e500_tlb.c revision 1.2 1 /* $NetBSD: e500_tlb.c,v 1.2 2011/01/18 01:02:52 matt Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38
39 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.2 2011/01/18 01:02:52 matt Exp $");
40
41 #include <sys/param.h>
42
43 #include <uvm/uvm_extern.h>
44
45 #include <powerpc/spr.h>
46 #include <powerpc/booke/spr.h>
47 #include <powerpc/booke/cpuvar.h>
48 #include <powerpc/booke/e500var.h>
49 #include <powerpc/booke/pmap.h>
50
51 struct e500_tlb {
52 vaddr_t tlb_va;
53 uint32_t tlb_pte;
54 uint32_t tlb_asid;
55 vsize_t tlb_size;
56 };
57
58 struct e500_hwtlb {
59 uint32_t hwtlb_mas0;
60 uint32_t hwtlb_mas1;
61 uint32_t hwtlb_mas2;
62 uint32_t hwtlb_mas3;
63 };
64
65 struct e500_xtlb {
66 struct e500_tlb e_tlb;
67 struct e500_hwtlb e_hwtlb;
68 u_long e_refcnt;
69 };
70
71 static struct e500_tlb1 {
72 uint32_t tlb1_maxsize;
73 uint32_t tlb1_minsize;
74 u_int tlb1_numentries;
75 u_int tlb1_numfree;
76 u_int tlb1_freelist[32];
77 struct e500_xtlb tlb1_entries[32];
78 } e500_tlb1;
79
80 static inline register_t mftlb0cfg(void) __pure;
81 static inline register_t mftlb1cfg(void) __pure;
82
83 static inline register_t
84 mftlb0cfg(void)
85 {
86 register_t tlb0cfg;
87 __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
88 return tlb0cfg;
89 }
90
91 static inline register_t
92 mftlb1cfg(void)
93 {
94 register_t tlb1cfg;
95 __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
96 return tlb1cfg;
97 }
98
99 static struct e500_tlb
100 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
101 {
102 struct e500_tlb tlb;
103 register_t prot_mask;
104 u_int prot_shift;
105
106 tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
107 tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
108 tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
109 tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
110 | (hwtlb.hwtlb_mas3 & MAS3_RPN);
111 if (hwtlb.hwtlb_mas1 & MAS1_TS) {
112 prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
113 prot_shift = PTE_RWX_SHIFT - 1;
114 } else {
115 prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
116 prot_shift = PTE_RWX_SHIFT;
117 }
118 tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
119 return tlb;
120 }
121
122 static inline struct e500_hwtlb
123 hwtlb_read(uint32_t mas0, u_int slot)
124 {
125 struct e500_hwtlb hwtlb;
126 register_t tlbcfg;
127
128 if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
129 tlbcfg = mftlb0cfg();
130 } else if (mas0 == MAS0_TLBSEL_TLB1) {
131 tlbcfg = mftlb1cfg();
132 } else {
133 panic("%s:%d: unexpected MAS0 %#" PRIx32,
134 __func__, __LINE__, mas0);
135 }
136
137 /*
138 * ESEL is the way we want to look up.
139 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
140 * fully associative, the entire slot is placed into ESEL. If tlbassoc
141 * is less then the number of tlb entries, the slot is split in two
142 * fields. Since the TLB is M rows by N ways, the lowers bits are for
143 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
144 */
145 const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
146 const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
147 const u_int esel_shift =
148 __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
149
150 /*
151 * Disable interrupts since we don't want anyone else mucking with
152 * the MMU Assist registers
153 */
154 const register_t msr = wrtee(0);
155 const register_t saved_mas0 = mfspr(SPR_MAS0);
156 mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
157
158 if (__predict_true(tlbassoc > tlbentries))
159 mtspr(SPR_MAS2, slot << PAGE_SHIFT);
160
161 /*
162 * Now select the entry and grab its contents.
163 */
164 __asm volatile("tlbre");
165
166 hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
167 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
168 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
169 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
170
171 mtspr(SPR_MAS0, saved_mas0);
172 wrtee(msr); /* restore interrupts */
173
174 return hwtlb;
175 }
176
177 static inline void
178 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
179 {
180 const register_t msr = wrtee(0);
181 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
182
183 /*
184 * Need to always write MAS0 and MAS1
185 */
186 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
187 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
188
189 /*
190 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
191 */
192 if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
193 || (hwtlb.hwtlb_mas1 & MAS1_V)) {
194 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
195 }
196 /*
197 * Only need to write the RPN/prot if we are dealing with a valid
198 * mapping.
