e500_tlb.c revision 1.12 1 /* $NetBSD: e500_tlb.c,v 1.12 2012/11/27 19:24:46 matt Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #define __PMAP_PRIVATE
38
39 #include <sys/cdefs.h>
40
41 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.12 2012/11/27 19:24:46 matt Exp $");
42
43 #include <sys/param.h>
44
45 #include <uvm/uvm_extern.h>
46
47 #include <powerpc/spr.h>
48 #include <powerpc/booke/spr.h>
49 #include <powerpc/booke/cpuvar.h>
50 #include <powerpc/booke/e500reg.h>
51 #include <powerpc/booke/e500var.h>
52 #include <powerpc/booke/pmap.h>
53
54 struct e500_tlb {
55 vaddr_t tlb_va;
56 uint32_t tlb_pte;
57 uint32_t tlb_asid;
58 vsize_t tlb_size;
59 };
60
61 struct e500_hwtlb {
62 uint32_t hwtlb_mas0;
63 uint32_t hwtlb_mas1;
64 uint32_t hwtlb_mas2;
65 uint32_t hwtlb_mas3;
66 };
67
68 struct e500_xtlb {
69 struct e500_tlb e_tlb;
70 struct e500_hwtlb e_hwtlb;
71 u_long e_refcnt;
72 };
73
74 static struct e500_tlb1 {
75 uint32_t tlb1_maxsize;
76 uint32_t tlb1_minsize;
77 u_int tlb1_numentries;
78 u_int tlb1_numfree;
79 u_int tlb1_freelist[32];
80 struct e500_xtlb tlb1_entries[32];
81 } e500_tlb1;
82
83 static inline register_t mftlb0cfg(void) __pure;
84 static inline register_t mftlb1cfg(void) __pure;
85
86 static inline register_t
87 mftlb0cfg(void)
88 {
89 register_t tlb0cfg;
90 __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
91 return tlb0cfg;
92 }
93
94 static inline register_t
95 mftlb1cfg(void)
96 {
97 register_t tlb1cfg;
98 __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
99 return tlb1cfg;
100 }
101
102 static struct e500_tlb
103 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
104 {
105 struct e500_tlb tlb;
106 register_t prot_mask;
107 u_int prot_shift;
108
109 tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
110 tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
111 tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
112 tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
113 | (hwtlb.hwtlb_mas3 & MAS3_RPN);
114 if (hwtlb.hwtlb_mas1 & MAS1_TS) {
115 prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
116 prot_shift = PTE_RWX_SHIFT - 1;
117 } else {
118 prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
119 prot_shift = PTE_RWX_SHIFT;
120 }
121 tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
122 return tlb;
123 }
124
125 static inline struct e500_hwtlb
126 hwtlb_read(uint32_t mas0, u_int slot)
127 {
128 struct e500_hwtlb hwtlb;
129 register_t tlbcfg;
130
131 if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
132 tlbcfg = mftlb0cfg();
133 } else if (mas0 == MAS0_TLBSEL_TLB1) {
134 tlbcfg = mftlb1cfg();
135 } else {
136 panic("%s:%d: unexpected MAS0 %#" PRIx32,
137 __func__, __LINE__, mas0);
138 }
139
140 /*
141 * ESEL is the way we want to look up.
142 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
143 * fully associative, the entire slot is placed into ESEL. If tlbassoc
144 * is less then the number of tlb entries, the slot is split in two
145 * fields. Since the TLB is M rows by N ways, the lowers bits are for
146 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
147 */
148 const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
149 const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
150 const u_int esel_shift =
151 __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
152
153 /*
154 * Disable interrupts since we don't want anyone else mucking with
155 * the MMU Assist registers
156 */
157 const register_t msr = wrtee(0);
158 const register_t saved_mas0 = mfspr(SPR_MAS0);
159 mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
160
161 if (__predict_true(tlbassoc > tlbentries))
162 mtspr(SPR_MAS2, slot << PAGE_SHIFT);
163
164 /*
165 * Now select the entry and grab its contents.
