Home | History | Annotate | Line # | Download | only in booke
e500_tlb.c revision 1.3
      1 /*	$NetBSD: e500_tlb.c,v 1.3 2011/06/05 16:52:24 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
      8  * Agency and which was developed by Matt Thomas of 3am Software Foundry.
      9  *
     10  * This material is based upon work supported by the Defense Advanced Research
     11  * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
     12  * Contract No. N66001-09-C-2073.
     13  * Approved for Public Release, Distribution Unlimited
     14  *
     15  * Redistribution and use in source and binary forms, with or without
     16  * modification, are permitted provided that the following conditions
     17  * are met:
     18  * 1. Redistributions of source code must retain the above copyright
     19  *    notice, this list of conditions and the following disclaimer.
     20  * 2. Redistributions in binary form must reproduce the above copyright
     21  *    notice, this list of conditions and the following disclaimer in the
     22  *    documentation and/or other materials provided with the distribution.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 
     39 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.3 2011/06/05 16:52:24 matt Exp $");
     40 
     41 #include <sys/param.h>
     42 
     43 #include <uvm/uvm_extern.h>
     44 
     45 #include <powerpc/spr.h>
     46 #include <powerpc/booke/spr.h>
     47 #include <powerpc/booke/cpuvar.h>
     48 #include <powerpc/booke/e500var.h>
     49 #include <powerpc/booke/pmap.h>
     50 
     51 struct e500_tlb {
     52 	vaddr_t tlb_va;
     53 	uint32_t tlb_pte;
     54 	uint32_t tlb_asid;
     55 	vsize_t tlb_size;
     56 };
     57 
     58 struct e500_hwtlb {
     59 	uint32_t hwtlb_mas0;
     60 	uint32_t hwtlb_mas1;
     61 	uint32_t hwtlb_mas2;
     62 	uint32_t hwtlb_mas3;
     63 };
     64 
     65 struct e500_xtlb {
     66 	struct e500_tlb e_tlb;
     67 	struct e500_hwtlb e_hwtlb;
     68 	u_long e_refcnt;
     69 };
     70 
     71 static struct e500_tlb1 {
     72 	uint32_t tlb1_maxsize;
     73 	uint32_t tlb1_minsize;
     74 	u_int tlb1_numentries;
     75 	u_int tlb1_numfree;
     76 	u_int tlb1_freelist[32];
     77 	struct e500_xtlb tlb1_entries[32];
     78 } e500_tlb1;
     79 
     80 static inline register_t mftlb0cfg(void) __pure;
     81 static inline register_t mftlb1cfg(void) __pure;
     82 
     83 static inline register_t
     84 mftlb0cfg(void)
     85 {
     86 	register_t tlb0cfg;
     87 	__asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
     88 	return tlb0cfg;
     89 }
     90 
     91 static inline register_t
     92 mftlb1cfg(void)
     93 {
     94 	register_t tlb1cfg;
     95 	__asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
     96 	return tlb1cfg;
     97 }
     98 
     99 static struct e500_tlb
    100 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
    101 {
    102 	struct e500_tlb tlb;
    103 	register_t prot_mask;
    104 	u_int prot_shift;
    105 
    106 	tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
    107 	tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
    108 	tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
    109 	tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
    110 	    | (hwtlb.hwtlb_mas3 & MAS3_RPN);
    111 	if (hwtlb.hwtlb_mas1 & MAS1_TS) {
    112 		prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
    113 		prot_shift = PTE_RWX_SHIFT - 1;
    114 	} else {
    115 		prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
    116 		prot_shift = PTE_RWX_SHIFT;
    117 	}
    118 	tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
    119 	return tlb;
    120 }
    121 
    122 static inline struct e500_hwtlb
    123 hwtlb_read(uint32_t mas0, u_int slot)
    124 {
    125 	struct e500_hwtlb hwtlb;
    126 	register_t tlbcfg;
    127 
    128 	if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
    129 		tlbcfg = mftlb0cfg();
    130 	} else if (mas0 == MAS0_TLBSEL_TLB1) {
    131 		tlbcfg = mftlb1cfg();
    132 	} else {
    133 		panic("%s:%d: unexpected MAS0 %#" PRIx32,
    134 		    __func__, __LINE__, mas0);
    135 	}
    136 
    137 	/*
    138 	 * ESEL is the way we want to look up.
