e500_tlb.c revision 1.15 1 /* $NetBSD: e500_tlb.c,v 1.15 2014/12/28 14:13:56 nonaka Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include "opt_ppcparam.h"
38
39 #define __PMAP_PRIVATE
40
41 #include <sys/cdefs.h>
42
43 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.15 2014/12/28 14:13:56 nonaka Exp $");
44
45 #include <sys/param.h>
46
47 #include <uvm/uvm_extern.h>
48
49 #include <powerpc/spr.h>
50 #include <powerpc/booke/spr.h>
51 #include <powerpc/booke/cpuvar.h>
52 #include <powerpc/booke/e500reg.h>
53 #include <powerpc/booke/e500var.h>
54 #include <powerpc/booke/pmap.h>
55
56 struct e500_tlb {
57 vaddr_t tlb_va;
58 uint32_t tlb_pte;
59 uint32_t tlb_asid;
60 vsize_t tlb_size;
61 };
62
63 struct e500_hwtlb {
64 uint32_t hwtlb_mas0;
65 uint32_t hwtlb_mas1;
66 uint32_t hwtlb_mas2;
67 uint32_t hwtlb_mas3;
68 };
69
70 struct e500_xtlb {
71 struct e500_tlb e_tlb;
72 struct e500_hwtlb e_hwtlb;
73 u_long e_refcnt;
74 };
75
76 static struct e500_tlb1 {
77 uint32_t tlb1_maxsize;
78 uint32_t tlb1_minsize;
79 u_int tlb1_numentries;
80 u_int tlb1_numfree;
81 u_int tlb1_freelist[32];
82 struct e500_xtlb tlb1_entries[32];
83 } e500_tlb1;
84
85 static inline register_t mftlb0cfg(void) __pure;
86 static inline register_t mftlb1cfg(void) __pure;
87
88 static inline register_t
89 mftlb0cfg(void)
90 {
91 register_t tlb0cfg;
92 __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
93 return tlb0cfg;
94 }
95
96 static inline register_t
97 mftlb1cfg(void)
98 {
99 register_t tlb1cfg;
100 __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
101 return tlb1cfg;
102 }
103
104 static struct e500_tlb
105 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
106 {
107 struct e500_tlb tlb;
108 register_t prot_mask;
109 u_int prot_shift;
110
111 tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
112 tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
113 tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
114 tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
115 | (hwtlb.hwtlb_mas3 & MAS3_RPN);
116 if (hwtlb.hwtlb_mas1 & MAS1_TS) {
117 prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
118 prot_shift = PTE_RWX_SHIFT - 1;
119 } else {
120 prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
121 prot_shift = PTE_RWX_SHIFT;
122 }
123 tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
124 return tlb;
125 }
126
127 static inline struct e500_hwtlb
128 hwtlb_read(uint32_t mas0, u_int slot)
129 {
130 struct e500_hwtlb hwtlb;
131 register_t tlbcfg;
132
133 if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
134 tlbcfg = mftlb0cfg();
135 } else if (mas0 == MAS0_TLBSEL_TLB1) {
136 tlbcfg = mftlb1cfg();
137 } else {
138 panic("%s:%d: unexpected MAS0 %#" PRIx32,
139 __func__, __LINE__, mas0);
140 }
141
142 /*
143 * ESEL is the way we want to look up.
144 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
145 * fully associative, the entire slot is placed into ESEL. If tlbassoc
146 * is less than the number of tlb entries, the slot is split in two
147 * fields. Since the TLB is M rows by N ways, the lowers bits are for
148 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
149 */
150 const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
151 const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
152 const u_int esel_shift =
153 __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
154
155 /*
156 * Disable interrupts since we don't want anyone else mucking with
157 * the MMU Assist registers
158 */
159 const register_t msr = wrtee(0);
160 const register_t saved_mas0 = mfspr(SPR_MAS0);
161 mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
162
163 if (__predict_true(tlbassoc > tlbentries))
164 mtspr(SPR_MAS2, slot << PAGE_SHIFT);
165
166 /*
167 * Now select the entry and grab its contents.
