fpu_emu.c revision 1.60 1 1.60 rin /* $NetBSD: fpu_emu.c,v 1.60 2022/09/20 12:25:01 rin Exp $ */
2 1.1 simonb
3 1.1 simonb /*
4 1.1 simonb * Copyright 2001 Wasabi Systems, Inc.
5 1.1 simonb * All rights reserved.
6 1.1 simonb *
7 1.1 simonb * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
8 1.1 simonb *
9 1.1 simonb * Redistribution and use in source and binary forms, with or without
10 1.1 simonb * modification, are permitted provided that the following conditions
11 1.1 simonb * are met:
12 1.1 simonb * 1. Redistributions of source code must retain the above copyright
13 1.1 simonb * notice, this list of conditions and the following disclaimer.
14 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 simonb * notice, this list of conditions and the following disclaimer in the
16 1.1 simonb * documentation and/or other materials provided with the distribution.
17 1.1 simonb * 3. All advertising materials mentioning features or use of this software
18 1.1 simonb * must display the following acknowledgement:
19 1.1 simonb * This product includes software developed for the NetBSD Project by
20 1.1 simonb * Wasabi Systems, Inc.
21 1.1 simonb * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 1.1 simonb * or promote products derived from this software without specific prior
23 1.1 simonb * written permission.
24 1.1 simonb *
25 1.1 simonb * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 1.1 simonb * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 1.1 simonb * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 1.1 simonb * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 1.1 simonb * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 1.1 simonb * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 1.1 simonb * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 1.1 simonb * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 1.1 simonb * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 1.1 simonb * POSSIBILITY OF SUCH DAMAGE.
36 1.1 simonb */
37 1.1 simonb
38 1.1 simonb /*
39 1.1 simonb * Copyright (c) 1992, 1993
40 1.1 simonb * The Regents of the University of California. All rights reserved.
41 1.1 simonb *
42 1.1 simonb * This software was developed by the Computer Systems Engineering group
43 1.1 simonb * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
44 1.1 simonb * contributed to Berkeley.
45 1.1 simonb *
46 1.1 simonb * All advertising materials mentioning features or use of this software
47 1.1 simonb * must display the following acknowledgement:
48 1.1 simonb * This product includes software developed by the University of
49 1.1 simonb * California, Lawrence Berkeley Laboratory.
50 1.1 simonb *
51 1.1 simonb * Redistribution and use in source and binary forms, with or without
52 1.1 simonb * modification, are permitted provided that the following conditions
53 1.1 simonb * are met:
54 1.1 simonb * 1. Redistributions of source code must retain the above copyright
55 1.1 simonb * notice, this list of conditions and the following disclaimer.
56 1.1 simonb * 2. Redistributions in binary form must reproduce the above copyright
57 1.1 simonb * notice, this list of conditions and the following disclaimer in the
58 1.1 simonb * documentation and/or other materials provided with the distribution.
59 1.9 agc * 3. Neither the name of the University nor the names of its contributors
60 1.1 simonb * may be used to endorse or promote products derived from this software
61 1.1 simonb * without specific prior written permission.
62 1.1 simonb *
63 1.1 simonb * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64 1.1 simonb * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65 1.1 simonb * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66 1.1 simonb * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67 1.1 simonb * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68 1.1 simonb * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69 1.1 simonb * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70 1.1 simonb * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71 1.1 simonb * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72 1.1 simonb * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73 1.1 simonb * SUCH DAMAGE.
