        1.8      matt 		/*
   1112        1.8      matt 		 * shift it to an address
   1113        1.8      matt 		 */
   1114        1.8      matt 		boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
   1115        1.8      matt 		pmap_kvptefill(boot_page, boot_page + NBPG,
   1116        1.8      matt 		    PTE_M | PTE_xR | PTE_xW | PTE_xX);
   1117        1.8      matt 	}
   1118        1.8      matt 
   1119        1.8      matt 
   1120        1.8      matt 	KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
   1121        1.8      matt 	KASSERT((uintptr_t)_fdata == 0x400000);
   1122        1.8      matt 
   1123        1.8      matt 	struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
   1124        1.8      matt 
   1125        1.8      matt 	KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
   1126        1.8      matt 	const u_int tmp_slot = e500_alloc_tlb1_entry();
   1127        1.8      matt 	KASSERT(tmp_slot != (u_int) -1);
   1128        1.8      matt 
   1129        1.8      matt 	struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
   1130        1.8      matt 	tmp_xtlb->e_tlb = xtlb->e_tlb;
   1131        1.8      matt 	tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
   1132        1.8      matt 	tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
   1133        1.8      matt 	KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1134        1.8      matt 	tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
   1135        1.8      matt 	hwtlb_write(tmp_xtlb->e_hwtlb, true);
   1136        1.8      matt 
   1137        1.8      matt 	const u_int text_slot = e500_alloc_tlb1_entry();
   1138        1.8      matt 	KASSERT(text_slot != (u_int)-1);
   1139        1.8      matt 	struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
   1140        1.8      matt 	text_xtlb->e_tlb.tlb_va = 0;
   1141        1.8      matt 	text_xtlb->e_tlb.tlb_size = 0x400000;
   1142        1.8      matt 	text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
   1143        1.8      matt 	text_xtlb->e_tlb.tlb_asid = 0;
   1144        1.8      matt 	text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
   1145        1.8      matt 	KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1146        1.8      matt 	text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
   1147        1.8      matt 
   1148        1.8      matt 	const u_int data_slot = e500_alloc_tlb1_entry();
   1149        1.8      matt 	KASSERT(data_slot != (u_int)-1);
   1150        1.8      matt 	struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
   1151        1.8      matt 	data_xtlb->e_tlb.tlb_va = 0x400000;
   1152        1.8      matt 	data_xtlb->e_tlb.tlb_size = 0x400000;
   1153        1.8      matt 	data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
   1154        1.8      matt 	data_xtlb->e_tlb.tlb_asid = 0;
   1155        1.8      matt 	data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
   1156        1.8      matt 	KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1157        1.8      matt 	data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
   1158        1.8      matt 
   1159        1.8      matt 	const register_t msr = mfmsr();
   1160        1.8      matt 	const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
   1161        1.8      matt 
   1162        1.8      matt 	__asm __volatile(
   1163        1.8      matt 		"mtmsr	%[ts_msr]"	"\n\t"
   1164        1.8      matt 		"sync"			"\n\t"
   1165        1.8      matt 		"isync"
   1166        1.8      matt 	    ::	[ts_msr] "r" (ts_msr));
   1167        1.8      matt 
   1168        1.8      matt #if 0
   1169        1.8      matt 	hwtlb_write(text_xtlb->e_hwtlb, false);
   1170        1.8      matt 	hwtlb_write(data_xtlb->e_hwtlb, false);
   1171        1.8      matt 	e500_free_tlb1_entry(xtlb, slot, true);
   1172        1.8      matt #endif
   1173        1.8      matt 
   1174        1.8      matt 	__asm __volatile(
   1175        1.8      matt 		"mtmsr	%[msr]"		"\n\t"
   1176        1.8      matt 		"sync"			"\n\t"
   1177        1.8      matt 		"isync"
   1178        1.8      matt 	    ::	[msr] "r" (msr));
   1179        1.8      matt 
   1180        1.8      matt 	e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
   1181        1.8      matt #endif	/* PMAP_MINIMALTLB */
   1182        1.8      matt }
   1183