Home | History | Annotate | Line # | Download | only in booke
e500_tlb.c revision 1.6
      1  1.6  matt /*	$NetBSD: e500_tlb.c,v 1.6 2011/06/29 23:15:55 matt Exp $	*/
      2  1.2  matt /*-
      3  1.2  matt  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4  1.2  matt  * All rights reserved.
      5  1.2  matt  *
      6  1.2  matt  * This code is derived from software contributed to The NetBSD Foundation
      7  1.2  matt  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8  1.2  matt  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9  1.2  matt  *
     10  1.2  matt  * This material is based upon work supported by the Defense Advanced Research
     11  1.2  matt  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12  1.2  matt  * Contract No. N66001-09-C-2073.
     13  1.2  matt  * Approved for Public Release, Distribution Unlimited
     14  1.2  matt  *
     15  1.2  matt  * Redistribution and use in source and binary forms, with or without
     16  1.2  matt  * modification, are permitted provided that the following conditions
     17  1.2  matt  * are met:
     18  1.2  matt  * 1. Redistributions of source code must retain the above copyright
     19  1.2  matt  *    notice, this list of conditions and the following disclaimer.
     20  1.2  matt  * 2. Redistributions in binary form must reproduce the above copyright
     21  1.2  matt  *    notice, this list of conditions and the following disclaimer in the
     22  1.2  matt  *    documentation and/or other materials provided with the distribution.
     23  1.2  matt  *
     24  1.2  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25  1.2  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  1.2  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  1.2  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28  1.2  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  1.2  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  1.2  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  1.2  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  1.2  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  1.2  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  1.2  matt  * POSSIBILITY OF SUCH DAMAGE.
     35  1.2  matt  */
     36  1.2  matt 
     37  1.2  matt #include <sys/cdefs.h>
     38  1.2  matt 
     39  1.6  matt __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.6 2011/06/29 23:15:55 matt Exp $");
     40  1.2  matt 
     41  1.2  matt #include <sys/param.h>
     42  1.2  matt 
     43  1.2  matt #include <uvm/uvm_extern.h>
     44  1.2  matt 
     45  1.2  matt #include <powerpc/spr.h>
     46  1.2  matt #include <powerpc/booke/spr.h>
     47  1.2  matt #include <powerpc/booke/cpuvar.h>
     48  1.2  matt #include <powerpc/booke/e500var.h>
     49  1.2  matt #include <powerpc/booke/pmap.h>
     50  1.2  matt 
     51  1.2  matt struct e500_tlb {
     52  1.2  matt 	vaddr_t tlb_va;
     53  1.2  matt 	uint32_t tlb_pte;
     54  1.2  matt 	uint32_t tlb_asid;
     55  1.2  matt 	vsize_t tlb_size;
     56  1.2  matt };
     57  1.2  matt 
     58  1.2  matt struct e500_hwtlb {
     59  1.2  matt 	uint32_t hwtlb_mas0;
     60  1.2  matt 	uint32_t hwtlb_mas1;
     61  1.2  matt 	uint32_t hwtlb_mas2;
     62  1.2  matt 	uint32_t hwtlb_mas3;
     63  1.2  matt };
     64  1.2  matt 
     65  1.2  matt struct e500_xtlb {
     66  1.2  matt 	struct e500_tlb e_tlb;
     67  1.2  matt 	struct e500_hwtlb e_hwtlb;
     68  1.2  matt 	u_long e_refcnt;
     69  1.2  matt };
     70  1.2  matt 
     71  1.2  matt static struct e500_tlb1 {
     72  1.2  matt 	uint32_t tlb1_maxsize;
     73  1.2  matt 	uint32_t tlb1_minsize;
     74  1.2  matt 	u_int tlb1_numentries;
     75  1.2  matt 	u_int tlb1_numfree;
     76  1.2  matt 	u_int tlb1_freelist[32];
     77  1.2  matt 	struct e500_xtlb tlb1_entries[32];
     78  1.2  matt } e500_tlb1;
     79  1.2  matt 
     80  1.2  matt static inline register_t mftlb0cfg(void) __pure;
     81  1.2  matt static inline register_t mftlb1cfg(void) __pure;
     82  1.2  matt 
     83  1.2  matt static inline register_t
     84  1.2  matt mftlb0cfg(void)
     85  1.2  matt {
     86  1.2  matt 	register_t tlb0cfg;
     87  1.2  matt 	__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
     88  1.2  matt 	return tlb0cfg;
     89  1.2  matt }
     90  1.2  matt 
     91  1.2  matt static inline register_t
     92  1.2  matt mftlb1cfg(void)
     93  1.2  matt {
     94  1.2  matt 	register_t tlb1cfg;
     95  1.2  matt 	__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
     96  1.2  matt 	return tlb1cfg;
     97  1.2  matt }
     98  1.2  matt 
     99  1.2  matt static struct e500_tlb
    100  1.2  matt hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
    101  1.2  matt {
    102  1.2  matt 	struct e500_tlb tlb;
    103  1.2  matt 	register_t prot_mask;
    104  1.2  matt 	u_int prot_shift;
    105  1.2  matt 
    106  1.2  matt 	tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
    107  1.2  matt 	tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
    108  1.2  matt 	tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
    109  1.2  matt 	tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
    110  1.2  matt 	    | (hwtlb.hwtlb_mas3 & MAS3_RPN);
    111  1.2  matt 	if (hwtlb.hwtlb_mas1 & MAS1_TS) {
    112  1.2  matt 		prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
    113  1.2  matt 		prot_shift = PTE_RWX_SHIFT - 1;
    114  1.2  matt 	} else {
    115  1.2  matt 		prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
    116  1.2  matt 		prot_shift = PTE_RWX_SHIFT;
    117  1.2  matt 	}
    118  1.2  matt 	tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
    119  1.2  matt 	return tlb;
    120  1.2  matt }
    121  1.2  matt 
    122  1.2  matt static inline struct e500_hwtlb
    123  1.2  matt hwtlb_read(uint32_t mas0, u_int slot)
    124  1.2  matt {
    125  1.2  matt 	struct e500_hwtlb hwtlb;
    126  1.2  matt 	register_t tlbcfg;
    127  1.2  matt 
    128  1.2  matt 	if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
    129  1.2  matt 		tlbcfg = mftlb0cfg();
    130  1.2  matt 	} else if (mas0 == MAS0_TLBSEL_TLB1) {
    131  1.2  matt 		tlbcfg = mftlb1cfg();
    132  1.2  matt 	} else {
    133  1.2  matt 		panic("%s:%d: unexpected MAS0 %#" PRIx32,
    134  1.2  matt 		    __func__, __LINE__, mas0);
    135  1.2  matt 	}
    136  1.2  matt 
    137  1.2  matt 	/*
    138  1.2  matt 	 * ESEL is the way we want to look up.
