Home | History | Annotate | Line # | Download | only in booke
e500_tlb.c revision 1.2
      1 /*	$NetBSD: e500_tlb.c,v 1.2 2011/01/18 01:02:52 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9  *
     10  * This material is based upon work supported by the Defense Advanced Research
     11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12  * Contract No. N66001-09-C-2073.
     13  * Approved for Public Release, Distribution Unlimited
     14  *
     15  * Redistribution and use in source and binary forms, with or without
     16  * modification, are permitted provided that the following conditions
     17  * are met:
     18  * 1. Redistributions of source code must retain the above copyright
     19  *    notice, this list of conditions and the following disclaimer.
     20  * 2. Redistributions in binary form must reproduce the above copyright
     21  *    notice, this list of conditions and the following disclaimer in the
     22  *    documentation and/or other materials provided with the distribution.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 
     39 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.2 2011/01/18 01:02:52 matt Exp $");
     40 
     41 #include <sys/param.h>
     42 
     43 #include <uvm/uvm_extern.h>
     44 
     45 #include <powerpc/spr.h>
     46 #include <powerpc/booke/spr.h>
     47 #include <powerpc/booke/cpuvar.h>
     48 #include <powerpc/booke/e500var.h>
     49 #include <powerpc/booke/pmap.h>
     50 
     51 struct e500_tlb {
     52 	vaddr_t tlb_va;
     53 	uint32_t tlb_pte;
     54 	uint32_t tlb_asid;
     55 	vsize_t tlb_size;
     56 };
     57 
     58 struct e500_hwtlb {
     59 	uint32_t hwtlb_mas0;
     60 	uint32_t hwtlb_mas1;
     61 	uint32_t hwtlb_mas2;
     62 	uint32_t hwtlb_mas3;
     63 };
     64 
     65 struct e500_xtlb {
     66 	struct e500_tlb e_tlb;
     67 	struct e500_hwtlb e_hwtlb;
     68 	u_long e_refcnt;
     69 };
     70 
     71 static struct e500_tlb1 {
     72 	uint32_t tlb1_maxsize;
     73 	uint32_t tlb1_minsize;
     74 	u_int tlb1_numentries;
     75 	u_int tlb1_numfree;
     76 	u_int tlb1_freelist[32];
     77 	struct e500_xtlb tlb1_entries[32];
     78 } e500_tlb1;
     79 
     80 static inline register_t mftlb0cfg(void) __pure;
     81 static inline register_t mftlb1cfg(void) __pure;
     82 
     83 static inline register_t
     84 mftlb0cfg(void)
     85 {
     86 	register_t tlb0cfg;
     87 	__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
     88 	return tlb0cfg;
     89 }
     90 
     91 static inline register_t
     92 mftlb1cfg(void)
     93 {
     94 	register_t tlb1cfg;
     95 	__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
     96 	return tlb1cfg;
     97 }
     98 
     99 static struct e500_tlb
    100 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
    101 {
    102 	struct e500_tlb tlb;
    103 	register_t prot_mask;
    104 	u_int prot_shift;
    105 
    106 	tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
    107 	tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
    108 	tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
    109 	tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
    110 	    | (hwtlb.hwtlb_mas3 & MAS3_RPN);
    111 	if (hwtlb.hwtlb_mas1 & MAS1_TS) {
    112 		prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
    113 		prot_shift = PTE_RWX_SHIFT - 1;
    114 	} else {
    115 		prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
    116 		prot_shift = PTE_RWX_SHIFT;
    117 	}
    118 	tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
    119 	return tlb;
    120 }
    121 
    122 static inline struct e500_hwtlb
    123 hwtlb_read(uint32_t mas0, u_int slot)
    124 {
    125 	struct e500_hwtlb hwtlb;
    126 	register_t tlbcfg;
    127 
    128 	if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
    129 		tlbcfg = mftlb0cfg();
    130 	} else if (mas0 == MAS0_TLBSEL_TLB1) {
    131 		tlbcfg = mftlb1cfg();
    132 	} else {
    133 		panic("%s:%d: unexpected MAS0 %#" PRIx32,
    134 		    __func__, __LINE__, mas0);
    135 	}
    136 
    137 	/*
    138 	 * ESEL is the way we want to look up.
