e500_tlb.c revision 1.7 1 /* $NetBSD: e500_tlb.c,v 1.7 2011/06/30 00:52:58 matt Exp $ */
2 /*-
3 * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
8 * Agency and which was developed by Matt Thomas of 3am Software Foundry.
9 *
10 * This material is based upon work supported by the Defense Advanced Research
11 * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
12 * Contract No. N66001-09-C-2073.
13 * Approved for Public Release, Distribution Unlimited
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <sys/cdefs.h>
38
39 __KERNEL_RCSID(0, "$NetBSD: e500_tlb.c,v 1.7 2011/06/30 00:52:58 matt Exp $");
40
41 #include <sys/param.h>
42
43 #include <uvm/uvm_extern.h>
44
45 #include <powerpc/spr.h>
46 #include <powerpc/booke/spr.h>
47 #include <powerpc/booke/cpuvar.h>
48 #include <powerpc/booke/e500var.h>
49 #include <powerpc/booke/pmap.h>
50
51 struct e500_tlb {
52 vaddr_t tlb_va;
53 uint32_t tlb_pte;
54 uint32_t tlb_asid;
55 vsize_t tlb_size;
56 };
57
58 struct e500_hwtlb {
59 uint32_t hwtlb_mas0;
60 uint32_t hwtlb_mas1;
61 uint32_t hwtlb_mas2;
62 uint32_t hwtlb_mas3;
63 };
64
65 struct e500_xtlb {
66 struct e500_tlb e_tlb;
67 struct e500_hwtlb e_hwtlb;
68 u_long e_refcnt;
69 };
70
71 static struct e500_tlb1 {
72 uint32_t tlb1_maxsize;
73 uint32_t tlb1_minsize;
74 u_int tlb1_numentries;
75 u_int tlb1_numfree;
76 u_int tlb1_freelist[32];
77 struct e500_xtlb tlb1_entries[32];
78 } e500_tlb1;
79
80 static inline register_t mftlb0cfg(void) __pure;
81 static inline register_t mftlb1cfg(void) __pure;
82
83 static inline register_t
84 mftlb0cfg(void)
85 {
86 register_t tlb0cfg;
87 __asm("mfspr %0, %1" : "=r"(tlb0cfg) : "n"(SPR_TLB0CFG));
88 return tlb0cfg;
89 }
90
91 static inline register_t
92 mftlb1cfg(void)
93 {
94 register_t tlb1cfg;
95 __asm("mfspr %0, %1" : "=r"(tlb1cfg) : "n"(SPR_TLB1CFG));
96 return tlb1cfg;
97 }
98
99 static struct e500_tlb
100 hwtlb_to_tlb(const struct e500_hwtlb hwtlb)
101 {
102 struct e500_tlb tlb;
103 register_t prot_mask;
104 u_int prot_shift;
105
106 tlb.tlb_va = MAS2_EPN & hwtlb.hwtlb_mas2;
107 tlb.tlb_size = 1024 << (2 * MASX_TSIZE_GET(hwtlb.hwtlb_mas1));
108 tlb.tlb_asid = MASX_TID_GET(hwtlb.hwtlb_mas1);
109 tlb.tlb_pte = (hwtlb.hwtlb_mas2 & MAS2_WIMGE)
110 | (hwtlb.hwtlb_mas3 & MAS3_RPN);
111 if (hwtlb.hwtlb_mas1 & MAS1_TS) {
112 prot_mask = MAS3_UX|MAS3_UW|MAS3_UR;
113 prot_shift = PTE_RWX_SHIFT - 1;
114 } else {
115 prot_mask = MAS3_SX|MAS3_SW|MAS3_SR;
116 prot_shift = PTE_RWX_SHIFT;
117 }
118 tlb.tlb_pte |= (prot_mask & hwtlb.hwtlb_mas3) << prot_shift;
119 return tlb;
120 }
121
122 static inline struct e500_hwtlb
123 hwtlb_read(uint32_t mas0, u_int slot)
124 {
125 struct e500_hwtlb hwtlb;
126 register_t tlbcfg;
127
128 if (__predict_true(mas0 == MAS0_TLBSEL_TLB0)) {
129 tlbcfg = mftlb0cfg();
130 } else if (mas0 == MAS0_TLBSEL_TLB1) {
131 tlbcfg = mftlb1cfg();
132 } else {
133 panic("%s:%d: unexpected MAS0 %#" PRIx32,
134 __func__, __LINE__, mas0);
135 }
136
137 /*
138 * ESEL is the way we want to look up.
139 * If tlbassoc is the same as tlbentries (like in TLB1) then the TLB is
140 * fully associative, the entire slot is placed into ESEL. If tlbassoc
141 * is less then the number of tlb entries, the slot is split in two
142 * fields. Since the TLB is M rows by N ways, the lowers bits are for
143 * row (MAS2[EPN]) and the upper for the way (MAS1[ESEL]).