74 1.1 simonb *
75 1.1 simonb * @(#)fpu.c 8.1 (Berkeley) 6/11/93
76 1.1 simonb */
77 1.8 lukem
78 1.8 lukem #include <sys/cdefs.h>
79 1.60 rin __KERNEL_RCSID(0, "$NetBSD: fpu_emu.c,v 1.60 2022/09/20 12:25:01 rin Exp $");
80 1.1 simonb
81 1.23 rin #ifdef _KERNEL_OPT
82 1.1 simonb #include "opt_ddb.h"
83 1.23 rin #endif
84 1.1 simonb
85 1.1 simonb #include <sys/param.h>
86 1.20 rin #include <sys/systm.h>
87 1.20 rin #include <sys/evcnt.h>
88 1.1 simonb #include <sys/proc.h>
89 1.20 rin #include <sys/siginfo.h>
90 1.1 simonb #include <sys/signal.h>
91 1.16 matt #include <sys/signalvar.h>
92 1.1 simonb #include <sys/syslog.h>
93 1.1 simonb
94 1.1 simonb #include <powerpc/instr.h>
95 1.30 rin #include <powerpc/psl.h>
96 1.30 rin
97 1.20 rin #include <machine/fpu.h>
98 1.1 simonb #include <machine/reg.h>
99 1.16 matt #include <machine/trap.h>
100 1.1 simonb
101 1.1 simonb #include <powerpc/fpu/fpu_emu.h>
102 1.1 simonb #include <powerpc/fpu/fpu_extern.h>
103 1.1 simonb
104 1.4 thorpej #define FPU_EMU_EVCNT_DECL(name) \
105 1.4 thorpej static struct evcnt fpu_emu_ev_##name = \
106 1.4 thorpej EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "fpemu", #name); \
107 1.4 thorpej EVCNT_ATTACH_STATIC(fpu_emu_ev_##name)
108 1.4 thorpej
109 1.4 thorpej #define FPU_EMU_EVCNT_INCR(name) \
110 1.5 thorpej fpu_emu_ev_##name.ev_count++
111 1.4 thorpej
112 1.4 thorpej FPU_EMU_EVCNT_DECL(stfiwx);
113 1.4 thorpej FPU_EMU_EVCNT_DECL(fpstore);
114 1.4 thorpej FPU_EMU_EVCNT_DECL(fpload);
115 1.4 thorpej FPU_EMU_EVCNT_DECL(fcmpu);
116 1.4 thorpej FPU_EMU_EVCNT_DECL(frsp);
117 1.4 thorpej FPU_EMU_EVCNT_DECL(fctiw);
118 1.4 thorpej FPU_EMU_EVCNT_DECL(fcmpo);
119 1.4 thorpej FPU_EMU_EVCNT_DECL(mtfsb1);
120 1.4 thorpej FPU_EMU_EVCNT_DECL(fnegabs);
121 1.4 thorpej FPU_EMU_EVCNT_DECL(mcrfs);
122 1.4 thorpej FPU_EMU_EVCNT_DECL(mtfsb0);
123 1.4 thorpej FPU_EMU_EVCNT_DECL(fmr);
124 1.4 thorpej FPU_EMU_EVCNT_DECL(mtfsfi);
125 1.4 thorpej FPU_EMU_EVCNT_DECL(fnabs);
126 1.4 thorpej FPU_EMU_EVCNT_DECL(fabs);
127 1.4 thorpej FPU_EMU_EVCNT_DECL(mffs);
128 1.4 thorpej FPU_EMU_EVCNT_DECL(mtfsf);
129 1.4 thorpej FPU_EMU_EVCNT_DECL(fctid);
130 1.4 thorpej FPU_EMU_EVCNT_DECL(fcfid);
131 1.4 thorpej FPU_EMU_EVCNT_DECL(fdiv);
132 1.4 thorpej FPU_EMU_EVCNT_DECL(fsub);
133 1.4 thorpej FPU_EMU_EVCNT_DECL(fadd);
134 1.4 thorpej FPU_EMU_EVCNT_DECL(fsqrt);
135 1.4 thorpej FPU_EMU_EVCNT_DECL(fsel);
136 1.4 thorpej FPU_EMU_EVCNT_DECL(fpres);
137 1.4 thorpej FPU_EMU_EVCNT_DECL(fmul);
138 1.4 thorpej FPU_EMU_EVCNT_DECL(frsqrte);
139 1.55 rin FPU_EMU_EVCNT_DECL(fmsub);