166 */
167 __asm volatile("tlbre");
168
169 hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
170 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
171 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
172 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
173
174 mtspr(SPR_MAS0, saved_mas0);
175 wrtee(msr); /* restore interrupts */
176
177 return hwtlb;
178 }
179
180 static inline void
181 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
182 {
183 const register_t msr = wrtee(0);
184 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
185
186 /*
187 * Need to always write MAS0 and MAS1
188 */
189 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
190 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
191
192 /*
193 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
194 */
195 if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
196 || (hwtlb.hwtlb_mas1 & MAS1_V)) {
197 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
198 }
199 /*
200 * Only need to write the RPN/prot if we are dealing with a valid
201 * mapping.
202 */
203 if (hwtlb.hwtlb_mas1 & MAS1_V) {
204 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
205 //mtspr(SPR_MAS7, 0);
206 }
207
208 #if 0
209 printf("%s->[%x,%x,%x,%x]\n",
210 __func__,
211 hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
212 hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
213 #endif
214 __asm volatile("tlbwe");
215 if (needs_sync) {
216 __asm volatile("tlbsync\n\tisync\n\tsync");
217 }
218
219 mtspr(SPR_MAS0, saved_mas0);
220 wrtee(msr);
221 }
222
223 static struct e500_hwtlb
224 tlb_to_hwtlb(const struct e500_tlb tlb)
225 {
226 struct e500_hwtlb hwtlb;
227
228 KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
229 KASSERT(tlb.tlb_size != 0);
230 KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
231 const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
232 if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
233 hwtlb.hwtlb_mas0 = 0;
234 hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
235 /*
236 * A non-zero ASID means this is a user page so mark it as
237 * being in the user's address space.
238 */
239 if (tlb.tlb_asid) {
240 hwtlb.hwtlb_mas1 |= MAS1_TS
241 | MASX_TID_MAKE(tlb.tlb_asid);
242 hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
243 | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
244 KASSERT(prot_mask & PTE_xR);
245 KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
246 CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
247 CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
248 } else {
249 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
250 }
251 if (tlb.tlb_pte & PTE_UNMODIFIED)
252 hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
253 if (tlb.tlb_pte & PTE_UNSYNCED)
254 hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
255 } else {
256 KASSERT(tlb.tlb_asid == 0);
257 KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
258 u_int cntlz = __builtin_clz(tlb.tlb_size);
259 KASSERT(cntlz & 1);
260 KASSERT(cntlz <= 19);
261 hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
262 /*
263 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
264 * allowed. So 1K would be 0x00000400 giving 21 leading zero
265 * bits. Subtracting the leading number of zero bits from 21
266 * and dividing by 2 gives us the number that the MMU wants.
267 */
268 hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
269 | MAS1_IPROT | MAS1_V;
270 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
271 }
272 /* We are done with MAS1, on to MAS2 ... */
273 hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
274 hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
275
276 return hwtlb;
277 }
278
279 void *
280 e500_tlb1_fetch(size_t slot)
281 {
282 struct e500_tlb1 * const tlb1 = &e500_tlb1;
283
284 return &tlb1->tlb1_entries[slot].e_hwtlb;
285 }
286
287 void
288 e500_tlb1_sync(void)
289 {
290 struct e500_tlb1 * const tlb1 = &e500_tlb1;
291 for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
292 const struct e500_hwtlb * const new_hwtlb =
293 &tlb1->tlb1_entries[slot].e_hwtlb;
294 const struct e500_hwtlb old_hwtlb =
295 hwtlb_read(MAS0_TLBSEL_TLB1, slot);
296 #define CHANGED(n,o,f) ((n)->f != (o).f)
297 bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
298 bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
299 bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
300 #undef CHANGED
301 bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
302 bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
303 if ((new_valid_p || old_valid_p)
304 && (mas1_changed_p
305 || (new_valid_p
306 && (mas2_changed_p || mas3_changed_p))))
307 hwtlb_write(*new_hwtlb, true);
308 }
309 }
310
311 static int
312 e500_alloc_tlb1_entry(void)
313 {
314 struct e500_tlb1 * const tlb1 = &e500_tlb1;
315
316 if (tlb1->tlb1_numfree == 0)
317 return -1;
318 const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
319 KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