144 */
145 const u_int tlbassoc = TLBCFG_ASSOC(tlbcfg);
146 const u_int tlbentries = TLBCFG_NENTRY(tlbcfg);
147 const u_int esel_shift =
148 __builtin_clz(tlbassoc) - __builtin_clz(tlbentries);
149
150 /*
151 * Disable interrupts since we don't want anyone else mucking with
152 * the MMU Assist registers
153 */
154 const register_t msr = wrtee(0);
155 const register_t saved_mas0 = mfspr(SPR_MAS0);
156 mtspr(SPR_MAS0, mas0 | MAS0_ESEL_MAKE(slot >> esel_shift));
157
158 if (__predict_true(tlbassoc > tlbentries))
159 mtspr(SPR_MAS2, slot << PAGE_SHIFT);
160
161 /*
162 * Now select the entry and grab its contents.
163 */
164 __asm volatile("tlbre");
165
166 hwtlb.hwtlb_mas0 = mfspr(SPR_MAS0);
167 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
168 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
169 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
170
171 mtspr(SPR_MAS0, saved_mas0);
172 wrtee(msr); /* restore interrupts */
173
174 return hwtlb;
175 }
176
177 static inline void
178 hwtlb_write(const struct e500_hwtlb hwtlb, bool needs_sync)
179 {
180 const register_t msr = wrtee(0);
181 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
182
183 /*
184 * Need to always write MAS0 and MAS1
185 */
186 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
187 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
188
189 /*
190 * Only write the VPN/WIMGE if this is in TLB0 or if a valid mapping.
191 */
192 if ((hwtlb.hwtlb_mas0 & MAS0_TLBSEL) == MAS0_TLBSEL_TLB0
193 || (hwtlb.hwtlb_mas1 & MAS1_V)) {
194 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
195 }
196 /*
197 * Only need to write the RPN/prot if we are dealing with a valid
198 * mapping.
199 */
200 if (hwtlb.hwtlb_mas1 & MAS1_V) {
201 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
202 }
203
204 #if 0
205 printf("%s->[%x,%x,%x,%x]\n",
206 __func__,
207 hwtlb.hwtlb_mas0, hwtlb.hwtlb_mas1,
208 hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
209 #endif
210 __asm volatile("tlbwe");
211 if (needs_sync) {
212 __asm volatile("tlbsync");
213 __asm volatile("isync");
214 }
215
216 mtspr(SPR_MAS0, saved_mas0);
217 wrtee(msr);
218 }
219
220 static struct e500_hwtlb
221 tlb_to_hwtlb(const struct e500_tlb tlb)
222 {
223 struct e500_hwtlb hwtlb;
224
225 KASSERT(trunc_page(tlb.tlb_va) == tlb.tlb_va);
226 KASSERT(tlb.tlb_size != 0);
227 KASSERT((tlb.tlb_size & (tlb.tlb_size - 1)) == 0);
228 const uint32_t prot_mask = tlb.tlb_pte & PTE_RWX_MASK;
229 if (__predict_true(tlb.tlb_size == PAGE_SIZE)) {
230 hwtlb.hwtlb_mas0 = 0;
231 hwtlb.hwtlb_mas1 = MAS1_V | MASX_TSIZE_MAKE(1);
232 /*
233 * A non-zero ASID means this is a user page so mark it as
234 * being in the user's address space.
235 */
236 if (tlb.tlb_asid) {
237 hwtlb.hwtlb_mas1 |= MAS1_TS
238 | MASX_TID_MAKE(tlb.tlb_asid);
239 hwtlb.hwtlb_mas3 = (prot_mask >> (PTE_RWX_SHIFT - 1))
240 | ((prot_mask & ~PTE_xX) >> PTE_RWX_SHIFT);
241 KASSERT(prot_mask & PTE_xR);
242 KASSERT(hwtlb.hwtlb_mas3 & MAS3_UR);
243 CTASSERT(MAS3_UR == (PTE_xR >> (PTE_RWX_SHIFT - 1)));
244 CTASSERT(MAS3_SR == (PTE_xR >> PTE_RWX_SHIFT));
245 } else {
246 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
247 }
248 if (tlb.tlb_pte & PTE_UNMODIFIED)
249 hwtlb.hwtlb_mas3 &= ~(MAS3_UW|MAS3_SW);
250 if (tlb.tlb_pte & PTE_UNSYNCED)
251 hwtlb.hwtlb_mas3 &= ~(MAS3_UX|MAS3_SX);
252 } else {
253 KASSERT(tlb.tlb_asid == 0);
254 KASSERT((tlb.tlb_size & 0xaaaaa7ff) == 0);
255 u_int cntlz = __builtin_clz(tlb.tlb_size);
256 KASSERT(cntlz & 1);
257 KASSERT(cntlz <= 19);
258 hwtlb.hwtlb_mas0 = MAS0_TLBSEL_TLB1;
259 /*
260 * TSIZE is defined (4^TSIZE) Kbytes except a TSIZE of is not
261 * allowed. So 1K would be 0x00000400 giving 21 leading zero
262 * bits. Subtracting the leading number of zero bits from 21
263 * and dividing by 2 gives us the number that the MMU wants.
