e500_tlb.c revision 1.11 1 /* $NetBSD: e500_tlb.c,v 1.11 2012/07/25 22:11:36 matt Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __PMAP_PRIVATE
38
39 #include <sys/cdefs.h>
40
41 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.11 2012/07/25 22:11:36 matt Exp $");
42
43 #include <sys/param.h>
44
45 #include <uvm/uvm_extern.h>
46
47 #include <powerpc/spr.h>
48 #include <powerpc/booke/spr.h>
49 #include <powerpc/booke/cpuvar.h>
50 #include <powerpc/booke/e500reg.h>
51 #include <powerpc/booke/e500var.h>
52 #include <powerpc/booke/pmap.h>
53
54 struct e500_tlb {
55 vaddr_t tlb_va;
56 uint32_t tlb_pte;
57 uint32_t tlb_asid;
58 vsize_t tlb_size;
59 };
60
61 struct e500_hwtlb {
62 uint32_t hwtlb_mas0;
63 uint32_t hwtlb_mas1;
64 uint32_t hwtlb_mas2;
65 uint32_t hwtlb_mas3;
66 };
67
68 struct e500_xtlb {
69 struct e500_tlb e_tlb;
70 struct e500_hwtlb e_hwtlb;
71 u_long e_refcnt;
72 };
73
74 static struct e500_tlb1 {
75 uint32_t tlb1_maxsize;
76 uint32_t tlb1_minsize;
77 u_int tlb1_numentries;
78 u_int tlb1_numfree;
79 u_int tlb1_freelist[32];
80 struct e500_xtlb tlb1_entries[32];
81 } e500_tlb1;
82
83 static inline register_t mftlb0cfg(void) __pure;
84 static inline register_t mftlb1cfg(void) __pure;
85
86 static inline register_t
87 mftlb0cfg(void)
88 {
89 register_t tlb0cfg;
90 __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
91 return tlb0cfg;
92 }
93
94 static inline register_t
95 mftlb1cfg(void)
96 {
97 register_t tlb1cfg;
98 __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
99 return tlb1cfg;
100 }
101
102 static struct e500_tlb
103 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
104 {
105 struct e500_tlb tlb;
106 register_t prot_mask;
107 u_int prot_shift;
108
109 tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
110 tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
111 tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
112 tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
113 | (hwtlb.hwtlb_mas3 & MAS3_RPN);
114 if (hwtlb.hwtlb_mas1 & MAS1_TS) {
115 prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
116 prot_shift = PTE_RWX_SHIFT - 1;
117 } else {
118 prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
119 prot_shift = PTE_RWX_SHIFT;
120 }
121 tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
122 return tlb;
123 }
124
125 static inline struct e500_hwtlb
126 hwtlb_read(uint32_t mas0, u_int slot)
127 {
128 struct e500_hwtlb hwtlb;
129 register_t tlbcfg;
130
131 if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
132 tlbcfg = mftlb0cfg();
133 } else if (mas0 == MAS0_TLBSEL_TLB1) {
134 tlbcfg = mftlb1cfg();
135 } else {
136 panic("%s:%d: unexpected MAS0 %#" PRIx32,
137 __func__, __LINE__, mas0);
138 }
139
140 /*
141 * ESEL is the way we want to look up.
142 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
143 * fully associative, the entire slot is placed into ESEL. If tlbassoc
144 * is less then the number of tlb entries, the slot is split in two
145 * fields. Since the TLB is M rows by N ways, the lowers bits are for
146 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
147 */
148 const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
149 const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
150 const u_int esel_shift =
151 __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
152
153 /*
154 * Disable interrupts since we don't want anyone else mucking with
155 * the MMU Assist registers
156 */
157 const register_t msr = wrtee(0);
158 const register_t saved_mas0 = mfspr(SPR_MAS0);
159 mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
160
161 if (__predict_true(tlbassoc > tlbentries))
162 mtspr(SPR_MAS2, slot << PAGE_SHIFT);
163
164 /*
165 * Now select the entry and grab its contents.