320 tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
321 MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
322 return (int)slot;
323 }
324
325 static void
326 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
327 {
328 struct e500_tlb1 * const tlb1 = &e500_tlb1;
329 KASSERT(slot < tlb1->tlb1_numentries);
330 KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
331
332 KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
333 xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
334 hwtlb_write(xtlb->e_hwtlb, needs_sync);
335
336 const register_t msr = wrtee(0);
337 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
338 wrtee(msr);
339 }
340
341 static tlb_asid_t
342 e500_tlb_get_asid(void)
343 {
344 return mfspr(SPR_PID0);
345 }
346
347 static void
348 e500_tlb_set_asid(tlb_asid_t asid)
349 {
350 mtspr(SPR_PID0, asid);
351 }
352
353 static void
354 e500_tlb_invalidate_all(void)
355 {
356 /*
357 * This does a flash invalidate of all entries in TLB0.
358 * We don't touch TLB1 since we don't expect those to be volatile.
359 */
360 #if 1
361 __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
362 __asm volatile("tlbsync\n\tisync\n\tsync");
363 #else
364 mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
365 while (mfspr(SPR_MMUCSR0) != 0)
366 ;
367 #endif
368 }
369
370 static void
371 e500_tlb_invalidate_globals(void)
372 {
373 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
374 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
375 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
376 const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
377 const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
378 const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
379 const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
380
381 const register_t msr = wrtee(0);
382 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
383 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
384 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
385 mtspr(SPR_MAS2, epn);
386 __asm volatile("tlbre");
387 uint32_t mas1 = mfspr(SPR_MAS1);
388
389 /*
390 * Make sure this is a valid kernel entry first.
391 */
392 if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
393 continue;
394
395 /*
396 * We have a valid kernel TLB entry. But if it matches
397 * the stack we are currently running on, it would
398 * unwise to invalidate it. First see if the epn
399 * overlaps the stack. If it does then get the
400 * VA and see if it really is part of the stack.
401 */
402 if (epn_kstack_lo < epn_kstack_hi
403 ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
404 : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
405 const uint32_t mas2_epn =
406 mfspr(SPR_MAS2) & MAS2_EPN;
407 if (kstack_lo <= mas2_epn
408 && mas2_epn <= kstack_hi)
409 continue;
410 }
411 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
412 __asm volatile("tlbwe");
413 }
414 }
415 __asm volatile("isync\n\tsync");
416 wrtee(msr);
417 }
418
419 static void
420 e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
421 {
422 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
423 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
424 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
425
426 asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
427 asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
428
429 const register_t msr = wrtee(0);
430 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
431 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
432 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
433 mtspr(SPR_MAS2, epn);
434 __asm volatile("tlbre");
435 const uint32_t mas1 = mfspr(SPR_MAS1);
436 /*
437 * If this is a valid entry for AS space 1 and
438 * its asid matches the constraints of the caller,
439 * clear its valid bit.
440 */
441 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
442 && asid_lo <= (mas1 & MAS1_TID)
443 && (mas1 & MAS1_TID) <= asid_hi) {
444 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
445 #if 0
446 printf("%s[%zu,%zu]->[%x]\n",
447 __func__, assoc, epn, mas1);
448 #endif
449 __asm volatile("tlbwe");
450 }
451 }
452 }
453 __asm volatile("isync\n\tsync");
454 wrtee(msr);
455 }
456
457 static u_int
458 e500_tlb_record_asids(u_long *bitmap)
459 {
460 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
461 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
462 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
463 const size_t nbits = 8 * sizeof(bitmap[0]);
464 u_int found = 0;
465
466 const register_t msr = wrtee(0);
467 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
468 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
469 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
470 mtspr(SPR_MAS2, epn);
471 __asm volatile("tlbre");
472 const uint32_t mas1 = mfspr(SPR_MAS1);
473 /*
474 * If this is a valid entry for AS space 1 and
475 * its asid matches the constraints of the caller,
476 * clear its valid bit.
