Home | History | Annotate | Line # | Download | only in booke
e500_tlb.c revision 1.16
      1 /*	$NetBSD: e500_tlb.c,v 1.16 2015/01/23 06:52:55 nonaka Exp $	*/
      2 /*-
      3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9  *
     10  * This material is based upon work supported by the Defense Advanced Research
     11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12  * Contract No. N66001-09-C-2073.
     13  * Approved for Public Release, Distribution Unlimited
     14  *
     15  * Redistribution and use in source and binary forms, with or without
     16  * modification, are permitted provided that the following conditions
     17  * are met:
     18  * 1. Redistributions of source code must retain the above copyright
     19  *    notice, this list of conditions and the following disclaimer.
     20  * 2. Redistributions in binary form must reproduce the above copyright
     21  *    notice, this list of conditions and the following disclaimer in the
     22  *    documentation and/or other materials provided with the distribution.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 #include "opt_ppcparam.h"
     38 
     39 #define	__PMAP_PRIVATE
     40 
     41 #include <sys/cdefs.h>
     42 
     43 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.16 2015/01/23 06:52:55 nonaka Exp $");
     44 
     45 #include <sys/param.h>
     46 
     47 #include <uvm/uvm_extern.h>
     48 
     49 #include <powerpc/spr.h>
     50 #include <powerpc/booke/spr.h>
     51 #include <powerpc/booke/cpuvar.h>
     52 #include <powerpc/booke/e500reg.h>
     53 #include <powerpc/booke/e500var.h>
     54 #include <powerpc/booke/pmap.h>
     55 
     56 struct e500_tlb {
     57 	vaddr_t tlb_va;
     58 	uint32_t tlb_pte;
     59 	uint32_t tlb_asid;
     60 	vsize_t tlb_size;
     61 };
     62 
     63 struct e500_hwtlb {
     64 	uint32_t hwtlb_mas0;
     65 	uint32_t hwtlb_mas1;
     66 	uint32_t hwtlb_mas2;
     67 	uint32_t hwtlb_mas3;
     68 };
     69 
     70 struct e500_xtlb {
     71 	struct e500_tlb e_tlb;
     72 	struct e500_hwtlb e_hwtlb;
     73 	u_long e_refcnt;
     74 };
     75 
     76 static struct e500_tlb1 {
     77 	uint32_t tlb1_maxsize;
     78 	uint32_t tlb1_minsize;
     79 	u_int tlb1_numentries;
     80 	u_int tlb1_numfree;
     81 	u_int tlb1_freelist[32];
     82 	struct e500_xtlb tlb1_entries[32];
     83 } e500_tlb1;
     84 
     85 static inline register_t mftlb0cfg(void) __pure;
     86 static inline register_t mftlb1cfg(void) __pure;
     87 
     88 static inline register_t
     89 mftlb0cfg(void)
     90 {
     91 	register_t tlb0cfg;
     92 	__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
     93 	return tlb0cfg;
     94 }
     95 
     96 static inline register_t
     97 mftlb1cfg(void)
     98 {
     99 	register_t tlb1cfg;
    100 	__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
    101 	return tlb1cfg;
    102 }
    103 
    104 static struct e500_tlb
    105 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
    106 {
    107 	struct e500_tlb tlb;
    108 	register_t prot_mask;
    109 	u_int prot_shift;
    110 
    111 	tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
    112 	tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
    113 	tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
    114 	tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
    115 	    | (hwtlb.hwtlb_mas3 & MAS3_RPN);
    116 	if (hwtlb.hwtlb_mas1 & MAS1_TS) {
    117 		prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
    118 		prot_shift = PTE_RWX_SHIFT - 1;
    119 	} else {
    120 		prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
    121 		prot_shift = PTE_RWX_SHIFT;
    122 	}
    123 	tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
    124 	return tlb;
    125 }
    126 
    127 static inline struct e500_hwtlb
    128 hwtlb_read(uint32_t mas0, u_int slot)
    129 {
    130 	struct e500_hwtlb hwtlb;
    131 	register_t tlbcfg;
    132 
    133 	if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
    134 		tlbcfg = mftlb0cfg();
    135 	} else if (mas0 == MAS0_TLBSEL_TLB1) {
    136 		tlbcfg = mftlb1cfg();
    137 	} else {
    138 		panic("%s:%d: unexpected MAS0 %#" PRIx32,
    139 		    __func__, __LINE__, mas0);
    140 	}
    141 
    142 	/*
    143 	 * ESEL is the way we want to look up.
    144 	 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
    145 	 * fully associative, the entire slot is placed into ESEL.  If tlbassoc
    146 	 * is less than the number of tlb entries, the slot is split in two
    147 	 * fields.  Since the TLB is M rows by N ways, the lowers bits are for
    148 	 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
    149 	 */
    150 	const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
    151 	const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
    152 	const u_int esel_shift =
    153 	    __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
    154 
    155 	/*
    156 	 * Disable interrupts since we don't want anyone else mucking with
    157 	 * the MMU Assist registers
    158 	 */
    159 	const register_t msr = wrtee(0);
    160 	const register_t saved_mas0 = mfspr(SPR_MAS0);
    161 	mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
    162 
    163 	if (__predict_true(tlbassoc > tlbentries))
    164 		mtspr(SPR_MAS2, slot << PAGE_SHIFT);
    165 
    166 	/*
    167 	 * Now select the entry and grab its contents.
