e500_tlb.c revision 1.6 1 1.6 matt /* $NetBSD: e500_tlb.c,v 1.6 2011/06/29 23:15:55 matt Exp $ */
2 1.2 matt /*-
3 1.2 matt * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 1.2 matt * All rights reserved.
5 1.2 matt *
6 1.2 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.2 matt * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 1.2 matt * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 1.2 matt *
10 1.2 matt * This material is based upon work supported by the Defense Advanced Research
11 1.2 matt * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 1.2 matt * Contract No. N66001-09-C-2073.
13 1.2 matt * Approved for Public Release, Distribution Unlimited
14 1.2 matt *
15 1.2 matt * Redistribution and use in source and binary forms, with or without
16 1.2 matt * modification, are permitted provided that the following conditions
17 1.2 matt * are met:
18 1.2 matt * 1. Redistributions of source code must retain the above copyright
19 1.2 matt * notice, this list of conditions and the following disclaimer.
20 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
21 1.2 matt * notice, this list of conditions and the following disclaimer in the
22 1.2 matt * documentation and/or other materials provided with the distribution.
23 1.2 matt *
24 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
35 1.2 matt */
36 1.2 matt
37 1.2 matt #include <sys/cdefs.h>
38 1.2 matt
39 1.6 matt __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.6 2011/06/29 23:15:55 matt Exp $");
40 1.2 matt
41 1.2 matt #include <sys/param.h>
42 1.2 matt
43 1.2 matt #include <uvm/uvm_extern.h>
44 1.2 matt
45 1.2 matt #include <powerpc/spr.h>
46 1.2 matt #include <powerpc/booke/spr.h>
47 1.2 matt #include <powerpc/booke/cpuvar.h>
48 1.2 matt #include <powerpc/booke/e500var.h>
49 1.2 matt #include <powerpc/booke/pmap.h>
50 1.2 matt
51 1.2 matt struct e500_tlb {
52 1.2 matt vaddr_t tlb_va;
53 1.2 matt uint32_t tlb_pte;
54 1.2 matt uint32_t tlb_asid;
55 1.2 matt vsize_t tlb_size;
56 1.2 matt };
57 1.2 matt
58 1.2 matt struct e500_hwtlb {
59 1.2 matt uint32_t hwtlb_mas0;
60 1.2 matt uint32_t hwtlb_mas1;
61 1.2 matt uint32_t hwtlb_mas2;
62 1.2 matt uint32_t hwtlb_mas3;
63 1.2 matt };
64 1.2 matt
65 1.2 matt struct e500_xtlb {
66 1.2 matt struct e500_tlb e_tlb;
67 1.2 matt struct e500_hwtlb e_hwtlb;
68 1.2 matt u_long e_refcnt;
69 1.2 matt };
70 1.2 matt
71 1.2 matt static struct e500_tlb1 {
72 1.2 matt uint32_t tlb1_maxsize;
73 1.2 matt uint32_t tlb1_minsize;
74 1.2 matt u_int tlb1_numentries;
75 1.2 matt u_int tlb1_numfree;
76 1.2 matt u_int tlb1_freelist[32];
77 1.2 matt struct e500_xtlb tlb1_entries[32];
78 1.2 matt } e500_tlb1;
79 1.2 matt
80 1.2 matt static inline register_t mftlb0cfg(void) __pure;
81 1.2 matt static inline register_t mftlb1cfg(void) __pure;
82 1.2 matt
83 1.2 matt static inline register_t
84 1.2 matt mftlb0cfg(void)
85 1.2 matt {
86 1.2 matt register_t tlb0cfg;
87 1.2 matt __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
88 1.2 matt return tlb0cfg;
89 1.2 matt }
90 1.2 matt
91 1.2 matt static inline register_t
92 1.2 matt mftlb1cfg(void)
93 1.2 matt {
94 1.2 matt register_t tlb1cfg;
95 1.2 matt __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
96 1.2 matt return tlb1cfg;
97 1.2 matt }
98 1.2 matt
99 1.2 matt static struct e500_tlb
100 1.2 matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
101 1.2 matt {
102 1.2 matt struct e500_tlb tlb;
103 1.2 matt register_t prot_mask;
104 1.2 matt u_int prot_shift;
105 1.2 matt
106 1.2 matt tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
107 1.2 matt tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
108 1.2 matt tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
109 1.2 matt tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
110 1.2 matt | (hwtlb.hwtlb_mas3 & MAS3_RPN);
111 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_TS) {
112 1.2 matt prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
113 1.2 matt prot_shift = PTE_RWX_SHIFT - 1;
114 1.2 matt } else {
115 1.2 matt prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
116 1.2 matt prot_shift = PTE_RWX_SHIFT;
117 1.2 matt }
118 1.2 matt tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
119 1.2 matt return tlb;
120 1.2 matt }
121 1.2 matt
122 1.2 matt static inline struct e500_hwtlb
123 1.2 matt hwtlb_read(uint32_t mas0, u_int slot)
124 1.2 matt {
125 1.2 matt struct e500_hwtlb hwtlb;
126 1.2 matt register_t tlbcfg;
127 1.2 matt
128 1.2 matt if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
129 1.2 matt tlbcfg = mftlb0cfg();
130 1.2 matt } else if (mas0 == MAS0_TLBSEL_TLB1) {
131 1.2 matt tlbcfg = mftlb1cfg();
132 1.2 matt } else {
133 1.2 matt panic("%s:%d: unexpected MAS0 %#" PRIx32,
134 1.2 matt __func__, __LINE__, mas0);
135 1.2 matt }
136 1.2 matt
137 1.2 matt /*
138 1.2 matt * ESEL is the way we want to look up.