168 */
169 __asm volatile("tlbre");
170
171 hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
172 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
173 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
174 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
175
176 mtspr(SPR_MAS0, saved_mas0);
177 wrtee(msr); /* restore interrupts */
178
179 return hwtlb;
180 }
181
182 static inline void
183 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
184 {
185 const register_t msr = wrtee(0);
186 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
187
188 /*
189 * Need to always write MAS0 and MAS1
190 */
191 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
192 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
193
194 /*
195 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
196 */
197 if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
198 || (hwtlb.hwtlb_mas1 & MAS1_V)) {
199 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
200 }
201 /*
202 * Only need to write the RPN/prot if we are dealing with a valid
203 * mapping.
204 */
205 if (hwtlb.hwtlb_mas1 & MAS1_V) {
206 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
207 //mtspr(SPR_MAS7, 0);
208 }
209
210 #if 0
211 printf("%s->[%x,%x,%x,%x]\n",
212 __func__,
213 hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
214 hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
215 #endif
216 __asm volatile("tlbwe");
217 if (needs_sync) {
218 __asm volatile("tlbsync\n\tisync\n\tsync");
219 }
220
221 mtspr(SPR_MAS0, saved_mas0);
222 wrtee(msr);
223 }
224
225 static struct e500_hwtlb
226 tlb_to_hwtlb(const struct e500_tlb tlb)
227 {
228 struct e500_hwtlb hwtlb;
229
230 KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
231 KASSERT(tlb.tlb_size != 0);
232 KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
233 const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
234 if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
235 hwtlb.hwtlb_mas0 = 0;
236 hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
237 /*
238 * A non-zero ASID means this is a user page so mark it as
239 * being in the user's address space.
240 */
241 if (tlb.tlb_asid) {
242 hwtlb.hwtlb_mas1 |= MAS1_TS
243 | MASX_TID_MAKE(tlb.tlb_asid);
244 hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
245 | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
246 KASSERT(prot_mask & PTE_xR);
247 KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
248 CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
249 CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
250 } else {
251 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
252 }
253 if (tlb.tlb_pte & PTE_UNMODIFIED)
254 hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
255 if (tlb.tlb_pte & PTE_UNSYNCED)
256 hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
257 } else {
258 KASSERT(tlb.tlb_asid == 0);
259 KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
260 u_int cntlz = __builtin_clz(tlb.tlb_size);
261 KASSERT(cntlz & 1);
262 KASSERT(cntlz <= 19);
263 hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
264 /*
265 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
266 * allowed. So 1K would be 0x00000400 giving 21 leading zero
267 * bits. Subtracting the leading number of zero bits from 21
268 * and dividing by 2 gives us the number that the MMU wants.