199 */
200 if (hwtlb.hwtlb_mas1 & MAS1_V) {
201 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
202 }
203
204 #if 0
205 printf("%s->[%x,%x,%x,%x]\n",
206 __func__,
207 hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
208 hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
209 #endif
210 __asm volatile("tlbwe");
211 if (needs_sync) {
212 __asm volatile("tlbsync");
213 __asm volatile("isync");
214 }
215
216 mtspr(SPR_MAS0, saved_mas0);
217 wrtee(msr);
218 }
219
220 static struct e500_hwtlb
221 tlb_to_hwtlb(const struct e500_tlb tlb)
222 {
223 struct e500_hwtlb hwtlb;
224
225 KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
226 KASSERT(tlb.tlb_size != 0);
227 KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
228 const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
229 if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
230 hwtlb.hwtlb_mas0 = 0;
231 hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
232 /*
233 * A non-zero ASID means this is a user page so mark it as
234 * being in the user's address space.
235 */
236 if (tlb.tlb_asid) {
237 hwtlb.hwtlb_mas1 |= MAS1_TS
238 | MASX_TID_MAKE(tlb.tlb_asid);
239 hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
240 | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
241 KASSERT(prot_mask & PTE_xR);
242 KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
243 CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
244 CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
245 } else {
246 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
247 }
248 if (tlb.tlb_pte & PTE_UNMODIFIED)
249 hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
250 if (tlb.tlb_pte & PTE_UNSYNCED)
251 hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
252 } else {
253 KASSERT(tlb.tlb_asid == 0);
254 KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
255 u_int cntlz = __builtin_clz(tlb.tlb_size);
256 KASSERT(cntlz & 1);
257 KASSERT(cntlz <= 19);
258 hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
259 /*
260 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
261 * allowed. So 1K would be 0x00000400 giving 21 leading zero
262 * bits. Subtracting the leading number of zero bits from 21
263 * and dividing by 2 gives us the number that the MMU wants.
264 */
265 hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
266 | MAS1_IPROT | MAS1_V;
267 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
268 }
269 /* We are done with MAS1, on to MAS2 ... */
270 hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
271 hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
272
273 return hwtlb;
274 }
275
276 static int
277 e500_alloc_tlb1_entry(void)
278 {
279 struct e500_tlb1 * const tlb1 = &e500_tlb1;
280
281 if (tlb1->tlb1_numfree == 0)
282 return -1;
283 const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
284 KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
285 tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
286 MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
287 return slot;
288 }
289
290 static void
291 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
292 {
293 struct e500_tlb1 * const tlb1 = &e500_tlb1;
294 KASSERT(slot < tlb1->tlb1_numentries);
295 KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
296
297 KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
298 xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
299 hwtlb_write(xtlb->e_hwtlb, needs_sync);
300
301 const register_t msr = wrtee(0);
302 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
303 wrtee(msr);
304 }
305
306 static void e500_tlb_set_asid(uint32_t asid)
307 {
308 mtspr(SPR_PID0, asid);
309 }
310
311 static void e500_tlb_invalidate_all(void)
312 {
313 /*
314 * This does a flash invalidate of all entries in TLB0.
315 * We don't touch TLB1 since we don't expect those to be volatile.
316 */
317 #if 1
318 __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
319 #else
320 mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
321 while (mfspr(SPR_MMUCSR0) != 0)
322 ;
323 #endif
324 }
325
326 static void
327 e500_tlb_invalidate_globals(void)
328 {
329 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
330 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
331 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
332 const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
333 const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
334 const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
335 const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
336
337 const register_t msr = wrtee(0);
338 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
339 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
340 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
341 mtspr(SPR_MAS2, epn);
342 __asm volatile("tlbre");
343 uint32_t mas1 = mfspr(SPR_MAS1);
344
345 /*
346 * Make sure this is a valid kernel entry first.
347 */
348 if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
349 continue;
350
351 /*
352 * We have a valid kernel TLB entry. But if it matches
353 * the stack we are currently running on, it would
354 * unwise to invalidate it. First see if the epn
355 * overlaps the stack. If it does then get the
356 * VA and see if it really is part of the stack.