139 1.2 matt * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
140 1.2 matt * fully associative, the entire slot is placed into ESEL. If tlbassoc
141 1.2 matt * is less then the number of tlb entries, the slot is split in two
142 1.2 matt * fields. Since the TLB is M rows by N ways, the lowers bits are for
143 1.2 matt * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
144 1.2 matt */
145 1.2 matt const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
146 1.2 matt const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
147 1.2 matt const u_int esel_shift =
148 1.2 matt __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
149 1.2 matt
150 1.2 matt /*
151 1.2 matt * Disable interrupts since we don't want anyone else mucking with
152 1.2 matt * the MMU Assist registers
153 1.2 matt */
154 1.2 matt const register_t msr = wrtee(0);
155 1.2 matt const register_t saved_mas0 = mfspr(SPR_MAS0);
156 1.2 matt mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
157 1.2 matt
158 1.2 matt if (__predict_true(tlbassoc > tlbentries))
159 1.2 matt mtspr(SPR_MAS2, slot << PAGE_SHIFT);
160 1.2 matt
161 1.2 matt /*
162 1.2 matt * Now select the entry and grab its contents.
163 1.2 matt */
164 1.2 matt __asm volatile("tlbre");
165 1.2 matt
166 1.2 matt hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
167 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
168 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
169 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
170 1.2 matt
171 1.2 matt mtspr(SPR_MAS0, saved_mas0);
172 1.2 matt wrtee(msr); /* restore interrupts */
173 1.2 matt
174 1.2 matt return hwtlb;
175 1.2 matt }
176 1.2 matt
177 1.2 matt static inline void
178 1.2 matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
179 1.2 matt {
180 1.2 matt const register_t msr = wrtee(0);
181 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
182 1.2 matt
183 1.2 matt /*
184 1.2 matt * Need to always write MAS0 and MAS1
185 1.2 matt */
186 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
187 1.2 matt mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
188 1.2 matt
189 1.2 matt /*
190 1.2 matt * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
191 1.2 matt */
192 1.2 matt if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
193 1.2 matt || (hwtlb.hwtlb_mas1 & MAS1_V)) {
194 1.2 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
195 1.2 matt }
196 1.2 matt /*
197 1.2 matt * Only need to write the RPN/prot if we are dealing with a valid
198 1.2 matt * mapping.
199 1.2 matt */
200 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
201 1.2 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
202 1.2 matt }
203 1.2 matt
204 1.2 matt #if 0
205 1.2 matt printf("%s->[%x,%x,%x,%x]\n",
206 1.2 matt __func__,
207 1.2 matt hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
208 1.2 matt hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
209 1.2 matt #endif
210 1.2 matt __asm volatile("tlbwe");
211 1.2 matt if (needs_sync) {
212 1.2 matt __asm volatile("tlbsync");
213 1.2 matt __asm volatile("isync");
214 1.2 matt }
215 1.2 matt
216 1.2 matt mtspr(SPR_MAS0, saved_mas0);
217 1.2 matt wrtee(msr);
218 1.2 matt }
219 1.2 matt
220 1.2 matt static struct e500_hwtlb
221 1.2 matt tlb_to_hwtlb(const struct e500_tlb tlb)
222 1.2 matt {
223 1.2 matt struct e500_hwtlb hwtlb;
224 1.2 matt
225 1.2 matt KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
226 1.2 matt KASSERT(tlb.tlb_size != 0);
227 1.2 matt KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
228 1.2 matt const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
229 1.2 matt if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
230 1.2 matt hwtlb.hwtlb_mas0 = 0;
231 1.2 matt hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
232 1.2 matt /*
233 1.2 matt * A non-zero ASID means this is a user page so mark it as
234 1.2 matt * being in the user's address space.
235 1.2 matt */
236 1.2 matt if (tlb.tlb_asid) {
237 1.2 matt hwtlb.hwtlb_mas1 |= MAS1_TS
238 1.2 matt | MASX_TID_MAKE(tlb.tlb_asid);
239 1.2 matt hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
240 1.2 matt | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
241 1.2 matt KASSERT(prot_mask & PTE_xR);
242 1.2 matt KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
243 1.2 matt CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
244 1.2 matt CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
245 1.2 matt } else {
246 1.2 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
247 1.2 matt }
248 1.2 matt if (tlb.tlb_pte & PTE_UNMODIFIED)
249 1.2 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
250 1.2 matt if (tlb.tlb_pte & PTE_UNSYNCED)
251 1.2 matt hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
252 1.2 matt } else {
253 1.2 matt KASSERT(tlb.tlb_asid == 0);
254 1.2 matt KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
255 1.2 matt u_int cntlz = __builtin_clz(tlb.tlb_size);
256 1.2 matt KASSERT(cntlz & 1);
257 1.2 matt KASSERT(cntlz <= 19);
258 1.2 matt hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
259 1.2 matt /*
260 1.2 matt * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
261 1.2 matt * allowed. So 1K would be 0x00000400 giving 21 leading zero
262 1.2 matt * bits. Subtracting the leading number of zero bits from 21
263 1.2 matt * and dividing by 2 gives us the number that the MMU wants.