    139 	 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
    140 	 * fully associative, the entire slot is placed into ESEL.  If tlbassoc
    141 	 * is less then the number of tlb entries, the slot is split in two
    142 	 * fields.  Since the TLB is M rows by N ways, the lowers bits are for
    143 	 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
    144 	 */
    145 	const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
    146 	const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
    147 	const u_int esel_shift =
    148 	    __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
    149 
    150 	/*
    151 	 * Disable interrupts since we don't want anyone else mucking with
    152 	 * the MMU Assist registers
    153 	 */
    154 	const register_t msr = wrtee(0);
    155 	const register_t saved_mas0 = mfspr(SPR_MAS0);
    156 	mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
    157 
    158 	if (__predict_true(tlbassoc > tlbentries))
    159 		mtspr(SPR_MAS2, slot << PAGE_SHIFT);
    160 
    161 	/*
    162 	 * Now select the entry and grab its contents.
    163 	 */
    164 	__asm volatile("tlbre");
    165 
    166 	hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
    167 	hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    168 	hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    169 	hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    170 
    171 	mtspr(SPR_MAS0, saved_mas0);
    172 	wrtee(msr);	/* restore interrupts */
    173 
    174 	return hwtlb;
    175 }
    176 
    177 static inline void
    178 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
    179 {
    180 	const register_t msr = wrtee(0);
    181 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    182 
    183 	/*
    184 	 * Need to always write MAS0 and MAS1
    185 	 */
    186 	mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    187 	mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    188 
    189 	/*
    190 	 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
    191 	 */
    192 	if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
    193 	    || (hwtlb.hwtlb_mas1 & MAS1_V)) {
    194 		mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    195 	}
    196 	/*
    197 	 * Only need to write the RPN/prot if we are dealing with a valid
    198 	 * mapping.
    199 	 */
    200 	if (hwtlb.hwtlb_mas1 & MAS1_V) {
    201 		mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    202 	}
    203 
    204 #if 0
    205 	printf("%s->[%x,%x,%x,%x]\n",
    206 	    __func__,
    207 	    hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
    208 	    hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    209 #endif
    210 	__asm volatile("tlbwe");
    211 	if (needs_sync) {
    212 		__asm volatile("tlbsync");
    213 		__asm volatile("isync");
    214 	}
    215 
    216 	mtspr(SPR_MAS0, saved_mas0);
    217 	wrtee(msr);
    218 }
    219 
    220 static struct e500_hwtlb
    221 tlb_to_hwtlb(const struct e500_tlb tlb)
    222 {
    223 	struct e500_hwtlb hwtlb;
    224 
    225 	KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
    226 	KASSERT(tlb.tlb_size != 0);
    227 	KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
    228 	const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
    229 	if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
    230 		hwtlb.hwtlb_mas0 = 0;
    231 		hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
    232 		/*
    233 		 * A non-zero ASID means this is a user page so mark it as
    234 		 * being in the user's address space.
    235 		 */
    236 		if (tlb.tlb_asid) {
    237 			hwtlb.hwtlb_mas1 |= MAS1_TS
    238 			    | MASX_TID_MAKE(tlb.tlb_asid);
    239 			hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
    240 			    | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
    241 			KASSERT(prot_mask & PTE_xR);
    242 			KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
    243 			CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
    244 			CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
    245 		} else {
    246 			hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    247 		}
    248 		if (tlb.tlb_pte & PTE_UNMODIFIED)
    249 			hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
    250 		if (tlb.tlb_pte & PTE_UNSYNCED)
    251 			hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
    252 	} else {
    253 		KASSERT(tlb.tlb_asid == 0);
    254 		KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
    255 		u_int cntlz = __builtin_clz(tlb.tlb_size);
    256 		KASSERT(cntlz & 1);
    257 		KASSERT(cntlz <= 19);
    258 		hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
    259 		/*
    260 		 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
    261 		 * allowed.  So 1K would be 0x00000400 giving 21 leading zero
    262 		 * bits.  Subtracting the leading number of zero bits from 21
    263 		 * and dividing by 2 gives us the number that the MMU wants.