269 */
270 hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
271 | MAS1_IPROT | MAS1_V;
272 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
273 }
274 /* We are done with MAS1, on to MAS2 ... */
275 hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
276 hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
277
278 return hwtlb;
279 }
280
281 void *
282 e500_tlb1_fetch(size_t slot)
283 {
284 struct e500_tlb1 * const tlb1 = &e500_tlb1;
285
286 return &tlb1->tlb1_entries[slot].e_hwtlb;
287 }
288
289 void
290 e500_tlb1_sync(void)
291 {
292 struct e500_tlb1 * const tlb1 = &e500_tlb1;
293 for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
294 const struct e500_hwtlb * const new_hwtlb =
295 &tlb1->tlb1_entries[slot].e_hwtlb;
296 const struct e500_hwtlb old_hwtlb =
297 hwtlb_read(MAS0_TLBSEL_TLB1, slot);
298 #define CHANGED(n,o,f) ((n)->f != (o).f)
299 bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
300 bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
301 bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
302 #undef CHANGED
303 bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
304 bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
305 if ((new_valid_p || old_valid_p)
306 && (mas1_changed_p
307 || (new_valid_p
308 && (mas2_changed_p || mas3_changed_p))))
309 hwtlb_write(*new_hwtlb, true);
310 }
311 }
312
313 static int
314 e500_alloc_tlb1_entry(void)
315 {
316 struct e500_tlb1 * const tlb1 = &e500_tlb1;
317
318 if (tlb1->tlb1_numfree == 0)
319 return -1;
320 const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
321 KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
322 tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
323 MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
324 return (int)slot;
325 }
326
327 static void
328 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
329 {
330 struct e500_tlb1 * const tlb1 = &e500_tlb1;
331 KASSERT(slot < tlb1->tlb1_numentries);
332 KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
333
334 KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
335 xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
336 hwtlb_write(xtlb->e_hwtlb, needs_sync);
337
338 const register_t msr = wrtee(0);
339 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
340 wrtee(msr);
341 }
342
343 static tlb_asid_t
344 e500_tlb_get_asid(void)
345 {
346 return mfspr(SPR_PID0);
347 }
348
349 static void
350 e500_tlb_set_asid(tlb_asid_t asid)
351 {
352 mtspr(SPR_PID0, asid);
353 }
354
355 static void
356 e500_tlb_invalidate_all(void)
357 {
358 /*
359 * This does a flash invalidate of all entries in TLB0.
360 * We don't touch TLB1 since we don't expect those to be volatile.
361 */
362 #if 1
363 __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
364 __asm volatile("tlbsync\n\tisync\n\tsync");
365 #else
366 mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FI);
367 while (mfspr(SPR_MMUCSR0) != 0)
368 ;
369 #endif
370 }
371
372 static void
373 e500_tlb_invalidate_globals(void)
374 {
375 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
376 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
377 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
378 const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
379 const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
380 const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
381 const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
382
383 const register_t msr = wrtee(0);
384 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
385 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
386 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
387 mtspr(SPR_MAS2, epn);
388 __asm volatile("tlbre");
389 uint32_t mas1 = mfspr(SPR_MAS1);
390
391 /*
392 * Make sure this is a valid kernel entry first.
393 */
394 if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
395 continue;
396
397 /*
398 * We have a valid kernel TLB entry. But if it matches
399 * the stack we are currently running on, it would
400 * unwise to invalidate it. First see if the epn
401 * overlaps the stack. If it does then get the
402 * VA and see if it really is part of the stack.
403 */
404 if (epn_kstack_lo < epn_kstack_hi
405 ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
406 : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
407 const uint32_t mas2_epn =
408 mfspr(SPR_MAS2) & MAS2_EPN;
409 if (kstack_lo <= mas2_epn
410 && mas2_epn <= kstack_hi)
411 continue;
412 }
413 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
414 __asm volatile("tlbwe");
415 }
416 }
417 __asm volatile("isync\n\tsync");
418 wrtee(msr);
419 }
420
421 static void
422 e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
423 {
424 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
425 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
426 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
427
428 asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
429 asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
430
431 const register_t msr = wrtee(0);
432 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
433 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
434 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
435 mtspr(SPR_MAS2, epn);
436 __asm volatile("tlbre");
437 const uint32_t mas1 = mfspr(SPR_MAS1);
438 /*
439 * If this is a valid entry for AS space 1 and
440 * its asid matches the constraints of the caller,
441 * clear its valid bit.
442 */
443 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
444 && asid_lo <= (mas1 & MAS1_TID)
445 && (mas1 & MAS1_TID) <= asid_hi) {
446 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
447 #if 0
448 printf("%s[%zu,%zu]->[%x]\n",
449 __func__, assoc, epn, mas1);
450 #endif
451 __asm volatile("tlbwe");
452 }
453 }
454 }
455 __asm volatile("isync\n\tsync");
456 wrtee(msr);
457 }
458
459 static u_int
460 e500_tlb_record_asids(u_long *bitmap)
461 {
462 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
463 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
464 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
465 const size_t nbits = 8 * sizeof(bitmap[0]);
466 u_int found = 0;
467
468 const register_t msr = wrtee(0);
469 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
470 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
471 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
472 mtspr(SPR_MAS2, epn);
473 __asm volatile("tlbre");
474 const uint32_t mas1 = mfspr(SPR_MAS1);
475 /*
476 * If this is a valid entry for AS space 1 and
477 * its asid matches the constraints of the caller,
478 * clear its valid bit.