166 */
167 __asm volatile("tlbre");
168
169 hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
170 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
171 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
172 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
173
174 mtspr(SPR_MAS0, saved_mas0);
175 wrtee(msr); /* restore interrupts */
176
177 return hwtlb;
178 }
179
180 static inline void
181 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
182 {
183 const register_t msr = wrtee(0);
184 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
185
186 /*
187 * Need to always write MAS0 and MAS1
188 */
189 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
190 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
191
192 /*
193 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
194 */
195 if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
196 || (hwtlb.hwtlb_mas1 & MAS1_V)) {
197 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
198 }
199 /*
200 * Only need to write the RPN/prot if we are dealing with a valid
201 * mapping.
202 */
203 if (hwtlb.hwtlb_mas1 & MAS1_V) {
204 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
205 }
206
207 #if 0
208 printf("%s->[%x,%x,%x,%x]\n",
209 __func__,
210 hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
211 hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
212 #endif
213 __asm volatile("tlbwe");
214 if (needs_sync) {
215 __asm volatile("tlbsync\n\tisync\n\tsync");
216 }
217
218 mtspr(SPR_MAS0, saved_mas0);
219 wrtee(msr);
220 }
221
222 static struct e500_hwtlb
223 tlb_to_hwtlb(const struct e500_tlb tlb)
224 {
225 struct e500_hwtlb hwtlb;
226
227 KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
228 KASSERT(tlb.tlb_size != 0);
229 KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
230 const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
231 if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
232 hwtlb.hwtlb_mas0 = 0;
233 hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
234 /*
235 * A non-zero ASID means this is a user page so mark it as
236 * being in the user's address space.
237 */
238 if (tlb.tlb_asid) {
239 hwtlb.hwtlb_mas1 |= MAS1_TS
240 | MASX_TID_MAKE(tlb.tlb_asid);
241 hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
242 | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
243 KASSERT(prot_mask & PTE_xR);
244 KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
245 CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
246 CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
247 } else {
248 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
249 }
250 if (tlb.tlb_pte & PTE_UNMODIFIED)
251 hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
252 if (tlb.tlb_pte & PTE_UNSYNCED)
253 hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
254 } else {
255 KASSERT(tlb.tlb_asid == 0);
256 KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
257 u_int cntlz = __builtin_clz(tlb.tlb_size);
258 KASSERT(cntlz & 1);
259 KASSERT(cntlz <= 19);
260 hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
261 /*
262 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
263 * allowed. So 1K would be 0x00000400 giving 21 leading zero
264 * bits. Subtracting the leading number of zero bits from 21
265 * and dividing by 2 gives us the number that the MMU wants.
266 */
267 hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
268 | MAS1_IPROT | MAS1_V;
269 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
270 }
271 /* We are done with MAS1, on to MAS2 ... */
272 hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
273 hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
274
275 return hwtlb;
276 }
277
278 void *
279 e500_tlb1_fetch(size_t slot)
280 {
281 struct e500_tlb1 * const tlb1 = &e500_tlb1;
282
283 return &tlb1->tlb1_entries[slot].e_hwtlb;
284 }
285
286 void
287 e500_tlb1_sync(void)
288 {
289 struct e500_tlb1 * const tlb1 = &e500_tlb1;
290 for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
291 const struct e500_hwtlb * const new_hwtlb =
292 &tlb1->tlb1_entries[slot].e_hwtlb;
293 const struct e500_hwtlb old_hwtlb =
294 hwtlb_read(MAS0_TLBSEL_TLB1, slot);
295 #define CHANGED(n,o,f) ((n)->f != (o).f)
296 bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
297 bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
298 bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
299 #undef CHANGED
300 bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
301 bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
302 if ((new_valid_p || old_valid_p)
303 && (mas1_changed_p
304 || (new_valid_p
305 && (mas2_changed_p || mas3_changed_p))))
306 hwtlb_write(*new_hwtlb, true);
307 }
308 }
309
310 static int
311 e500_alloc_tlb1_entry(void)
312 {
313 struct e500_tlb1 * const tlb1 = &e500_tlb1;
314
315 if (tlb1->tlb1_numfree == 0)
316 return -1;
317 const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
318 KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