    168 	 */
    169 	__asm volatile("tlbre");
    170 
    171 	hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
    172 	hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    173 	hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    174 	hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    175 
    176 	mtspr(SPR_MAS0, saved_mas0);
    177 	wrtee(msr);	/* restore interrupts */
    178 
    179 	return hwtlb;
    180 }
    181 
    182 static inline void
    183 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
    184 {
    185 	const register_t msr = wrtee(0);
    186 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    187 
    188 	/*
    189 	 * Need to always write MAS0 and MAS1
    190 	 */
    191 	mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    192 	mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    193 
    194 	/*
    195 	 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
    196 	 */
    197 	if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
    198 	    || (hwtlb.hwtlb_mas1 & MAS1_V)) {
    199 		mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    200 	}
    201 	/*
    202 	 * Only need to write the RPN/prot if we are dealing with a valid
    203 	 * mapping.
    204 	 */
    205 	if (hwtlb.hwtlb_mas1 & MAS1_V) {
    206 		mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    207 		//mtspr(SPR_MAS7, 0);
    208 	}
    209 
    210 #if 0
    211 	printf("%s->[%x,%x,%x,%x]\n",
    212 	    __func__,
    213 	    hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
    214 	    hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    215 #endif
    216 	__asm volatile("tlbwe");
    217 	if (needs_sync) {
    218 		__asm volatile("tlbsync\n\tisync\n\tsync");
    219 	}
    220 
    221 	mtspr(SPR_MAS0, saved_mas0);
    222 	wrtee(msr);
    223 }
    224 
    225 static struct e500_hwtlb
    226 tlb_to_hwtlb(const struct e500_tlb tlb)
    227 {
    228 	struct e500_hwtlb hwtlb;
    229 
    230 	KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
    231 	KASSERT(tlb.tlb_size != 0);
    232 	KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
    233 	const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
    234 	if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
    235 		hwtlb.hwtlb_mas0 = 0;
    236 		hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
    237 		/*
    238 		 * A non-zero ASID means this is a user page so mark it as
    239 		 * being in the user's address space.
    240 		 */
    241 		if (tlb.tlb_asid) {
    242 			hwtlb.hwtlb_mas1 |= MAS1_TS
    243 			    | MASX_TID_MAKE(tlb.tlb_asid);
    244 			hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
    245 			    | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
    246 			KASSERT(prot_mask & PTE_xR);
    247 			KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
    248 			CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
    249 			CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
    250 		} else {
    251 			hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    252 		}
    253 		if (tlb.tlb_pte & PTE_UNMODIFIED)
    254 			hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
    255 		if (tlb.tlb_pte & PTE_UNSYNCED)
    256 			hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
    257 	} else {
    258 		KASSERT(tlb.tlb_asid == 0);
    259 		KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
    260 		u_int cntlz = __builtin_clz(tlb.tlb_size);
    261 		KASSERT(cntlz & 1);
    262 		KASSERT(cntlz <= 19);
    263 		hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
    264 		/*
    265 		 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of 0 is not
    266 		 * allowed.  So 1K would be 0x00000400 giving 21 leading zero
    267 		 * bits.  Subtracting the leading number of zero bits from 21
    268 		 * and dividing by 2 gives us the number that the MMU wants.
    269 		 */
    270 		hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
    271 		    | MAS1_IPROT | MAS1_V;
    272 		hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    273 	}
    274 	/* We are done with MAS1, on to MAS2 ... */
    275 	hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
    276 	hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
    277 
    278 	return hwtlb;
    279 }
    280 
    281 void *
    282 e500_tlb1_fetch(size_t slot)
    283 {
    284 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    285 
    286 	return &tlb1->tlb1_entries[slot].e_hwtlb;
    287 }
    288 
    289 void
    290 e500_tlb1_sync(void)
    291 {
    292 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    293 	for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
    294 		const struct e500_hwtlb * const new_hwtlb =
    295 		    &tlb1->tlb1_entries[slot].e_hwtlb;
    296 		const struct e500_hwtlb old_hwtlb =
    297 		    hwtlb_read(MAS0_TLBSEL_TLB1, slot);
    298 #define CHANGED(n,o,f)	((n)->f != (o).f)
    299 		bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
    300 		bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
    301 		bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
    302 #undef CHANGED
    303 		bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
    304 		bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
    305 		if ((new_valid_p || old_valid_p)
    306 		    && (mas1_changed_p
    307 			|| (new_valid_p
    308 			    && (mas2_changed_p || mas3_changed_p))))
    309 			hwtlb_write(*new_hwtlb, true);
    310 	}
    311 }
    312 
    313 static int
    314 e500_alloc_tlb1_entry(void)
    315 {
    316 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    317 
    318 	if (tlb1->tlb1_numfree == 0)
    319 		return -1;
    320 	const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
    321 	KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
    322 	tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
    323 	    MAS0_TLBSEL_TLB1 | __SHIFTIN(slot, MAS0_ESEL);
    324 	return (int)slot;
    325 }
    326 
    327 static void
    328 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
    329 {
    330 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    331 	KASSERT(slot < tlb1->tlb1_numentries);
    332 	KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
    333 
    334 	KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
    335 	xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
    336 	hwtlb_write(xtlb->e_hwtlb, needs_sync);
    337 
    338 	const register_t msr = wrtee(0);
    339 	tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
    340 	wrtee(msr);
    341 }
    342 
    343 static tlb_asid_t
    344 e500_tlb_get_asid(void)
    345 {
    346 	return mfspr(SPR_PID0);
    347 }
    348 
    349 static void
    350 e500_tlb_set_asid(tlb_asid_t asid)
    351 {
    352 	mtspr(SPR_PID0, asid);
    353 }
    354 
    355 static void
    356 e500_tlb_invalidate_all(void)
    357 {
    358 	/*
    359 	 * This does a flash invalidate of all entries in TLB0.