264 1.2 matt */
265 1.2 matt hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
266 1.2 matt | MAS1_IPROT | MAS1_V;
267 1.2 matt hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
268 1.2 matt }
269 1.2 matt /* We are done with MAS1, on to MAS2 ... */
270 1.2 matt hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
271 1.2 matt hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
272 1.2 matt
273 1.2 matt return hwtlb;
274 1.2 matt }
275 1.2 matt
276 1.3 matt void *
277 1.3 matt e500_tlb1_fetch(size_t slot)
278 1.3 matt {
279 1.3 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
280 1.3 matt
281 1.3 matt return &tlb1->tlb1_entries[slot].e_hwtlb;
282 1.3 matt }
283 1.3 matt
284 1.3 matt void
285 1.3 matt e500_tlb1_sync(void)
286 1.3 matt {
287 1.3 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
288 1.3 matt for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
289 1.3 matt const struct e500_hwtlb * const new_hwtlb =
290 1.3 matt &tlb1->tlb1_entries[slot].e_hwtlb;
291 1.3 matt const struct e500_hwtlb old_hwtlb =
292 1.3 matt hwtlb_read(MAS0_TLBSEL_TLB1, slot);
293 1.3 matt #define CHANGED(n,o,f) ((n)->f != (o).f)
294 1.3 matt bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
295 1.3 matt bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
296 1.3 matt bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
297 1.3 matt #undef CHANGED
298 1.3 matt bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
299 1.3 matt bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
300 1.3 matt if ((new_valid_p || old_valid_p)
301 1.3 matt && (mas1_changed_p
302 1.3 matt || (new_valid_p
303 1.3 matt && (mas2_changed_p || mas3_changed_p))))
304 1.3 matt hwtlb_write(*new_hwtlb, true);
305 1.3 matt }
306 1.3 matt }
307 1.3 matt
308 1.2 matt static int
309 1.2 matt e500_alloc_tlb1_entry(void)
310 1.2 matt {
311 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
312 1.2 matt
313 1.2 matt if (tlb1->tlb1_numfree == 0)
314 1.2 matt return -1;
315 1.2 matt const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
316 1.2 matt KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
317 1.2 matt tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
318 1.2 matt MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
319 1.2 matt return slot;
320 1.2 matt }
321 1.2 matt
322 1.2 matt static void
323 1.2 matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
324 1.2 matt {
325 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
326 1.2 matt KASSERT(slot < tlb1->tlb1_numentries);
327 1.2 matt KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
328 1.2 matt
329 1.2 matt KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
330 1.2 matt xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
331 1.2 matt hwtlb_write(xtlb->e_hwtlb, needs_sync);
332 1.2 matt
333 1.2 matt const register_t msr = wrtee(0);
334 1.2 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
335 1.2 matt wrtee(msr);
336 1.2 matt }
337 1.2 matt
338 1.4 matt static tlb_asid_t
339 1.4 matt e500_tlb_get_asid(void)
340 1.4 matt {
341 1.4 matt return mfspr(SPR_PID0);
342 1.4 matt }
343 1.4 matt
344 1.4 matt static void
345 1.4 matt e500_tlb_set_asid(tlb_asid_t asid)
346 1.2 matt {
347 1.2 matt mtspr(SPR_PID0, asid);
348 1.2 matt }
349 1.2 matt
350 1.4 matt static void
351 1.4 matt e500_tlb_invalidate_all(void)
352 1.2 matt {
353 1.2 matt /*
354 1.2 matt * This does a flash invalidate of all entries in TLB0.
355 1.2 matt * We don't touch TLB1 since we don't expect those to be volatile.
356 1.2 matt */
357 1.2 matt #if 1
358 1.2 matt __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
359 1.2 matt #else
360 1.2 matt mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
361 1.2 matt while (mfspr(SPR_MMUCSR0) != 0)
362 1.2 matt ;
363 1.2 matt #endif
364 1.2 matt }
365 1.2 matt
366 1.2 matt static void
367 1.2 matt e500_tlb_invalidate_globals(void)
368 1.2 matt {
369 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
370 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
371 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
372 1.2 matt const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
373 1.2 matt const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
374 1.2 matt const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
375 1.2 matt const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
376 1.2 matt
377 1.2 matt const register_t msr = wrtee(0);
378 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
379 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
380 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
381 1.2 matt mtspr(SPR_MAS2, epn);
382 1.2 matt __asm volatile("tlbre");
383 1.2 matt uint32_t mas1 = mfspr(SPR_MAS1);
384 1.2 matt
385 1.2 matt /*
386 1.2 matt * Make sure this is a valid kernel entry first.
387 1.2 matt */
388 1.2 matt if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
389 1.2 matt continue;
390 1.2 matt
391 1.2 matt /*
392 1.2 matt * We have a valid kernel TLB entry. But if it matches
393 1.2 matt * the stack we are currently running on, it would
394 1.2 matt * unwise to invalidate it. First see if the epn
395 1.2 matt * overlaps the stack. If it does then get the
396 1.2 matt * VA and see if it really is part of the stack.