479 */
480 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
481 const uint32_t asid = MASX_TID_GET(mas1);
482 const u_int i = asid / nbits;
483 const u_long mask = 1UL << (asid & (nbits - 1));
484 if ((bitmap[i] & mask) == 0) {
485 bitmap[i] |= mask;
486 found++;
487 }
488 }
489 }
490 }
491 wrtee(msr);
492
493 return found;
494 }
495
496 static void
497 e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
498 {
499 KASSERT((va & PAGE_MASK) == 0);
500 /*
501 * Bits 60 & 61 have meaning
502 */
503 if (asid == KERNEL_PID) {
504 /*
505 * For data accesses, the context-synchronizing instruction
506 * before tlbwe or tlbivax ensures that all memory accesses
507 * due to preceding instructions have completed to a point
508 * at which they have reported all exceptions they will cause.
509 */
510 __asm volatile("isync");
511 }
512 __asm volatile("tlbivax\t0, %0" :: "b"(va));
513 __asm volatile("tlbsync");
514 __asm volatile("tlbsync"); /* Why? */
515 if (asid == KERNEL_PID) {
516 /*
517 * The context-synchronizing instruction after tlbwe or tlbivax
518 * ensures that subsequent accesses (data and instruction) use
519 * the updated value in any TLB entries affected.
520 */
521 __asm volatile("isync\n\tsync");
522 }
523 }
524
525 static bool
526 e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
527 {
528 struct e500_hwtlb hwtlb = tlb_to_hwtlb(
529 (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
530 .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
531
532 register_t msr = wrtee(0);
533 mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
534 __asm volatile("tlbsx 0, %0" :: "b"(va));
535 register_t mas1 = mfspr(SPR_MAS1);
536 if ((mas1 & MAS1_V) == 0) {
537 if (!insert) {
538 wrtee(msr);
539 #if 0
540 printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
541 __func__, va, asid, pte, insert);
542 #endif
543 return false;
544 }
545 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
546 }
547 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
548 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
549 //mtspr(SPR_MAS7, 0);
550 __asm volatile("tlbwe");
551 if (asid == KERNEL_PID)
552 __asm volatile("isync\n\tsync");
553 wrtee(msr);
554 #if 0
555 if (asid)
556 printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
557 __func__, va, asid, pte, insert,
558 hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
559 #endif
560 return (mas1 & MAS1_V) != 0;
561 }
562
563 static void
564 e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
565 {
566 }
567
568 static void
569 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
570 {
571 }
572
573 static void
574 e500_tlb_dump(void (*pr)(const char *, ...))
575 {
576 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
577 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
578 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
579 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
580 size_t valid = 0;
581
582 if (pr == NULL)
583 pr = printf;
584
585 const register_t msr = wrtee(0);
586 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
587 struct e500_hwtlb hwtlb;
588 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
589 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
590 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
591 mtspr(SPR_MAS2, epn);
592 __asm volatile("tlbre");
593 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
594 /*
595 * If this is a valid entry for AS space 1 and
596 * its asid matches the constraints of the caller,
597 * clear its valid bit.