140 1.55 rin FPU_EMU_EVCNT_DECL(fmadd);
141 1.4 thorpej FPU_EMU_EVCNT_DECL(fnmsub);
142 1.4 thorpej FPU_EMU_EVCNT_DECL(fnmadd);
143 1.1 simonb
144 1.1 simonb /* FPSR exception masks */
145 1.1 simonb #define FPSR_EX_MSK (FPSCR_VX|FPSCR_OX|FPSCR_UX|FPSCR_ZX| \
146 1.1 simonb FPSCR_XX|FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI| \
147 1.1 simonb FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\
148 1.1 simonb FPSCR_VXSQRT|FPSCR_VXCVI)
149 1.1 simonb #define FPSR_EX (FPSCR_VE|FPSCR_OE|FPSCR_UE|FPSCR_ZE|FPSCR_XE)
150 1.32 rin #define FPSR_INV (FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI| \
151 1.32 rin FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\
152 1.32 rin FPSCR_VXSQRT|FPSCR_VXCVI)
153 1.41 rin #define MCRFS_MASK \
154 1.41 rin ( \
155 1.41 rin FPSCR_FX | FPSCR_OX | \
156 1.41 rin FPSCR_UX | FPSCR_ZX | FPSCR_XX | FPSCR_VXSNAN | \
157 1.41 rin FPSCR_VXISI | FPSCR_VXIDI | FPSCR_VXZDZ | FPSCR_VXIMZ | \
158 1.41 rin FPSCR_VXVC | \
159 1.41 rin FPSCR_VXSOFT | FPSCR_VXSQRT | FPSCR_VXCVI \
160 1.41 rin )
161 1.1 simonb
162 1.45 rin #define FR(reg) (fs->fpreg[reg])
163 1.1 simonb
164 1.1 simonb int fpe_debug = 0;
165 1.1 simonb
166 1.1 simonb #ifdef DDB
167 1.1 simonb extern vaddr_t opc_disasm(vaddr_t loc, int opcode);
168 1.1 simonb #endif
169 1.1 simonb
170 1.54 rin static int fpu_execute(struct trapframe *, struct fpemu *, union instr *);
171 1.54 rin
172 1.1 simonb #ifdef DEBUG
173 1.1 simonb /*
174 1.1 simonb * Dump a `fpn' structure.
175 1.1 simonb */
176 1.1 simonb void
177 1.1 simonb fpu_dumpfpn(struct fpn *fp)
178 1.1 simonb {
179 1.13 scw static const char *class[] = {
180 1.1 simonb "SNAN", "QNAN", "ZERO", "NUM", "INF"
181 1.1 simonb };
182 1.1 simonb
183 1.22 rin KASSERT(fp != NULL);
184 1.22 rin
185 1.21 rin printf("%s %c.%x %x %x %xE%d\n", class[fp->fp_class + 2],
186 1.1 simonb fp->fp_sign ? '-' : ' ',
187 1.1 simonb fp->fp_mant[0], fp->fp_mant[1],
188 1.53 rin fp->fp_mant[2], fp->fp_mant[3],
189 1.1 simonb fp->fp_exp);
190 1.1 simonb }
191 1.1 simonb #endif
192 1.1 simonb
193 1.1 simonb /*
194 1.1 simonb * fpu_execute returns the following error numbers (0 = no error):
195 1.1 simonb */
196 1.1 simonb #define FPE 1 /* take a floating point exception */
197 1.1 simonb #define NOTFPU 2 /* not an FPU instruction */
198 1.1 simonb #define FAULT 3
199 1.1 simonb
200 1.1 simonb
201 1.1 simonb /*
202 1.1 simonb * Emulate a floating-point instruction.
203 1.36 rin * Return true if insn is consumed anyway.
204 1.36 rin * Otherwise, the caller must take care of it.