264 */
265 hwtlb.hwtlb_mas1 = MASX_TSIZE_MAKE(((31 - 10) - cntlz) / 2)
266 | MAS1_IPROT | MAS1_V;
267 hwtlb.hwtlb_mas3 = prot_mask >> PTE_RWX_SHIFT;
268 }
269 /* We are done with MAS1, on to MAS2 ... */
270 hwtlb.hwtlb_mas2 = tlb.tlb_va | (tlb.tlb_pte & PTE_WIMGE_MASK);
271 hwtlb.hwtlb_mas3 |= tlb.tlb_pte & PTE_RPN_MASK;
272
273 return hwtlb;
274 }
275
276 void *
277 e500_tlb1_fetch(size_t slot)
278 {
279 struct e500_tlb1 * const tlb1 = &e500_tlb1;
280
281 return &tlb1->tlb1_entries[slot].e_hwtlb;
282 }
283
284 void
285 e500_tlb1_sync(void)
286 {
287 struct e500_tlb1 * const tlb1 = &e500_tlb1;
288 for (u_int slot = 1; slot < tlb1->tlb1_numentries; slot++) {
289 const struct e500_hwtlb * const new_hwtlb =
290 &tlb1->tlb1_entries[slot].e_hwtlb;
291 const struct e500_hwtlb old_hwtlb =
292 hwtlb_read(MAS0_TLBSEL_TLB1, slot);
293 #define CHANGED(n,o,f) ((n)->f != (o).f)
294 bool mas1_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas1);
295 bool mas2_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas2);
296 bool mas3_changed_p = CHANGED(new_hwtlb, old_hwtlb, hwtlb_mas3);
297 #undef CHANGED
298 bool new_valid_p = (new_hwtlb->hwtlb_mas1 & MAS1_V) != 0;
299 bool old_valid_p = (old_hwtlb.hwtlb_mas1 & MAS1_V) != 0;
300 if ((new_valid_p || old_valid_p)
301 && (mas1_changed_p
302 || (new_valid_p
303 && (mas2_changed_p || mas3_changed_p))))
304 hwtlb_write(*new_hwtlb, true);
305 }
306 }
307
308 static int
309 e500_alloc_tlb1_entry(void)
310 {
311 struct e500_tlb1 * const tlb1 = &e500_tlb1;
312
313 if (tlb1->tlb1_numfree == 0)
314 return -1;
315 const u_int slot = tlb1->tlb1_freelist[--tlb1->tlb1_numfree];
316 KASSERT((tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas1 & MAS1_V) == 0);
317 tlb1->tlb1_entries[slot].e_hwtlb.hwtlb_mas0 =
318 MAS0_TLBSEL_TLB1 | __SHIFTOUT(slot, MAS0_ESEL);
319 return slot;
320 }
321
322 static void
323 e500_free_tlb1_entry(struct e500_xtlb *xtlb, u_int slot, bool needs_sync)
324 {
325 struct e500_tlb1 * const tlb1 = &e500_tlb1;
326 KASSERT(slot < tlb1->tlb1_numentries);
327 KASSERT(&tlb1->tlb1_entries[slot] == xtlb);
328
329 KASSERT(xtlb->e_hwtlb.hwtlb_mas0 == (MAS0_TLBSEL_TLB1|__SHIFTIN(slot, MAS0_ESEL)));
330 xtlb->e_hwtlb.hwtlb_mas1 &= ~(MAS1_V|MAS1_IPROT);
331 hwtlb_write(xtlb->e_hwtlb, needs_sync);
332
333 const register_t msr = wrtee(0);
334 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = slot;
335 wrtee(msr);
336 }
337
338 static tlb_asid_t
339 e500_tlb_get_asid(void)
340 {
341 return mfspr(SPR_PID0);
342 }
343
344 static void
345 e500_tlb_set_asid(tlb_asid_t asid)
346 {
347 mtspr(SPR_PID0, asid);
348 }
349
350 static void
351 e500_tlb_invalidate_all(void)
352 {
353 /*
354 * This does a flash invalidate of all entries in TLB0.
355 * We don't touch TLB1 since we don't expect those to be volatile.
356 */
357 #if 1
358 __asm volatile("tlbivax\t0, %0" :: "b"(4)); /* INV_ALL */
359 #else
360 mtspr(SPR_MMUCSR0, MMUCSR0_TLB0_FL);
361 while (mfspr(SPR_MMUCSR0) != 0)
362 ;
363 #endif
364 }
365
366 static void
367 e500_tlb_invalidate_globals(void)
368 {
369 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
370 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
371 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
372 const vaddr_t kstack_lo = (uintptr_t)curlwp->l_addr;
373 const vaddr_t kstack_hi = kstack_lo + USPACE - 1;
374 const vaddr_t epn_kstack_lo = kstack_lo & (max_epn - 1);
375 const vaddr_t epn_kstack_hi = kstack_hi & (max_epn - 1);
376
377 const register_t msr = wrtee(0);
378 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
379 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
380 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
381 mtspr(SPR_MAS2, epn);
382 __asm volatile("tlbre");
383 uint32_t mas1 = mfspr(SPR_MAS1);
384
385 /*
386 * Make sure this is a valid kernel entry first.