    264 		 */
    265 		hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
    266 		    | MAS1_IPROT | MAS1_V;
    267 		hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
    268 	}
    269 	/* We are done with MAS1, on to MAS2 ... */
    270 	hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
    271 	hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
    272 
    273 	return hwtlb;
    274 }
    275 
    276 void *
    277 e500_tlb1_fetch(size_t slot)
    278 {
    279 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    280 
    281 	return &tlb1->tlb1_entries[slot].e_hwtlb;
    282 }
    283 
    284 void
    285 e500_tlb1_sync(void)
    286 {
    287 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    288 	for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
    289 		const struct e500_hwtlb * const new_hwtlb =
    290 		    &tlb1->tlb1_entries[slot].e_hwtlb;
    291 		const struct e500_hwtlb old_hwtlb =
    292 		    hwtlb_read(MAS0_TLBSEL_TLB1, slot);
    293 #define CHANGED(n,o,f)	((n)->f != (o).f)
    294 		bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
    295 		bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
    296 		bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
    297 #undef CHANGED
    298 		bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
    299 		bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
    300 		if ((new_valid_p || old_valid_p)
    301 		    && (mas1_changed_p
    302 			|| (new_valid_p
    303 			    && (mas2_changed_p || mas3_changed_p))))
    304 			hwtlb_write(*new_hwtlb, true);
    305 	}
    306 }
    307 
    308 static int
    309 e500_alloc_tlb1_entry(void)
    310 {
    311 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    312 
    313 	if (tlb1->tlb1_numfree == 0)
    314 		return -1;
    315 	const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
    316 	KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
    317 	tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
    318 	    MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
    319 	return slot;
    320 }
    321 
    322 static void
    323 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
    324 {
    325 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    326 	KASSERT(slot < tlb1->tlb1_numentries);
    327 	KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
    328 
    329 	KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
    330 	xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
    331 	hwtlb_write(xtlb->e_hwtlb, needs_sync);
    332 
    333 	const register_t msr = wrtee(0);
    334 	tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
    335 	wrtee(msr);
    336 }
    337 
    338 static void e500_tlb_set_asid(uint32_t asid)
    339 {
    340 	mtspr(SPR_PID0, asid);
    341 }
    342 
    343 static void e500_tlb_invalidate_all(void)
    344 {
    345 	/*
    346 	 * This does a flash invalidate of all entries in TLB0.
    347 	 * We don't touch TLB1 since we don't expect those to be volatile.
    348 	 */
    349 #if 1
    350 	__asm volatile("tlbivax\t0, %0" :: "b"(4));	/* INV_ALL */
    351 #else
    352 	mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
    353 	while (mfspr(SPR_MMUCSR0) != 0)
    354 		;
    355 #endif
    356 }
    357 
    358 static void
    359 e500_tlb_invalidate_globals(void)
    360 {
    361 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    362 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    363 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    364 	const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
    365 	const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
    366 	const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
    367 	const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
    368 
    369 	const register_t msr = wrtee(0);
    370 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    371 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    372 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    373 			mtspr(SPR_MAS2, epn);
    374 			__asm volatile("tlbre");
    375 			uint32_t mas1 = mfspr(SPR_MAS1);
    376 
    377 			/*
    378 			 * Make sure this is a valid kernel entry first.
    379 			 */
    380 			if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
    381 				continue;
    382 
    383 			/*
    384 			 * We have a valid kernel TLB entry.  But if it matches
    385 			 * the stack we are currently running on, it would
    386 			 * unwise to invalidate it.  First see if the epn
    387 			 * overlaps the stack.  If it does then get the
    388 			 * VA and see if it really is part of the stack.