598 */
599 if (hwtlb.hwtlb_mas1 & MAS1_V) {
600 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
601 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
602 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
603 (*pr)("[%zu,%zu]->[%x,%x,%x]",
604 assoc, atop(epn),
605 hwtlb.hwtlb_mas1,
606 hwtlb.hwtlb_mas2,
607 hwtlb.hwtlb_mas3);
608 (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
609 tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
610 (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
611 tlb.tlb_pte & PTE_RPN_MASK,
612 tlb.tlb_pte & PTE_xR ? "R" : "",
613 tlb.tlb_pte & PTE_xW ? "W" : "",
614 tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
615 tlb.tlb_pte & PTE_xX ? "X" : "",
616 tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
617 tlb.tlb_pte & PTE_W ? "W" : "",
618 tlb.tlb_pte & PTE_I ? "I" : "",
619 tlb.tlb_pte & PTE_M ? "M" : "",
620 tlb.tlb_pte & PTE_G ? "G" : "",
621 tlb.tlb_pte & PTE_E ? "E" : "");
622 valid++;
623 }
624 }
625 }
626 mtspr(SPR_MAS0, saved_mas0);
627 wrtee(msr);
628 (*pr)("%s: %zu valid entries\n", __func__, valid);
629 }
630
631 static void
632 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
633 {
634 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
635 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
636 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
637 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
638
639 const register_t msr = wrtee(0);
640 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
641 struct e500_hwtlb hwtlb;
642 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
643 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
644 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
645 mtspr(SPR_MAS2, epn);
646 __asm volatile("tlbre");
647 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
648 if (hwtlb.hwtlb_mas1 & MAS1_V) {
649 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
650 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
651 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
652 if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
653 tlb.tlb_pte))
654 break;
655 }
656 }
657 }
658 mtspr(SPR_MAS0, saved_mas0);
659 wrtee(msr);
660 }
661
662 static struct e500_xtlb *
663 e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
664 {
665 struct e500_tlb1 * const tlb1 = &e500_tlb1;
666 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
667
668 /*
669 * See if we have a TLB entry for the pa.
670 */
671 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
672 psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
673 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
674 && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
675 if (slotp != NULL)
676 *slotp = i;
677 return xtlb;
678 }
679 }
680
681 return NULL;
682 }
683
684 struct e500_xtlb *
685 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
686 {
687 struct e500_tlb1 * const tlb1 = &e500_tlb1;
688 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
689
690 /*
691 * See if we have a TLB entry for the va.
692 */
693 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
694 vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
695 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
696 && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
697 if (slotp != NULL)
698 *slotp = i;
699 return xtlb;
700 }
701 }
702
703 return NULL;
704 }
705
706 static struct e500_xtlb *
707 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
708 {
709 struct e500_tlb1 * const tlb1 = &e500_tlb1;
710 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
711
712 /*
713 * See if we have a TLB entry for the pa.
714 */
715 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
716 vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
717 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
718 && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
719 && (((va + len - 1) ^ va) & mask) == 0) {
720 return xtlb;
721 }
722 }
723
724 return NULL;
725 }
726
727 static void *
728 e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
729 {
730 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
731
732 /*
733 * See if we have a TLB entry for the pa. If completely falls within
734 * mark the reference and return the pa. But only if the tlb entry
735 * is not cacheable.
736 */
737 if (xtlb
738 && (prefetchable
739 || (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
740 xtlb->e_refcnt++;
741 return (void *) (xtlb->e_tlb.tlb_va
742 + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
743 }
744 return NULL;
745 }
746
747 static void