    139 	 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
    140 	 * fully associative, the entire slot is placed into ESEL.  If tlbassoc
    141 	 * is less then the number of tlb entries, the slot is split in two
    142 	 * fields.  Since the TLB is M rows by N ways, the lowers bits are for
    143 	 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
    144 	 */
    145 	const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
    146 	const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
    147 	const u_int esel_shift =
    148 	    __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
    149 
    150 	/*
    151 	 * Disable interrupts since we don't want anyone else mucking with
    152 	 * the MMU Assist registers
    153 	 */
    154 	const register_t msr = wrtee(0);
    155 	const register_t saved_mas0 = mfspr(SPR_MAS0);
    156 	mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
    157 
    158 	if (__predict_true(tlbassoc > tlbentries))
    159 		mtspr(SPR_MAS2, slot << PAGE_SHIFT);
    160 
    161 	/*
    162 	 * Now select the entry and grab its contents.
    163 	 */
    164 	__asm volatile("tlbre");
    165 
    166 	hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
    167 	hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    168 	hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    169 	hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    170 
    171 	mtspr(SPR_MAS0, saved_mas0);
    172 	wrtee(msr);	/* restore interrupts */
    173 
    174 	return hwtlb;
    175 }
    176 
    177 static inline void
    178 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
    179 {
    180 	const register_t msr = wrtee(0);
    181 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    182 
    183 	/*
    184 	 * Need to always write MAS0 and MAS1
    185 	 */
    186 	mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    187 	mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    188 
    189 	/*
    190 	 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
    191 	 */
    192 	if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
    193 	    || (hwtlb.hwtlb_mas1 & MAS1_V)) {
    194 		mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    195 	}
    196 	/*
    197 	 * Only need to write the RPN/prot if we are dealing with a valid
    198 	 * mapping.
    199 	 */
    200 	if (hwtlb.hwtlb_mas1 & MAS1_V) {
    201 		mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    202 	}
    203 
    204 #if 0
    205 	printf("%s->[%x,%x,%x,%x]\n",
    206 	    __func__,
    207 	    hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
    208 	    hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    209 #endif
    210 	__asm volatile("tlbwe");
    211 	if (needs_sync) {
    212 		__asm volatile("tlbsync");
    213 		__asm volatile("isync");
    214 	}
    215 
    216 	mtspr(SPR_MAS0, saved_mas0);
    217 	wrtee(msr);
    218 }
    219 
    220 static struct e500_hwtlb
    221 tlb_to_hwtlb(const struct e500_tlb tlb)
    222 {
    223 	struct e500_hwtlb hwtlb;
    224 
    225 	KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
    226 	KASSERT(tlb.tlb_size != 0);
    227 	KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
    228 	const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
    229 	if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
    230 		hwtlb.hwtlb_mas0 = 0;
    231 		hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
    232 		/*
    233 		 * A non-zero ASID means this is a user page so mark it as
    234 		 * being in the user's address space.
    235 		 */
    236 		if (tlb.tlb_asid) {
    237 			hwtlb.hwtlb_mas1 |= MAS1_TS
    238 			    | MASX_TID_MAKE(tlb.tlb_asid);
    239 			hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
    240 			    | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
    241 			KASSERT(prot_mask & PTE_xR);
    242 			KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
    243 			CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
    244 			CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
    245 		} else {
    246 			hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    247 		}
    248 		if (tlb.tlb_pte & PTE_UNMODIFIED)
    249 			hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
    250 		if (tlb.tlb_pte & PTE_UNSYNCED)
    251 			hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
    252 	} else {
    253 		KASSERT(tlb.tlb_asid == 0);
    254 		KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
    255 		u_int cntlz = __builtin_clz(tlb.tlb_size);
    256 		KASSERT(cntlz & 1);
    257 		KASSERT(cntlz <= 19);
    258 		hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
    259 		/*
    260 		 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
    261 		 * allowed.  So 1K would be 0x00000400 giving 21 leading zero
    262 		 * bits.  Subtracting the leading number of zero bits from 21
    263 		 * and dividing by 2 gives us the number that the MMU wants.