319 tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
320 MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
321 return (int)slot;
322 }
323
324 static void
325 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
326 {
327 struct e500_tlb1 * const tlb1 = &e500_tlb1;
328 KASSERT(slot < tlb1->tlb1_numentries);
329 KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
330
331 KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
332 xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
333 hwtlb_write(xtlb->e_hwtlb, needs_sync);
334
335 const register_t msr = wrtee(0);
336 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
337 wrtee(msr);
338 }
339
340 static tlb_asid_t
341 e500_tlb_get_asid(void)
342 {
343 return mfspr(SPR_PID0);
344 }
345
346 static void
347 e500_tlb_set_asid(tlb_asid_t asid)
348 {
349 mtspr(SPR_PID0, asid);
350 }
351
352 static void
353 e500_tlb_invalidate_all(void)
354 {
355 /*
356 * This does a flash invalidate of all entries in TLB0.
357 * We don't touch TLB1 since we don't expect those to be volatile.
358 */
359 #if 1
360 __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
361 __asm volatile("tlbsync\n\tisync\n\tsync");
362 #else
363 mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
364 while (mfspr(SPR_MMUCSR0) != 0)
365 ;
366 #endif
367 }
368
369 static void
370 e500_tlb_invalidate_globals(void)
371 {
372 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
373 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
374 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
375 const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
376 const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
377 const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
378 const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
379
380 const register_t msr = wrtee(0);
381 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
382 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
383 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
384 mtspr(SPR_MAS2, epn);
385 __asm volatile("tlbre");
386 uint32_t mas1 = mfspr(SPR_MAS1);
387
388 /*
389 * Make sure this is a valid kernel entry first.
390 */
391 if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
392 continue;
393
394 /*
395 * We have a valid kernel TLB entry. But if it matches
396 * the stack we are currently running on, it would
397 * unwise to invalidate it. First see if the epn
398 * overlaps the stack. If it does then get the
399 * VA and see if it really is part of the stack.
400 */
401 if (epn_kstack_lo < epn_kstack_hi
402 ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
403 : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
404 const uint32_t mas2_epn =
405 mfspr(SPR_MAS2) & MAS2_EPN;
406 if (kstack_lo <= mas2_epn
407 && mas2_epn <= kstack_hi)
408 continue;
409 }
410 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
411 __asm volatile("tlbwe");
412 }
413 }
414 __asm volatile("isync\n\tsync");
415 wrtee(msr);
416 }
417
418 static void
419 e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
420 {
421 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
422 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
423 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
424
425 asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
426 asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
427
428 const register_t msr = wrtee(0);
429 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
430 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
431 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
432 mtspr(SPR_MAS2, epn);
433 __asm volatile("tlbre");
434 const uint32_t mas1 = mfspr(SPR_MAS1);
435 /*
436 * If this is a valid entry for AS space 1 and
437 * its asid matches the constraints of the caller,
438 * clear its valid bit.
439 */
440 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
441 && asid_lo <= (mas1 & MAS1_TID)
442 && (mas1 & MAS1_TID) <= asid_hi) {
443 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
444 #if 0
445 printf("%s[%zu,%zu]->[%x]\n",
446 __func__, assoc, epn, mas1);
447 #endif
448 __asm volatile("tlbwe");
449 }
450 }
451 }
452 __asm volatile("isync\n\tsync");
453 wrtee(msr);
454 }
455
456 static u_int
457 e500_tlb_record_asids(u_long *bitmap)
458 {
459 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
460 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
461 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
462 const size_t nbits = 8 * sizeof(bitmap[0]);
463 u_int found = 0;
464
465 const register_t msr = wrtee(0);
466 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
467 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
468 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
469 mtspr(SPR_MAS2, epn);
470 __asm volatile("tlbre");
471 const uint32_t mas1 = mfspr(SPR_MAS1);
472 /*
473 * If this is a valid entry for AS space 1 and
474 * its asid matches the constraints of the caller,
475 * clear its valid bit.