477 */
478 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
479 const uint32_t asid = MASX_TID_GET(mas1);
480 const u_int i = asid / nbits;
481 const u_long mask = 1UL << (asid & (nbits - 1));
482 if ((bitmap[i] & mask) == 0) {
483 bitmap[i] |= mask;
484 found++;
485 }
486 }
487 }
488 }
489 wrtee(msr);
490
491 return found;
492 }
493
494 static void
495 e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
496 {
497 KASSERT((va & PAGE_MASK) == 0);
498 /*
499 * Bits 60 & 61 have meaning
500 */
501 if (asid == KERNEL_PID) {
502 /*
503 * For data accesses, the context-synchronizing instruction
504 * before tlbwe or tlbivax ensures that all memory accesses
505 * due to preceding instructions have completed to a point
506 * at which they have reported all exceptions they will cause.
507 */
508 __asm volatile("isync");
509 }
510 __asm volatile("tlbivax\t0, %0" :: "b"(va));
511 __asm volatile("tlbsync");
512 __asm volatile("tlbsync"); /* Why? */
513 if (asid == KERNEL_PID) {
514 /*
515 * The context-synchronizing instruction after tlbwe or tlbivax
516 * ensures that subsequent accesses (data and instruction) use
517 * the updated value in any TLB entries affected.
518 */
519 __asm volatile("isync\n\tsync");
520 }
521 }
522
523 static bool
524 e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
525 {
526 struct e500_hwtlb hwtlb = tlb_to_hwtlb(
527 (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
528 .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
529
530 register_t msr = wrtee(0);
531 mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
532 __asm volatile("tlbsx 0, %0" :: "b"(va));
533 register_t mas1 = mfspr(SPR_MAS1);
534 if ((mas1 & MAS1_V) == 0) {
535 if (!insert) {
536 wrtee(msr);
537 #if 0
538 printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
539 __func__, va, asid, pte, insert);
540 #endif
541 return false;
542 }
543 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
544 }
545 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
546 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
547 //mtspr(SPR_MAS7, 0);
548 __asm volatile("tlbwe");
549 if (asid == KERNEL_PID)
550 __asm volatile("isync\n\tsync");
551 wrtee(msr);
552 #if 0
553 if (asid)
554 printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
555 __func__, va, asid, pte, insert,
556 hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
557 #endif
558 return (mas1 & MAS1_V) != 0;
559 }
560
561 static void
562 e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
563 {
564 }
565
566 static void
567 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
568 {
569 }
570
571 static void
572 e500_tlb_dump(void (*pr)(const char *, ...))
573 {
574 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
575 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
576 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
577 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
578 size_t valid = 0;
579
580 if (pr == NULL)
581 pr = printf;
582
583 const register_t msr = wrtee(0);
584 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
585 struct e500_hwtlb hwtlb;
586 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
587 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
588 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
589 mtspr(SPR_MAS2, epn);
590 __asm volatile("tlbre");
591 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
592 /*
593 * If this is a valid entry for AS space 1 and
594 * its asid matches the constraints of the caller,
595 * clear its valid bit.