    264 		 */
    265 		hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
    266 		    | MAS1_IPROT | MAS1_V;
    267 		hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    268 	}
    269 	/* We are done with MAS1, on to MAS2 ... */
    270 	hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
    271 	hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
    272 
    273 	return hwtlb;
    274 }
    275 
    276 static int
    277 e500_alloc_tlb1_entry(void)
    278 {
    279 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    280 
    281 	if (tlb1->tlb1_numfree == 0)
    282 		return -1;
    283 	const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
    284 	KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
    285 	tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
    286 	    MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
    287 	return slot;
    288 }
    289 
    290 static void
    291 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
    292 {
    293 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    294 	KASSERT(slot < tlb1->tlb1_numentries);
    295 	KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
    296 
    297 	KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
    298 	xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
    299 	hwtlb_write(xtlb->e_hwtlb, needs_sync);
    300 
    301 	const register_t msr = wrtee(0);
    302 	tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
    303 	wrtee(msr);
    304 }
    305 
    306 static void e500_tlb_set_asid(uint32_t asid)
    307 {
    308 	mtspr(SPR_PID0, asid);
    309 }
    310 
    311 static void e500_tlb_invalidate_all(void)
    312 {
    313 	/*
    314 	 * This does a flash invalidate of all entries in TLB0.
    315 	 * We don't touch TLB1 since we don't expect those to be volatile.
    316 	 */
    317 #if 1
    318 	__asm volatile("tlbivax\t0, %0" :: "b"(4));	/* INV_ALL */
    319 #else
    320 	mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
    321 	while (mfspr(SPR_MMUCSR0) != 0)
    322 		;
    323 #endif
    324 }
    325 
    326 static void
    327 e500_tlb_invalidate_globals(void)
    328 {
    329 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    330 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    331 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    332 	const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
    333 	const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
    334 	const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
    335 	const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
    336 
    337 	const register_t msr = wrtee(0);
    338 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    339 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    340 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    341 			mtspr(SPR_MAS2, epn);
    342 			__asm volatile("tlbre");
    343 			uint32_t mas1 = mfspr(SPR_MAS1);
    344 
    345 			/*
    346 			 * Make sure this is a valid kernel entry first.
    347 			 */
    348 			if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
    349 				continue;
    350 
    351 			/*
    352 			 * We have a valid kernel TLB entry.  But if it matches
    353 			 * the stack we are currently running on, it would
    354 			 * unwise to invalidate it.  First see if the epn
    355 			 * overlaps the stack.  If it does then get the
    356 			 * VA and see if it really is part of the stack.
    357 			 */
    358 			if (epn_kstack_lo < epn_kstack_hi
    359 			    ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
    360 			    : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
    361 				const uint32_t mas2_epn =
    362 				    mfspr(SPR_MAS2) & MAS2_EPN;
    363 				if (kstack_lo <= mas2_epn
    364 				    && mas2_epn <= kstack_hi)
    365 					continue;
    366 			}
    367 			mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    368 			__asm volatile("tlbwe");
    369 		}
    370 	}
    371 	__asm volatile("isync");
    372 	wrtee(msr);
    373 }
    374 
    375 static void
    376 e500_tlb_invalidate_asids(uint32_t asid_lo, uint32_t asid_hi)
    377 {
    378 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    379 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    380 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    381 
    382 	asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
    383 	asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
    384 
    385 	const register_t msr = wrtee(0);
    386 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    387 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    388 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    389 			mtspr(SPR_MAS2, epn);
    390 			__asm volatile("tlbre");
    391 			const uint32_t mas1 = mfspr(SPR_MAS1);
    392 			/*
    393 			 * If this is a valid entry for AS space 1 and
    394 			 * its asid matches the constraints of the caller,
    395 			 * clear its valid bit.
    396 			 */
    397 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
    398 			    && asid_lo <= (mas1 & MAS1_TID)
    399 			    && (mas1 & MAS1_TID) < asid_hi) {
    400 				mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    401 #if 0
    402 				printf("%s[%zu,%zu]->[%x]\n",
    403 				    __func__, assoc, epn, mas1);
    404 #endif
    405 				__asm volatile("tlbwe");
    406 			}
    407 		}
    408 	}
    409 	__asm volatile("isync");
    410 	wrtee(msr);
    411 }
    412 
    413 static u_int
    414 e500_tlb_record_asids(u_long *bitmap, uint32_t start_slot)
    415 {
    416 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    417 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    418 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    419 	const size_t nbits = 8 * sizeof(bitmap[0]);
    420 	u_int found = 0;
    421 
    422 	const register_t msr = wrtee(0);
    423 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    424 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    425 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    426 			mtspr(SPR_MAS2, epn);
    427 			__asm volatile("tlbre");
    428 			const uint32_t mas1 = mfspr(SPR_MAS1);
    429 			/*
    430 			 * If this is a valid entry for AS space 1 and
    431 			 * its asid matches the constraints of the caller,
    432 			 * clear its valid bit.