    360 	 * We don't touch TLB1 since we don't expect those to be volatile.
    361 	 */
    362 #if 1
    363 	__asm volatile("tlbivax\t0, %0" :: "b"(4));	/* INV_ALL */
    364 	__asm volatile("tlbsync\n\tisync\n\tsync");
    365 #else
    366 	mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FI);
    367 	while (mfspr(SPR_MMUCSR0) != 0)
    368 		;
    369 #endif
    370 }
    371 
    372 static void
    373 e500_tlb_invalidate_globals(void)
    374 {
    375 #if defined(MULTIPROCESSOR)
    376 	e500_tlb_invalidate_all();
    377 #else	/* !MULTIPROCESSOR */
    378 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    379 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    380 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    381 	const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
    382 	const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
    383 	const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
    384 	const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
    385 
    386 	const register_t msr = wrtee(0);
    387 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    388 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    389 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    390 			mtspr(SPR_MAS2, epn);
    391 			__asm volatile("tlbre");
    392 			uint32_t mas1 = mfspr(SPR_MAS1);
    393 
    394 			/*
    395 			 * Make sure this is a valid kernel entry first.
    396 			 */
    397 			if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
    398 				continue;
    399 
    400 			/*
    401 			 * We have a valid kernel TLB entry.  But if it matches
    402 			 * the stack we are currently running on, it would
    403 			 * unwise to invalidate it.  First see if the epn
    404 			 * overlaps the stack.  If it does then get the
    405 			 * VA and see if it really is part of the stack.
    406 			 */
    407 			if (epn_kstack_lo < epn_kstack_hi
    408 			    ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
    409 			    : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
    410 				const uint32_t mas2_epn =
    411 				    mfspr(SPR_MAS2) & MAS2_EPN;
    412 				if (kstack_lo <= mas2_epn
    413 				    && mas2_epn <= kstack_hi)
    414 					continue;
    415 			}
    416 			mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    417 			__asm volatile("tlbwe");
    418 		}
    419 	}
    420 	__asm volatile("isync\n\tsync");
    421 	wrtee(msr);
    422 #endif	/* MULTIPROCESSOR */
    423 }
    424 
    425 static void
    426 e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
    427 {
    428 #if defined(MULTIPROCESSOR)
    429 	e500_tlb_invalidate_all();
    430 #else	/* !MULTIPROCESSOR */
    431 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    432 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    433 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    434 
    435 	asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
    436 	asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
    437 
    438 	const register_t msr = wrtee(0);
    439 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    440 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    441 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    442 			mtspr(SPR_MAS2, epn);
    443 			__asm volatile("tlbre");
    444 			const uint32_t mas1 = mfspr(SPR_MAS1);
    445 			/*
    446 			 * If this is a valid entry for AS space 1 and
    447 			 * its asid matches the constraints of the caller,
    448 			 * clear its valid bit.
    449 			 */
    450 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
    451 			    && asid_lo <= (mas1 & MAS1_TID)
    452 			    && (mas1 & MAS1_TID) <= asid_hi) {
    453 				mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    454 #if 0
    455 				printf("%s[%zu,%zu]->[%x]\n",
    456 				    __func__, assoc, epn, mas1);
    457 #endif
    458 				__asm volatile("tlbwe");
    459 			}
    460 		}
    461 	}
    462 	__asm volatile("isync\n\tsync");
    463 	wrtee(msr);
    464 #endif	/* MULTIPROCESSOR */
    465 }
    466 
    467 static u_int
    468 e500_tlb_record_asids(u_long *bitmap)
    469 {
    470 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    471 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    472 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    473 	const size_t nbits = 8 * sizeof(bitmap[0]);
    474 	u_int found = 0;
    475 
    476 	const register_t msr = wrtee(0);
    477 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    478 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    479 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    480 			mtspr(SPR_MAS2, epn);
    481 			__asm volatile("tlbre");
    482 			const uint32_t mas1 = mfspr(SPR_MAS1);
    483 			/*
    484 			 * If this is a valid entry for AS space 1 and
    485 			 * its asid matches the constraints of the caller,
    486 			 * clear its valid bit.