476 */
477 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
478 const uint32_t asid = MASX_TID_GET(mas1);
479 const u_int i = asid / nbits;
480 const u_long mask = 1UL << (asid & (nbits - 1));
481 if ((bitmap[i] & mask) == 0) {
482 bitmap[i] |= mask;
483 found++;
484 }
485 }
486 }
487 }
488 wrtee(msr);
489
490 return found;
491 }
492
493 static void
494 e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
495 {
496 KASSERT((va & PAGE_MASK) == 0);
497 /*
498 * Bits 60 & 61 have meaning
499 */
500 if (asid == KERNEL_PID) {
501 /*
502 * For data accesses, the context-synchronizing instruction
503 * before tlbwe or tlbivax ensures that all memory accesses
504 * due to preceding instructions have completed to a point
505 * at which they have reported all exceptions they will cause.
506 */
507 __asm volatile("isync");
508 }
509 __asm volatile("tlbivax\t0, %0" :: "b"(va));
510 __asm volatile("tlbsync");
511 __asm volatile("tlbsync"); /* Why? */
512 if (asid == KERNEL_PID) {
513 /*
514 * The context-synchronizing instruction after tlbwe or tlbivax
515 * ensures that subsequent accesses (data and instruction) use
516 * the updated value in any TLB entries affected.
517 */
518 __asm volatile("isync\n\tsync");
519 }
520 }
521
522 static bool
523 e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
524 {
525 struct e500_hwtlb hwtlb = tlb_to_hwtlb(
526 (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
527 .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
528
529 register_t msr = wrtee(0);
530 mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
531 __asm volatile("tlbsx 0, %0" :: "b"(va));
532 register_t mas1 = mfspr(SPR_MAS1);
533 if ((mas1 & MAS1_V) == 0) {
534 if (!insert) {
535 wrtee(msr);
536 #if 0
537 printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
538 __func__, va, asid, pte, insert);
539 #endif
540 return false;
541 }
542 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
543 }
544 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
545 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
546 __asm volatile("tlbwe");
547 if (asid == KERNEL_PID)
548 __asm volatile("isync\n\tsync");
549 wrtee(msr);
550 #if 0
551 if (asid)
552 printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
553 __func__, va, asid, pte, insert,
554 hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
555 #endif
556 return (mas1 & MAS1_V) != 0;
557 }
558
559 static void
560 e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
561 {
562 }
563
564 static void
565 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
566 {
567 }
568
569 static void
570 e500_tlb_dump(void (*pr)(const char *, ...))
571 {
572 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
573 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
574 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
575 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
576 size_t valid = 0;
577
578 if (pr == NULL)
579 pr = printf;
580
581 const register_t msr = wrtee(0);
582 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
583 struct e500_hwtlb hwtlb;
584 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
585 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
586 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
587 mtspr(SPR_MAS2, epn);
588 __asm volatile("tlbre");
589 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
590 /*
591 * If this is a valid entry for AS space 1 and
592 * its asid matches the constraints of the caller,
593 * clear its valid bit.