    389 			 */
    390 			if (epn_kstack_lo < epn_kstack_hi
    391 			    ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
    392 			    : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
    393 				const uint32_t mas2_epn =
    394 				    mfspr(SPR_MAS2) & MAS2_EPN;
    395 				if (kstack_lo <= mas2_epn
    396 				    && mas2_epn <= kstack_hi)
    397 					continue;
    398 			}
    399 			mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    400 			__asm volatile("tlbwe");
    401 		}
    402 	}
    403 	__asm volatile("isync");
    404 	wrtee(msr);
    405 }
    406 
    407 static void
    408 e500_tlb_invalidate_asids(uint32_t asid_lo, uint32_t asid_hi)
    409 {
    410 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    411 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    412 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    413 
    414 	asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
    415 	asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
    416 
    417 	const register_t msr = wrtee(0);
    418 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    419 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    420 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    421 			mtspr(SPR_MAS2, epn);
    422 			__asm volatile("tlbre");
    423 			const uint32_t mas1 = mfspr(SPR_MAS1);
    424 			/*
    425 			 * If this is a valid entry for AS space 1 and
    426 			 * its asid matches the constraints of the caller,
    427 			 * clear its valid bit.
    428 			 */
    429 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
    430 			    && asid_lo <= (mas1 & MAS1_TID)
    431 			    && (mas1 & MAS1_TID) < asid_hi) {
    432 				mtspr(SPR_MAS1, mas1 ^ MAS1_V);
    433 #if 0
    434 				printf("%s[%zu,%zu]->[%x]\n",
    435 				    __func__, assoc, epn, mas1);
    436 #endif
    437 				__asm volatile("tlbwe");
    438 			}
    439 		}
    440 	}
    441 	__asm volatile("isync");
    442 	wrtee(msr);
    443 }
    444 
    445 static u_int
    446 e500_tlb_record_asids(u_long *bitmap, uint32_t start_slot)
    447 {
    448 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    449 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    450 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    451 	const size_t nbits = 8 * sizeof(bitmap[0]);
    452 	u_int found = 0;
    453 
    454 	const register_t msr = wrtee(0);
    455 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    456 		mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
    457 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    458 			mtspr(SPR_MAS2, epn);
    459 			__asm volatile("tlbre");
    460 			const uint32_t mas1 = mfspr(SPR_MAS1);
    461 			/*
    462 			 * If this is a valid entry for AS space 1 and
    463 			 * its asid matches the constraints of the caller,
    464 			 * clear its valid bit.
    465 			 */
    466 			if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
    467 				const uint32_t asid = MASX_TID_GET(mas1);
    468 				const u_int i = asid / nbits;
    469 				const u_long mask = 1UL << (asid & (nbits - 1));
    470 				if ((bitmap[i] & mask) == 0) {
    471 					bitmap[i] |= mask;
    472 					found++;
    473 				}
    474 			}
    475 		}
    476 	}
    477 	wrtee(msr);
    478 
    479 	return found;
    480 }
    481 
    482 static void
    483 e500_tlb_invalidate_addr(vaddr_t va, uint32_t asid)
    484 {
    485 	KASSERT((va & PAGE_MASK) == 0);
    486 	/*
    487 	 * Bits 60 & 61 have meaning
    488 	 */
    489 	__asm volatile("tlbivax\t0, %0" :: "b"(va));
    490 	__asm volatile("tlbsync");
    491 	__asm volatile("tlbsync");
    492 }
    493 
    494 static bool
    495 e500_tlb_update_addr(vaddr_t va, uint32_t asid, uint32_t pte, bool insert)
    496 {
    497 	struct e500_hwtlb hwtlb = tlb_to_hwtlb(
    498 	    (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
    499 		.tlb_size = PAGE_SIZE, .tlb_pte = pte,});
    500 
    501 	register_t msr = wrtee(0);
    502 	mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
    503 	__asm volatile("tlbsx 0, %0" :: "b"(va));
    504 	register_t mas1 = mfspr(SPR_MAS1);
    505 	if ((mas1 & MAS1_V) == 0) {
    506 		if (!insert) {
    507 			wrtee(msr);
    508 #if 0
    509 			printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
    510 			    __func__, va, asid, pte, insert);
    511 #endif
    512 			return false;
    513 		}
    514 		mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
    515 	}
    516 	mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
    517 	mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
    518 	__asm volatile("tlbwe");
    519 	if (asid == 0)
    520 		__asm volatile("isync");
    521 	wrtee(msr);
    522 #if 0
    523 	if (asid)
    524 	printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
    525 	    __func__, va, asid, pte, insert,
    526 	    hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
    527 #endif
    528 	return (mas1 & MAS1_V) != 0;
    529 }
    530 
    531 static void
    532 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
    533 {
    534 }
    535 
    536 static void
    537 e500_tlb_dump(void (*pr)(const char *, ...))