    487 			 */
    488 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
    489 				const uint32_t asid = MASX_TID_GET(mas1);
    490 				const u_int i = asid / nbits;
    491 				const u_long mask = 1UL << (asid & (nbits - 1));
    492 				if ((bitmap[i] & mask) == 0) {
    493 					bitmap[i] |= mask;
    494 					found++;
    495 				}
    496 			}
    497 		}
    498 	}
    499 	wrtee(msr);
    500 
    501 	return found;
    502 }
    503 
    504 static void
    505 e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
    506 {
    507 	KASSERT((va & PAGE_MASK) == 0);
    508 	/*
    509 	 * Bits 60 & 61 have meaning
    510 	 */
    511 	if (asid == KERNEL_PID) {
    512 		/*
    513 		 * For data accesses, the context-synchronizing instruction
    514 		 * before tlbwe or tlbivax ensures that all memory accesses
    515 		 * due to preceding instructions have completed to a point
    516 		 * at which they have reported all exceptions they will cause.
    517 		 */
    518 		__asm volatile("isync");
    519 	}
    520 	__asm volatile("tlbivax\t0, %0" :: "b"(va));
    521 	__asm volatile("tlbsync");
    522 	__asm volatile("tlbsync");	/* Why? */
    523 	if (asid == KERNEL_PID) {
    524 		/*
    525 		 * The context-synchronizing instruction after tlbwe or tlbivax
    526 		 * ensures that subsequent accesses (data and instruction) use
    527 		 * the updated value in any TLB entries affected.
    528 		 */
    529 		__asm volatile("isync\n\tsync");
    530 	}
    531 }
    532 
    533 static bool
    534 e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
    535 {
    536 #if defined(MULTIPROCESSOR)
    537 	e500_tlb_invalidate_addr(va, asid);
    538 	return true;
    539 #else	/* !MULTIPROCESSOR */
    540 	struct e500_hwtlb hwtlb = tlb_to_hwtlb(
    541 	    (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
    542 		.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
    543 
    544 	register_t msr = wrtee(0);
    545 	mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
    546 	__asm volatile("tlbsx 0, %0" :: "b"(va));
    547 	register_t mas1 = mfspr(SPR_MAS1);
    548 	if ((mas1 & MAS1_V) == 0) {
    549 		if (!insert) {
    550 			wrtee(msr);
    551 #if 0
    552 			printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
    553 			    __func__, va, asid, pte, insert);
    554 #endif
    555 			return false;
    556 		}
    557 		mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    558 	}
    559 	mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    560 	mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    561 	//mtspr(SPR_MAS7, 0);
    562 	__asm volatile("tlbwe");
    563 	if (asid == KERNEL_PID)
    564 		__asm volatile("isync\n\tsync");
    565 	wrtee(msr);
    566 #if 0
    567 	if (asid)
    568 	printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
    569 	    __func__, va, asid, pte, insert,
    570 	    hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    571 #endif
    572 	return (mas1 & MAS1_V) != 0;
    573 #endif	/* MULTIPROCESSOR */
    574 }
    575 
    576 static void
    577 e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
    578 {
    579 }
    580 
    581 static void
    582 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
    583 {
    584 }
    585 
    586 static void
    587 e500_tlb_dump(void (*pr)(const char *, ...))
    588 {
    589 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    590 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    591 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    592 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    593 	size_t valid = 0;
    594 
    595 	if (pr == NULL)
    596 		pr = printf;
    597 
    598 	const register_t msr = wrtee(0);
    599 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    600 		struct e500_hwtlb hwtlb;
    601 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    602 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    603 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    604 			mtspr(SPR_MAS2, epn);
    605 			__asm volatile("tlbre");
    606 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    607 			/*
    608 			 * If this is a valid entry for AS space 1 and
    609 			 * its asid matches the constraints of the caller,
    610 			 * clear its valid bit.