357 */
358 if (epn_kstack_lo < epn_kstack_hi
359 ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
360 : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
361 const uint32_t mas2_epn =
362 mfspr(SPR_MAS2) & MAS2_EPN;
363 if (kstack_lo <= mas2_epn
364 && mas2_epn <= kstack_hi)
365 continue;
366 }
367 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
368 __asm volatile("tlbwe");
369 }
370 }
371 __asm volatile("isync");
372 wrtee(msr);
373 }
374
375 static void
376 e500_tlb_invalidate_asids(uint32_t asid_lo, uint32_t asid_hi)
377 {
378 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
379 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
380 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
381
382 asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
383 asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
384
385 const register_t msr = wrtee(0);
386 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
387 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
388 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
389 mtspr(SPR_MAS2, epn);
390 __asm volatile("tlbre");
391 const uint32_t mas1 = mfspr(SPR_MAS1);
392 /*
393 * If this is a valid entry for AS space 1 and
394 * its asid matches the constraints of the caller,
395 * clear its valid bit.
396 */
397 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
398 && asid_lo <= (mas1 & MAS1_TID)
399 && (mas1 & MAS1_TID) < asid_hi) {
400 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
401 #if 0
402 printf("%s[%zu,%zu]->[%x]\n",
403 __func__, assoc, epn, mas1);
404 #endif
405 __asm volatile("tlbwe");
406 }
407 }
408 }
409 __asm volatile("isync");
410 wrtee(msr);
411 }
412
413 static u_int
414 e500_tlb_record_asids(u_long *bitmap, uint32_t start_slot)
415 {
416 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
417 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
418 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
419 const size_t nbits = 8 * sizeof(bitmap[0]);
420 u_int found = 0;
421
422 const register_t msr = wrtee(0);
423 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
424 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
425 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
426 mtspr(SPR_MAS2, epn);
427 __asm volatile("tlbre");
428 const uint32_t mas1 = mfspr(SPR_MAS1);
429 /*
430 * If this is a valid entry for AS space 1 and
431 * its asid matches the constraints of the caller,
432 * clear its valid bit.
433 */
434 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
435 const uint32_t asid = MASX_TID_GET(mas1);
436 const u_int i = asid / nbits;
437 const u_long mask = 1UL << (asid & (nbits - 1));
438 if ((bitmap[i] & mask) == 0) {
439 bitmap[i] |= mask;
440 found++;
441 }
442 }
443 }
444 }
445 wrtee(msr);
446
447 return found;
448 }
449
450 static void
451 e500_tlb_invalidate_addr(vaddr_t va, uint32_t asid)
452 {
453 KASSERT((va & PAGE_MASK) == 0);
454 /*
455 * Bits 60 & 61 have meaning
456 */
457 __asm volatile("tlbivax\t0, %0" :: "b"(va));
458 __asm volatile("tlbsync");
459 __asm volatile("tlbsync");
460 }
461
462 static bool
463 e500_tlb_update_addr(vaddr_t va, uint32_t asid, uint32_t pte, bool insert)
464 {
465 struct e500_hwtlb hwtlb = tlb_to_hwtlb(
466 (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
467 .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
468
469 register_t msr = wrtee(0);
470 mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
471 __asm volatile("tlbsx 0, %0" :: "b"(va));
472 register_t mas1 = mfspr(SPR_MAS1);
473 if ((mas1 & MAS1_V) == 0) {
474 if (!insert) {
475 wrtee(msr);
476 #if 0
477 printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
478 __func__, va, asid, pte, insert);
479 #endif
480 return false;
481 }
482 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
483 }
484 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
485 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
486 __asm volatile("tlbwe");
487 if (asid == 0)
488 __asm volatile("isync");
489 wrtee(msr);
490 #if 0
491 if (asid)
492 printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
493 __func__, va, asid, pte, insert,
494 hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
495 #endif
496 return (mas1 & MAS1_V) != 0;
497 }
498
499 static void
500 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
501 {
502 }
503
504 static void
505 e500_tlb_dump(void (*pr)(const char *, ...))