397 1.2 matt */
398 1.2 matt if (epn_kstack_lo < epn_kstack_hi
399 1.2 matt ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
400 1.2 matt : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
401 1.2 matt const uint32_t mas2_epn =
402 1.2 matt mfspr(SPR_MAS2) & MAS2_EPN;
403 1.2 matt if (kstack_lo <= mas2_epn
404 1.2 matt && mas2_epn <= kstack_hi)
405 1.2 matt continue;
406 1.2 matt }
407 1.2 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V);
408 1.2 matt __asm volatile("tlbwe");
409 1.2 matt }
410 1.2 matt }
411 1.2 matt __asm volatile("isync");
412 1.2 matt wrtee(msr);
413 1.2 matt }
414 1.2 matt
415 1.2 matt static void
416 1.4 matt e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
417 1.2 matt {
418 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
419 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
420 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
421 1.2 matt
422 1.2 matt asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
423 1.2 matt asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
424 1.2 matt
425 1.2 matt const register_t msr = wrtee(0);
426 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
427 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
428 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
429 1.2 matt mtspr(SPR_MAS2, epn);
430 1.2 matt __asm volatile("tlbre");
431 1.2 matt const uint32_t mas1 = mfspr(SPR_MAS1);
432 1.2 matt /*
433 1.2 matt * If this is a valid entry for AS space 1 and
434 1.2 matt * its asid matches the constraints of the caller,
435 1.2 matt * clear its valid bit.
436 1.2 matt */
437 1.2 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
438 1.2 matt && asid_lo <= (mas1 & MAS1_TID)
439 1.5 matt && (mas1 & MAS1_TID) <= asid_hi) {
440 1.2 matt mtspr(SPR_MAS1, mas1 ^ MAS1_V);
441 1.2 matt #if 0
442 1.2 matt printf("%s[%zu,%zu]->[%x]\n",
443 1.2 matt __func__, assoc, epn, mas1);
444 1.2 matt #endif
445 1.2 matt __asm volatile("tlbwe");
446 1.2 matt }
447 1.2 matt }
448 1.2 matt }
449 1.2 matt __asm volatile("isync");
450 1.2 matt wrtee(msr);
451 1.2 matt }
452 1.2 matt
453 1.2 matt static u_int
454 1.4 matt e500_tlb_record_asids(u_long *bitmap)
455 1.2 matt {
456 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
457 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
458 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
459 1.2 matt const size_t nbits = 8 * sizeof(bitmap[0]);
460 1.2 matt u_int found = 0;
461 1.2 matt
462 1.2 matt const register_t msr = wrtee(0);
463 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
464 1.2 matt mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
465 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
466 1.2 matt mtspr(SPR_MAS2, epn);
467 1.2 matt __asm volatile("tlbre");
468 1.2 matt const uint32_t mas1 = mfspr(SPR_MAS1);
469 1.2 matt /*
470 1.2 matt * If this is a valid entry for AS space 1 and
471 1.2 matt * its asid matches the constraints of the caller,
472 1.2 matt * clear its valid bit.
473 1.2 matt */
474 1.2 matt if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
475 1.2 matt const uint32_t asid = MASX_TID_GET(mas1);
476 1.2 matt const u_int i = asid / nbits;
477 1.2 matt const u_long mask = 1UL << (asid & (nbits - 1));
478 1.2 matt if ((bitmap[i] & mask) == 0) {
479 1.2 matt bitmap[i] |= mask;
480 1.2 matt found++;
481 1.2 matt }
482 1.2 matt }
483 1.2 matt }
484 1.2 matt }
485 1.2 matt wrtee(msr);
486 1.2 matt
487 1.2 matt return found;
488 1.2 matt }
489 1.2 matt
490 1.2 matt static void
491 1.4 matt e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
492 1.2 matt {
493 1.2 matt KASSERT((va & PAGE_MASK) == 0);
494 1.2 matt /*
495 1.2 matt * Bits 60 & 61 have meaning
496 1.2 matt */
497 1.2 matt __asm volatile("tlbivax\t0, %0" :: "b"(va));
498 1.2 matt __asm volatile("tlbsync");
499 1.2 matt __asm volatile("tlbsync");
500 1.2 matt }
501 1.2 matt
502 1.2 matt static bool
503 1.4 matt e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
504 1.2 matt {
505 1.2 matt struct e500_hwtlb hwtlb = tlb_to_hwtlb(
506 1.2 matt (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
507 1.2 matt .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
508 1.2 matt
509 1.2 matt register_t msr = wrtee(0);
510 1.2 matt mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
511 1.2 matt __asm volatile("tlbsx 0, %0" :: "b"(va));
512 1.2 matt register_t mas1 = mfspr(SPR_MAS1);
513 1.2 matt if ((mas1 & MAS1_V) == 0) {
514 1.2 matt if (!insert) {
515 1.2 matt wrtee(msr);
516 1.2 matt #if 0
517 1.2 matt printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
518 1.2 matt __func__, va, asid, pte, insert);
519 1.2 matt #endif
520 1.2 matt return false;
521 1.2 matt }
522 1.2 matt mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
523 1.2 matt }
524 1.2 matt mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
525 1.2 matt mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
526 1.2 matt __asm volatile("tlbwe");
527 1.2 matt if (asid == 0)
528 1.2 matt __asm volatile("isync");
529 1.2 matt wrtee(msr);
530 1.2 matt #if 0
531 1.2 matt if (asid)
532 1.2 matt printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
533 1.2 matt __func__, va, asid, pte, insert,
534 1.2 matt hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
535 1.2 matt #endif
536 1.2 matt return (mas1 & MAS1_V) != 0;
537 1.2 matt }
538 1.2 matt
539 1.2 matt static void
540 1.4 matt e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
541 1.4 matt {
542 1.4 matt }
543 1.4 matt
544 1.4 matt static void
545 1.2 matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
546 1.2 matt {
547 1.2 matt }
548 1.2 matt
549 1.2 matt static void
550 1.2 matt e500_tlb_dump(void (*pr)(const char *, ...))