    611 			 */
    612 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    613 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    614 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    615 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    616 				(*pr)("[%zu,%zu]->[%x,%x,%x]",
    617 				    assoc, atop(epn),
    618 				    hwtlb.hwtlb_mas1,
    619 				    hwtlb.hwtlb_mas2,
    620 				    hwtlb.hwtlb_mas3);
    621 				(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
    622 				    tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
    623 				(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
    624 				    tlb.tlb_pte & PTE_RPN_MASK,
    625 				    tlb.tlb_pte & PTE_xR ? "R" : "",
    626 				    tlb.tlb_pte & PTE_xW ? "W" : "",
    627 				    tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
    628 				    tlb.tlb_pte & PTE_xX ? "X" : "",
    629 				    tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
    630 				    tlb.tlb_pte & PTE_W ? "W" : "",
    631 				    tlb.tlb_pte & PTE_I ? "I" : "",
    632 				    tlb.tlb_pte & PTE_M ? "M" : "",
    633 				    tlb.tlb_pte & PTE_G ? "G" : "",
    634 				    tlb.tlb_pte & PTE_E ? "E" : "");
    635 				valid++;
    636 			}
    637 		}
    638 	}
    639 	mtspr(SPR_MAS0, saved_mas0);
    640 	wrtee(msr);
    641 	(*pr)("%s: %zu valid entries\n", __func__, valid);
    642 }
    643 
    644 static void
    645 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
    646 {
    647 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    648 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    649 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    650 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    651 
    652 	const register_t msr = wrtee(0);
    653 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    654 		struct e500_hwtlb hwtlb;
    655 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    656 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    657 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    658 			mtspr(SPR_MAS2, epn);
    659 			__asm volatile("tlbre");
    660 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    661 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    662 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    663 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    664 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    665 				if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
    666 				    tlb.tlb_pte))
    667 					break;
    668 			}
    669 		}
    670 	}
    671 	mtspr(SPR_MAS0, saved_mas0);
    672 	wrtee(msr);
    673 }
    674 
    675 static struct e500_xtlb *
    676 e500_tlb_lookup_xtlb_pa(vaddr_t pa, u_int *slotp)
    677 {
    678 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    679 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    680 
    681 	/*
    682 	 * See if we have a TLB entry for the pa.
    683 	 */
    684 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    685 		psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    686 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    687 		    && ((pa ^ xtlb->e_tlb.tlb_pte) & mask) == 0) {
    688 			if (slotp != NULL)
    689 				*slotp = i;
    690 			return xtlb;
    691 		}
    692 	}
    693 
    694 	return NULL;
    695 }
    696 
    697 struct e500_xtlb *
    698 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
    699 {
    700 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    701 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    702 
    703 	/*
    704 	 * See if we have a TLB entry for the va.
    705 	 */
    706 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    707 		vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    708 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    709 		    && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0) {
    710 			if (slotp != NULL)
    711 				*slotp = i;
    712 			return xtlb;
    713 		}
    714 	}
    715 
    716 	return NULL;
    717 }
    718 
    719 static struct e500_xtlb *
    720 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
    721 {
    722 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    723 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    724 
    725 	/*
    726 	 * See if we have a TLB entry for the pa.
    727 	 */
    728 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    729 		vsize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    730 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    731 		    && ((va ^ xtlb->e_tlb.tlb_va) & mask) == 0
    732 		    && (((va + len - 1) ^ va) & mask) == 0) {
    733 			return xtlb;
    734 		}
    735 	}
    736 
    737 	return NULL;
    738 }
    739 
    740 static void *
    741 e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
    742 {
    743 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb_pa(pa, NULL);
    744 
    745 	/*
    746 	 * See if we have a TLB entry for the pa.  If completely falls within
    747 	 * mark the reference and return the pa.  But only if the tlb entry
    748 	 * is not cacheable.
    749 	 */
    750 	if (xtlb
    751 	    && (prefetchable
    752 		|| (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
    753 		xtlb->e_refcnt++;
    754 		return (void *) (xtlb->e_tlb.tlb_va
    755 		    + pa - (xtlb->e_tlb.tlb_pte & PTE_RPN_MASK));
    756 	}
    757 	return NULL;
    758 }
    759 
    760 static void
    761 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
    762 {
    763 	if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
    764 		struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
    765 		if (xtlb)
    766 			xtlb->e_refcnt--;
    767 	}
    768 }
    769 
    770 static int
    771 e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
    772 {
    773 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    774 	struct e500_xtlb *xtlb;
    775 
    776 	KASSERT(len & 0x55555000);
    777 	KASSERT((len & ~0x55555000) == 0);
    778 	KASSERT(len >= PAGE_SIZE);
    779 	KASSERT((len & (len - 1)) == 0);
    780 	KASSERT((va & (len - 1)) == 0);
    781 	KASSERT(((pte & PTE_RPN_MASK) & (len - 1)) == 0);
    782 
    783 	if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
    784 		psize_t mask = ~(xtlb->e_tlb.tlb_size - 1);
    785 		KASSERT(len <= xtlb->e_tlb.tlb_size);
    786 		KASSERT((pte & mask) == (xtlb->e_tlb.tlb_pte & mask));
    787 		xtlb->e_refcnt++;
    788 		return 0;
    789 	}
    790 
    791 	const int slot = e500_alloc_tlb1_entry();
    792 	if (slot < 0)
    793 		return ENOMEM;
    794 