    538 {
    539 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    540 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    541 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    542 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    543 	size_t valid = 0;
    544 
    545 	if (pr == NULL)
    546 		pr = printf;
    547 
    548 	const register_t msr = wrtee(0);
    549 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    550 		struct e500_hwtlb hwtlb;
    551 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    552 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    553 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    554 			mtspr(SPR_MAS2, epn);
    555 			__asm volatile("tlbre");
    556 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    557 			/*
    558 			 * If this is a valid entry for AS space 1 and
    559 			 * its asid matches the constraints of the caller,
    560 			 * clear its valid bit.
    561 			 */
    562 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    563 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    564 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    565 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    566 				(*pr)("[%zu,%zu]->[%x,%x,%x]",
    567 				    assoc, atop(epn),
    568 				    hwtlb.hwtlb_mas1,
    569 				    hwtlb.hwtlb_mas2,
    570 				    hwtlb.hwtlb_mas3);
    571 				(*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
    572 				    tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
    573 				(*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
    574 				    tlb.tlb_pte & PTE_RPN_MASK,
    575 				    tlb.tlb_pte & PTE_xR ? "R" : "",
    576 				    tlb.tlb_pte & PTE_xW ? "W" : "",
    577 				    tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
    578 				    tlb.tlb_pte & PTE_xX ? "X" : "",
    579 				    tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
    580 				    tlb.tlb_pte & PTE_W ? "W" : "",
    581 				    tlb.tlb_pte & PTE_I ? "I" : "",
    582 				    tlb.tlb_pte & PTE_M ? "M" : "",
    583 				    tlb.tlb_pte & PTE_G ? "G" : "",
    584 				    tlb.tlb_pte & PTE_E ? "E" : "");
    585 				valid++;
    586 			}
    587 		}
    588 	}
    589 	mtspr(SPR_MAS0, saved_mas0);
    590 	wrtee(msr);
    591 	(*pr)("%s: %zu valid entries\n", __func__, valid);
    592 }
    593 
    594 static void
    595 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
    596 {
    597 	const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
    598 	const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
    599 	const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
    600 	const uint32_t saved_mas0 = mfspr(SPR_MAS0);
    601 
    602 	const register_t msr = wrtee(0);
    603 	for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
    604 		struct e500_hwtlb hwtlb;
    605 		hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
    606 		mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
    607 		for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
    608 			mtspr(SPR_MAS2, epn);
    609 			__asm volatile("tlbre");
    610 			hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
    611 			/*
    612 			 * If this is a valid entry for AS space 1 and
    613 			 * its asid matches the constraints of the caller,
    614 			 * clear its valid bit.
    615 			 */
    616 			if (hwtlb.hwtlb_mas1 & MAS1_V) {
    617 				hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
    618 				hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
    619 				struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
    620 				if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
    621 				    tlb.tlb_pte))
    622 					break;
    623 			}
    624 		}
    625 	}
    626 	mtspr(SPR_MAS0, saved_mas0);
    627 	wrtee(msr);
    628 }
    629 
    630 static struct e500_xtlb *
    631 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
    632 {
    633 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    634 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    635 
    636 	/*
    637 	 * See if we have a TLB entry for the pa.