596 */
597 if (hwtlb.hwtlb_mas1 & MAS1_V) {
598 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
599 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
600 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
601 (*pr)("[%zu,%zu]->[%x,%x,%x]",
602 assoc, atop(epn),
603 hwtlb.hwtlb_mas1,
604 hwtlb.hwtlb_mas2,
605 hwtlb.hwtlb_mas3);
606 (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
607 tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
608 (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
609 tlb.tlb_pte & PTE_RPN_MASK,
610 tlb.tlb_pte & PTE_xR ? "R" : "",
611 tlb.tlb_pte & PTE_xW ? "W" : "",
612 tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
613 tlb.tlb_pte & PTE_xX ? "X" : "",
614 tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
615 tlb.tlb_pte & PTE_W ? "W" : "",
616 tlb.tlb_pte & PTE_I ? "I" : "",
617 tlb.tlb_pte & PTE_M ? "M" : "",
618 tlb.tlb_pte & PTE_G ? "G" : "",
619 tlb.tlb_pte & PTE_E ? "E" : "");
620 valid++;
621 }
622 }
623 }
624 mtspr(SPR_MAS0, saved_mas0);
625 wrtee(msr);
626 (*pr)("%s: %zu valid entries\n", __func__, valid);
627 }
628
629 static void
630 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
631 {
632 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
633 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
634 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
635 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
636
637 const register_t msr = wrtee(0);
638 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
639 struct e500_hwtlb hwtlb;
640 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
641 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
642 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
643 mtspr(SPR_MAS2, epn);
644 __asm volatile("tlbre");
645 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
646 if (hwtlb.hwtlb_mas1 & MAS1_V) {
647 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
648 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
649 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
650 if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
651 tlb.tlb_pte))
652 break;
653 }
654 }
655 }
656 mtspr(SPR_MAS0, saved_mas0);
657 wrtee(msr);
658 }
659
660 static struct e500_xtlb *
661 e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
662 {
663 struct e500_tlb1 * const tlb1 = &e500_tlb1;
664 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
665
666 /*
667 * See if we have a TLB entry for the pa.
668 */
669 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
670 psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
671 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
672 && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
673 if (slotp != NULL)
674 *slotp = i;
675 return xtlb;
676 }
677 }
678
679 return NULL;
680 }
681
682 struct e500_xtlb *
683 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
684 {
685 struct e500_tlb1 * const tlb1 = &e500_tlb1;
686 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
687
688 /*
689 * See if we have a TLB entry for the va.
690 */
691 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
692 vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
693 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
694 && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
695 if (slotp != NULL)
696 *slotp = i;
697 return xtlb;
698 }
699 }
700
701 return NULL;
702 }
703
704 static struct e500_xtlb *
705 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
706 {
707 struct e500_tlb1 * const tlb1 = &e500_tlb1;
708 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
709
710 /*
711 * See if we have a TLB entry for the pa.
712 */
713 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
714 vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
715 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
716 && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
717 && (((va + len - 1) ^ va) & mask) == 0) {
718 return xtlb;
719 }
720 }
721
722 return NULL;
723 }
724
725 static void *
726 e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
727 {
728 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
729
730 /*
731 * See if we have a TLB entry for the pa. If completely falls within
732 * mark the reference and return the pa. But only if the tlb entry
733 * is not cacheable.
734 */
735 if (xtlb
736 && (prefetchable
737 || (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
738 xtlb->e_refcnt++;
739 return (void *) (xtlb->e_tlb.tlb_va
740 + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
741 }
742 return NULL;
743 }
744
745 static void