    433 			 */
    434 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
    435 				const uint32_t asid = MASX_TID_GET(mas1);
    436 				const u_int i = asid / nbits;
    437 				const u_long mask = 1UL << (asid & (nbits - 1));
    438 				if ((bitmap[i] & mask) == 0) {
    439 					bitmap[i] |= mask;
    440 					found++;
    441 				}
    442 			}
    443 		}
    444 	}
    445 	wrtee(msr);
    446 
    447 	return found;
    448 }
    449 
    450 static void
    451 e500_tlb_invalidate_addr(vaddr_t va, uint32_t asid)
    452 {
    453 	KASSERT((va & PAGE_MASK) == 0);
    454 	/*
    455 	 * Bits 60 & 61 have meaning
    456 	 */
    457 	__asm volatile("tlbivax\t0, %0" :: "b"(va));
    458 	__asm volatile("tlbsync");
    459 	__asm volatile("tlbsync");
    460 }
    461 
    462 static bool
    463 e500_tlb_update_addr(vaddr_t va, uint32_t asid, uint32_t pte, bool insert)
    464 {
    465 	struct e500_hwtlb hwtlb = tlb_to_hwtlb(
    466 	    (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
    467 		.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
    468 
    469 	register_t msr = wrtee(0);
    470 	mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
    471 	__asm volatile("tlbsx 0, %0" :: "b"(va));
    472 	register_t mas1 = mfspr(SPR_MAS1);
    473 	if ((mas1 & MAS1_V) == 0) {
    474 		if (!insert) {
    475 			wrtee(msr);
    476 #if 0
    477 			printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
    478 			    __func__, va, asid, pte, insert);
    479 #endif
    480 			return false;
    481 		}
    482 		mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    483 	}
    484 	mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    485 	mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    486 	__asm volatile("tlbwe");
    487 	if (asid == 0)
    488 		__asm volatile("isync");
    489 	wrtee(msr);
    490 #if 0
    491 	if (asid)
    492 	printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
    493 	    __func__, va, asid, pte, insert,
    494 	    hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    495 #endif
    496 	return (mas1 & MAS1_V) != 0;
    497 }
    498 
    499 static void
    500 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
    501 {
    502 }
    503 
    504 static void
    505 e500_tlb_dump(void (*pr)(const char *, ...))
    506 {
    507 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    508 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    509 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    510 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    511 	size_t valid = 0;
    512 
    513 	if (pr == NULL)
    514 		pr = printf;
    515 
    516 	const register_t msr = wrtee(0);
    517 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    518 		struct e500_hwtlb hwtlb;
    519 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    520 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    521 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    522 			mtspr(SPR_MAS2, epn);
    523 			__asm volatile("tlbre");
    524 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    525 			/*
    526 			 * If this is a valid entry for AS space 1 and
    527 			 * its asid matches the constraints of the caller,
    528 			 * clear its valid bit.
    529 			 */
    530 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    531 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    532 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    533 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    534 				(*pr)("[%zu,%zu]->[%x,%x,%x]",
    535 				    assoc, atop(epn),
    536 				    hwtlb.hwtlb_mas1,
    537 				    hwtlb.hwtlb_mas2,
    538 				    hwtlb.hwtlb_mas3);
    539 				(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
    540 				    tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
    541 				(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
    542 				    tlb.tlb_pte & PTE_RPN_MASK,
    543 				    tlb.tlb_pte & PTE_xR ? "R" : "",
    544 				    tlb.tlb_pte & PTE_xW ? "W" : "",
    545 				    tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
    546 				    tlb.tlb_pte & PTE_xX ? "X" : "",
    547 				    tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
    548 				    tlb.tlb_pte & PTE_W ? "W" : "",
    549 				    tlb.tlb_pte & PTE_I ? "I" : "",
    550 				    tlb.tlb_pte & PTE_M ? "M" : "",
    551 				    tlb.tlb_pte & PTE_G ? "G" : "",
    552 				    tlb.tlb_pte & PTE_E ? "E" : "");
    553 				valid++;
    554 			}
    555 		}
    556 	}
    557 	mtspr(SPR_MAS0, saved_mas0);
    558 	wrtee(msr);
    559 	(*pr)("%s: %zu valid entries\n", __func__, valid);
    560 }
    561 
    562 static void
    563 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
    564 {
    565 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    566 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    567 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    568 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    569 
    570 	const register_t msr = wrtee(0);
    571 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    572 		struct e500_hwtlb hwtlb;
    573 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    574 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    575 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    576 			mtspr(SPR_MAS2, epn);
    577 			__asm volatile("tlbre");
    578 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    579 			/*
    580 			 * If this is a valid entry for AS space 1 and
    581 			 * its asid matches the constraints of the caller,
    582 			 * clear its valid bit.