387 */
388 if ((mas1 & (MAS1_V|MAS1_TID|MAS1_TS)) != MAS1_V)
389 continue;
390
391 /*
392 * We have a valid kernel TLB entry. But if it matches
393 * the stack we are currently running on, it would
394 * unwise to invalidate it. First see if the epn
395 * overlaps the stack. If it does then get the
396 * VA and see if it really is part of the stack.
397 */
398 if (epn_kstack_lo < epn_kstack_hi
399 ? (epn_kstack_lo <= epn && epn <= epn_kstack_hi)
400 : (epn <= epn_kstack_hi || epn_kstack_lo <= epn)) {
401 const uint32_t mas2_epn =
402 mfspr(SPR_MAS2) & MAS2_EPN;
403 if (kstack_lo <= mas2_epn
404 && mas2_epn <= kstack_hi)
405 continue;
406 }
407 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
408 __asm volatile("tlbwe");
409 }
410 }
411 __asm volatile("isync");
412 wrtee(msr);
413 }
414
415 static void
416 e500_tlb_invalidate_asids(tlb_asid_t asid_lo, tlb_asid_t asid_hi)
417 {
418 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
419 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
420 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
421
422 asid_lo = __SHIFTIN(asid_lo, MAS1_TID);
423 asid_hi = __SHIFTIN(asid_hi, MAS1_TID);
424
425 const register_t msr = wrtee(0);
426 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
427 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
428 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
429 mtspr(SPR_MAS2, epn);
430 __asm volatile("tlbre");
431 const uint32_t mas1 = mfspr(SPR_MAS1);
432 /*
433 * If this is a valid entry for AS space 1 and
434 * its asid matches the constraints of the caller,
435 * clear its valid bit.
436 */
437 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)
438 && asid_lo <= (mas1 & MAS1_TID)
439 && (mas1 & MAS1_TID) <= asid_hi) {
440 mtspr(SPR_MAS1, mas1 ^ MAS1_V);
441 #if 0
442 printf("%s[%zu,%zu]->[%x]\n",
443 __func__, assoc, epn, mas1);
444 #endif
445 __asm volatile("tlbwe");
446 }
447 }
448 }
449 __asm volatile("isync");
450 wrtee(msr);
451 }
452
453 static u_int
454 e500_tlb_record_asids(u_long *bitmap)
455 {
456 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
457 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
458 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
459 const size_t nbits = 8 * sizeof(bitmap[0]);
460 u_int found = 0;
461
462 const register_t msr = wrtee(0);
463 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
464 mtspr(SPR_MAS0, MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0);
465 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
466 mtspr(SPR_MAS2, epn);
467 __asm volatile("tlbre");
468 const uint32_t mas1 = mfspr(SPR_MAS1);
469 /*
470 * If this is a valid entry for AS space 1 and
471 * its asid matches the constraints of the caller,
472 * clear its valid bit.
473 */
474 if ((mas1 & (MAS1_V|MAS1_TS)) == (MAS1_V|MAS1_TS)) {
475 const uint32_t asid = MASX_TID_GET(mas1);
476 const u_int i = asid / nbits;
477 const u_long mask = 1UL << (asid & (nbits - 1));
478 if ((bitmap[i] & mask) == 0) {
479 bitmap[i] |= mask;
480 found++;
481 }
482 }
483 }
484 }
485 wrtee(msr);
486
487 return found;
488 }
489
490 static void
491 e500_tlb_invalidate_addr(vaddr_t va, tlb_asid_t asid)
492 {
493 KASSERT((va & PAGE_MASK) == 0);
494 /*
495 * Bits 60 & 61 have meaning
496 */
497 __asm volatile("tlbivax\t0, %0" :: "b"(va));
498 __asm volatile("tlbsync");
499 __asm volatile("tlbsync");
500 }
501
502 static bool
503 e500_tlb_update_addr(vaddr_t va, tlb_asid_t asid, pt_entry_t pte, bool insert)
504 {
505 struct e500_hwtlb hwtlb = tlb_to_hwtlb(
506 (struct e500_tlb){ .tlb_va = va, .tlb_asid = asid,
507 .tlb_size = PAGE_SIZE, .tlb_pte = pte,});
508
509 register_t msr = wrtee(0);
510 mtspr(SPR_MAS6, asid ? __SHIFTIN(asid, MAS6_SPID0) | MAS6_SAS : 0);
511 __asm volatile("tlbsx 0, %0" :: "b"(va));
512 register_t mas1 = mfspr(SPR_MAS1);
513 if ((mas1 & MAS1_V) == 0) {
514 if (!insert) {
515 wrtee(msr);
516 #if 0
517 printf("%s(%#lx,%#x,%#x,%x)<no update>\n",
518 __func__, va, asid, pte, insert);
519 #endif
520 return false;
521 }
522 mtspr(SPR_MAS1, hwtlb.hwtlb_mas1);
523 }
524 mtspr(SPR_MAS2, hwtlb.hwtlb_mas2);
525 mtspr(SPR_MAS3, hwtlb.hwtlb_mas3);
526 __asm volatile("tlbwe");
527 if (asid == 0)
528 __asm volatile("isync");
529 wrtee(msr);
530 #if 0
531 if (asid)
532 printf("%s(%#lx,%#x,%#x,%x)->[%x,%x,%x]\n",
533 __func__, va, asid, pte, insert,
534 hwtlb.hwtlb_mas1, hwtlb.hwtlb_mas2, hwtlb.hwtlb_mas3);
535 #endif
536 return (mas1 & MAS1_V) != 0;
537 }
538
539 static void
540 e500_tlb_write_entry(size_t index, const struct tlbmask *tlb)
541 {
542 }
543
544 static void
545 e500_tlb_read_entry(size_t index, struct tlbmask *tlb)
546 {
547 }
548
549 static void
550 e500_tlb_dump(void (*pr)(const char *, ...))