746 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
747 {
748 if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
749 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
750 if (xtlb)
751 xtlb->e_refcnt--;
752 }
753 }
754
755 static int
756 e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
757 {
758 struct e500_tlb1 * const tlb1 = &e500_tlb1;
759 struct e500_xtlb *xtlb;
760
761 KASSERT(len & 0x55555000);
762 KASSERT((len & ~0x55555000) == 0);
763 KASSERT(len >= PAGE_SIZE);
764 KASSERT((len & (len - 1)) == 0);
765 KASSERT((va & (len - 1)) == 0);
766 KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
767
768 if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
769 psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
770 KASSERT(len <= xtlb->e_tlb.tlb_size);
771 KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
772 xtlb->e_refcnt++;
773 return 0;
774 }
775
776 const int slot = e500_alloc_tlb1_entry();
777 if (slot < 0)
778 return ENOMEM;
779
780 xtlb = &tlb1->tlb1_entries[slot];
781 xtlb->e_tlb.tlb_va = va;
782 xtlb->e_tlb.tlb_size = len;
783 xtlb->e_tlb.tlb_pte = pte;
784 xtlb->e_tlb.tlb_asid = KERNEL_PID;
785
786 xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
787 xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
788 hwtlb_write(xtlb->e_hwtlb, true);
789 return 0;
790 }
791
792 static int
793 e500_tlb_iorelease(vaddr_t va)
794 {
795 u_int slot;
796 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
797
798 if (xtlb == NULL)
799 return ENOENT;
800
801 if (xtlb->e_refcnt)
802 return EBUSY;
803
804 e500_free_tlb1_entry(xtlb, slot, true);
805
806 return 0;
807 }
808
809 static u_int
810 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
811 {
812 u_int slotmask = 0;
813 u_int slots = 0, nextslot = 0;
814 KASSERT(tlb1->tlb1_numfree > 1);
815 KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
816 for (paddr_t lastaddr = memstart; 0 < memsize; ) {
817 u_int cnt = __builtin_clz(memsize);
818 psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
819 slots += memsize / size;
820 if (slots > 4)
821 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
822 __func__, __LINE__, memsize, "too fragmented");
823 if (slots > tlb1->tlb1_numfree - 1)
824 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
825 __func__, __LINE__, memsize,
826 "insufficent TLB entries");
827 for (; nextslot < slots; nextslot++) {
828 const u_int freeslot = e500_alloc_tlb1_entry();
829 struct e500_xtlb * const xtlb =
830 &tlb1->tlb1_entries[freeslot];
831 xtlb->e_tlb.tlb_asid = KERNEL_PID;
832 xtlb->e_tlb.tlb_size = size;
833 xtlb->e_tlb.tlb_va = lastaddr;
834 xtlb->e_tlb.tlb_pte = lastaddr
835 | PTE_M | PTE_xX | PTE_xW | PTE_xR;
836 lastaddr += size;
837 memsize -= size;
838 slotmask |= 1 << (31 - freeslot); /* clz friendly */
839 }
840 }
841
842 return nextslot;
843 }
844 static const struct tlb_md_ops e500_tlb_ops = {
845 .md_tlb_get_asid = e500_tlb_get_asid,
846 .md_tlb_set_asid = e500_tlb_set_asid,
847 .md_tlb_invalidate_all = e500_tlb_invalidate_all,
848 .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
849 .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
850 .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
851 .md_tlb_update_addr = e500_tlb_update_addr,
852 .md_tlb_record_asids = e500_tlb_record_asids,
853 .md_tlb_write_entry = e500_tlb_write_entry,
854 .md_tlb_read_entry = e500_tlb_read_entry,
855 .md_tlb_dump = e500_tlb_dump,
856 .md_tlb_walk = e500_tlb_walk,
857 };
858
859 static const struct tlb_md_io_ops e500_tlb_io_ops = {
860 .md_tlb_mapiodev = e500_tlb_mapiodev,
861 .md_tlb_unmapiodev = e500_tlb_unmapiodev,
862 .md_tlb_ioreserve = e500_tlb_ioreserve,
863 .md_tlb_iorelease = e500_tlb_iorelease,
864 };
865
866 void
867 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
868 {
869 struct e500_tlb1 * const tlb1 = &e500_tlb1;
870
871 #if 0
872 register_t mmucfg = mfspr(SPR_MMUCFG);
873 register_t mas4 = mfspr(SPR_MAS4);
874 #endif
875
876 const uint32_t tlb1cfg = mftlb1cfg();
877 tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
878 KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
879 /*
880 * Limit maxsize to 1G since 4G isn't really useful to us.
881 */
882 tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
883 tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
884
885 #ifdef VERBOSE_INITPPC
886 printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
887 tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
888 tlb1->tlb1_maxsize >> 10);
889 #endif
890
891 /*
892 * Let's see what's in TLB1 and we need to invalidate any entry that
893 * would fit within the kernel's mapped address space.