594 */
595 if (hwtlb.hwtlb_mas1 & MAS1_V) {
596 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
597 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
598 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
599 (*pr)("[%zu,%zu]->[%x,%x,%x]",
600 assoc, atop(epn),
601 hwtlb.hwtlb_mas1,
602 hwtlb.hwtlb_mas2,
603 hwtlb.hwtlb_mas3);
604 (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
605 tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
606 (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
607 tlb.tlb_pte & PTE_RPN_MASK,
608 tlb.tlb_pte & PTE_xR ? "R" : "",
609 tlb.tlb_pte & PTE_xW ? "W" : "",
610 tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
611 tlb.tlb_pte & PTE_xX ? "X" : "",
612 tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
613 tlb.tlb_pte & PTE_W ? "W" : "",
614 tlb.tlb_pte & PTE_I ? "I" : "",
615 tlb.tlb_pte & PTE_M ? "M" : "",
616 tlb.tlb_pte & PTE_G ? "G" : "",
617 tlb.tlb_pte & PTE_E ? "E" : "");
618 valid++;
619 }
620 }
621 }
622 mtspr(SPR_MAS0, saved_mas0);
623 wrtee(msr);
624 (*pr)("%s: %zu valid entries\n", __func__, valid);
625 }
626
627 static void
628 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
629 {
630 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
631 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
632 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
633 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
634
635 const register_t msr = wrtee(0);
636 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
637 struct e500_hwtlb hwtlb;
638 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
639 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
640 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
641 mtspr(SPR_MAS2, epn);
642 __asm volatile("tlbre");
643 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
644 /*
645 * If this is a valid entry for AS space 1 and
646 * its asid matches the constraints of the caller,
647 * clear its valid bit.
648 */
649 if (hwtlb.hwtlb_mas1 & MAS1_V) {
650 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
651 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
652 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
653 if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
654 tlb.tlb_pte))
655 break;
656 }
657 }
658 }
659 mtspr(SPR_MAS0, saved_mas0);
660 wrtee(msr);
661 }
662
663 static struct e500_xtlb *
664 e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
665 {
666 struct e500_tlb1 * const tlb1 = &e500_tlb1;
667 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
668
669 /*
670 * See if we have a TLB entry for the pa.
671 */
672 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
673 psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
674 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
675 && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
676 if (slotp != NULL)
677 *slotp = i;
678 return xtlb;
679 }
680 }
681
682 return NULL;
683 }
684
685 static struct e500_xtlb *
686 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
687 {
688 struct e500_tlb1 * const tlb1 = &e500_tlb1;
689 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
690
691 /*
692 * See if we have a TLB entry for the va.
693 */
694 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
695 vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
696 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
697 && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
698 if (slotp != NULL)
699 *slotp = i;
700 return xtlb;
701 }
702 }
703
704 return NULL;
705 }
706
707 static struct e500_xtlb *
708 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
709 {
710 struct e500_tlb1 * const tlb1 = &e500_tlb1;
711 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
712
713 /*
714 * See if we have a TLB entry for the pa.
715 */
716 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
717 vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
718 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
719 && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
720 && (((va + len - 1) ^ va) & mask) == 0) {
721 return xtlb;
722 }
723 }
724
725 return NULL;
726 }
727
728 static void *
729 e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
730 {
731 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
732
733 /*
734 * See if we have a TLB entry for the pa. If completely falls within
735 * mark the reference and return the pa. But only if the tlb entry
736 * is not cacheable.