506 {
507 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
508 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
509 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
510 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
511 size_t valid = 0;
512
513 if (pr == NULL)
514 pr = printf;
515
516 const register_t msr = wrtee(0);
517 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
518 struct e500_hwtlb hwtlb;
519 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
520 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
521 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
522 mtspr(SPR_MAS2, epn);
523 __asm volatile("tlbre");
524 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
525 /*
526 * If this is a valid entry for AS space 1 and
527 * its asid matches the constraints of the caller,
528 * clear its valid bit.
529 */
530 if (hwtlb.hwtlb_mas1 & MAS1_V) {
531 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
532 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
533 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
534 (*pr)("[%zu,%zu]->[%x,%x,%x]",
535 assoc, atop(epn),
536 hwtlb.hwtlb_mas1,
537 hwtlb.hwtlb_mas2,
538 hwtlb.hwtlb_mas3);
539 (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
540 tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
541 (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
542 tlb.tlb_pte & PTE_RPN_MASK,
543 tlb.tlb_pte & PTE_xR ? "R" : "",
544 tlb.tlb_pte & PTE_xW ? "W" : "",
545 tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
546 tlb.tlb_pte & PTE_xX ? "X" : "",
547 tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
548 tlb.tlb_pte & PTE_W ? "W" : "",
549 tlb.tlb_pte & PTE_I ? "I" : "",
550 tlb.tlb_pte & PTE_M ? "M" : "",
551 tlb.tlb_pte & PTE_G ? "G" : "",
552 tlb.tlb_pte & PTE_E ? "E" : "");
553 valid++;
554 }
555 }
556 }
557 mtspr(SPR_MAS0, saved_mas0);
558 wrtee(msr);
559 (*pr)("%s: %zu valid entries\n", __func__, valid);
560 }
561
562 static void
563 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
564 {
565 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
566 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
567 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
568 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
569
570 const register_t msr = wrtee(0);
571 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
572 struct e500_hwtlb hwtlb;
573 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
574 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
575 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
576 mtspr(SPR_MAS2, epn);
577 __asm volatile("tlbre");
578 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
579 /*
580 * If this is a valid entry for AS space 1 and
581 * its asid matches the constraints of the caller,
582 * clear its valid bit.
583 */
584 if (hwtlb.hwtlb_mas1 & MAS1_V) {
585 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
586 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
587 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
588 if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
589 tlb.tlb_pte))
590 break;
591 }
592 }
593 }
594 mtspr(SPR_MAS0, saved_mas0);
595 wrtee(msr);
596 }
597
598 static struct e500_xtlb *
599 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
600 {
601 struct e500_tlb1 * const tlb1 = &e500_tlb1;
602 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
603
604 /*
605 * See if we have a TLB entry for the pa.
606 */
607 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
608 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
609 && xtlb->e_tlb.tlb_va <= va
610 && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
611 if (slotp != NULL)
612 *slotp = i;
613 return xtlb;
614 }
615 }
616
617 return NULL;
618 }
619
620 static struct e500_xtlb *
621 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
622 {
623 struct e500_tlb1 * const tlb1 = &e500_tlb1;
624 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
625
626 /*
627 * See if we have a TLB entry for the pa.
628 */
629 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
630 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
631 && xtlb->e_tlb.tlb_va < va + len
632 && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
633 return xtlb;
634 }
635 }
636
637 return NULL;
638 }
639
640 static void *
641 e500_tlb_mapiodev(paddr_t pa, psize_t len)
642 {
643 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
644
645 /*
646 * See if we have a TLB entry for the pa. If completely falls within
647 * mark the reference and return the pa.