894 */
895 psize_t memmapped = 0;
896 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
897 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
898
899 xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
900
901 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
902 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
903 #ifdef VERBOSE_INITPPC
904 printf(" TLB1[%u]=<unused>", i);
905 #endif
906 continue;
907 }
908
909 xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
910 #ifdef VERBOSE_INITPPC
911 printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
912 i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
913 xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
914 #endif
915 if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
916 && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
917 || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
918 && VM_MIN_KERNEL_ADDRESS <
919 xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
920 #ifdef VERBOSE_INITPPC
921 printf("free");
922 #endif
923 e500_free_tlb1_entry(xtlb, i, false);
924 #ifdef VERBOSE_INITPPC
925 printf("d");
926 #endif
927 continue;
928 }
929 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
930 xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
931 hwtlb_write(xtlb->e_hwtlb, false);
932 #ifdef VERBOSE_INITPPC
933 printf("+iprot");
934 #endif
935 }
936 if (xtlb->e_tlb.tlb_pte & PTE_I)
937 continue;
938
939 if (xtlb->e_tlb.tlb_va == 0
940 || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
941 memmapped += xtlb->e_tlb.tlb_size;
942 /*
943 * Let make sure main memory is setup so it's memory
944 * coherent. For some reason u-boot doesn't set it up
945 * that way.
946 */
947 if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) {
948 xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M;
949 hwtlb_write(xtlb->e_hwtlb, true);
950 }
951 }
952 }
953
954 cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
955 cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
956
957 if (__predict_false(memmapped < memsize)) {
958 /*
959 * Let's see how many TLB entries are needed to map memory.
960 */
961 u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
962
963 /*
964 * To map main memory into the TLB, we need to flush any
965 * existing entries from the TLB that overlap the virtual
966 * address space needed to map physical memory. That may
967 * include the entries for the pages currently used by the
968 * stack or that we are executing. So to avoid problems, we
969 * are going to temporarily map the kernel and stack into AS 1,
970 * switch to it, and clear out the TLB entries from AS 0,
971 * install the new TLB entries to map memory, and then switch
972 * back to AS 0 and free the temp entry used for AS1.
973 */
974 u_int b = __builtin_clz(endkernel);
975
976 /*
977 * If the kernel doesn't end on a clean power of 2, we need
978 * to round the size up (by decrementing the number of leading
979 * zero bits). If the size isn't a power of 4KB, decrement
980 * again to make it one.
981 */
982 if (endkernel & (endkernel - 1))
983 b--;
984 if ((b & 1) == 0)
985 b--;
986
987 /*
988 * Create a TLB1 mapping for the kernel in AS1.
989 */
990 const u_int kslot = e500_alloc_tlb1_entry();
991 struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
992 kxtlb->e_tlb.tlb_va = 0;
993 kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
994 kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
995 kxtlb->e_tlb.tlb_asid = KERNEL_PID;
996
997 kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
998 kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
999 kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1000 hwtlb_write(kxtlb->e_hwtlb, true);
1001
1002 /*
1003 * Now that we have a TLB mapping in AS1 for the kernel and its
1004 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
1005 */
1006 const register_t saved_msr = mfmsr();
1007 mtmsr(saved_msr | PSL_DS | PSL_IS);
1008 __asm volatile("isync");
1009
1010 /*
1011 *** Invalidate all the TLB0 entries.
1012 */
1013 e500_tlb_invalidate_all();
1014
1015 /*
1016 *** Now let's see if we have any entries in TLB1 that would
1017 *** overlap the ones we are about to install. If so, nuke 'em.
1018 */
1019 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
1020 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
1021 struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
1022 if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
1023 && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
1024 e500_free_tlb1_entry(xtlb, i, false);
1025 }
1026 }
1027
1028 /*
1029 *** Now we can add the TLB entries that will map physical
1030 *** memory. If bit 0 [MSB] in slotmask is set, then tlb
1031 *** entry 0 contains a mapping for physical memory...