    139  1.2  matt 	 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
    140  1.2  matt 	 * fully associative, the entire slot is placed into ESEL.  If tlbassoc
    141  1.2  matt 	 * is less then the number of tlb entries, the slot is split in two
    142  1.2  matt 	 * fields.  Since the TLB is M rows by N ways, the lowers bits are for
    143  1.2  matt 	 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
    144  1.2  matt 	 */
    145  1.2  matt 	const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
    146  1.2  matt 	const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
    147  1.2  matt 	const u_int esel_shift =
    148  1.2  matt 	    __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
    149  1.2  matt 
    150  1.2  matt 	/*
    151  1.2  matt 	 * Disable interrupts since we don't want anyone else mucking with
    152  1.2  matt 	 * the MMU Assist registers
    153  1.2  matt 	 */
    154  1.2  matt 	const register_t msr = wrtee(0);
    155  1.2  matt 	const register_t saved_mas0 = mfspr(SPR_MAS0);
    156  1.2  matt 	mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
    157  1.2  matt 
    158  1.2  matt 	if (__predict_true(tlbassoc > tlbentries))
    159  1.2  matt 		mtspr(SPR_MAS2, slot << PAGE_SHIFT);
    160  1.2  matt 
    161  1.2  matt 	/*
    162  1.2  matt 	 * Now select the entry and grab its contents.
    163  1.2  matt 	 */
    164  1.2  matt 	__asm volatile("tlbre");
    165  1.2  matt 
    166  1.2  matt 	hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
    167  1.2  matt 	hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    168  1.2  matt 	hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    169  1.2  matt 	hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    170  1.2  matt 
    171  1.2  matt 	mtspr(SPR_MAS0, saved_mas0);
    172  1.2  matt 	wrtee(msr);	/* restore interrupts */
    173  1.2  matt 
    174  1.2  matt 	return hwtlb;
    175  1.2  matt }
    176  1.2  matt 
    177  1.2  matt static inline void
    178  1.2  matt hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
    179  1.2  matt {
    180  1.2  matt 	const register_t msr = wrtee(0);
    181  1.2  matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    182  1.2  matt 
    183  1.2  matt 	/*
    184  1.2  matt 	 * Need to always write MAS0 and MAS1
    185  1.2  matt 	 */
    186  1.2  matt 	mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    187  1.2  matt 	mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    188  1.2  matt 
    189  1.2  matt 	/*
    190  1.2  matt 	 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
    191  1.2  matt 	 */
    192  1.2  matt 	if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
    193  1.2  matt 	    || (hwtlb.hwtlb_mas1 & MAS1_V)) {
    194  1.2  matt 		mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    195  1.2  matt 	}
    196  1.2  matt 	/*
    197  1.2  matt 	 * Only need to write the RPN/prot if we are dealing with a valid
    198  1.2  matt 	 * mapping.
    199  1.2  matt 	 */
    200  1.2  matt 	if (hwtlb.hwtlb_mas1 & MAS1_V) {
    201  1.2  matt 		mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    202  1.2  matt 	}
    203  1.2  matt 
    204  1.2  matt #if 0
    205  1.2  matt 	printf("%s->[%x,%x,%x,%x]\n",
    206  1.2  matt 	    __func__,
    207  1.2  matt 	    hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
    208  1.2  matt 	    hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    209  1.2  matt #endif
    210  1.2  matt 	__asm volatile("tlbwe");
    211  1.2  matt 	if (needs_sync) {
    212  1.2  matt 		__asm volatile("tlbsync");
    213  1.2  matt 		__asm volatile("isync");
    214  1.2  matt 	}
    215  1.2  matt 
    216  1.2  matt 	mtspr(SPR_MAS0, saved_mas0);
    217  1.2  matt 	wrtee(msr);
    218  1.2  matt }
    219  1.2  matt 
    220  1.2  matt static struct e500_hwtlb
    221  1.2  matt tlb_to_hwtlb(const struct e500_tlb tlb)
    222  1.2  matt {
    223  1.2  matt 	struct e500_hwtlb hwtlb;
    224  1.2  matt 
    225  1.2  matt 	KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
    226  1.2  matt 	KASSERT(tlb.tlb_size != 0);
    227  1.2  matt 	KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
    228  1.2  matt 	const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
    229  1.2  matt 	if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
    230  1.2  matt 		hwtlb.hwtlb_mas0 = 0;
    231  1.2  matt 		hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
    232  1.2  matt 		/*
    233  1.2  matt 		 * A non-zero ASID means this is a user page so mark it as
    234  1.2  matt 		 * being in the user's address space.
    235  1.2  matt 		 */
    236  1.2  matt 		if (tlb.tlb_asid) {
    237  1.2  matt 			hwtlb.hwtlb_mas1 |= MAS1_TS
    238  1.2  matt 			    | MASX_TID_MAKE(tlb.tlb_asid);
    239  1.2  matt 			hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
    240  1.2  matt 			    | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
    241  1.2  matt 			KASSERT(prot_mask & PTE_xR);
    242  1.2  matt 			KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
    243  1.2  matt 			CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
    244  1.2  matt 			CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
    245  1.2  matt 		} else {
    246  1.2  matt 			hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    247  1.2  matt 		}
    248  1.2  matt 		if (tlb.tlb_pte & PTE_UNMODIFIED)
    249  1.2  matt 			hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
    250  1.2  matt 		if (tlb.tlb_pte & PTE_UNSYNCED)
    251  1.2  matt 			hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
    252  1.2  matt 	} else {
    253  1.2  matt 		KASSERT(tlb.tlb_asid == 0);
    254  1.2  matt 		KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
    255  1.2  matt 		u_int cntlz = __builtin_clz(tlb.tlb_size);
    256  1.2  matt 		KASSERT(cntlz & 1);
    257  1.2  matt 		KASSERT(cntlz <= 19);
    258  1.2  matt 		hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
    259  1.2  matt 		/*
    260  1.2  matt 		 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
    261  1.2  matt 		 * allowed.  So 1K would be 0x00000400 giving 21 leading zero
    262  1.2  matt 		 * bits.  Subtracting the leading number of zero bits from 21
    263  1.2  matt 		 * and dividing by 2 gives us the number that the MMU wants.