    795 	xtlb = &tlb1->tlb1_entries[slot];
    796 	xtlb->e_tlb.tlb_va = va;
    797 	xtlb->e_tlb.tlb_size = len;
    798 	xtlb->e_tlb.tlb_pte = pte;
    799 	xtlb->e_tlb.tlb_asid = KERNEL_PID;
    800 
    801 	xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
    802 	xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(slot, MAS0_ESEL);
    803 	hwtlb_write(xtlb->e_hwtlb, true);
    804 
    805 #if defined(MULTIPROCESSOR)
    806 	cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
    807 #endif
    808 
    809 	return 0;
    810 }
    811 
    812 static int
    813 e500_tlb_iorelease(vaddr_t va)
    814 {
    815 	u_int slot;
    816 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
    817 
    818 	if (xtlb == NULL)
    819 		return ENOENT;
    820 
    821 	if (xtlb->e_refcnt)
    822 		return EBUSY;
    823 
    824 	e500_free_tlb1_entry(xtlb, slot, true);
    825 
    826 #if defined(MULTIPROCESSOR)
    827 	cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
    828 #endif
    829 
    830 	return 0;
    831 }
    832 
    833 static u_int
    834 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
    835 {
    836 	u_int slotmask = 0;
    837 	u_int slots = 0, nextslot = 0;
    838 	KASSERT(tlb1->tlb1_numfree > 1);
    839 	KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
    840 	for (paddr_t lastaddr = memstart; 0 < memsize; ) {
    841 		u_int cnt = __builtin_clz(memsize);
    842 		psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
    843 		slots += memsize / size;
    844 		if (slots > 4)
    845 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    846 			    __func__, __LINE__, memsize, "too fragmented");
    847 		if (slots > tlb1->tlb1_numfree - 1)
    848 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    849 			    __func__, __LINE__, memsize,
    850 			    "insufficent TLB entries");
    851 		for (; nextslot < slots; nextslot++) {
    852 			const u_int freeslot = e500_alloc_tlb1_entry();
    853 			struct e500_xtlb * const xtlb =
    854 			    &tlb1->tlb1_entries[freeslot];
    855 			xtlb->e_tlb.tlb_asid = KERNEL_PID;
    856 			xtlb->e_tlb.tlb_size = size;
    857 			xtlb->e_tlb.tlb_va = lastaddr;
    858 			xtlb->e_tlb.tlb_pte = lastaddr
    859 			    | PTE_M | PTE_xX | PTE_xW | PTE_xR;
    860 			lastaddr += size;
    861 			memsize -= size;
    862 			slotmask |= 1 << (31 - freeslot); /* clz friendly */
    863 		}
    864 	}
    865 
    866 #if defined(MULTIPROCESSOR)
    867 	cpu_send_ipi(IPI_DST_NOTME, IPI_TLB1SYNC);
    868 #endif
    869 
    870 	return nextslot;
    871 }
    872 
    873 static const struct tlb_md_ops e500_tlb_ops = {
    874 	.md_tlb_get_asid = e500_tlb_get_asid,
    875 	.md_tlb_set_asid = e500_tlb_set_asid,
    876 	.md_tlb_invalidate_all = e500_tlb_invalidate_all,
    877 	.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
    878 	.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
    879 	.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
    880 	.md_tlb_update_addr = e500_tlb_update_addr,
    881 	.md_tlb_record_asids = e500_tlb_record_asids,
    882 	.md_tlb_write_entry = e500_tlb_write_entry,
    883 	.md_tlb_read_entry = e500_tlb_read_entry,
    884 	.md_tlb_dump = e500_tlb_dump,
    885 	.md_tlb_walk = e500_tlb_walk,
    886 };
    887 
    888 static const struct tlb_md_io_ops e500_tlb_io_ops = {
    889 	.md_tlb_mapiodev = e500_tlb_mapiodev,
    890 	.md_tlb_unmapiodev = e500_tlb_unmapiodev,
    891 	.md_tlb_ioreserve = e500_tlb_ioreserve,
    892 	.md_tlb_iorelease = e500_tlb_iorelease,
    893 };
    894 
    895 void
    896 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
    897 {
    898 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    899 
    900 #if 0
    901 	register_t mmucfg = mfspr(SPR_MMUCFG);
    902 	register_t mas4 = mfspr(SPR_MAS4);
    903 #endif
    904 
    905 	const uint32_t tlb1cfg = mftlb1cfg();
    906 	tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
    907 	KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
    908 	/*
    909 	 * Limit maxsize to 1G since 4G isn't really useful to us.
    910 	 */
    911 	tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
    912 	tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
    913 
    914 #ifdef VERBOSE_INITPPC
    915 	printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
    916 	    tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
    917 	    tlb1->tlb1_maxsize >> 10);
    918 #endif
    919 
    920 	/*
    921 	 * Let's see what's in TLB1 and we need to invalidate any entry that
    922 	 * would fit within the kernel's mapped address space.
    923 	 */
    924 	psize_t memmapped = 0;
    925 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    926 		struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    927 
    928 		xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
    929 
    930 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
    931 			tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
    932 #ifdef VERBOSE_INITPPC
    933 			printf(" TLB1[%u]=<unused>", i);
    934 #endif
    935 			continue;
    936 		}
    937 
    938 		xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
    939 #ifdef VERBOSE_INITPPC
    940 		printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
    941 		    i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
    942 		    xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
    943 #endif
    944 		if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
    945 		    && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
    946 		    || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
    947 		        && VM_MIN_KERNEL_ADDRESS <
    948 			   xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
    949 #ifdef VERBOSE_INITPPC
    950 			printf("free");
    951 #endif
    952 			e500_free_tlb1_entry(xtlb, i, false);
    953 #ifdef VERBOSE_INITPPC
    954 			printf("d");
    955 #endif
    956 			continue;
    957 		}
    958 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
    959 			xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
    960 			hwtlb_write(xtlb->e_hwtlb, false);
    961 #ifdef VERBOSE_INITPPC
    962 			printf("+iprot");
    963 #endif
    964 		}
    965 		if (xtlb->e_tlb.tlb_pte & PTE_I)
    966 			continue;
    967 
    968 		if (xtlb->e_tlb.tlb_va == 0
    969 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
    970 			memmapped += xtlb->e_tlb.tlb_size;
    971 			/*
    972 			 * Let make sure main memory is setup so it's memory
    973 			 * coherent.  For some reason u-boot doesn't set it up
    974 			 * that way.