551 1.2 matt {
552 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
553 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
554 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
555 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
556 1.2 matt size_t valid = 0;
557 1.2 matt
558 1.2 matt if (pr == NULL)
559 1.2 matt pr = printf;
560 1.2 matt
561 1.2 matt const register_t msr = wrtee(0);
562 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
563 1.2 matt struct e500_hwtlb hwtlb;
564 1.2 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
565 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
566 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
567 1.2 matt mtspr(SPR_MAS2, epn);
568 1.2 matt __asm volatile("tlbre");
569 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
570 1.2 matt /*
571 1.2 matt * If this is a valid entry for AS space 1 and
572 1.2 matt * its asid matches the constraints of the caller,
573 1.2 matt * clear its valid bit.
574 1.2 matt */
575 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
576 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
577 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
578 1.2 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
579 1.2 matt (*pr)("[%zu,%zu]->[%x,%x,%x]",
580 1.2 matt assoc, atop(epn),
581 1.2 matt hwtlb.hwtlb_mas1,
582 1.2 matt hwtlb.hwtlb_mas2,
583 1.2 matt hwtlb.hwtlb_mas3);
584 1.2 matt (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
585 1.2 matt tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
586 1.2 matt (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
587 1.2 matt tlb.tlb_pte & PTE_RPN_MASK,
588 1.2 matt tlb.tlb_pte & PTE_xR ? "R" : "",
589 1.2 matt tlb.tlb_pte & PTE_xW ? "W" : "",
590 1.2 matt tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
591 1.2 matt tlb.tlb_pte & PTE_xX ? "X" : "",
592 1.2 matt tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
593 1.2 matt tlb.tlb_pte & PTE_W ? "W" : "",
594 1.2 matt tlb.tlb_pte & PTE_I ? "I" : "",
595 1.2 matt tlb.tlb_pte & PTE_M ? "M" : "",
596 1.2 matt tlb.tlb_pte & PTE_G ? "G" : "",
597 1.2 matt tlb.tlb_pte & PTE_E ? "E" : "");
598 1.2 matt valid++;
599 1.2 matt }
600 1.2 matt }
601 1.2 matt }
602 1.2 matt mtspr(SPR_MAS0, saved_mas0);
603 1.2 matt wrtee(msr);
604 1.2 matt (*pr)("%s: %zu valid entries\n", __func__, valid);
605 1.2 matt }
606 1.2 matt
607 1.2 matt static void
608 1.2 matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
609 1.2 matt {
610 1.2 matt const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
611 1.2 matt const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
612 1.2 matt const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
613 1.2 matt const uint32_t saved_mas0 = mfspr(SPR_MAS0);
614 1.2 matt
615 1.2 matt const register_t msr = wrtee(0);
616 1.2 matt for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
617 1.2 matt struct e500_hwtlb hwtlb;
618 1.2 matt hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
619 1.2 matt mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
620 1.2 matt for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
621 1.2 matt mtspr(SPR_MAS2, epn);
622 1.2 matt __asm volatile("tlbre");
623 1.2 matt hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
624 1.2 matt /*
625 1.2 matt * If this is a valid entry for AS space 1 and
626 1.2 matt * its asid matches the constraints of the caller,
627 1.2 matt * clear its valid bit.
628 1.2 matt */
629 1.2 matt if (hwtlb.hwtlb_mas1 & MAS1_V) {
630 1.2 matt hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
631 1.2 matt hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
632 1.2 matt struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
633 1.2 matt if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
634 1.2 matt tlb.tlb_pte))
635 1.2 matt break;
636 1.2 matt }
637 1.2 matt }
638 1.2 matt }
639 1.2 matt mtspr(SPR_MAS0, saved_mas0);
640 1.2 matt wrtee(msr);
641 1.2 matt }
642 1.2 matt
643 1.2 matt static struct e500_xtlb *
644 1.2 matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
645 1.2 matt {
646 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
647 1.2 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
648 1.2 matt
649 1.2 matt /*
650 1.2 matt * See if we have a TLB entry for the pa.
651 1.2 matt */
652 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
653 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
654 1.2 matt && xtlb->e_tlb.tlb_va <= va
655 1.2 matt && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
656 1.2 matt if (slotp != NULL)
657 1.2 matt *slotp = i;
658 1.2 matt return xtlb;
659 1.2 matt }
660 1.2 matt }
661 1.2 matt
662 1.2 matt return NULL;
663 1.2 matt }
664 1.2 matt
665 1.2 matt static struct e500_xtlb *
666 1.2 matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
667 1.2 matt {
668 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
669 1.2 matt struct e500_xtlb *xtlb = tlb1->tlb1_entries;
670 1.2 matt
671 1.2 matt /*
672 1.2 matt * See if we have a TLB entry for the pa.