    264  1.2  matt 		 */
    265  1.2  matt 		hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
    266  1.2  matt 		    | MAS1_IPROT | MAS1_V;
    267  1.2  matt 		hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    268  1.2  matt 	}
    269  1.2  matt 	/* We are done with MAS1, on to MAS2 ... */
    270  1.2  matt 	hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
    271  1.2  matt 	hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
    272  1.2  matt 
    273  1.2  matt 	return hwtlb;
    274  1.2  matt }
    275  1.2  matt 
    276  1.3  matt void *
    277  1.3  matt e500_tlb1_fetch(size_t slot)
    278  1.3  matt {
    279  1.3  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    280  1.3  matt 
    281  1.3  matt 	return &tlb1->tlb1_entries[slot].e_hwtlb;
    282  1.3  matt }
    283  1.3  matt 
    284  1.3  matt void
    285  1.3  matt e500_tlb1_sync(void)
    286  1.3  matt {
    287  1.3  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    288  1.3  matt 	for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
    289  1.3  matt 		const struct e500_hwtlb * const new_hwtlb =
    290  1.3  matt 		    &tlb1->tlb1_entries[slot].e_hwtlb;
    291  1.3  matt 		const struct e500_hwtlb old_hwtlb =
    292  1.3  matt 		    hwtlb_read(MAS0_TLBSEL_TLB1, slot);
    293  1.3  matt #define CHANGED(n,o,f)	((n)->f != (o).f)
    294  1.3  matt 		bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
    295  1.3  matt 		bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
    296  1.3  matt 		bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
    297  1.3  matt #undef CHANGED
    298  1.3  matt 		bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
    299  1.3  matt 		bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
    300  1.3  matt 		if ((new_valid_p || old_valid_p)
    301  1.3  matt 		    && (mas1_changed_p
    302  1.3  matt 			|| (new_valid_p
    303  1.3  matt 			    && (mas2_changed_p || mas3_changed_p))))
    304  1.3  matt 			hwtlb_write(*new_hwtlb, true);
    305  1.3  matt 	}
    306  1.3  matt }
    307  1.3  matt 
    308  1.2  matt static int
    309  1.2  matt e500_alloc_tlb1_entry(void)
    310  1.2  matt {
    311  1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    312  1.2  matt 
    313  1.2  matt 	if (tlb1->tlb1_numfree == 0)
    314  1.2  matt 		return -1;
    315  1.2  matt 	const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
    316  1.2  matt 	KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
    317  1.2  matt 	tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
    318  1.2  matt 	    MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
    319  1.2  matt 	return slot;
    320  1.2  matt }
    321  1.2  matt 
    322  1.2  matt static void
    323  1.2  matt e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
    324  1.2  matt {
    325  1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    326  1.2  matt 	KASSERT(slot < tlb1->tlb1_numentries);
    327  1.2  matt 	KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
    328  1.2  matt 
    329  1.2  matt 	KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
    330  1.2  matt 	xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
    331  1.2  matt 	hwtlb_write(xtlb->e_hwtlb, needs_sync);
    332  1.2  matt 
    333  1.2  matt 	const register_t msr = wrtee(0);
    334  1.2  matt 	tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
    335  1.2  matt 	wrtee(msr);
    336  1.2  matt }
    337  1.2  matt 
    338  1.4  matt static tlb_asid_t
    339  1.4  matt e500_tlb_get_asid(void)
    340  1.4  matt {
    341  1.4  matt 	return mfspr(SPR_PID0);
    342  1.4  matt }
    343  1.4  matt 
    344  1.4  matt static void
    345  1.4  matt e500_tlb_set_asid(tlb_asid_t asid)
    346  1.2  matt {
    347  1.2  matt 	mtspr(SPR_PID0, asid);
    348  1.2  matt }
    349  1.2  matt 
    350  1.4  matt static void
    351  1.4  matt e500_tlb_invalidate_all(void)
    352  1.2  matt {
    353  1.2  matt 	/*
    354  1.2  matt 	 * This does a flash invalidate of all entries in TLB0.
    355  1.2  matt 	 * We don't touch TLB1 since we don't expect those to be volatile.
    356  1.2  matt 	 */
    357  1.2  matt #if 1
    358  1.2  matt 	__asm volatile("tlbivax\t0, %0" :: "b"(4));	/* INV_ALL */
    359  1.2  matt #else
    360  1.2  matt 	mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
    361  1.2  matt 	while (mfspr(SPR_MMUCSR0) != 0)
    362  1.2  matt 		;
    363  1.2  matt #endif
    364  1.2  matt }
    365  1.2  matt 
    366  1.2  matt static void
    367  1.2  matt e500_tlb_invalidate_globals(void)
    368  1.2  matt {
    369  1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    370  1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    371  1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    372  1.2  matt 	const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
    373  1.2  matt 	const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
    374  1.2  matt 	const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
    375  1.2  matt 	const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
    376  1.2  matt 
    377  1.2  matt 	const register_t msr = wrtee(0);
    378  1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    379  1.2  matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    380  1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    381  1.2  matt 			mtspr(SPR_MAS2, epn);
    382  1.2  matt 			__asm volatile("tlbre");
    383  1.2  matt 			uint32_t mas1 = mfspr(SPR_MAS1);
    384  1.2  matt 
    385  1.2  matt 			/*
    386  1.2  matt 			 * Make sure this is a valid kernel entry first.