737 */
738 if (xtlb
739 && (prefetchable
740 || (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
741 xtlb->e_refcnt++;
742 return (void *) (xtlb->e_tlb.tlb_va
743 + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
744 }
745 return NULL;
746 }
747
748 static void
749 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
750 {
751 if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
752 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
753 if (xtlb)
754 xtlb->e_refcnt--;
755 }
756 }
757
758 static int
759 e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
760 {
761 struct e500_tlb1 * const tlb1 = &e500_tlb1;
762 struct e500_xtlb *xtlb;
763
764 KASSERT(len & 0x55555000);
765 KASSERT((len & ~0x55555000) == 0);
766 KASSERT(len >= PAGE_SIZE);
767 KASSERT((len & (len - 1)) == 0);
768 KASSERT((va & (len - 1)) == 0);
769 KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
770
771 if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
772 psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
773 KASSERT(len <= xtlb->e_tlb.tlb_size);
774 KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
775 xtlb->e_refcnt++;
776 return 0;
777 }
778
779 const int slot = e500_alloc_tlb1_entry();
780 if (slot < 0)
781 return ENOMEM;
782
783 xtlb = &tlb1->tlb1_entries[slot];
784 xtlb->e_tlb.tlb_va = va;
785 xtlb->e_tlb.tlb_size = len;
786 xtlb->e_tlb.tlb_pte = pte;
787 xtlb->e_tlb.tlb_asid = KERNEL_PID;
788
789 xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
790 xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
791 hwtlb_write(xtlb->e_hwtlb, true);
792 return 0;
793 }
794
795 static int
796 e500_tlb_iorelease(vaddr_t va)
797 {
798 u_int slot;
799 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
800
801 if (xtlb == NULL)
802 return ENOENT;
803
804 if (xtlb->e_refcnt)
805 return EBUSY;
806
807 e500_free_tlb1_entry(xtlb, slot, true);
808
809 return 0;
810 }
811
812 static u_int
813 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
814 {
815 u_int slotmask = 0;
816 u_int slots = 0, nextslot = 0;
817 KASSERT(tlb1->tlb1_numfree > 1);
818 KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
819 for (paddr_t lastaddr = memstart; 0 < memsize; ) {
820 u_int cnt = __builtin_clz(memsize);
821 psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
822 slots += memsize / size;
823 if (slots > 4)
824 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
825 __func__, __LINE__, memsize, "too fragmented");
826 if (slots > tlb1->tlb1_numfree - 1)
827 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
828 __func__, __LINE__, memsize,
829 "insufficent TLB entries");
830 for (; nextslot < slots; nextslot++) {
831 const u_int freeslot = e500_alloc_tlb1_entry();
832 struct e500_xtlb * const xtlb =
833 &tlb1->tlb1_entries[freeslot];
834 xtlb->e_tlb.tlb_asid = KERNEL_PID;
835 xtlb->e_tlb.tlb_size = size;
836 xtlb->e_tlb.tlb_va = lastaddr;
837 xtlb->e_tlb.tlb_pte = lastaddr
838 | PTE_M | PTE_xX | PTE_xW | PTE_xR;
839 lastaddr += size;
840 memsize -= size;
841 slotmask |= 1 << (31 - freeslot); /* clz friendly */
842 }
843 }
844
845 return nextslot;
846 }
847 static const struct tlb_md_ops e500_tlb_ops = {
848 .md_tlb_get_asid = e500_tlb_get_asid,
849 .md_tlb_set_asid = e500_tlb_set_asid,
850 .md_tlb_invalidate_all = e500_tlb_invalidate_all,
851 .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
852 .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
853 .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
854 .md_tlb_update_addr = e500_tlb_update_addr,
855 .md_tlb_record_asids = e500_tlb_record_asids,
856 .md_tlb_write_entry = e500_tlb_write_entry,
857 .md_tlb_read_entry = e500_tlb_read_entry,
858 .md_tlb_dump = e500_tlb_dump,
859 .md_tlb_walk = e500_tlb_walk,
860 };
861
862 static const struct tlb_md_io_ops e500_tlb_io_ops = {
863 .md_tlb_mapiodev = e500_tlb_mapiodev,
864 .md_tlb_unmapiodev = e500_tlb_unmapiodev,
865 .md_tlb_ioreserve = e500_tlb_ioreserve,
866 .md_tlb_iorelease = e500_tlb_iorelease,
867 };
868
869 void
870 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
871 {
872 struct e500_tlb1 * const tlb1 = &e500_tlb1;
873
874 #if 0
875 register_t mmucfg = mfspr(SPR_MMUCFG);
876 register_t mas4 = mfspr(SPR_MAS4);
877 #endif
878
879 const uint32_t tlb1cfg = mftlb1cfg();
880 tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
881 KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
882 /*
883 * Limit maxsize to 1G since 4G isn't really useful to us.