    583 			 */
    584 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    585 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    586 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    587 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    588 				if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
    589 				    tlb.tlb_pte))
    590 					break;
    591 			}
    592 		}
    593 	}
    594 	mtspr(SPR_MAS0, saved_mas0);
    595 	wrtee(msr);
    596 }
    597 
    598 static struct e500_xtlb *
    599 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
    600 {
    601 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    602 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    603 
    604 	/*
    605 	 * See if we have a TLB entry for the pa.
    606 	 */
    607 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    608 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    609 		    && xtlb->e_tlb.tlb_va <= va
    610 		    && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
    611 			if (slotp != NULL)
    612 				*slotp = i;
    613 			return xtlb;
    614 		}
    615 	}
    616 
    617 	return NULL;
    618 }
    619 
    620 static struct e500_xtlb *
    621 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
    622 {
    623 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    624 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    625 
    626 	/*
    627 	 * See if we have a TLB entry for the pa.
    628 	 */
    629 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    630 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    631 		    && xtlb->e_tlb.tlb_va < va + len
    632 		    && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
    633 			return xtlb;
    634 		}
    635 	}
    636 
    637 	return NULL;
    638 }
    639 
    640 static void *
    641 e500_tlb_mapiodev(paddr_t pa, psize_t len)
    642 {
    643 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
    644 
    645 	/*
    646 	 * See if we have a TLB entry for the pa.  If completely falls within
    647 	 * mark the reference and return the pa.
    648 	 */
    649 	if (xtlb && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
    650 		xtlb->e_refcnt++;
    651 		return (void *) pa;
    652 	}
    653 	return NULL;
    654 }
    655 
    656 static void
    657 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
    658 {
    659 	if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
    660 		struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
    661 		if (xtlb)
    662 			xtlb->e_refcnt--;
    663 	}
    664 }
    665 
    666 static int
    667 e500_tlb_ioreserve(vaddr_t va, vsize_t len, uint32_t pte)
    668 {
    669 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    670 	struct e500_xtlb *xtlb;
    671 
    672 	KASSERT(len & 0x55555000);
    673 	KASSERT((len & ~0x55555000) == 0);
    674 	KASSERT(len >= PAGE_SIZE);
    675 	KASSERT((len & (len - 1)) == 0);
    676 	KASSERT((va & (len - 1)) == 0);
    677 	KASSERT((pte & (len - 1)) == 0);
    678 
    679 	if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
    680 		if (va < xtlb->e_tlb.tlb_va
    681 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
    682 		    || va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
    683 			return EBUSY;
    684 		xtlb->e_refcnt++;
    685 		return 0;
    686 	}
    687 
    688 	const int slot = e500_alloc_tlb1_entry();
    689 	if (slot < 0)
    690 		return ENOMEM;
    691 
    692 	xtlb = &tlb1->tlb1_entries[slot];
    693 	xtlb->e_tlb.tlb_va = va;
    694 	xtlb->e_tlb.tlb_size = len;
    695 	xtlb->e_tlb.tlb_pte = pte;
    696 	xtlb->e_tlb.tlb_asid = KERNEL_PID;
    697 
    698 	xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
    699 	xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
    700 	hwtlb_write(xtlb->e_hwtlb, true);
    701 	return 0;
    702 }
    703 
    704 static int
    705 e500_tlb_iorelease(vaddr_t va)
    706 {
    707 	u_int slot;
    708 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
    709 
    710 	if (xtlb == NULL)
    711 		return ENOENT;
    712 
    713 	if (xtlb->e_refcnt)
    714 		return EBUSY;
    715 
    716 	e500_free_tlb1_entry(xtlb, slot, true);
    717 
    718 	return 0;
    719 }
    720 
    721 static u_int
    722 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
    723 {
    724 	u_int slotmask = 0;
    725 	u_int slots = 0, nextslot = 0;
    726 	KASSERT(tlb1->tlb1_numfree > 1);
    727 	KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
    728 	for (paddr_t lastaddr = memstart; 0 < memsize; ) {
    729 		u_int cnt = __builtin_clz(memsize);
    730 		psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
    731 		slots += memsize / size;
    732 		if (slots > 4)