673 1.2 matt */
674 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
675 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
676 1.2 matt && xtlb->e_tlb.tlb_va < va + len
677 1.2 matt && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
678 1.2 matt return xtlb;
679 1.2 matt }
680 1.2 matt }
681 1.2 matt
682 1.2 matt return NULL;
683 1.2 matt }
684 1.2 matt
685 1.2 matt static void *
686 1.2 matt e500_tlb_mapiodev(paddr_t pa, psize_t len)
687 1.2 matt {
688 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
689 1.2 matt
690 1.2 matt /*
691 1.2 matt * See if we have a TLB entry for the pa. If completely falls within
692 1.6 matt * mark the reference and return the pa. But only if the tlb entry
693 1.6 matt * is not cacheable.
694 1.2 matt */
695 1.6 matt if (xtlb
696 1.6 matt && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size
697 1.6 matt && ((xtlb->e_tlb.tlb_pte & PTE_W) == 0
698 1.6 matt || (xtlb->e_tlb.tlb_pte & PTE_I) == PTE_I)) {
699 1.2 matt xtlb->e_refcnt++;
700 1.2 matt return (void *) pa;
701 1.2 matt }
702 1.2 matt return NULL;
703 1.2 matt }
704 1.2 matt
705 1.2 matt static void
706 1.2 matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
707 1.2 matt {
708 1.2 matt if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
709 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
710 1.2 matt if (xtlb)
711 1.2 matt xtlb->e_refcnt--;
712 1.2 matt }
713 1.2 matt }
714 1.2 matt
715 1.2 matt static int
716 1.4 matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
717 1.2 matt {
718 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
719 1.2 matt struct e500_xtlb *xtlb;
720 1.2 matt
721 1.2 matt KASSERT(len & 0x55555000);
722 1.2 matt KASSERT((len & ~0x55555000) == 0);
723 1.2 matt KASSERT(len >= PAGE_SIZE);
724 1.2 matt KASSERT((len & (len - 1)) == 0);
725 1.2 matt KASSERT((va & (len - 1)) == 0);
726 1.2 matt KASSERT((pte & (len - 1)) == 0);
727 1.2 matt
728 1.2 matt if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
729 1.2 matt if (va < xtlb->e_tlb.tlb_va
730 1.2 matt || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
731 1.2 matt || va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
732 1.2 matt return EBUSY;
733 1.2 matt xtlb->e_refcnt++;
734 1.2 matt return 0;
735 1.2 matt }
736 1.2 matt
737 1.2 matt const int slot = e500_alloc_tlb1_entry();
738 1.2 matt if (slot < 0)
739 1.2 matt return ENOMEM;
740 1.2 matt
741 1.2 matt xtlb = &tlb1->tlb1_entries[slot];
742 1.2 matt xtlb->e_tlb.tlb_va = va;
743 1.2 matt xtlb->e_tlb.tlb_size = len;
744 1.2 matt xtlb->e_tlb.tlb_pte = pte;
745 1.2 matt xtlb->e_tlb.tlb_asid = KERNEL_PID;
746 1.2 matt
747 1.2 matt xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
748 1.2 matt xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
749 1.2 matt hwtlb_write(xtlb->e_hwtlb, true);
750 1.2 matt return 0;
751 1.2 matt }
752 1.2 matt
753 1.2 matt static int
754 1.2 matt e500_tlb_iorelease(vaddr_t va)
755 1.2 matt {
756 1.2 matt u_int slot;
757 1.2 matt struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
758 1.2 matt
759 1.2 matt if (xtlb == NULL)
760 1.2 matt return ENOENT;
761 1.2 matt
762 1.2 matt if (xtlb->e_refcnt)
763 1.2 matt return EBUSY;
764 1.2 matt
765 1.2 matt e500_free_tlb1_entry(xtlb, slot, true);
766 1.2 matt
767 1.2 matt return 0;
768 1.2 matt }
769 1.2 matt
770 1.2 matt static u_int
771 1.2 matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
772 1.2 matt {
773 1.2 matt u_int slotmask = 0;
774 1.2 matt u_int slots = 0, nextslot = 0;
775 1.2 matt KASSERT(tlb1->tlb1_numfree > 1);
776 1.2 matt KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
777 1.2 matt for (paddr_t lastaddr = memstart; 0 < memsize; ) {
778 1.2 matt u_int cnt = __builtin_clz(memsize);
779 1.2 matt psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
780 1.2 matt slots += memsize / size;
781 1.2 matt if (slots > 4)
782 1.2 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
783 1.2 matt __func__, __LINE__, memsize, "too fragmented");
784 1.2 matt if (slots > tlb1->tlb1_numfree - 1)
785 1.2 matt panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
786 1.2 matt __func__, __LINE__, memsize,
787 1.2 matt "insufficent TLB entries");
788 1.2 matt for (; nextslot < slots; nextslot++) {
789 1.2 matt const u_int freeslot = e500_alloc_tlb1_entry();
790 1.2 matt struct e500_xtlb * const xtlb =
791 1.2 matt &tlb1->tlb1_entries[freeslot];
792 1.2 matt xtlb->e_tlb.tlb_asid = KERNEL_PID;
793 1.2 matt xtlb->e_tlb.tlb_size = size;
794 1.2 matt xtlb->e_tlb.tlb_va = lastaddr;
795 1.2 matt xtlb->e_tlb.tlb_pte = lastaddr
796 1.2 matt | PTE_M | PTE_xX | PTE_xW | PTE_xR;
797 1.2 matt lastaddr += size;
798 1.2 matt memsize -= size;