    975 			 */
    976 			if ((xtlb->e_hwtlb.hwtlb_mas2 & MAS2_M) == 0) {
    977 				xtlb->e_hwtlb.hwtlb_mas2 |= MAS2_M;
    978 				hwtlb_write(xtlb->e_hwtlb, true);
    979 			}
    980 		}
    981 	}
    982 
    983 	cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
    984 	cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
    985 
    986 	if (__predict_false(memmapped < memsize)) {
    987 		/*
    988 		 * Let's see how many TLB entries are needed to map memory.
    989 		 */
    990 		u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
    991 
    992 		/*
    993 		 * To map main memory into the TLB, we need to flush any
    994 		 * existing entries from the TLB that overlap the virtual
    995 		 * address space needed to map physical memory.  That may
    996 		 * include the entries for the pages currently used by the
    997 		 * stack or that we are executing.  So to avoid problems, we
    998 		 * are going to temporarily map the kernel and stack into AS 1,
    999 		 * switch to it, and clear out the TLB entries from AS 0,
   1000 		 * install the new TLB entries to map memory, and then switch
   1001 		 * back to AS 0 and free the temp entry used for AS1.
   1002 		 */
   1003 		u_int b = __builtin_clz(endkernel);
   1004 
   1005 		/*
   1006 		 * If the kernel doesn't end on a clean power of 2, we need
   1007 		 * to round the size up (by decrementing the number of leading
   1008 		 * zero bits).  If the size isn't a power of 4KB, decrement
   1009 		 * again to make it one.
   1010 		 */
   1011 		if (endkernel & (endkernel - 1))
   1012 			b--;
   1013 		if ((b & 1) == 0)
   1014 			b--;
   1015 
   1016 		/*
   1017 		 * Create a TLB1 mapping for the kernel in AS1.
   1018 		 */
   1019 		const u_int kslot = e500_alloc_tlb1_entry();
   1020 		struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
   1021 		kxtlb->e_tlb.tlb_va = 0;
   1022 		kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
   1023 		kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
   1024 		kxtlb->e_tlb.tlb_asid = KERNEL_PID;
   1025 
   1026 		kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
   1027 		kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(kslot, MAS0_ESEL);
   1028 		kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
   1029 		hwtlb_write(kxtlb->e_hwtlb, true);
   1030 
   1031 		/*
   1032 		 * Now that we have a TLB mapping in AS1 for the kernel and its
   1033 		 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
   1034 		 */
   1035 		const register_t saved_msr = mfmsr();
   1036 		mtmsr(saved_msr | PSL_DS | PSL_IS);
   1037 		__asm volatile("isync");
   1038 
   1039 		/*
   1040 		 *** Invalidate all the TLB0 entries.
   1041 		 */
   1042 		e500_tlb_invalidate_all();
   1043 
   1044 		/*
   1045 		 *** Now let's see if we have any entries in TLB1 that would
   1046 		 *** overlap the ones we are about to install.  If so, nuke 'em.
   1047 		 */
   1048 		for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
   1049 			struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
   1050 			struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
   1051 			if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
   1052 			    && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
   1053 				e500_free_tlb1_entry(xtlb, i, false);
   1054 			}
   1055 		}
   1056 
   1057 		/*
   1058 		 *** Now we can add the TLB entries that will map physical
   1059 		 *** memory.  If bit 0 [MSB] in slotmask is set, then tlb
   1060 		 *** entry 0 contains a mapping for physical memory...
   1061 		 */
   1062 		struct e500_xtlb *entries = tlb1->tlb1_entries;
   1063 		while (slotmask != 0) {
   1064 			const u_int slot = __builtin_clz(slotmask);
   1065 			hwtlb_write(entries[slot].e_hwtlb, false);
   1066 			entries += slot + 1;
   1067 			slotmask <<= slot + 1;
   1068 		}
   1069 
   1070 		/*
   1071 		 *** Synchronize the TLB and the instruction stream.
   1072 		 */
   1073 		__asm volatile("tlbsync");
   1074 		__asm volatile("isync");
   1075 
   1076 		/*
   1077 		 *** Switch back to AS 0.
   1078 		 */
   1079 		mtmsr(saved_msr);
   1080 		__asm volatile("isync");
   1081 
   1082 		/*
   1083 		 * Free the temporary TLB1 entry.