884 */
885 tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
886 tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
887
888 #ifdef VERBOSE_INITPPC
889 printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
890 tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
891 tlb1->tlb1_maxsize >> 10);
892 #endif
893
894 /*
895 * Let's see what's in TLB1 and we need to invalidate any entry that
896 * would fit within the kernel's mapped address space.
897 */
898 psize_t memmapped = 0;
899 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
900 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
901
902 xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
903
904 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
905 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
906 #ifdef VERBOSE_INITPPC
907 printf(" TLB1[%u]=<unused>", i);
908 #endif
909 continue;
910 }
911
912 xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
913 #ifdef VERBOSE_INITPPC
914 printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
915 i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
916 xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
917 #endif
918 if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
919 && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
920 || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
921 && VM_MIN_KERNEL_ADDRESS <
922 xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
923 #ifdef VERBOSE_INITPPC
924 printf("free");
925 #endif
926 e500_free_tlb1_entry(xtlb, i, false);
927 #ifdef VERBOSE_INITPPC
928 printf("d");
929 #endif
930 continue;
931 }
932 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
933 xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
934 hwtlb_write(xtlb->e_hwtlb, false);
935 #ifdef VERBOSE_INITPPC
936 printf("+iprot");
937 #endif
938 }
939 if (xtlb->e_tlb.tlb_pte & PTE_I)
940 continue;
941
942 if (xtlb->e_tlb.tlb_va == 0
943 || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
944 memmapped += xtlb->e_tlb.tlb_size;
945 }
946 }
947
948 cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
949 cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
950
951 if (__predict_false(memmapped < memsize)) {
952 /*
953 * Let's see how many TLB entries are needed to map memory.
954 */
955 u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
956
957 /*
958 * To map main memory into the TLB, we need to flush any
959 * existing entries from the TLB that overlap the virtual
960 * address space needed to map physical memory. That may
961 * include the entries for the pages currently used by the
962 * stack or that we are executing. So to avoid problems, we
963 * are going to temporarily map the kernel and stack into AS 1,
964 * switch to it, and clear out the TLB entries from AS 0,
965 * install the new TLB entries to map memory, and then switch
966 * back to AS 0 and free the temp entry used for AS1.
967 */
968 u_int b = __builtin_clz(endkernel);
969
970 /*
971 * If the kernel doesn't end on a clean power of 2, we need
972 * to round the size up (by decrementing the number of leading
973 * zero bits). If the size isn't a power of 4KB, decrement
974 * again to make it one.
975 */
976 if (endkernel & (endkernel - 1))
977 b--;
978 if ((b & 1) == 0)
979 b--;
980
981 /*
982 * Create a TLB1 mapping for the kernel in AS1.
983 */
984 const u_int kslot = e500_alloc_tlb1_entry();
985 struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
986 kxtlb->e_tlb.tlb_va = 0;
987 kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
988 kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
989 kxtlb->e_tlb.tlb_asid = KERNEL_PID;
990
991 kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
992 kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
993 kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
994 hwtlb_write(kxtlb->e_hwtlb, true);
995
996 /*
997 * Now that we have a TLB mapping in AS1 for the kernel and its
998 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
999 */
1000 const register_t saved_msr = mfmsr();
1001 mtmsr(saved_msr | PSL_DS | PSL_IS);
1002 __asm volatile("isync");
1003
1004 /*
1005 *** Invalidate all the TLB0 entries.
1006 */
1007 e500_tlb_invalidate_all();
1008
1009 /*
1010 *** Now let's see if we have any entries in TLB1 that would
1011 *** overlap the ones we are about to install. If so, nuke 'em.
1012 */
1013 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
1014 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
1015 struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
1016 if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
1017 && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
1018 e500_free_tlb1_entry(xtlb, i, false);
1019 }
1020 }
1021
1022 /*
1023 *** Now we can add the TLB entries that will map physical
1024 *** memory. If bit 0 [MSB] in slotmask is set, then tlb
1025 *** entry 0 contains a mapping for physical memory...