551 {
552 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
553 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
554 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
555 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
556 size_t valid = 0;
557
558 if (pr == NULL)
559 pr = printf;
560
561 const register_t msr = wrtee(0);
562 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
563 struct e500_hwtlb hwtlb;
564 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
565 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
566 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
567 mtspr(SPR_MAS2, epn);
568 __asm volatile("tlbre");
569 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
570 /*
571 * If this is a valid entry for AS space 1 and
572 * its asid matches the constraints of the caller,
573 * clear its valid bit.
574 */
575 if (hwtlb.hwtlb_mas1 & MAS1_V) {
576 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
577 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
578 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
579 (*pr)("[%zu,%zu]->[%x,%x,%x]",
580 assoc, atop(epn),
581 hwtlb.hwtlb_mas1,
582 hwtlb.hwtlb_mas2,
583 hwtlb.hwtlb_mas3);
584 (*pr)(": VA=%#lx size=4KB asid=%u pte=%x",
585 tlb.tlb_va, tlb.tlb_asid, tlb.tlb_pte);
586 (*pr)(" (RPN=%#x,%s%s%s%s%s,%s%s%s%s%s)\n",
587 tlb.tlb_pte & PTE_RPN_MASK,
588 tlb.tlb_pte & PTE_xR ? "R" : "",
589 tlb.tlb_pte & PTE_xW ? "W" : "",
590 tlb.tlb_pte & PTE_UNMODIFIED ? "*" : "",
591 tlb.tlb_pte & PTE_xX ? "X" : "",
592 tlb.tlb_pte & PTE_UNSYNCED ? "*" : "",
593 tlb.tlb_pte & PTE_W ? "W" : "",
594 tlb.tlb_pte & PTE_I ? "I" : "",
595 tlb.tlb_pte & PTE_M ? "M" : "",
596 tlb.tlb_pte & PTE_G ? "G" : "",
597 tlb.tlb_pte & PTE_E ? "E" : "");
598 valid++;
599 }
600 }
601 }
602 mtspr(SPR_MAS0, saved_mas0);
603 wrtee(msr);
604 (*pr)("%s: %zu valid entries\n", __func__, valid);
605 }
606
607 static void
608 e500_tlb_walk(void *ctx, bool (*func)(void *, vaddr_t, uint32_t, uint32_t))
609 {
610 const size_t tlbassoc = TLBCFG_ASSOC(mftlb0cfg());
611 const size_t tlbentries = TLBCFG_NENTRY(mftlb0cfg());
612 const size_t max_epn = (tlbentries / tlbassoc) << PAGE_SHIFT;
613 const uint32_t saved_mas0 = mfspr(SPR_MAS0);
614
615 const register_t msr = wrtee(0);
616 for (size_t assoc = 0; assoc < tlbassoc; assoc++) {
617 struct e500_hwtlb hwtlb;
618 hwtlb.hwtlb_mas0 = MAS0_ESEL_MAKE(assoc) | MAS0_TLBSEL_TLB0;
619 mtspr(SPR_MAS0, hwtlb.hwtlb_mas0);
620 for (size_t epn = 0; epn < max_epn; epn += PAGE_SIZE) {
621 mtspr(SPR_MAS2, epn);
622 __asm volatile("tlbre");
623 hwtlb.hwtlb_mas1 = mfspr(SPR_MAS1);
624 /*
625 * If this is a valid entry for AS space 1 and
626 * its asid matches the constraints of the caller,
627 * clear its valid bit.
628 */
629 if (hwtlb.hwtlb_mas1 & MAS1_V) {
630 hwtlb.hwtlb_mas2 = mfspr(SPR_MAS2);
631 hwtlb.hwtlb_mas3 = mfspr(SPR_MAS3);
632 struct e500_tlb tlb = hwtlb_to_tlb(hwtlb);
633 if (!(*func)(ctx, tlb.tlb_va, tlb.tlb_asid,
634 tlb.tlb_pte))
635 break;
636 }
637 }
638 }
639 mtspr(SPR_MAS0, saved_mas0);
640 wrtee(msr);
641 }
642
643 static struct e500_xtlb *
644 e500_tlb_lookup_xtlb(vaddr_t va, u_int *slotp)
645 {
646 struct e500_tlb1 * const tlb1 = &e500_tlb1;
647 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
648
649 /*
650 * See if we have a TLB entry for the pa.