    387  1.2  matt 			 */
    388  1.2  matt 			if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
    389  1.2  matt 				continue;
    390  1.2  matt 
    391  1.2  matt 			/*
    392  1.2  matt 			 * We have a valid kernel TLB entry.  But if it matches
    393  1.2  matt 			 * the stack we are currently running on, it would
    394  1.2  matt 			 * unwise to invalidate it.  First see if the epn
    395  1.2  matt 			 * overlaps the stack.  If it does then get the
    396  1.2  matt 			 * VA and see if it really is part of the stack.
    397  1.2  matt 			 */
    398  1.2  matt 			if (epn_kstack_lo < epn_kstack_hi
    399  1.2  matt 			    ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
    400  1.2  matt 			    : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
    401  1.2  matt 				const uint32_t mas2_epn =
    402  1.2  matt 				    mfspr(SPR_MAS2) & MAS2_EPN;
    403  1.2  matt 				if (kstack_lo <= mas2_epn
    404  1.2  matt 				    && mas2_epn <= kstack_hi)
    405  1.2  matt 					continue;
    406  1.2  matt 			}
    407  1.2  matt 			mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    408  1.2  matt 			__asm volatile("tlbwe");
    409  1.2  matt 		}
    410  1.2  matt 	}
    411  1.2  matt 	__asm volatile("isync");
    412  1.2  matt 	wrtee(msr);
    413  1.2  matt }
    414  1.2  matt 
    415  1.2  matt static void
    416  1.4  matt e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
    417  1.2  matt {
    418  1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    419  1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    420  1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    421  1.2  matt 
    422  1.2  matt 	asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
    423  1.2  matt 	asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
    424  1.2  matt 
    425  1.2  matt 	const register_t msr = wrtee(0);
    426  1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    427  1.2  matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    428  1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    429  1.2  matt 			mtspr(SPR_MAS2, epn);
    430  1.2  matt 			__asm volatile("tlbre");
    431  1.2  matt 			const uint32_t mas1 = mfspr(SPR_MAS1);
    432  1.2  matt 			/*
    433  1.2  matt 			 * If this is a valid entry for AS space 1 and
    434  1.2  matt 			 * its asid matches the constraints of the caller,
    435  1.2  matt 			 * clear its valid bit.
    436  1.2  matt 			 */
    437  1.2  matt 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
    438  1.2  matt 			    && asid_lo <= (mas1 & MAS1_TID)
    439  1.5  matt 			    && (mas1 & MAS1_TID) <= asid_hi) {
    440  1.2  matt 				mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    441  1.2  matt #if 0
    442  1.2  matt 				printf("%s[%zu,%zu]->[%x]\n",
    443  1.2  matt 				    __func__, assoc, epn, mas1);
    444  1.2  matt #endif
    445  1.2  matt 				__asm volatile("tlbwe");
    446  1.2  matt 			}
    447  1.2  matt 		}
    448  1.2  matt 	}
    449  1.2  matt 	__asm volatile("isync");
    450  1.2  matt 	wrtee(msr);
    451  1.2  matt }
    452  1.2  matt 
    453  1.2  matt static u_int
    454  1.4  matt e500_tlb_record_asids(u_long *bitmap)
    455  1.2  matt {
    456  1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    457  1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    458  1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    459  1.2  matt 	const size_t nbits = 8 * sizeof(bitmap[0]);
    460  1.2  matt 	u_int found = 0;
    461  1.2  matt 
    462  1.2  matt 	const register_t msr = wrtee(0);
    463  1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    464  1.2  matt 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    465  1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    466  1.2  matt 			mtspr(SPR_MAS2, epn);
    467  1.2  matt 			__asm volatile("tlbre");
    468  1.2  matt 			const uint32_t mas1 = mfspr(SPR_MAS1);
    469  1.2  matt 			/*
    470  1.2  matt 			 * If this is a valid entry for AS space 1 and
    471  1.2  matt 			 * its asid matches the constraints of the caller,
    472  1.2  matt 			 * clear its valid bit.
    473  1.2  matt 			 */
    474  1.2  matt 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
    475  1.2  matt 				const uint32_t asid = MASX_TID_GET(mas1);
    476  1.2  matt 				const u_int i = asid / nbits;
    477  1.2  matt 				const u_long mask = 1UL << (asid & (nbits - 1));
    478  1.2  matt 				if ((bitmap[i] & mask) == 0) {
    479  1.2  matt 					bitmap[i] |= mask;
    480  1.2  matt 					found++;
    481  1.2  matt 				}
    482  1.2  matt 			}
    483  1.2  matt 		}
    484  1.2  matt 	}
    485  1.2  matt 	wrtee(msr);
    486  1.2  matt 
    487  1.2  matt 	return found;
    488  1.2  matt }
    489  1.2  matt 
    490  1.2  matt static void
    491  1.4  matt e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
    492  1.2  matt {
    493  1.2  matt 	KASSERT((va & PAGE_MASK) == 0);
    494  1.2  matt 	/*
    495  1.2  matt 	 * Bits 60 & 61 have meaning
    496  1.2  matt 	 */
    497  1.2  matt 	__asm volatile("tlbivax\t0, %0" :: "b"(va));
    498  1.2  matt 	__asm volatile("tlbsync");
    499  1.2  matt 	__asm volatile("tlbsync");
    500  1.2  matt }
    501  1.2  matt 
    502  1.2  matt static bool
    503  1.4  matt e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
    504  1.2  matt {
    505  1.2  matt 	struct e500_hwtlb hwtlb = tlb_to_hwtlb(
    506  1.2  matt 	    (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
    507  1.2  matt 		.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
    508  1.2  matt 
    509  1.2  matt 	register_t msr = wrtee(0);
    510  1.2  matt 	mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
    511  1.2  matt 	__asm volatile("tlbsx 0, %0" :: "b"(va));
    512  1.2  matt 	register_t mas1 = mfspr(SPR_MAS1);
    513  1.2  matt 	if ((mas1 & MAS1_V) == 0) {
    514  1.2  matt 		if (!insert) {
    515  1.2  matt 			wrtee(msr);
    516  1.2  matt #if 0
    517  1.2  matt 			printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
    518  1.2  matt 			    __func__, va, asid, pte, insert);
    519  1.2  matt #endif
    520  1.2  matt 			return false;
    521  1.2  matt 		}
    522  1.2  matt 		mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    523  1.2  matt 	}
    524  1.2  matt 	mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    525  1.2  matt 	mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    526  1.2  matt 	__asm volatile("tlbwe");
    527  1.2  matt 	if (asid == 0)
    528  1.2  matt 		__asm volatile("isync");
    529  1.2  matt 	wrtee(msr);
    530  1.2  matt #if 0
    531  1.2  matt 	if (asid)
    532  1.2  matt 	printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
    533  1.2  matt 	    __func__, va, asid, pte, insert,
    534  1.2  matt 	    hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    535  1.2  matt #endif
    536  1.2  matt 	return (mas1 & MAS1_V) != 0;
    537  1.2  matt }
    538  1.2  matt 
    539  1.2  matt static void
    540  1.4  matt e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
    541  1.4  matt {
    542  1.4  matt }
    543  1.4  matt 
    544  1.4  matt static void
    545  1.2  matt e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
    546  1.2  matt {
    547  1.2  matt }
    548  1.2  matt 
    549  1.2  matt static void
    550  1.2  matt e500_tlb_dump(void (*pr)(const char *, ...))