748 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
749 {
750 if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
751 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
752 if (xtlb)
753 xtlb->e_refcnt--;
754 }
755 }
756
757 static int
758 e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
759 {
760 struct e500_tlb1 * const tlb1 = &e500_tlb1;
761 struct e500_xtlb *xtlb;
762
763 KASSERT(len & 0x55555000);
764 KASSERT((len & ~0x55555000) == 0);
765 KASSERT(len >= PAGE_SIZE);
766 KASSERT((len & (len - 1)) == 0);
767 KASSERT((va & (len - 1)) == 0);
768 KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
769
770 if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
771 psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
772 KASSERT(len <= xtlb->e_tlb.tlb_size);
773 KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
774 xtlb->e_refcnt++;
775 return 0;
776 }
777
778 const int slot = e500_alloc_tlb1_entry();
779 if (slot < 0)
780 return ENOMEM;
781
782 xtlb = &tlb1->tlb1_entries[slot];
783 xtlb->e_tlb.tlb_va = va;
784 xtlb->e_tlb.tlb_size = len;
785 xtlb->e_tlb.tlb_pte = pte;
786 xtlb->e_tlb.tlb_asid = KERNEL_PID;
787
788 xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
789 xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
790 hwtlb_write(xtlb->e_hwtlb, true);
791 return 0;
792 }
793
794 static int
795 e500_tlb_iorelease(vaddr_t va)
796 {
797 u_int slot;
798 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
799
800 if (xtlb == NULL)
801 return ENOENT;
802
803 if (xtlb->e_refcnt)
804 return EBUSY;
805
806 e500_free_tlb1_entry(xtlb, slot, true);
807
808 return 0;
809 }
810
811 static u_int
812 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
813 {
814 u_int slotmask = 0;
815 u_int slots = 0, nextslot = 0;
816 KASSERT(tlb1->tlb1_numfree > 1);
817 KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
818 for (paddr_t lastaddr = memstart; 0 < memsize; ) {
819 u_int cnt = __builtin_clz(memsize);
820 psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
821 slots += memsize / size;
822 if (slots > 4)
823 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
824 __func__, __LINE__, memsize, "too fragmented");
825 if (slots > tlb1->tlb1_numfree - 1)
826 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
827 __func__, __LINE__, memsize,
828 "insufficent TLB entries");
829 for (; nextslot < slots; nextslot++) {
830 const u_int freeslot = e500_alloc_tlb1_entry();
831 struct e500_xtlb * const xtlb =
832 &tlb1->tlb1_entries[freeslot];
833 xtlb->e_tlb.tlb_asid = KERNEL_PID;
834 xtlb->e_tlb.tlb_size = size;
835 xtlb->e_tlb.tlb_va = lastaddr;
836 xtlb->e_tlb.tlb_pte = lastaddr
837 | PTE_M | PTE_xX | PTE_xW | PTE_xR;
838 lastaddr += size;
839 memsize -= size;
840 slotmask |= 1 << (31 - freeslot); /* clz friendly */
841 }
842 }
843
844 return nextslot;
845 }
846
847 static const struct tlb_md_ops e500_tlb_ops = {
848 .md_tlb_get_asid = e500_tlb_get_asid,
849 .md_tlb_set_asid = e500_tlb_set_asid,
850 .md_tlb_invalidate_all = e500_tlb_invalidate_all,
851 .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
852 .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
853 .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
854 .md_tlb_update_addr = e500_tlb_update_addr,
855 .md_tlb_record_asids = e500_tlb_record_asids,
856 .md_tlb_write_entry = e500_tlb_write_entry,
857 .md_tlb_read_entry = e500_tlb_read_entry,
858 .md_tlb_dump = e500_tlb_dump,
859 .md_tlb_walk = e500_tlb_walk,
860 };
861
862 static const struct tlb_md_io_ops e500_tlb_io_ops = {
863 .md_tlb_mapiodev = e500_tlb_mapiodev,
864 .md_tlb_unmapiodev = e500_tlb_unmapiodev,
865 .md_tlb_ioreserve = e500_tlb_ioreserve,
866 .md_tlb_iorelease = e500_tlb_iorelease,
867 };
868
869 void
870 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
871 {
872 struct e500_tlb1 * const tlb1 = &e500_tlb1;
873
874 #if 0
875 register_t mmucfg = mfspr(SPR_MMUCFG);
876 register_t mas4 = mfspr(SPR_MAS4);
877 #endif
878
879 const uint32_t tlb1cfg = mftlb1cfg();
880 tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
881 KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
882 /*
883 * Limit maxsize to 1G since 4G isn't really useful to us.
884 */
885 tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
886 tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
887
888 #ifdef VERBOSE_INITPPC
889 printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
890 tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
891 tlb1->tlb1_maxsize >> 10);
892 #endif
893
894 /*
895 * Let's see what's in TLB1 and we need to invalidate any entry that
896 * would fit within the kernel's mapped address space.