799 1.2 matt slotmask |= 1 << (31 - freeslot); /* clz friendly */
800 1.2 matt }
801 1.2 matt }
802 1.2 matt
803 1.2 matt return nextslot;
804 1.2 matt }
805 1.2 matt static const struct tlb_md_ops e500_tlb_ops = {
806 1.4 matt .md_tlb_get_asid = e500_tlb_get_asid,
807 1.2 matt .md_tlb_set_asid = e500_tlb_set_asid,
808 1.2 matt .md_tlb_invalidate_all = e500_tlb_invalidate_all,
809 1.2 matt .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
810 1.2 matt .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
811 1.2 matt .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
812 1.2 matt .md_tlb_update_addr = e500_tlb_update_addr,
813 1.2 matt .md_tlb_record_asids = e500_tlb_record_asids,
814 1.4 matt .md_tlb_write_entry = e500_tlb_write_entry,
815 1.2 matt .md_tlb_read_entry = e500_tlb_read_entry,
816 1.4 matt .md_tlb_dump = e500_tlb_dump,
817 1.4 matt .md_tlb_walk = e500_tlb_walk,
818 1.4 matt };
819 1.4 matt
820 1.4 matt static const struct tlb_md_io_ops e500_tlb_io_ops = {
821 1.2 matt .md_tlb_mapiodev = e500_tlb_mapiodev,
822 1.2 matt .md_tlb_unmapiodev = e500_tlb_unmapiodev,
823 1.2 matt .md_tlb_ioreserve = e500_tlb_ioreserve,
824 1.2 matt .md_tlb_iorelease = e500_tlb_iorelease,
825 1.2 matt };
826 1.2 matt
827 1.2 matt void
828 1.2 matt e500_tlb_init(vaddr_t endkernel, psize_t memsize)
829 1.2 matt {
830 1.2 matt struct e500_tlb1 * const tlb1 = &e500_tlb1;
831 1.2 matt
832 1.2 matt #if 0
833 1.2 matt register_t mmucfg = mfspr(SPR_MMUCFG);
834 1.2 matt register_t mas4 = mfspr(SPR_MAS4);
835 1.2 matt #endif
836 1.2 matt
837 1.2 matt const uint32_t tlb1cfg = mftlb1cfg();
838 1.2 matt tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
839 1.2 matt KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
840 1.2 matt /*
841 1.2 matt * Limit maxsize to 1G since 4G isn't really useful to us.
842 1.2 matt */
843 1.2 matt tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
844 1.2 matt tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
845 1.2 matt
846 1.2 matt #ifdef VERBOSE_INITPPC
847 1.2 matt printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
848 1.2 matt tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
849 1.2 matt tlb1->tlb1_maxsize >> 10);
850 1.2 matt #endif
851 1.2 matt
852 1.2 matt /*
853 1.2 matt * Let's see what's in TLB1 and we need to invalidate any entry that
854 1.2 matt * would fit within the kernel's mapped address space.
855 1.2 matt */
856 1.2 matt psize_t memmapped = 0;
857 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
858 1.2 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
859 1.2 matt
860 1.2 matt xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
861 1.2 matt
862 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
863 1.2 matt tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
864 1.2 matt #ifdef VERBOSE_INITPPC
865 1.2 matt printf(" TLB1[%u]=<unused>", i);
866 1.2 matt #endif
867 1.2 matt continue;
868 1.2 matt }
869 1.2 matt
870 1.2 matt xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
871 1.2 matt #ifdef VERBOSE_INITPPC
872 1.2 matt printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
873 1.2 matt i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
874 1.2 matt xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
875 1.2 matt #endif
876 1.2 matt if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
877 1.2 matt && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
878 1.2 matt || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
879 1.2 matt && VM_MIN_KERNEL_ADDRESS <
880 1.2 matt xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
881 1.2 matt #ifdef VERBOSE_INITPPC
882 1.2 matt printf("free");
883 1.2 matt #endif
884 1.2 matt e500_free_tlb1_entry(xtlb, i, false);
885 1.2 matt #ifdef VERBOSE_INITPPC
886 1.2 matt printf("d");
887 1.2 matt #endif
888 1.2 matt continue;
889 1.2 matt }
890 1.2 matt if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
891 1.2 matt xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
892 1.2 matt hwtlb_write(xtlb->e_hwtlb, false);
893 1.2 matt #ifdef VERBOSE_INITPPC
894 1.2 matt printf("+iprot");
895 1.2 matt #endif
896 1.2 matt }
897 1.2 matt if (xtlb->e_tlb.tlb_pte & PTE_I)
898 1.2 matt continue;
899 1.2 matt
900 1.2 matt if (xtlb->e_tlb.tlb_va == 0
901 1.2 matt || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
902 1.2 matt memmapped += xtlb->e_tlb.tlb_size;
903 1.2 matt }
904 1.2 matt }
905 1.2 matt
906 1.2 matt cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
907 1.4 matt cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
908 1.2 matt
909 1.2 matt if (__predict_false(memmapped < memsize)) {
910 1.2 matt /*
911 1.2 matt * Let's see how many TLB entries are needed to map memory.