    551  1.2  matt {
    552  1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    553  1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    554  1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    555  1.2  matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    556  1.2  matt 	size_t valid = 0;
    557  1.2  matt 
    558  1.2  matt 	if (pr == NULL)
    559  1.2  matt 		pr = printf;
    560  1.2  matt 
    561  1.2  matt 	const register_t msr = wrtee(0);
    562  1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    563  1.2  matt 		struct e500_hwtlb hwtlb;
    564  1.2  matt 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    565  1.2  matt 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    566  1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    567  1.2  matt 			mtspr(SPR_MAS2, epn);
    568  1.2  matt 			__asm volatile("tlbre");
    569  1.2  matt 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    570  1.2  matt 			/*
    571  1.2  matt 			 * If this is a valid entry for AS space 1 and
    572  1.2  matt 			 * its asid matches the constraints of the caller,
    573  1.2  matt 			 * clear its valid bit.
    574  1.2  matt 			 */
    575  1.2  matt 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    576  1.2  matt 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    577  1.2  matt 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    578  1.2  matt 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    579  1.2  matt 				(*pr)("[%zu,%zu]->[%x,%x,%x]",
    580  1.2  matt 				    assoc, atop(epn),
    581  1.2  matt 				    hwtlb.hwtlb_mas1,
    582  1.2  matt 				    hwtlb.hwtlb_mas2,
    583  1.2  matt 				    hwtlb.hwtlb_mas3);
    584  1.2  matt 				(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
    585  1.2  matt 				    tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
    586  1.2  matt 				(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
    587  1.2  matt 				    tlb.tlb_pte & PTE_RPN_MASK,
    588  1.2  matt 				    tlb.tlb_pte & PTE_xR ? "R" : "",
    589  1.2  matt 				    tlb.tlb_pte & PTE_xW ? "W" : "",
    590  1.2  matt 				    tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
    591  1.2  matt 				    tlb.tlb_pte & PTE_xX ? "X" : "",
    592  1.2  matt 				    tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
    593  1.2  matt 				    tlb.tlb_pte & PTE_W ? "W" : "",
    594  1.2  matt 				    tlb.tlb_pte & PTE_I ? "I" : "",
    595  1.2  matt 				    tlb.tlb_pte & PTE_M ? "M" : "",
    596  1.2  matt 				    tlb.tlb_pte & PTE_G ? "G" : "",
    597  1.2  matt 				    tlb.tlb_pte & PTE_E ? "E" : "");
    598  1.2  matt 				valid++;
    599  1.2  matt 			}
    600  1.2  matt 		}
    601  1.2  matt 	}
    602  1.2  matt 	mtspr(SPR_MAS0, saved_mas0);
    603  1.2  matt 	wrtee(msr);
    604  1.2  matt 	(*pr)("%s: %zu valid entries\n", __func__, valid);
    605  1.2  matt }
    606  1.2  matt 
    607  1.2  matt static void
    608  1.2  matt e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
    609  1.2  matt {
    610  1.2  matt 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    611  1.2  matt 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    612  1.2  matt 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    613  1.2  matt 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    614  1.2  matt 
    615  1.2  matt 	const register_t msr = wrtee(0);
    616  1.2  matt 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    617  1.2  matt 		struct e500_hwtlb hwtlb;
    618  1.2  matt 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    619  1.2  matt 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    620  1.2  matt 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    621  1.2  matt 			mtspr(SPR_MAS2, epn);
    622  1.2  matt 			__asm volatile("tlbre");
    623  1.2  matt 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    624  1.2  matt 			/*
    625  1.2  matt 			 * If this is a valid entry for AS space 1 and
    626  1.2  matt 			 * its asid matches the constraints of the caller,
    627  1.2  matt 			 * clear its valid bit.
    628  1.2  matt 			 */
    629  1.2  matt 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    630  1.2  matt 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    631  1.2  matt 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    632  1.2  matt 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    633  1.2  matt 				if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
    634  1.2  matt 				    tlb.tlb_pte))
    635  1.2  matt 					break;
    636  1.2  matt 			}
    637  1.2  matt 		}
    638  1.2  matt 	}
    639  1.2  matt 	mtspr(SPR_MAS0, saved_mas0);
    640  1.2  matt 	wrtee(msr);
    641  1.2  matt }
    642  1.2  matt 
    643  1.2  matt static struct e500_xtlb *
    644  1.2  matt e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
    645  1.2  matt {
    646  1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    647  1.2  matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    648  1.2  matt 
    649  1.2  matt 	/*
    650  1.2  matt 	 * See if we have a TLB entry for the pa.