651 */
652 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
653 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
654 && xtlb->e_tlb.tlb_va <= va
655 && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
656 if (slotp != NULL)
657 *slotp = i;
658 return xtlb;
659 }
660 }
661
662 return NULL;
663 }
664
665 static struct e500_xtlb *
666 e500_tlb_lookup_xtlb2(vaddr_t va, vsize_t len)
667 {
668 struct e500_tlb1 * const tlb1 = &e500_tlb1;
669 struct e500_xtlb *xtlb = tlb1->tlb1_entries;
670
671 /*
672 * See if we have a TLB entry for the pa.
673 */
674 for (u_int i = 0; i < tlb1->tlb1_numentries; i++, xtlb++) {
675 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V)
676 && xtlb->e_tlb.tlb_va < va + len
677 && va < xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size) {
678 return xtlb;
679 }
680 }
681
682 return NULL;
683 }
684
685 static void *
686 e500_tlb_mapiodev(paddr_t pa, psize_t len, bool prefetchable)
687 {
688 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(pa, NULL);
689
690 /*
691 * See if we have a TLB entry for the pa. If completely falls within
692 * mark the reference and return the pa. But only if the tlb entry
693 * is not cacheable.
694 */
695 if (xtlb
696 && pa + len <= xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size
697 && (prefetchable
698 || (xtlb->e_tlb.tlb_pte & PTE_WIG) == (PTE_I|PTE_G))) {
699 xtlb->e_refcnt++;
700 return (void *) pa;
701 }
702 return NULL;
703 }
704
705 static void
706 e500_tlb_unmapiodev(vaddr_t va, vsize_t len)
707 {
708 if (va < VM_MIN_KERNEL_ADDRESS || VM_MAX_KERNEL_ADDRESS <= va) {
709 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, NULL);
710 if (xtlb)
711 xtlb->e_refcnt--;
712 }
713 }
714
715 static int
716 e500_tlb_ioreserve(vaddr_t va, vsize_t len, pt_entry_t pte)
717 {
718 struct e500_tlb1 * const tlb1 = &e500_tlb1;
719 struct e500_xtlb *xtlb;
720
721 KASSERT(len & 0x55555000);
722 KASSERT((len & ~0x55555000) == 0);
723 KASSERT(len >= PAGE_SIZE);
724 KASSERT((len & (len - 1)) == 0);
725 KASSERT((va & (len - 1)) == 0);
726 KASSERT((pte & (len - 1)) == 0);
727
728 if ((xtlb = e500_tlb_lookup_xtlb2(va, len)) != NULL) {
729 if (va < xtlb->e_tlb.tlb_va
730 || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size < va + len
731 || va - xtlb->e_tlb.tlb_va != pte - xtlb->e_tlb.tlb_pte)
732 return EBUSY;
733 xtlb->e_refcnt++;
734 return 0;
735 }
736
737 const int slot = e500_alloc_tlb1_entry();
738 if (slot < 0)
739 return ENOMEM;
740
741 xtlb = &tlb1->tlb1_entries[slot];
742 xtlb->e_tlb.tlb_va = va;
743 xtlb->e_tlb.tlb_size = len;
744 xtlb->e_tlb.tlb_pte = pte;
745 xtlb->e_tlb.tlb_asid = KERNEL_PID;
746
747 xtlb->e_hwtlb = tlb_to_hwtlb(xtlb->e_tlb);
748 xtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(slot, MAS0_ESEL);
749 hwtlb_write(xtlb->e_hwtlb, true);
750 return 0;
751 }
752
753 static int
754 e500_tlb_iorelease(vaddr_t va)
755 {
756 u_int slot;
757 struct e500_xtlb * const xtlb = e500_tlb_lookup_xtlb(va, &slot);
758
759 if (xtlb == NULL)
760 return ENOENT;
761
762 if (xtlb->e_refcnt)
763 return EBUSY;
764
765 e500_free_tlb1_entry(xtlb, slot, true);
766
767 return 0;
768 }
769
770 static u_int
771 e500_tlbmemmap(paddr_t memstart, psize_t memsize, struct e500_tlb1 *tlb1)
772 {
773 u_int slotmask = 0;
774 u_int slots = 0, nextslot = 0;
775 KASSERT(tlb1->tlb1_numfree > 1);
776 KASSERT(((memstart + memsize - 1) & -memsize) == memstart);
777 for (paddr_t lastaddr = memstart; 0 < memsize; ) {
778 u_int cnt = __builtin_clz(memsize);
779 psize_t size = min(1UL << (31 - (cnt | 1)), tlb1->tlb1_maxsize);
780 slots += memsize / size;
781 if (slots > 4)
782 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
783 __func__, __LINE__, memsize, "too fragmented");
784 if (slots > tlb1->tlb1_numfree - 1)
785 panic("%s: %d: can't map memory (%#lx) into TLB1: %s",
786 __func__, __LINE__, memsize,
787 "insufficent TLB entries");
788 for (; nextslot < slots; nextslot++) {
789 const u_int freeslot = e500_alloc_tlb1_entry();