    638 	 */
    639 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    640 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    641 		    && xtlb->e_tlb.tlb_va <= va
    642 		    && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
    643 			if (slotp != NULL)
    644 				*slotp = i;
    645 			return xtlb;
    646 		}
    647 	}
    648 
    649 	return NULL;
    650 }
    651 
    652 static struct e500_xtlb *
    653 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
    654 {
    655 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    656 	struct e500_xtlb *xtlb = tlb1->tlb1_entries;
    657 
    658 	/*
    659 	 * See if we have a TLB entry for the pa.
    660 	 */
    661 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
    662 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
    663 		    && xtlb->e_tlb.tlb_va < va + len
    664 		    && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
    665 			return xtlb;
    666 		}
    667 	}
    668 
    669 	return NULL;
    670 }
    671 
    672 static void *
    673 e500_tlb_mapiodev(paddr_t pa, psize_t len)
    674 {
    675 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
    676 
    677 	/*
    678 	 * See if we have a TLB entry for the pa.  If completely falls within
    679 	 * mark the reference and return the pa.
    680 	 */
    681 	if (xtlb && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
    682 		xtlb->e_refcnt++;
    683 		return (void *) pa;
    684 	}
    685 	return NULL;
    686 }
    687 
    688 static void
    689 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
    690 {
    691 	if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
    692 		struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
    693 		if (xtlb)
    694 			xtlb->e_refcnt--;
    695 	}
    696 }
    697 
    698 static int
    699 e500_tlb_ioreserve(vaddr_t va, vsize_t len, uint32_t pte)
    700 {
    701 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    702 	struct e500_xtlb *xtlb;
    703 
    704 	KASSERT(len & 0x55555000);
    705 	KASSERT((len & ~0x55555000) == 0);
    706 	KASSERT(len >= PAGE_SIZE);
    707 	KASSERT((len & (len - 1)) == 0);
    708 	KASSERT((va & (len - 1)) == 0);
    709 	KASSERT((pte & (len - 1)) == 0);
    710 
    711 	if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
    712 		if (va < xtlb->e_tlb.tlb_va
    713 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
    714 		    || va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
    715 			return EBUSY;
    716 		xtlb->e_refcnt++;
    717 		return 0;
    718 	}
    719 
    720 	const int slot = e500_alloc_tlb1_entry();
    721 	if (slot < 0)
    722 		return ENOMEM;
    723 
    724 	xtlb = &tlb1->tlb1_entries[slot];
    725 	xtlb->e_tlb.tlb_va = va;
    726 	xtlb->e_tlb.tlb_size = len;
    727 	xtlb->e_tlb.tlb_pte = pte;
    728 	xtlb->e_tlb.tlb_asid = KERNEL_PID;
    729 
    730 	xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
    731 	xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
    732 	hwtlb_write(xtlb->e_hwtlb, true);
    733 	return 0;
    734 }
    735 
    736 static int
    737 e500_tlb_iorelease(vaddr_t va)
    738 {
    739 	u_int slot;
    740 	struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
    741 
    742 	if (xtlb == NULL)
    743 		return ENOENT;
    744 
    745 	if (xtlb->e_refcnt)
    746 		return EBUSY;
    747 
    748 	e500_free_tlb1_entry(xtlb, slot, true);
    749 
    750 	return 0;
    751 }
    752 
    753 static u_int
    754 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
    755 {
    756 	u_int slotmask = 0;
    757 	u_int slots = 0, nextslot = 0;
    758 	KASSERT(tlb1->tlb1_numfree > 1);
    759 	KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
    760 	for (paddr_t lastaddr = memstart; 0 < memsize; ) {
    761 		u_int cnt = __builtin_clz(memsize);
    762 		psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
    763 		slots += memsize / size;
    764 		if (slots > 4)
    765 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    766 			    __func__, __LINE__, memsize, "too fragmented");
    767 		if (slots > tlb1->tlb1_numfree - 1)
    768 			panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
    769 			    __func__, __LINE__, memsize,
    770 			    "insufficent TLB entries");
    771 		for (; nextslot < slots; nextslot++) {
    772 			const u_int freeslot = e500_alloc_tlb1_entry();