1026 */
1027 struct e500_xtlb *entries = tlb1->tlb1_entries;
1028 while (slotmask != 0) {
1029 const u_int slot = __builtin_clz(slotmask);
1030 hwtlb_write(entries[slot].e_hwtlb, false);
1031 entries += slot + 1;
1032 slotmask <<= slot + 1;
1033 }
1034
1035 /*
1036 *** Synchronize the TLB and the instruction stream.
1037 */
1038 __asm volatile("tlbsync");
1039 __asm volatile("isync");
1040
1041 /*
1042 *** Switch back to AS 0.
1043 */
1044 mtmsr(saved_msr);
1045 __asm volatile("isync");
1046
1047 /*
1048 * Free the temporary TLB1 entry.
1049 */
1050 e500_free_tlb1_entry(kxtlb, kslot, true);
1051 }
1052
1053 /*
1054 * Finally set the MAS4 defaults.
1055 */
1056 mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
1057
1058 /*
1059 * Invalidate all the TLB0 entries.
1060 */
1061 e500_tlb_invalidate_all();
1062 }
1063
1064 void
1065 e500_tlb_minimize(vaddr_t endkernel)
1066 {
1067 #ifdef PMAP_MINIMALTLB
1068 struct e500_tlb1 * const tlb1 = &e500_tlb1;
1069 extern uint32_t _fdata[];
1070
1071 u_int slot;
1072
1073 paddr_t boot_page = cpu_read_4(GUR_BPTR);
1074 if (boot_page & BPTR_EN) {
1075 /*
1076 * shift it to an address
1077 */
1078 boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
1079 pmap_kvptefill(boot_page, boot_page + NBPG,
1080 PTE_M | PTE_xR | PTE_xW | PTE_xX);
1081 }
1082
1083
1084 KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
1085 KASSERT((uintptr_t)_fdata == 0x400000);
1086
1087 struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
1088
1089 KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
1090 const u_int tmp_slot = e500_alloc_tlb1_entry();
1091 KASSERT(tmp_slot != (u_int) -1);
1092
1093 struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
1094 tmp_xtlb->e_tlb = xtlb->e_tlb;
1095 tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
1096 tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1097 KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1098 tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
1099 hwtlb_write(tmp_xtlb->e_hwtlb, true);
1100
1101 const u_int text_slot = e500_alloc_tlb1_entry();
1102 KASSERT(text_slot != (u_int)-1);
1103 struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
1104 text_xtlb->e_tlb.tlb_va = 0;
1105 text_xtlb->e_tlb.tlb_size = 0x400000;
1106 text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
1107 text_xtlb->e_tlb.tlb_asid = 0;
1108 text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
1109 KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1110 text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
1111
1112 const u_int data_slot = e500_alloc_tlb1_entry();
1113 KASSERT(data_slot != (u_int)-1);
1114 struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
1115 data_xtlb->e_tlb.tlb_va = 0x400000;
1116 data_xtlb->e_tlb.tlb_size = 0x400000;
1117 data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
1118 data_xtlb->e_tlb.tlb_asid = 0;
1119 data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
1120 KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1121 data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
1122
1123 const register_t msr = mfmsr();
1124 const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
1125
1126 __asm __volatile(
1127 "mtmsr %[ts_msr]" "\n\t"
1128 "sync" "\n\t"
1129 "isync"
1130 :: [ts_msr] "r" (ts_msr));
1131
1132 #if 0
1133 hwtlb_write(text_xtlb->e_hwtlb, false);
1134 hwtlb_write(data_xtlb->e_hwtlb, false);
1135 e500_free_tlb1_entry(xtlb, slot, true);
1136 #endif
1137
1138 __asm __volatile(
1139 "mtmsr %[msr]" "\n\t"
1140 "sync" "\n\t"
1141 "isync"
1142 :: [msr] "r" (msr));
1143
1144 e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
1145 #endif /* PMAP_MINIMALTLB */
1146 }
1147