   1084 		 */
   1085 		e500_free_tlb1_entry(kxtlb, kslot, true);
   1086 	}
   1087 
   1088 	/*
   1089 	 * Finally set the MAS4 defaults.
   1090 	 */
   1091 	mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
   1092 
   1093 	/*
   1094 	 * Invalidate all the TLB0 entries.
   1095 	 */
   1096 	e500_tlb_invalidate_all();
   1097 }
   1098 
   1099 void
   1100 e500_tlb_minimize(vaddr_t endkernel)
   1101 {
   1102 #ifdef PMAP_MINIMALTLB
   1103 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
   1104 	extern uint32_t _fdata[];
   1105 
   1106 	u_int slot;
   1107 
   1108 	paddr_t boot_page = cpu_read_4(GUR_BPTR);
   1109 	if (boot_page & BPTR_EN) {
   1110 		/*
   1111 		 * shift it to an address
   1112 		 */
   1113 		boot_page = (boot_page & BPTR_BOOT_PAGE) << PAGE_SHIFT;
   1114 		pmap_kvptefill(boot_page, boot_page + NBPG,
   1115 		    PTE_M | PTE_xR | PTE_xW | PTE_xX);
   1116 	}
   1117 
   1118 
   1119 	KASSERT(endkernel - (uintptr_t)_fdata < 0x400000);
   1120 	KASSERT((uintptr_t)_fdata == 0x400000);
   1121 
   1122 	struct e500_xtlb *xtlb = e500_tlb_lookup_xtlb(endkernel, &slot);
   1123 
   1124 	KASSERT(xtlb == e500_tlb_lookup_xtlb2(0, endkernel));
   1125 	const u_int tmp_slot = e500_alloc_tlb1_entry();
   1126 	KASSERT(tmp_slot != (u_int) -1);
   1127 
   1128 	struct e500_xtlb * const tmp_xtlb = &tlb1->tlb1_entries[tmp_slot];
   1129 	tmp_xtlb->e_tlb = xtlb->e_tlb;
   1130 	tmp_xtlb->e_hwtlb = tlb_to_hwtlb(tmp_xtlb->e_tlb);
   1131 	tmp_xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
   1132 	KASSERT((tmp_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1133 	tmp_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(tmp_slot, MAS0_ESEL);
   1134 	hwtlb_write(tmp_xtlb->e_hwtlb, true);
   1135 
   1136 	const u_int text_slot = e500_alloc_tlb1_entry();
   1137 	KASSERT(text_slot != (u_int)-1);
   1138 	struct e500_xtlb * const text_xtlb = &tlb1->tlb1_entries[text_slot];
   1139 	text_xtlb->e_tlb.tlb_va = 0;
   1140 	text_xtlb->e_tlb.tlb_size = 0x400000;
   1141 	text_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xX | text_xtlb->e_tlb.tlb_va;
   1142 	text_xtlb->e_tlb.tlb_asid = 0;
   1143 	text_xtlb->e_hwtlb = tlb_to_hwtlb(text_xtlb->e_tlb);
   1144 	KASSERT((text_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1145 	text_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(text_slot, MAS0_ESEL);
   1146 
   1147 	const u_int data_slot = e500_alloc_tlb1_entry();
   1148 	KASSERT(data_slot != (u_int)-1);
   1149 	struct e500_xtlb * const data_xtlb = &tlb1->tlb1_entries[data_slot];
   1150 	data_xtlb->e_tlb.tlb_va = 0x400000;
   1151 	data_xtlb->e_tlb.tlb_size = 0x400000;
   1152 	data_xtlb->e_tlb.tlb_pte = PTE_M | PTE_xR | PTE_xW | data_xtlb->e_tlb.tlb_va;
   1153 	data_xtlb->e_tlb.tlb_asid = 0;
   1154 	data_xtlb->e_hwtlb = tlb_to_hwtlb(data_xtlb->e_tlb);
   1155 	KASSERT((data_xtlb->e_hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB1);
   1156 	data_xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTIN(data_slot, MAS0_ESEL);
   1157 
   1158 	const register_t msr = mfmsr();
   1159 	const register_t ts_msr = (msr | PSL_DS | PSL_IS) & ~PSL_EE;
   1160 
   1161 	__asm __volatile(
   1162 		"mtmsr	%[ts_msr]"	"\n\t"
   1163 		"sync"			"\n\t"
   1164 		"isync"
   1165 	    ::	[ts_msr] "r" (ts_msr));
   1166 
   1167 #if 0
   1168 	hwtlb_write(text_xtlb->e_hwtlb, false);
   1169 	hwtlb_write(data_xtlb->e_hwtlb, false);
   1170 	e500_free_tlb1_entry(xtlb, slot, true);
   1171 #endif
   1172 
   1173 	__asm __volatile(
   1174 		"mtmsr	%[msr]"		"\n\t"
   1175 		"sync"			"\n\t"
   1176 		"isync"
   1177 	    ::	[msr] "r" (msr));
   1178 
   1179 	e500_free_tlb1_entry(tmp_xtlb, tmp_slot, true);
   1180 #endif	/* PMAP_MINIMALTLB */
   1181 }
   1182