790 struct e500_xtlb * const xtlb =
791 &tlb1->tlb1_entries[freeslot];
792 xtlb->e_tlb.tlb_asid = KERNEL_PID;
793 xtlb->e_tlb.tlb_size = size;
794 xtlb->e_tlb.tlb_va = lastaddr;
795 xtlb->e_tlb.tlb_pte = lastaddr
796 | PTE_M | PTE_xX | PTE_xW | PTE_xR;
797 lastaddr += size;
798 memsize -= size;
799 slotmask |= 1 << (31 - freeslot); /* clz friendly */
800 }
801 }
802
803 return nextslot;
804 }
805 static const struct tlb_md_ops e500_tlb_ops = {
806 .md_tlb_get_asid = e500_tlb_get_asid,
807 .md_tlb_set_asid = e500_tlb_set_asid,
808 .md_tlb_invalidate_all = e500_tlb_invalidate_all,
809 .md_tlb_invalidate_globals = e500_tlb_invalidate_globals,
810 .md_tlb_invalidate_asids = e500_tlb_invalidate_asids,
811 .md_tlb_invalidate_addr = e500_tlb_invalidate_addr,
812 .md_tlb_update_addr = e500_tlb_update_addr,
813 .md_tlb_record_asids = e500_tlb_record_asids,
814 .md_tlb_write_entry = e500_tlb_write_entry,
815 .md_tlb_read_entry = e500_tlb_read_entry,
816 .md_tlb_dump = e500_tlb_dump,
817 .md_tlb_walk = e500_tlb_walk,
818 };
819
820 static const struct tlb_md_io_ops e500_tlb_io_ops = {
821 .md_tlb_mapiodev = e500_tlb_mapiodev,
822 .md_tlb_unmapiodev = e500_tlb_unmapiodev,
823 .md_tlb_ioreserve = e500_tlb_ioreserve,
824 .md_tlb_iorelease = e500_tlb_iorelease,
825 };
826
827 void
828 e500_tlb_init(vaddr_t endkernel, psize_t memsize)
829 {
830 struct e500_tlb1 * const tlb1 = &e500_tlb1;
831
832 #if 0
833 register_t mmucfg = mfspr(SPR_MMUCFG);
834 register_t mas4 = mfspr(SPR_MAS4);
835 #endif
836
837 const uint32_t tlb1cfg = mftlb1cfg();
838 tlb1->tlb1_numentries = TLBCFG_NENTRY(tlb1cfg);
839 KASSERT(tlb1->tlb1_numentries <= __arraycount(tlb1->tlb1_entries));
840 /*
841 * Limit maxsize to 1G since 4G isn't really useful to us.
842 */
843 tlb1->tlb1_minsize = 1024 << (2 * TLBCFG_MINSIZE(tlb1cfg));
844 tlb1->tlb1_maxsize = 1024 << (2 * min(10, TLBCFG_MAXSIZE(tlb1cfg)));
845
846 #ifdef VERBOSE_INITPPC
847 printf(" tlb1cfg=%#x numentries=%u minsize=%#xKB maxsize=%#xKB",
848 tlb1cfg, tlb1->tlb1_numentries, tlb1->tlb1_minsize >> 10,
849 tlb1->tlb1_maxsize >> 10);
850 #endif
851
852 /*
853 * Let's see what's in TLB1 and we need to invalidate any entry that
854 * would fit within the kernel's mapped address space.
855 */
856 psize_t memmapped = 0;
857 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
858 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
859
860 xtlb->e_hwtlb = hwtlb_read(MAS0_TLBSEL_TLB1, i);
861
862 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_V) == 0) {
863 tlb1->tlb1_freelist[tlb1->tlb1_numfree++] = i;
864 #ifdef VERBOSE_INITPPC
865 printf(" TLB1[%u]=<unused>", i);
866 #endif
867 continue;
868 }
869
870 xtlb->e_tlb = hwtlb_to_tlb(xtlb->e_hwtlb);
871 #ifdef VERBOSE_INITPPC
872 printf(" TLB1[%u]=<%#lx,%#lx,%#x,%#x>",
873 i, xtlb->e_tlb.tlb_va, xtlb->e_tlb.tlb_size,
874 xtlb->e_tlb.tlb_asid, xtlb->e_tlb.tlb_pte);
875 #endif
876 if ((VM_MIN_KERNEL_ADDRESS <= xtlb->e_tlb.tlb_va
877 && xtlb->e_tlb.tlb_va < VM_MAX_KERNEL_ADDRESS)
878 || (xtlb->e_tlb.tlb_va < VM_MIN_KERNEL_ADDRESS
879 && VM_MIN_KERNEL_ADDRESS <
880 xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size)) {
881 #ifdef VERBOSE_INITPPC
882 printf("free");
883 #endif
884 e500_free_tlb1_entry(xtlb, i, false);
885 #ifdef VERBOSE_INITPPC
886 printf("d");
887 #endif
888 continue;
889 }
890 if ((xtlb->e_hwtlb.hwtlb_mas1 & MAS1_IPROT) == 0) {
891 xtlb->e_hwtlb.hwtlb_mas1 |= MAS1_IPROT;
892 hwtlb_write(xtlb->e_hwtlb, false);
893 #ifdef VERBOSE_INITPPC
894 printf("+iprot");
895 #endif
896 }
897 if (xtlb->e_tlb.tlb_pte & PTE_I)
898 continue;
899
900 if (xtlb->e_tlb.tlb_va == 0
901 || xtlb->e_tlb.tlb_va + xtlb->e_tlb.tlb_size <= memsize) {
902 memmapped += xtlb->e_tlb.tlb_size;
903 }
904 }
905
906 cpu_md_ops.md_tlb_ops = &e500_tlb_ops;
907 cpu_md_ops.md_tlb_io_ops = &e500_tlb_io_ops;
908
909 if (__predict_false(memmapped < memsize)) {
910 /*
911 * Let's see how many TLB entries are needed to map memory.