    733 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    734 			    __func__, __LINE__, memsize, "too fragmented");
    735 		if (slots > tlb1->tlb1_numfree - 1)
    736 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    737 			    __func__, __LINE__, memsize,
    738 			    "insufficent TLB entries");
    739 		for (; nextslot < slots; nextslot++) {
    740 			const u_int freeslot = e500_alloc_tlb1_entry();
    741 			struct e500_xtlb * const xtlb =
    742 			    &tlb1->tlb1_entries[freeslot];
    743 			xtlb->e_tlb.tlb_asid = KERNEL_PID;
    744 			xtlb->e_tlb.tlb_size = size;
    745 			xtlb->e_tlb.tlb_va = lastaddr;
    746 			xtlb->e_tlb.tlb_pte = lastaddr
    747 			    | PTE_M | PTE_xX | PTE_xW | PTE_xR;
    748 			lastaddr += size;
    749 			memsize -= size;
    750 			slotmask |= 1 << (31 - freeslot); /* clz friendly */
    751 		}
    752 	}
    753 
    754 	return nextslot;
    755 }
    756 static const struct tlb_md_ops e500_tlb_ops = {
    757 	.md_tlb_set_asid = e500_tlb_set_asid,
    758 	.md_tlb_invalidate_all = e500_tlb_invalidate_all,
    759 	.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
    760 	.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
    761 	.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
    762 	.md_tlb_update_addr = e500_tlb_update_addr,
    763 	.md_tlb_record_asids = e500_tlb_record_asids,
    764 	.md_tlb_read_entry = e500_tlb_read_entry,
    765 	.md_tlb_mapiodev = e500_tlb_mapiodev,
    766 	.md_tlb_unmapiodev = e500_tlb_unmapiodev,
    767 	.md_tlb_ioreserve = e500_tlb_ioreserve,
    768 	.md_tlb_iorelease = e500_tlb_iorelease,
    769 	.md_tlb_dump = e500_tlb_dump,
    770 	.md_tlb_walk = e500_tlb_walk,
    771 };
    772 
    773 void
    774 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
    775 {
    776 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    777 
    778 #if 0
    779 	register_t mmucfg = mfspr(SPR_MMUCFG);
    780 	register_t mas4 = mfspr(SPR_MAS4);
    781 #endif
    782 
    783 	const uint32_t tlb1cfg = mftlb1cfg();
    784 	tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
    785 	KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
    786 	/*
    787 	 * Limit maxsize to 1G since 4G isn't really useful to us.
    788 	 */
    789 	tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
    790 	tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
    791 
    792 #ifdef VERBOSE_INITPPC
    793 	printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
    794 	    tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
    795 	    tlb1->tlb1_maxsize >> 10);
    796 #endif
    797 
    798 	/*
    799 	 * Let's see what's in TLB1 and we need to invalidate any entry that
    800 	 * would fit within the kernel's mapped address space.
    801 	 */
    802 	psize_t memmapped = 0;
    803 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    804 		struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    805 
    806 		xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
    807 
    808 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
    809 			tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
    810 #ifdef VERBOSE_INITPPC
    811 			printf(" TLB1[%u]=<unused>", i);
    812 #endif
    813 			continue;
    814 		}
    815 
    816 		xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
    817 #ifdef VERBOSE_INITPPC
    818 		printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
    819 		    i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
    820 		    xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
    821 #endif
    822 		if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
    823 		    && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
    824 		    || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
    825 		        && VM_MIN_KERNEL_ADDRESS <
    826 			   xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
    827 #ifdef VERBOSE_INITPPC
    828 			printf("free");
    829 #endif
    830 			e500_free_tlb1_entry(xtlb, i, false);
    831 #ifdef VERBOSE_INITPPC
    832 			printf("d");
    833 #endif
    834 			continue;
    835 		}
    836 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
    837 			xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
    838 			hwtlb_write(xtlb->e_hwtlb, false);
    839 #ifdef VERBOSE_INITPPC
    840 			printf("+iprot");
    841 #endif
    842 		}
    843 		if (xtlb->e_tlb.tlb_pte & PTE_I)
    844 			continue;
    845 
    846 		if (xtlb->e_tlb.tlb_va == 0
    847 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
    848 			memmapped += xtlb->e_tlb.tlb_size;
    849 		}
    850 	}
    851 
    852 	cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
    853 
    854 	if (__predict_false(memmapped < memsize)) {
    855 		/*
    856 		 * Let's see how many TLB entries are needed to map memory.