    773 			struct e500_xtlb * const xtlb =
    774 			    &tlb1->tlb1_entries[freeslot];
    775 			xtlb->e_tlb.tlb_asid = KERNEL_PID;
    776 			xtlb->e_tlb.tlb_size = size;
    777 			xtlb->e_tlb.tlb_va = lastaddr;
    778 			xtlb->e_tlb.tlb_pte = lastaddr
    779 			    | PTE_M | PTE_xX | PTE_xW | PTE_xR;
    780 			lastaddr += size;
    781 			memsize -= size;
    782 			slotmask |= 1 << (31 - freeslot); /* clz friendly */
    783 		}
    784 	}
    785 
    786 	return nextslot;
    787 }
    788 static const struct tlb_md_ops e500_tlb_ops = {
    789 	.md_tlb_set_asid = e500_tlb_set_asid,
    790 	.md_tlb_invalidate_all = e500_tlb_invalidate_all,
    791 	.md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
    792 	.md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
    793 	.md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
    794 	.md_tlb_update_addr = e500_tlb_update_addr,
    795 	.md_tlb_record_asids = e500_tlb_record_asids,
    796 	.md_tlb_read_entry = e500_tlb_read_entry,
    797 	.md_tlb_mapiodev = e500_tlb_mapiodev,
    798 	.md_tlb_unmapiodev = e500_tlb_unmapiodev,
    799 	.md_tlb_ioreserve = e500_tlb_ioreserve,
    800 	.md_tlb_iorelease = e500_tlb_iorelease,
    801 	.md_tlb_dump = e500_tlb_dump,
    802 	.md_tlb_walk = e500_tlb_walk,
    803 };
    804 
    805 void
    806 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
    807 {
    808 	struct e500_tlb1 * const tlb1 = &e500_tlb1;
    809 
    810 #if 0
    811 	register_t mmucfg = mfspr(SPR_MMUCFG);
    812 	register_t mas4 = mfspr(SPR_MAS4);
    813 #endif
    814 
    815 	const uint32_t tlb1cfg = mftlb1cfg();
    816 	tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
    817 	KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
    818 	/*
    819 	 * Limit maxsize to 1G since 4G isn't really useful to us.
    820 	 */
    821 	tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
    822 	tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
    823 
    824 #ifdef VERBOSE_INITPPC
    825 	printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
    826 	    tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
    827 	    tlb1->tlb1_maxsize >> 10);
    828 #endif
    829 
    830 	/*
    831 	 * Let's see what's in TLB1 and we need to invalidate any entry that
    832 	 * would fit within the kernel's mapped address space.
    833 	 */
    834 	psize_t memmapped = 0;
    835 	for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    836 		struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    837 
    838 		xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
    839 
    840 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
    841 			tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
    842 #ifdef VERBOSE_INITPPC
    843 			printf(" TLB1[%u]=<unused>", i);
    844 #endif
    845 			continue;
    846 		}
    847 
    848 		xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
    849 #ifdef VERBOSE_INITPPC
    850 		printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
    851 		    i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
    852 		    xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
    853 #endif
    854 		if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
    855 		    && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
    856 		    || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
    857 		        && VM_MIN_KERNEL_ADDRESS <
    858 			   xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
    859 #ifdef VERBOSE_INITPPC
    860 			printf("free");
    861 #endif
    862 			e500_free_tlb1_entry(xtlb, i, false);
    863 #ifdef VERBOSE_INITPPC
    864 			printf("d");
    865 #endif
    866 			continue;
    867 		}
    868 		if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
    869 			xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
    870 			hwtlb_write(xtlb->e_hwtlb, false);
    871 #ifdef VERBOSE_INITPPC
    872 			printf("+iprot");
    873 #endif
    874 		}
    875 		if (xtlb->e_tlb.tlb_pte & PTE_I)
    876 			continue;
    877 
    878 		if (xtlb->e_tlb.tlb_va == 0
    879 		    || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
    880 			memmapped += xtlb->e_tlb.tlb_size;
    881 		}
    882 	}
    883 
    884 	cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
    885 
    886 	if (__predict_false(memmapped < memsize)) {
    887 		/*
    888 		 * Let's see how many TLB entries are needed to map memory.