    651  1.2  matt 	 */
    652  1.2  matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    653  1.2  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    654  1.2  matt 		    && xtlb->e_tlb.tlb_va <= va
    655  1.2  matt 		    && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
    656  1.2  matt 			if (slotp != NULL)
    657  1.2  matt 				*slotp = i;
    658  1.2  matt 			return xtlb;
    659  1.2  matt 		}
    660  1.2  matt 	}
    661  1.2  matt 
    662  1.2  matt 	return NULL;
    663  1.2  matt }
    664  1.2  matt 
    665  1.2  matt static struct e500_xtlb *
    666  1.2  matt e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
    667  1.2  matt {
    668  1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    669  1.2  matt 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    670  1.2  matt 
    671  1.2  matt 	/*
    672  1.2  matt 	 * See if we have a TLB entry for the pa.
    673  1.2  matt 	 */
    674  1.2  matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    675  1.2  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    676  1.2  matt 		    && xtlb->e_tlb.tlb_va < va + len
    677  1.2  matt 		    && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
    678  1.2  matt 			return xtlb;
    679  1.2  matt 		}
    680  1.2  matt 	}
    681  1.2  matt 
    682  1.2  matt 	return NULL;
    683  1.2  matt }
    684  1.2  matt 
    685  1.2  matt static void *
    686  1.2  matt e500_tlb_mapiodev(paddr_t pa, psize_t len)
    687  1.2  matt {
    688  1.2  matt 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
    689  1.2  matt 
    690  1.2  matt 	/*
    691  1.2  matt 	 * See if we have a TLB entry for the pa.  If completely falls within
    692  1.6  matt 	 * mark the reference and return the pa.  But only if the tlb entry
    693  1.6  matt 	 * is not cacheable.
    694  1.2  matt 	 */
    695  1.6  matt 	if (xtlb
    696  1.6  matt 	    && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size
    697  1.6  matt 	    && ((xtlb->e_tlb.tlb_pte & PTE_W) == 0
    698  1.6  matt 		|| (xtlb->e_tlb.tlb_pte & PTE_I) == PTE_I)) {
    699  1.2  matt 		xtlb->e_refcnt++;
    700  1.2  matt 		return (void *) pa;
    701  1.2  matt 	}
    702  1.2  matt 	return NULL;
    703  1.2  matt }
    704  1.2  matt 
    705  1.2  matt static void
    706  1.2  matt e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
    707  1.2  matt {
    708  1.2  matt 	if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
    709  1.2  matt 		struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
    710  1.2  matt 		if (xtlb)
    711  1.2  matt 			xtlb->e_refcnt--;
    712  1.2  matt 	}
    713  1.2  matt }
    714  1.2  matt 
    715  1.2  matt static int
    716  1.4  matt e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
    717  1.2  matt {
    718  1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    719  1.2  matt 	struct e500_xtlb *xtlb;
    720  1.2  matt 
    721  1.2  matt 	KASSERT(len & 0x55555000);
    722  1.2  matt 	KASSERT((len & ~0x55555000) == 0);
    723  1.2  matt 	KASSERT(len >= PAGE_SIZE);
    724  1.2  matt 	KASSERT((len & (len - 1)) == 0);
    725  1.2  matt 	KASSERT((va & (len - 1)) == 0);
    726  1.2  matt 	KASSERT((pte & (len - 1)) == 0);
    727  1.2  matt 
    728  1.2  matt 	if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
    729  1.2  matt 		if (va < xtlb->e_tlb.tlb_va
    730  1.2  matt 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
    731  1.2  matt 		    || va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
    732  1.2  matt 			return EBUSY;
    733  1.2  matt 		xtlb->e_refcnt++;
    734  1.2  matt 		return 0;
    735  1.2  matt 	}
    736  1.2  matt 
    737  1.2  matt 	const int slot = e500_alloc_tlb1_entry();
    738  1.2  matt 	if (slot < 0)
    739  1.2  matt 		return ENOMEM;
    740  1.2  matt 
    741  1.2  matt 	xtlb = &tlb1->tlb1_entries[slot];
    742  1.2  matt 	xtlb->e_tlb.tlb_va = va;
    743  1.2  matt 	xtlb->e_tlb.tlb_size = len;
    744  1.2  matt 	xtlb->e_tlb.tlb_pte = pte;
    745  1.2  matt 	xtlb->e_tlb.tlb_asid = KERNEL_PID;
    746  1.2  matt 
    747  1.2  matt 	xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
    748  1.2  matt 	xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
    749  1.2  matt 	hwtlb_write(xtlb->e_hwtlb, true);
    750  1.2  matt 	return 0;
    751  1.2  matt }
    752  1.2  matt 
    753  1.2  matt static int
    754  1.2  matt e500_tlb_iorelease(vaddr_t va)
    755  1.2  matt {
    756  1.2  matt 	u_int slot;
    757  1.2  matt 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
    758  1.2  matt 
    759  1.2  matt 	if (xtlb == NULL)
    760  1.2  matt 		return ENOENT;
    761  1.2  matt 
    762  1.2  matt 	if (xtlb->e_refcnt)
    763  1.2  matt 		return EBUSY;
    764  1.2  matt 
    765  1.2  matt 	e500_free_tlb1_entry(xtlb, slot, true);
    766  1.2  matt 
    767  1.2  matt 	return 0;
    768  1.2  matt }
    769  1.2  matt 
    770  1.2  matt static u_int
    771  1.2  matt e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
    772  1.2  matt {
    773  1.2  matt 	u_int slotmask = 0;
    774  1.2  matt 	u_int slots = 0, nextslot = 0;
    775  1.2  matt 	KASSERT(tlb1->tlb1_numfree > 1);
    776  1.2  matt 	KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
    777  1.2  matt 	for (paddr_t lastaddr = memstart; 0 < memsize; ) {
    778  1.2  matt 		u_int cnt = __builtin_clz(memsize);
    779  1.2  matt 		psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
    780  1.2  matt 		slots += memsize / size;
    781  1.2  matt 		if (slots > 4)
    782  1.2  matt 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    783  1.2  matt 			    __func__, __LINE__, memsize, "too fragmented");
    784  1.2  matt 		if (slots > tlb1->tlb1_numfree - 1)
    785  1.2  matt 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    786  1.2  matt 			    __func__, __LINE__, memsize,
    787  1.2  matt 			    "insufficent TLB entries");
    788  1.2  matt 		for (; nextslot < slots; nextslot++) {
    789  1.2  matt 			const u_int freeslot = e500_alloc_tlb1_entry();