897 */
898 psize_t memmapped = 0;
899 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
900 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
901
902 xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
903
904 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
905 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
906 #ifdef VERBOSE_INITPPC
907 printf(" TLB1[%u]=<unused>", i);
908 #endif
909 continue;
910 }
911
912 xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
913 #ifdef VERBOSE_INITPPC
914 printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
915 i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
916 xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
917 #endif
918 if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
919 && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
920 || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
921 && VM_MIN_KERNEL_ADDRESS <
922 xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
923 #ifdef VERBOSE_INITPPC
924 printf("free");
925 #endif
926 e500_free_tlb1_entry(xtlb, i, false);
927 #ifdef VERBOSE_INITPPC
928 printf("d");
929 #endif
930 continue;
931 }
932 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
933 xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
934 hwtlb_write(xtlb->e_hwtlb, false);
935 #ifdef VERBOSE_INITPPC
936 printf("+iprot");
937 #endif
938 }
939 if (xtlb->e_tlb.tlb_pte & PTE_I)
940 continue;
941
942 if (xtlb->e_tlb.tlb_va == 0
943 || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
944 memmapped += xtlb->e_tlb.tlb_size;
945 /*
946 * Let make sure main memory is setup so it's memory
947 * coherent. For some reason u-boot doesn't set it up
948 * that way.
949 */
950 if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) {
951 xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M;
952 hwtlb_write(xtlb->e_hwtlb, true);
953 }
954 }
955 }
956
957 cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
958 cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
959
960 if (__predict_false(memmapped < memsize)) {
961 /*
962 * Let's see how many TLB entries are needed to map memory.
963 */
964 u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
965
966 /*
967 * To map main memory into the TLB, we need to flush any
968 * existing entries from the TLB that overlap the virtual
969 * address space needed to map physical memory. That may
970 * include the entries for the pages currently used by the
971 * stack or that we are executing. So to avoid problems, we
972 * are going to temporarily map the kernel and stack into AS 1,
973 * switch to it, and clear out the TLB entries from AS 0,
974 * install the new TLB entries to map memory, and then switch
975 * back to AS 0 and free the temp entry used for AS1.
976 */
977 u_int b = __builtin_clz(endkernel);
978
979 /*
980 * If the kernel doesn't end on a clean power of 2, we need
981 * to round the size up (by decrementing the number of leading
982 * zero bits). If the size isn't a power of 4KB, decrement
983 * again to make it one.
984 */
985 if (endkernel & (endkernel - 1))
986 b--;
987 if ((b & 1) == 0)
988 b--;
989
990 /*
991 * Create a TLB1 mapping for the kernel in AS1.
992 */
993 const u_int kslot = e500_alloc_tlb1_entry();
994 struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
995 kxtlb->e_tlb.tlb_va = 0;
996 kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
997 kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
998 kxtlb->e_tlb.tlb_asid = KERNEL_PID;
999
1000 kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
1001 kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
1002 kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1003 hwtlb_write(kxtlb->e_hwtlb, true);
1004
1005 /*
1006 * Now that we have a TLB mapping in AS1 for the kernel and its
1007 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
1008 */
1009 const register_t saved_msr = mfmsr();
1010 mtmsr(saved_msr | PSL_DS | PSL_IS);
1011 __asm volatile("isync");
1012
1013 /*
1014 *** Invalidate all the TLB0 entries.
1015 */
1016 e500_tlb_invalidate_all();
1017
1018 /*
1019 *** Now let's see if we have any entries in TLB1 that would
1020 *** overlap the ones we are about to install. If so, nuke 'em.
1021 */
1022 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
1023 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
1024 struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
1025 if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
1026 && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
1027 e500_free_tlb1_entry(xtlb, i, false);
1028 }
1029 }
1030
1031 /*
1032 *** Now we can add the TLB entries that will map physical
1033 *** memory. If bit 0 [MSB] in slotmask is set, then tlb
1034 *** entry 0 contains a mapping for physical memory...