648 */
649 if (xtlb && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
650 xtlb->e_refcnt++;
651 return (void *) pa;
652 }
653 return NULL;
654 }
655
656 static void
657 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
658 {
659 if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
660 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
661 if (xtlb)
662 xtlb->e_refcnt--;
663 }
664 }
665
666 static int
667 e500_tlb_ioreserve(vaddr_t va, vsize_t len, uint32_t pte)
668 {
669 struct e500_tlb1 * const tlb1 = &e500_tlb1;
670 struct e500_xtlb *xtlb;
671
672 KASSERT(len & 0x55555000);
673 KASSERT((len & ~0x55555000) == 0);
674 KASSERT(len >= PAGE_SIZE);
675 KASSERT((len & (len - 1)) == 0);
676 KASSERT((va & (len - 1)) == 0);
677 KASSERT((pte & (len - 1)) == 0);
678
679 if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
680 if (va < xtlb->e_tlb.tlb_va
681 || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
682 || va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
683 return EBUSY;
684 xtlb->e_refcnt++;
685 return 0;
686 }
687
688 const int slot = e500_alloc_tlb1_entry();
689 if (slot < 0)
690 return ENOMEM;
691
692 xtlb = &tlb1->tlb1_entries[slot];
693 xtlb->e_tlb.tlb_va = va;
694 xtlb->e_tlb.tlb_size = len;
695 xtlb->e_tlb.tlb_pte = pte;
696 xtlb->e_tlb.tlb_asid = KERNEL_PID;
697
698 xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
699 xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
700 hwtlb_write(xtlb->e_hwtlb, true);
701 return 0;
702 }
703
704 static int
705 e500_tlb_iorelease(vaddr_t va)
706 {
707 u_int slot;
708 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
709
710 if (xtlb == NULL)
711 return ENOENT;
712
713 if (xtlb->e_refcnt)
714 return EBUSY;
715
716 e500_free_tlb1_entry(xtlb, slot, true);
717
718 return 0;
719 }
720
721 static u_int
722 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
723 {
724 u_int slotmask = 0;
725 u_int slots = 0, nextslot = 0;
726 KASSERT(tlb1->tlb1_numfree > 1);
727 KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
728 for (paddr_t lastaddr = memstart; 0 < memsize; ) {
729 u_int cnt = __builtin_clz(memsize);
730 psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
731 slots += memsize / size;
732 if (slots > 4)
733 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
734 __func__, __LINE__, memsize, "too fragmented");
735 if (slots > tlb1->tlb1_numfree - 1)
736 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
737 __func__, __LINE__, memsize,
738 "insufficent TLB entries");
739 for (; nextslot < slots; nextslot++) {
740 const u_int freeslot = e500_alloc_tlb1_entry();
741 struct e500_xtlb * const xtlb =
742 &tlb1->tlb1_entries[freeslot];
743 xtlb->e_tlb.tlb_asid = KERNEL_PID;
744 xtlb->e_tlb.tlb_size = size;
745 xtlb->e_tlb.tlb_va = lastaddr;
746 xtlb->e_tlb.tlb_pte = lastaddr
747 | PTE_M | PTE_xX | PTE_xW | PTE_xR;
748 lastaddr += size;
749 memsize -= size;
750 slotmask |= 1 << (31 - freeslot); /* clz friendly */
751 }
752 }
753
754 return nextslot;
755 }
756 static const struct tlb_md_ops e500_tlb_ops = {
757 .md_tlb_set_asid = e500_tlb_set_asid,
758 .md_tlb_invalidate_all = e500_tlb_invalidate_all,
759 .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
760 .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
761 .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
762 .md_tlb_update_addr = e500_tlb_update_addr,
763 .md_tlb_record_asids = e500_tlb_record_asids,
764 .md_tlb_read_entry = e500_tlb_read_entry,
765 .md_tlb_mapiodev = e500_tlb_mapiodev,
766 .md_tlb_unmapiodev = e500_tlb_unmapiodev,
767 .md_tlb_ioreserve = e500_tlb_ioreserve,
768 .md_tlb_iorelease = e500_tlb_iorelease,
769 .md_tlb_dump = e500_tlb_dump,
770 .md_tlb_walk = e500_tlb_walk,
771 };
772
773 void
774 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
775 {
776 struct e500_tlb1 * const tlb1 = &e500_tlb1;
777
778 #if 0
779 register_t mmucfg = mfspr(SPR_MMUCFG);
780 register_t mas4 = mfspr(SPR_MAS4);
781 #endif
782
783 const uint32_t tlb1cfg = mftlb1cfg();
784 tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
785 KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
786 /*
787 * Limit maxsize to 1G since 4G isn't really useful to us.
788 */
789 tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
790 tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
791
792 #ifdef VERBOSE_INITPPC
793 printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
794 tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
795 tlb1->tlb1_maxsize >> 10);
796 #endif
797
798 /*
799 * Let's see what's in TLB1 and we need to invalidate any entry that
800 * would fit within the kernel's mapped address space.