    790  1.2  matt 			struct e500_xtlb * const xtlb =
    791  1.2  matt 			    &tlb1->tlb1_entries[freeslot];
    792  1.2  matt 			xtlb->e_tlb.tlb_asid = KERNEL_PID;
    793  1.2  matt 			xtlb->e_tlb.tlb_size = size;
    794  1.2  matt 			xtlb->e_tlb.tlb_va = lastaddr;
    795  1.2  matt 			xtlb->e_tlb.tlb_pte = lastaddr
    796  1.2  matt 			    | PTE_M | PTE_xX | PTE_xW | PTE_xR;
    797  1.2  matt 			lastaddr += size;
    798  1.2  matt 			memsize -= size;
    799  1.2  matt 			slotmask |= 1 << (31 - freeslot); /* clz friendly */
    800  1.2  matt 		}
    801  1.2  matt 	}
    802  1.2  matt 
    803  1.2  matt 	return nextslot;
    804  1.2  matt }
    805  1.2  matt static const struct tlb_md_ops e500_tlb_ops = {
    806  1.4  matt 	.md_tlb_get_asid = e500_tlb_get_asid,
    807  1.2  matt 	.md_tlb_set_asid = e500_tlb_set_asid,
    808  1.2  matt 	.md_tlb_invalidate_all = e500_tlb_invalidate_all,
    809  1.2  matt 	.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
    810  1.2  matt 	.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
    811  1.2  matt 	.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
    812  1.2  matt 	.md_tlb_update_addr = e500_tlb_update_addr,
    813  1.2  matt 	.md_tlb_record_asids = e500_tlb_record_asids,
    814  1.4  matt 	.md_tlb_write_entry = e500_tlb_write_entry,
    815  1.2  matt 	.md_tlb_read_entry = e500_tlb_read_entry,
    816  1.4  matt 	.md_tlb_dump = e500_tlb_dump,
    817  1.4  matt 	.md_tlb_walk = e500_tlb_walk,
    818  1.4  matt };
    819  1.4  matt 
    820  1.4  matt static const struct tlb_md_io_ops e500_tlb_io_ops = {
    821  1.2  matt 	.md_tlb_mapiodev = e500_tlb_mapiodev,
    822  1.2  matt 	.md_tlb_unmapiodev = e500_tlb_unmapiodev,
    823  1.2  matt 	.md_tlb_ioreserve = e500_tlb_ioreserve,
    824  1.2  matt 	.md_tlb_iorelease = e500_tlb_iorelease,
    825  1.2  matt };
    826  1.2  matt 
    827  1.2  matt void
    828  1.2  matt e500_tlb_init(vaddr_t endkernel, psize_t memsize)
    829  1.2  matt {
    830  1.2  matt 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    831  1.2  matt 
    832  1.2  matt #if 0
    833  1.2  matt 	register_t mmucfg = mfspr(SPR_MMUCFG);
    834  1.2  matt 	register_t mas4 = mfspr(SPR_MAS4);
    835  1.2  matt #endif
    836  1.2  matt 
    837  1.2  matt 	const uint32_t tlb1cfg = mftlb1cfg();
    838  1.2  matt 	tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
    839  1.2  matt 	KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
    840  1.2  matt 	/*
    841  1.2  matt 	 * Limit maxsize to 1G since 4G isn't really useful to us.
    842  1.2  matt 	 */
    843  1.2  matt 	tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
    844  1.2  matt 	tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
    845  1.2  matt 
    846  1.2  matt #ifdef VERBOSE_INITPPC
    847  1.2  matt 	printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
    848  1.2  matt 	    tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
    849  1.2  matt 	    tlb1->tlb1_maxsize >> 10);
    850  1.2  matt #endif
    851  1.2  matt 
    852  1.2  matt 	/*
    853  1.2  matt 	 * Let's see what's in TLB1 and we need to invalidate any entry that
    854  1.2  matt 	 * would fit within the kernel's mapped address space.
    855  1.2  matt 	 */
    856  1.2  matt 	psize_t memmapped = 0;
    857  1.2  matt 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    858  1.2  matt 		struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    859  1.2  matt 
    860  1.2  matt 		xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
    861  1.2  matt 
    862  1.2  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
    863  1.2  matt 			tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
    864  1.2  matt #ifdef VERBOSE_INITPPC
    865  1.2  matt 			printf(" TLB1[%u]=<unused>", i);
    866  1.2  matt #endif
    867  1.2  matt 			continue;
    868  1.2  matt 		}
    869  1.2  matt 
    870  1.2  matt 		xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
    871  1.2  matt #ifdef VERBOSE_INITPPC
    872  1.2  matt 		printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
    873  1.2  matt 		    i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
    874  1.2  matt 		    xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
    875  1.2  matt #endif
    876  1.2  matt 		if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
    877  1.2  matt 		    && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
    878  1.2  matt 		    || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
    879  1.2  matt 		        && VM_MIN_KERNEL_ADDRESS <
    880  1.2  matt 			   xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
    881  1.2  matt #ifdef VERBOSE_INITPPC
    882  1.2  matt 			printf("free");
    883  1.2  matt #endif
    884  1.2  matt 			e500_free_tlb1_entry(xtlb, i, false);
    885  1.2  matt #ifdef VERBOSE_INITPPC
    886  1.2  matt 			printf("d");
    887  1.2  matt #endif
    888  1.2  matt 			continue;
    889  1.2  matt 		}
    890  1.2  matt 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
    891  1.2  matt 			xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
    892  1.2  matt 			hwtlb_write(xtlb->e_hwtlb, false);
    893  1.2  matt #ifdef VERBOSE_INITPPC
    894  1.2  matt 			printf("+iprot");
    895  1.2  matt #endif
    896  1.2  matt 		}
    897  1.2  matt 		if (xtlb->e_tlb.tlb_pte & PTE_I)
    898  1.2  matt 			continue;
    899  1.2  matt 
    900  1.2  matt 		if (xtlb->e_tlb.tlb_va == 0
    901  1.2  matt 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
    902  1.2  matt 			memmapped += xtlb->e_tlb.tlb_size;
    903  1.2  matt 		}
    904  1.2  matt 	}
    905  1.2  matt 
    906  1.2  matt 	cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
    907  1.4  matt 	cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
    908  1.2  matt 
    909  1.2  matt 	if (__predict_false(memmapped < memsize)) {
    910  1.2  matt 		/*
    911  1.2  matt 		 * Let's see how many TLB entries are needed to map memory.