912 1.2 matt */
913 1.2 matt u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
914 1.2 matt
915 1.2 matt /*
916 1.2 matt * To map main memory into the TLB, we need to flush any
917 1.2 matt * existing entries from the TLB that overlap the virtual
918 1.2 matt * address space needed to map physical memory. That may
919 1.2 matt * include the entries for the pages currently used by the
920 1.2 matt * stack or that we are executing. So to avoid problems, we
921 1.2 matt * are going to temporarily map the kernel and stack into AS 1,
922 1.2 matt * switch to it, and clear out the TLB entries from AS 0,
923 1.2 matt * install the new TLB entries to map memory, and then switch
924 1.2 matt * back to AS 0 and free the temp entry used for AS1.
925 1.2 matt */
926 1.2 matt u_int b = __builtin_clz(endkernel);
927 1.2 matt
928 1.2 matt /*
929 1.2 matt * If the kernel doesn't end on a clean power of 2, we need
930 1.2 matt * to round the size up (by decrementing the number of leading
931 1.2 matt * zero bits). If the size isn't a power of 4KB, decrement
932 1.2 matt * again to make it one.
933 1.2 matt */
934 1.2 matt if (endkernel & (endkernel - 1))
935 1.2 matt b--;
936 1.2 matt if ((b & 1) == 0)
937 1.2 matt b--;
938 1.2 matt
939 1.2 matt /*
940 1.2 matt * Create a TLB1 mapping for the kernel in AS1.
941 1.2 matt */
942 1.2 matt const u_int kslot = e500_alloc_tlb1_entry();
943 1.2 matt struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
944 1.2 matt kxtlb->e_tlb.tlb_va = 0;
945 1.2 matt kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
946 1.2 matt kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
947 1.2 matt kxtlb->e_tlb.tlb_asid = KERNEL_PID;
948 1.2 matt
949 1.2 matt kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
950 1.2 matt kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
951 1.2 matt kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
952 1.2 matt hwtlb_write(kxtlb->e_hwtlb, true);
953 1.2 matt
954 1.2 matt /*
955 1.2 matt * Now that we have a TLB mapping in AS1 for the kernel and its
956 1.2 matt * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
957 1.2 matt */
958 1.2 matt const register_t saved_msr = mfmsr();
959 1.2 matt mtmsr(saved_msr | PSL_DS | PSL_IS);
960 1.2 matt __asm volatile("isync");
961 1.2 matt
962 1.2 matt /*
963 1.2 matt *** Invalidate all the TLB0 entries.
964 1.2 matt */
965 1.2 matt e500_tlb_invalidate_all();
966 1.2 matt
967 1.2 matt /*
968 1.2 matt *** Now let's see if we have any entries in TLB1 that would
969 1.2 matt *** overlap the ones we are about to install. If so, nuke 'em.
970 1.2 matt */
971 1.2 matt for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
972 1.2 matt struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
973 1.2 matt struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
974 1.2 matt if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
975 1.2 matt && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
976 1.2 matt e500_free_tlb1_entry(xtlb, i, false);
977 1.2 matt }
978 1.2 matt }
979 1.2 matt
980 1.2 matt /*
981 1.2 matt *** Now we can add the TLB entries that will map physical
982 1.2 matt *** memory. If bit 0 [MSB] in slotmask is set, then tlb
983 1.2 matt *** entry 0 contains a mapping for physical memory...
984 1.2 matt */
985 1.2 matt struct e500_xtlb *entries = tlb1->tlb1_entries;
986 1.2 matt while (slotmask != 0) {
987 1.2 matt const u_int slot = __builtin_clz(slotmask);
988 1.2 matt hwtlb_write(entries[slot].e_hwtlb, false);
989 1.2 matt entries += slot + 1;
990 1.2 matt slotmask <<= slot + 1;
991 1.2 matt }
992 1.2 matt
993 1.2 matt /*
994 1.2 matt *** Synchronize the TLB and the instruction stream.
995 1.2 matt */
996 1.2 matt __asm volatile("tlbsync");
997 1.2 matt __asm volatile("isync");
998 1.2 matt
999 1.2 matt /*
1000 1.2 matt *** Switch back to AS 0.
1001 1.2 matt */
1002 1.2 matt mtmsr(saved_msr);
1003 1.2 matt __asm volatile("isync");
1004 1.2 matt
1005 1.2 matt /*
1006 1.2 matt * Free the temporary TLB1 entry.
1007 1.2 matt */
1008 1.2 matt e500_free_tlb1_entry(kxtlb, kslot, true);
1009 1.2 matt }
1010 1.2 matt
1011 1.2 matt /*
1012 1.2 matt * Finally set the MAS4 defaults.
1013 1.2 matt */
1014 1.2 matt mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
1015 1.2 matt
1016 1.2 matt /*
1017 1.2 matt * Invalidate all the TLB0 entries.
1018 1.2 matt */
1019 1.2 matt e500_tlb_invalidate_all();
1020 1.2 matt }
1021