1035 */
1036 struct e500_xtlb *entries = tlb1->tlb1_entries;
1037 while (slotmask != 0) {
1038 const u_int slot = __builtin_clz(slotmask);
1039 hwtlb_write(entries[slot].e_hwtlb, false);
1040 entries += slot + 1;
1041 slotmask <<= slot + 1;
1042 }
1043
1044 /*
1045 *** Synchronize the TLB and the instruction stream.
1046 */
1047 __asm volatile("tlbsync");
1048 __asm volatile("isync");
1049
1050 /*
1051 *** Switch back to AS 0.
1052 */
1053 mtmsr(saved_msr);
1054 __asm volatile("isync");
1055
1056 /*
1057 * Free the temporary TLB1 entry.
1058 */
1059 e500_free_tlb1_entry(kxtlb, kslot, true);
1060 }
1061
1062 /*
1063 * Finally set the MAS4 defaults.
1064 */
1065 mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
1066
1067 /*
1068 * Invalidate all the TLB0 entries.
1069 */
1070 e500_tlb_invalidate_all();
1071 }
1072
1073 void
1074 e500_tlb_minimize(vaddr_t endkernel)
1075 {
1076 #ifdef PMAP_MINIMALTLB
1077 struct e500_tlb1 * const tlb1 = &e500_tlb1;
1078 extern uint32_t _fdata[];
1079
1080 u_int slot;
1081
1082 paddr_t boot_page = cpu_read_4(GUR_BPTR);
1083 if (boot_page & BPTR_EN) {
1084 /*
1085 * shift it to an address
1086 */
1087 boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
1088 pmap_kvptefill(boot_page, boot_page + NBPG,
1089 PTE_M | PTE_xR | PTE_xW | PTE_xX);
1090 }
1091
1092
1093 KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
1094 KASSERT((uintptr_t)_fdata == 0x400000);
1095
1096 struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
1097
1098 KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
1099 const u_int tmp_slot = e500_alloc_tlb1_entry();
1100 KASSERT(tmp_slot != (u_int) -1);
1101
1102 struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
1103 tmp_xtlb->e_tlb = xtlb->e_tlb;
1104 tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
1105 tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
1106 KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1107 tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
1108 hwtlb_write(tmp_xtlb->e_hwtlb, true);
1109
1110 const u_int text_slot = e500_alloc_tlb1_entry();
1111 KASSERT(text_slot != (u_int)-1);
1112 struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
1113 text_xtlb->e_tlb.tlb_va = 0;
1114 text_xtlb->e_tlb.tlb_size = 0x400000;
1115 text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
1116 text_xtlb->e_tlb.tlb_asid = 0;
1117 text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
1118 KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1119 text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
1120
1121 const u_int data_slot = e500_alloc_tlb1_entry();
1122 KASSERT(data_slot != (u_int)-1);
1123 struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
1124 data_xtlb->e_tlb.tlb_va = 0x400000;
1125 data_xtlb->e_tlb.tlb_size = 0x400000;
1126 data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
1127 data_xtlb->e_tlb.tlb_asid = 0;
1128 data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
1129 KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
1130 data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
1131
1132 const register_t msr = mfmsr();
1133 const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
1134
1135 __asm __volatile(
1136 "mtmsr %[ts_msr]" "\n\t"
1137 "sync" "\n\t"
1138 "isync"
1139 :: [ts_msr] "r" (ts_msr));
1140
1141 #if 0
1142 hwtlb_write(text_xtlb->e_hwtlb, false);
1143 hwtlb_write(data_xtlb->e_hwtlb, false);
1144 e500_free_tlb1_entry(xtlb, slot, true);
1145 #endif
1146
1147 __asm __volatile(
1148 "mtmsr %[msr]" "\n\t"
1149 "sync" "\n\t"
1150 "isync"
1151 :: [msr] "r" (msr));
1152
1153 e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
1154 #endif /* PMAP_MINIMALTLB */
1155 }
1156