    912  1.2  matt 		 */
    913  1.2  matt 		u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
    914  1.2  matt 
    915  1.2  matt 		/*
    916  1.2  matt 		 * To map main memory into the TLB, we need to flush any
    917  1.2  matt 		 * existing entries from the TLB that overlap the virtual
    918  1.2  matt 		 * address space needed to map physical memory.  That may
    919  1.2  matt 		 * include the entries for the pages currently used by the
    920  1.2  matt 		 * stack or that we are executing.  So to avoid problems, we
    921  1.2  matt 		 * are going to temporarily map the kernel and stack into AS 1,
    922  1.2  matt 		 * switch to it, and clear out the TLB entries from AS 0,
    923  1.2  matt 		 * install the new TLB entries to map memory, and then switch
    924  1.2  matt 		 * back to AS 0 and free the temp entry used for AS1.
    925  1.2  matt 		 */
    926  1.2  matt 		u_int b = __builtin_clz(endkernel);
    927  1.2  matt 
    928  1.2  matt 		/*
    929  1.2  matt 		 * If the kernel doesn't end on a clean power of 2, we need
    930  1.2  matt 		 * to round the size up (by decrementing the number of leading
    931  1.2  matt 		 * zero bits).  If the size isn't a power of 4KB, decrement
    932  1.2  matt 		 * again to make it one.
    933  1.2  matt 		 */
    934  1.2  matt 		if (endkernel & (endkernel - 1))
    935  1.2  matt 			b--;
    936  1.2  matt 		if ((b & 1) == 0)
    937  1.2  matt 			b--;
    938  1.2  matt 
    939  1.2  matt 		/*
    940  1.2  matt 		 * Create a TLB1 mapping for the kernel in AS1.
    941  1.2  matt 		 */
    942  1.2  matt 		const u_int kslot = e500_alloc_tlb1_entry();
    943  1.2  matt 		struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
    944  1.2  matt 		kxtlb->e_tlb.tlb_va = 0;
    945  1.2  matt 		kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
    946  1.2  matt 		kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
    947  1.2  matt 		kxtlb->e_tlb.tlb_asid = KERNEL_PID;
    948  1.2  matt 
    949  1.2  matt 		kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
    950  1.2  matt 		kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
    951  1.2  matt 		kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
    952  1.2  matt 		hwtlb_write(kxtlb->e_hwtlb, true);
    953  1.2  matt 
    954  1.2  matt 		/*
    955  1.2  matt 		 * Now that we have a TLB mapping in AS1 for the kernel and its
    956  1.2  matt 		 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
    957  1.2  matt 		 */
    958  1.2  matt 		const register_t saved_msr = mfmsr();
    959  1.2  matt 		mtmsr(saved_msr | PSL_DS | PSL_IS);
    960  1.2  matt 		__asm volatile("isync");
    961  1.2  matt 
    962  1.2  matt 		/*
    963  1.2  matt 		 *** Invalidate all the TLB0 entries.
    964  1.2  matt 		 */
    965  1.2  matt 		e500_tlb_invalidate_all();
    966  1.2  matt 
    967  1.2  matt 		/*
    968  1.2  matt 		 *** Now let's see if we have any entries in TLB1 that would
    969  1.2  matt 		 *** overlap the ones we are about to install.  If so, nuke 'em.
    970  1.2  matt 		 */
    971  1.2  matt 		for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    972  1.2  matt 			struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    973  1.2  matt 			struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
    974  1.2  matt 			if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
    975  1.2  matt 			    && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
    976  1.2  matt 				e500_free_tlb1_entry(xtlb, i, false);
    977  1.2  matt 			}
    978  1.2  matt 		}
    979  1.2  matt 
    980  1.2  matt 		/*
    981  1.2  matt 		 *** Now we can add the TLB entries that will map physical
    982  1.2  matt 		 *** memory.  If bit 0 [MSB] in slotmask is set, then tlb
    983  1.2  matt 		 *** entry 0 contains a mapping for physical memory...
    984  1.2  matt 		 */
    985  1.2  matt 		struct e500_xtlb *entries = tlb1->tlb1_entries;
    986  1.2  matt 		while (slotmask != 0) {
    987  1.2  matt 			const u_int slot = __builtin_clz(slotmask);
    988  1.2  matt 			hwtlb_write(entries[slot].e_hwtlb, false);
    989  1.2  matt 			entries += slot + 1;
    990  1.2  matt 			slotmask <<= slot + 1;
    991  1.2  matt 		}
    992  1.2  matt 
    993  1.2  matt 		/*
    994  1.2  matt 		 *** Synchronize the TLB and the instruction stream.
    995  1.2  matt 		 */
    996  1.2  matt 		__asm volatile("tlbsync");
    997  1.2  matt 		__asm volatile("isync");
    998  1.2  matt 
    999  1.2  matt 		/*
   1000  1.2  matt 		 *** Switch back to AS 0.
   1001  1.2  matt 		 */
   1002  1.2  matt 		mtmsr(saved_msr);
   1003  1.2  matt 		__asm volatile("isync");
   1004  1.2  matt 
   1005  1.2  matt 		/*
   1006  1.2  matt 		 * Free the temporary TLB1 entry.
   1007  1.2  matt 		 */
   1008  1.2  matt 		e500_free_tlb1_entry(kxtlb, kslot, true);
   1009  1.2  matt 	}
   1010  1.2  matt 
   1011  1.2  matt 	/*
   1012  1.2  matt 	 * Finally set the MAS4 defaults.
   1013  1.2  matt 	 */
   1014  1.2  matt 	mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
   1015  1.2  matt 
   1016  1.2  matt 	/*
   1017  1.2  matt 	 * Invalidate all the TLB0 entries.
   1018  1.2  matt 	 */
   1019  1.2  matt 	e500_tlb_invalidate_all();
   1020  1.2  matt }
   1021