    889 		 */
    890 		u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
    891 
    892 		/*
    893 		 * To map main memory into the TLB, we need to flush any
    894 		 * existing entries from the TLB that overlap the virtual
    895 		 * address space needed to map physical memory.  That may
    896 		 * include the entries for the pages currently used by the
    897 		 * stack or that we are executing.  So to avoid problems, we
    898 		 * are going to temporarily map the kernel and stack into AS 1,
    899 		 * switch to it, and clear out the TLB entries from AS 0,
    900 		 * install the new TLB entries to map memory, and then switch
    901 		 * back to AS 0 and free the temp entry used for AS1.
    902 		 */
    903 		u_int b = __builtin_clz(endkernel);
    904 
    905 		/*
    906 		 * If the kernel doesn't end on a clean power of 2, we need
    907 		 * to round the size up (by decrementing the number of leading
    908 		 * zero bits).  If the size isn't a power of 4KB, decrement
    909 		 * again to make it one.
    910 		 */
    911 		if (endkernel & (endkernel - 1))
    912 			b--;
    913 		if ((b & 1) == 0)
    914 			b--;
    915 
    916 		/*
    917 		 * Create a TLB1 mapping for the kernel in AS1.
    918 		 */
    919 		const u_int kslot = e500_alloc_tlb1_entry();
    920 		struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
    921 		kxtlb->e_tlb.tlb_va = 0;
    922 		kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
    923 		kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
    924 		kxtlb->e_tlb.tlb_asid = KERNEL_PID;
    925 
    926 		kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
    927 		kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
    928 		kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
    929 		hwtlb_write(kxtlb->e_hwtlb, true);
    930 
    931 		/*
    932 		 * Now that we have a TLB mapping in AS1 for the kernel and its
    933 		 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
    934 		 */
    935 		const register_t saved_msr = mfmsr();
    936 		mtmsr(saved_msr | PSL_DS | PSL_IS);
    937 		__asm volatile("isync");
    938 
    939 		/*
    940 		 *** Invalidate all the TLB0 entries.
    941 		 */
    942 		e500_tlb_invalidate_all();
    943 
    944 		/*
    945 		 *** Now let's see if we have any entries in TLB1 that would
    946 		 *** overlap the ones we are about to install.  If so, nuke 'em.
    947 		 */
    948 		for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
    949 			struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
    950 			struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
    951 			if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
    952 			    && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
    953 				e500_free_tlb1_entry(xtlb, i, false);
    954 			}
    955 		}
    956 
    957 		/*
    958 		 *** Now we can add the TLB entries that will map physical
    959 		 *** memory.  If bit 0 [MSB] in slotmask is set, then tlb
    960 		 *** entry 0 contains a mapping for physical memory...
    961 		 */
    962 		struct e500_xtlb *entries = tlb1->tlb1_entries;
    963 		while (slotmask != 0) {
    964 			const u_int slot = __builtin_clz(slotmask);
    965 			hwtlb_write(entries[slot].e_hwtlb, false);
    966 			entries += slot + 1;
    967 			slotmask <<= slot + 1;
    968 		}
    969 
    970 		/*
    971 		 *** Synchronize the TLB and the instruction stream.
    972 		 */
    973 		__asm volatile("tlbsync");
    974 		__asm volatile("isync");
    975 
    976 		/*
    977 		 *** Switch back to AS 0.
    978 		 */
    979 		mtmsr(saved_msr);
    980 		__asm volatile("isync");
    981 
    982 		/*
    983 		 * Free the temporary TLB1 entry.
    984 		 */
    985 		e500_free_tlb1_entry(kxtlb, kslot, true);
    986 	}
    987 
    988 	/*
    989 	 * Finally set the MAS4 defaults.
    990 	 */
    991 	mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
    992 
    993 	/*
    994 	 * Invalidate all the TLB0 entries.
    995 	 */
    996 	e500_tlb_invalidate_all();
    997 }
    998