    857 		 */
    858 		u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
    859 
    860 		/*
    861 		 * To map main memory into the TLB, we need to flush any
    862 		 * existing entries from the TLB that overlap the virtual
    863 		 * address space needed to map physical memory.  That may
    864 		 * include the entries for the pages currently used by the
    865 		 * stack or that we are executing.  So to avoid problems, we
    866 		 * are going to temporarily map the kernel and stack into AS 1,
    867 		 * switch to it, and clear out the TLB entries from AS 0,
    868 		 * install the new TLB entries to map memory, and then switch
    869 		 * back to AS 0 and free the temp entry used for AS1.
    870 		 */
    871 		u_int b = __builtin_clz(endkernel);
    872 
    873 		/*
    874 		 * If the kernel doesn't end on a clean power of 2, we need
    875 		 * to round the size up (by decrementing the number of leading
    876 		 * zero bits).  If the size isn't a power of 4KB, decrement
    877 		 * again to make it one.
    878 		 */
    879 		if (endkernel & (endkernel - 1))
    880 			b--;
    881 		if ((b & 1) == 0)
    882 			b--;
    883 
    884 		/*
    885 		 * Create a TLB1 mapping for the kernel in AS1.
    886 		 */
    887 		const u_int kslot = e500_alloc_tlb1_entry();
    888 		struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
    889 		kxtlb->e_tlb.tlb_va = 0;
    890 		kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
    891 		kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
    892 		kxtlb->e_tlb.tlb_asid = KERNEL_PID;
    893 
    894 		kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
    895 		kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
    896 		kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
    897 		hwtlb_write(kxtlb->e_hwtlb, true);
    898 
    899 		/*
    900 		 * Now that we have a TLB mapping in AS1 for the kernel and its
    901 		 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
    902 		 */
    903 		const register_t saved_msr = mfmsr();
    904 		mtmsr(saved_msr | PSL_DS | PSL_IS);
    905 		__asm volatile("isync");
    906 
    907 		/*
    908 		 *** Invalidate all the TLB0 entries.
    909 		 */
    910 		e500_tlb_invalidate_all();
    911 
    912 		/*
    913 		 *** Now let's see if we have any entries in TLB1 that would
    914 		 *** overlap the ones we are about to install.  If so, nuke 'em.
    915 		 */
    916 		for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    917 			struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    918 			struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
    919 			if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
    920 			    && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
    921 				e500_free_tlb1_entry(xtlb, i, false);
    922 			}
    923 		}
    924 
    925 		/*
    926 		 *** Now we can add the TLB entries that will map physical
    927 		 *** memory.  If bit 0 [MSB] in slotmask is set, then tlb
    928 		 *** entry 0 contains a mapping for physical memory...
    929 		 */
    930 		struct e500_xtlb *entries = tlb1->tlb1_entries;
    931 		while (slotmask != 0) {
    932 			const u_int slot = __builtin_clz(slotmask);
    933 			hwtlb_write(entries[slot].e_hwtlb, false);
    934 			entries += slot + 1;
    935 			slotmask <<= slot + 1;
    936 		}
    937 
    938 		/*
    939 		 *** Synchronize the TLB and the instruction stream.
    940 		 */
    941 		__asm volatile("tlbsync");
    942 		__asm volatile("isync");
    943 
    944 		/*
    945 		 *** Switch back to AS 0.
    946 		 */
    947 		mtmsr(saved_msr);
    948 		__asm volatile("isync");
    949 
    950 		/*
    951 		 * Free the temporary TLB1 entry.
    952 		 */
    953 		e500_free_tlb1_entry(kxtlb, kslot, true);
    954 	}
    955 
    956 	/*
    957 	 * Finally set the MAS4 defaults.
    958 	 */
    959 	mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
    960 
    961 	/*
    962 	 * Invalidate all the TLB0 entries.
    963 	 */
    964 	e500_tlb_invalidate_all();
    965 }
    966