801 */
802 psize_t memmapped = 0;
803 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
804 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
805
806 xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
807
808 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
809 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
810 #ifdef VERBOSE_INITPPC
811 printf(" TLB1[%u]=<unused>", i);
812 #endif
813 continue;
814 }
815
816 xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
817 #ifdef VERBOSE_INITPPC
818 printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
819 i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
820 xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
821 #endif
822 if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
823 && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
824 || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
825 && VM_MIN_KERNEL_ADDRESS <
826 xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
827 #ifdef VERBOSE_INITPPC
828 printf("free");
829 #endif
830 e500_free_tlb1_entry(xtlb, i, false);
831 #ifdef VERBOSE_INITPPC
832 printf("d");
833 #endif
834 continue;
835 }
836 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
837 xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
838 hwtlb_write(xtlb->e_hwtlb, false);
839 #ifdef VERBOSE_INITPPC
840 printf("+iprot");
841 #endif
842 }
843 if (xtlb->e_tlb.tlb_pte & PTE_I)
844 continue;
845
846 if (xtlb->e_tlb.tlb_va == 0
847 || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
848 memmapped += xtlb->e_tlb.tlb_size;
849 }
850 }
851
852 cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
853
854 if (__predict_false(memmapped < memsize)) {
855 /*
856 * Let's see how many TLB entries are needed to map memory.
857 */
858 u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
859
860 /*
861 * To map main memory into the TLB, we need to flush any
862 * existing entries from the TLB that overlap the virtual
863 * address space needed to map physical memory. That may
864 * include the entries for the pages currently used by the
865 * stack or that we are executing. So to avoid problems, we
866 * are going to temporarily map the kernel and stack into AS 1,
867 * switch to it, and clear out the TLB entries from AS 0,
868 * install the new TLB entries to map memory, and then switch
869 * back to AS 0 and free the temp entry used for AS1.
870 */
871 u_int b = __builtin_clz(endkernel);
872
873 /*
874 * If the kernel doesn't end on a clean power of 2, we need
875 * to round the size up (by decrementing the number of leading
876 * zero bits). If the size isn't a power of 4KB, decrement
877 * again to make it one.
878 */
879 if (endkernel & (endkernel - 1))
880 b--;
881 if ((b & 1) == 0)
882 b--;
883
884 /*
885 * Create a TLB1 mapping for the kernel in AS1.
886 */
887 const u_int kslot = e500_alloc_tlb1_entry();
888 struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
889 kxtlb->e_tlb.tlb_va = 0;
890 kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
891 kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
892 kxtlb->e_tlb.tlb_asid = KERNEL_PID;
893
894 kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
895 kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
896 kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
897 hwtlb_write(kxtlb->e_hwtlb, true);
898
899 /*
900 * Now that we have a TLB mapping in AS1 for the kernel and its
901 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
902 */
903 const register_t saved_msr = mfmsr();
904 mtmsr(saved_msr | PSL_DS | PSL_IS);
905 __asm volatile("isync");
906
907 /*
908 *** Invalidate all the TLB0 entries.
909 */
910 e500_tlb_invalidate_all();
911
912 /*
913 *** Now let's see if we have any entries in TLB1 that would
914 *** overlap the ones we are about to install. If so, nuke 'em.
915 */
916 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
917 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
918 struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
919 if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
920 && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
921 e500_free_tlb1_entry(xtlb, i, false);
922 }
923 }
924
925 /*
926 *** Now we can add the TLB entries that will map physical
927 *** memory. If bit 0 [MSB] in slotmask is set, then tlb
928 *** entry 0 contains a mapping for physical memory...
929 */
930 struct e500_xtlb *entries = tlb1->tlb1_entries;
931 while (slotmask != 0) {
932 const u_int slot = __builtin_clz(slotmask);
933 hwtlb_write(entries[slot].e_hwtlb, false);
934 entries += slot + 1;
935 slotmask <<= slot + 1;
936 }
937
938 /*
939 *** Synchronize the TLB and the instruction stream.
940 */
941 __asm volatile("tlbsync");
942 __asm volatile("isync");
943
944 /*
945 *** Switch back to AS 0.
946 */
947 mtmsr(saved_msr);
948 __asm volatile("isync");
949
950 /*
951 * Free the temporary TLB1 entry.
952 */
953 e500_free_tlb1_entry(kxtlb, kslot, true);
954 }
955
956 /*
957 * Finally set the MAS4 defaults.
958 */
959 mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
960
961 /*
962 * Invalidate all the TLB0 entries.
963 */
964 e500_tlb_invalidate_all();
965 }
966