912 */
913 u_int slotmask = e500_tlbmemmap(0, memsize, tlb1);
914
915 /*
916 * To map main memory into the TLB, we need to flush any
917 * existing entries from the TLB that overlap the virtual
918 * address space needed to map physical memory. That may
919 * include the entries for the pages currently used by the
920 * stack or that we are executing. So to avoid problems, we
921 * are going to temporarily map the kernel and stack into AS 1,
922 * switch to it, and clear out the TLB entries from AS 0,
923 * install the new TLB entries to map memory, and then switch
924 * back to AS 0 and free the temp entry used for AS1.
925 */
926 u_int b = __builtin_clz(endkernel);
927
928 /*
929 * If the kernel doesn't end on a clean power of 2, we need
930 * to round the size up (by decrementing the number of leading
931 * zero bits). If the size isn't a power of 4KB, decrement
932 * again to make it one.
933 */
934 if (endkernel & (endkernel - 1))
935 b--;
936 if ((b & 1) == 0)
937 b--;
938
939 /*
940 * Create a TLB1 mapping for the kernel in AS1.
941 */
942 const u_int kslot = e500_alloc_tlb1_entry();
943 struct e500_xtlb * const kxtlb = &tlb1->tlb1_entries[kslot];
944 kxtlb->e_tlb.tlb_va = 0;
945 kxtlb->e_tlb.tlb_size = 1UL << (31 - b);
946 kxtlb->e_tlb.tlb_pte = PTE_M|PTE_xR|PTE_xW|PTE_xX;
947 kxtlb->e_tlb.tlb_asid = KERNEL_PID;
948
949 kxtlb->e_hwtlb = tlb_to_hwtlb(kxtlb->e_tlb);
950 kxtlb->e_hwtlb.hwtlb_mas0 |= __SHIFTOUT(kslot, MAS0_ESEL);
951 kxtlb->e_hwtlb.hwtlb_mas1 |= MAS1_TS;
952 hwtlb_write(kxtlb->e_hwtlb, true);
953
954 /*
955 * Now that we have a TLB mapping in AS1 for the kernel and its
956 * stack, we switch to AS1 to cleanup the TLB mappings for TLB0.
957 */
958 const register_t saved_msr = mfmsr();
959 mtmsr(saved_msr | PSL_DS | PSL_IS);
960 __asm volatile("isync");
961
962 /*
963 *** Invalidate all the TLB0 entries.
964 */
965 e500_tlb_invalidate_all();
966
967 /*
968 *** Now let's see if we have any entries in TLB1 that would
969 *** overlap the ones we are about to install. If so, nuke 'em.
970 */
971 for (u_int i = 0; i < tlb1->tlb1_numentries; i++) {
972 struct e500_xtlb * const xtlb = &tlb1->tlb1_entries[i];
973 struct e500_hwtlb * const hwtlb = &xtlb->e_hwtlb;
974 if ((hwtlb->hwtlb_mas1 & (MAS1_V|MAS1_TS)) == MAS1_V
975 && (hwtlb->hwtlb_mas2 & MAS2_EPN) < memsize) {
976 e500_free_tlb1_entry(xtlb, i, false);
977 }
978 }
979
980 /*
981 *** Now we can add the TLB entries that will map physical
982 *** memory. If bit 0 [MSB] in slotmask is set, then tlb
983 *** entry 0 contains a mapping for physical memory...
984 */
985 struct e500_xtlb *entries = tlb1->tlb1_entries;
986 while (slotmask != 0) {
987 const u_int slot = __builtin_clz(slotmask);
988 hwtlb_write(entries[slot].e_hwtlb, false);
989 entries += slot + 1;
990 slotmask <<= slot + 1;
991 }
992
993 /*
994 *** Synchronize the TLB and the instruction stream.
995 */
996 __asm volatile("tlbsync");
997 __asm volatile("isync");
998
999 /*
1000 *** Switch back to AS 0.
1001 */
1002 mtmsr(saved_msr);
1003 __asm volatile("isync");
1004
1005 /*
1006 * Free the temporary TLB1 entry.
1007 */
1008 e500_free_tlb1_entry(kxtlb, kslot, true);
1009 }
1010
1011 /*
1012 * Finally set the MAS4 defaults.
1013 */
1014 mtspr(SPR_MAS4, MAS4_TSIZED_4KB | MAS4_MD);
1015
1016 /*
1017 * Invalidate all the TLB0 entries.
1018 */
1019 e500_tlb_invalidate_all();
1020 }
1021