1032 */
1033 struct e500_xtlb *entries = tlb1->tlb1_entries;
1034 while (slotmask != 0) {
1035 const u_int slot = __builtin_clz(slotmask);
1036 hwtlb_write(entries[slot].e_hwtlb, false);
1037 entries += slot + 1;
1038 slotmask <<= slot + 1;
1039 }
1040
1041 /*
1042 *** Synchronize the TLB and the instruction stream.
1043 */
1044 __asm volatile("tlbsync");
1045 __asm volatile("isync");
1046
1047 /*
1048 *** Switch back to AS 0.
1049 */
1050 mtmsr(saved_msr);
1051 __asm volatile("isync");
1052
1053 /*
1054 * Free the temporary TLB1 entry.
1055 */
1056 e500_free_tlb1_entry(kxtlb, kslot, true);
1057 }
1058
1059 /*
1060 * Finally set the MAS4 defaults.
1061 */
1062 mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
1063
1064 /*
1065 * Invalidate all the TLB0 entries.
1066 */
1067 e500_tlb_invalidate_all();
1068 }
1069
1070 void
1071 e500_tlb_minimize(vaddr_t endkernel)
1072 {
1073 #ifdef PMAP_MINIMALTLB
1074 struct e500_tlb1 * const tlb1 = &e500_tlb1;
1075 extern uint32_t _fdata[];
1076
1077 u_int slot;
1078
1079 paddr_t boot_page = cpu_read_4(GUR_BPTR);
1080 if (boot_page & BPTR_EN) {
1081 /*
1082 * shift it to an address
1083 */
1084 boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
1085 pmap_kvptefill(boot_page, boot_page + NBPG,
1086 PTE_M | PTE_xR | PTE_xW | PTE_xX);
1087 }
1088
1089
1090 KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
1091 KASSERT((uintptr_t)_fdata == 0x400000);
1092
1093 struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
1094
1095 KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
1096 const u_int tmp_slot = e500_alloc_tlb1_entry();
1097 KASSERT(tmp_slot != (u_int) -1);
1098
1099 struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
1100 tmp_xtlb->e_tlb = xtlb->e_tlb;
1101 tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
1102 tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1103 KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1104 tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
1105 hwtlb_write(tmp_xtlb->e_hwtlb, true);
1106
1107 const u_int text_slot = e500_alloc_tlb1_entry();
1108 KASSERT(text_slot != (u_int)-1);
1109 struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
1110 text_xtlb->e_tlb.tlb_va = 0;
1111 text_xtlb->e_tlb.tlb_size = 0x400000;
1112 text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
1113 text_xtlb->e_tlb.tlb_asid = 0;
1114 text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
1115 KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1116 text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
1117
1118 const u_int data_slot = e500_alloc_tlb1_entry();
1119 KASSERT(data_slot != (u_int)-1);
1120 struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
1121 data_xtlb->e_tlb.tlb_va = 0x400000;
1122 data_xtlb->e_tlb.tlb_size = 0x400000;
1123 data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
1124 data_xtlb->e_tlb.tlb_asid = 0;
1125 data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
1126 KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1127 data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
1128
1129 const register_t msr = mfmsr();
1130 const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
1131
1132 __asm __volatile(
1133 "mtmsr %[ts_msr]" "\n\t"
1134 "sync" "\n\t"
1135 "isync"
1136 :: [ts_msr] "r" (ts_msr));
1137
1138 #if 0
1139 hwtlb_write(text_xtlb->e_hwtlb, false);
1140 hwtlb_write(data_xtlb->e_hwtlb, false);
1141 e500_free_tlb1_entry(xtlb, slot, true);
1142 #endif
1143
1144 __asm __volatile(
1145 "mtmsr %[msr]" "\n\t"
1146 "sync" "\n\t"
1147 "isync"
1148 :: [msr] "r" (msr));
1149
1150 e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
1151 #endif /* PMAP_MINIMALTLB */
1152 }
1153