205 1.1 simonb */
206 1.16 matt bool
207 1.16 matt fpu_emulate(struct trapframe *tf, struct fpreg *fpf, ksiginfo_t *ksi)
208 1.1 simonb {
209 1.30 rin struct pcb *pcb;
210 1.16 matt union instr insn;
211 1.16 matt struct fpemu fe;
212 1.16 matt
213 1.16 matt KSI_INIT_TRAP(ksi);
214 1.16 matt ksi->ksi_signo = 0;
215 1.16 matt ksi->ksi_addr = (void *)tf->tf_srr0;
216 1.1 simonb
217 1.1 simonb /* initialize insn.is_datasize to tell it is *not* initialized */
218 1.1 simonb fe.fe_fpstate = fpf;
219 1.1 simonb fe.fe_cx = 0;
220 1.1 simonb
221 1.1 simonb /* always set this (to avoid a warning) */
222 1.1 simonb
223 1.15 matt if (copyin((void *) (tf->tf_srr0), &insn.i_int, sizeof (insn.i_int))) {
224 1.1 simonb #ifdef DEBUG
225 1.1 simonb printf("fpu_emulate: fault reading opcode\n");
226 1.1 simonb #endif
227 1.16 matt ksi->ksi_signo = SIGSEGV;
228 1.16 matt ksi->ksi_trap = EXC_ISI;
229 1.16 matt ksi->ksi_code = SEGV_MAPERR;
230 1.16 matt return true;
231 1.1 simonb }
232 1.1 simonb
233 1.1 simonb DPRINTF(FPE_EX, ("fpu_emulate: emulating insn %x at %p\n",
234 1.15 matt insn.i_int, (void *)tf->tf_srr0));
235 1.1 simonb
236 1.1 simonb if ((insn.i_any.i_opcd == OPC_TWI) ||
237 1.1 simonb ((insn.i_any.i_opcd == OPC_integer_31) &&
238 1.1 simonb (insn.i_x.i_xo == OPC31_TW))) {
239 1.1 simonb /* Check for the two trap insns. */
240 1.1 simonb DPRINTF(FPE_EX, ("fpu_emulate: SIGTRAP\n"));
241 1.16 matt ksi->ksi_signo = SIGTRAP;
242 1.16 matt ksi->ksi_trap = EXC_PGM;
243 1.27 rin ksi->ksi_code = TRAP_BRKPT;
244 1.16 matt return true;
245 1.1 simonb }
246 1.15 matt switch (fpu_execute(tf, &fe, &insn)) {
247 1.1 simonb case 0:
248 1.30 rin success:
249 1.1 simonb DPRINTF(FPE_EX, ("fpu_emulate: success\n"));
250 1.15 matt tf->tf_srr0 += 4;
251 1.16 matt return true;
252 1.1 simonb
253 1.1 simonb case FPE:
254 1.30 rin pcb = lwp_getpcb(curlwp);
255 1.30 rin if ((pcb->pcb_flags & PSL_FE_PREC) == 0)
256 1.30 rin goto success;
257 1.1 simonb DPRINTF(FPE_EX, ("fpu_emulate: SIGFPE\n"));
258 1.16 matt ksi->ksi_signo = SIGFPE;
259 1.16 matt ksi->ksi_trap = EXC_PGM;
260 1.31 rin ksi->ksi_code = fpu_get_fault_code();
261 1.16 matt return true;
262 1.1 simonb
263 1.1 simonb case FAULT:
264 1.1 simonb DPRINTF(FPE_EX, ("fpu_emulate: SIGSEGV\n"));
265 1.16 matt ksi->ksi_signo = SIGSEGV;
266 1.16 matt ksi->ksi_trap = EXC_DSI;
267 1.16 matt ksi->ksi_code = SEGV_MAPERR;
268 1.16 matt ksi->ksi_addr = (void *)fe.fe_addr;
269 1.16 matt return true;
270 1.1 simonb
271 1.1 simonb case NOTFPU:
272 1.1 simonb default:
273 1.1 simonb DPRINTF(FPE_EX, ("fpu_emulate: SIGILL\n"));
274 1.18 rin #if defined(DDB) && defined(DEBUG)
275 1.1 simonb if (fpe_debug & FPE_EX) {
276 1.1 simonb printf("fpu_emulate: illegal insn %x at %p:",
277 1.15 matt insn.i_int, (void *) (tf->tf_srr0));
278 1.15 matt opc_disasm((vaddr_t)(tf->tf_srr0), insn.i_int);
279 1.1 simonb }
280 1.2 simonb #endif
281 1.16 matt return false;
282 1.1 simonb }
283 1.1 simonb }
284 1.1 simonb
285 1.1 simonb /*
286 1.59 rin * fpu_to_single(): Helper function for stfs{,u}{,x}.
287 1.59 rin *
288 1.59 rin * Single-precision (float) data is internally represented in
289 1.59 rin * double-precision (double) format in floating-point registers (FRs).
290 1.59 rin * Even though double value cannot be translated into float format in
291 1.59 rin * general, Power ISA (2.0.3--3.1) specify conversion algorithm when
292 1.59 rin * stored to memory (see Sec. 4.6.3):
293 1.59 rin *
294 1.59 rin * - Extra fraction bits are truncated regardless of rounding mode.
295 1.59 rin * - When magnitude is larger than the maximum number in float format,
296 1.59 rin * bits 63--62 and 58--29 are mechanically copied into bits 31--0.
297 1.59 rin * - When magnitude is representable as denormalized number in float
298 1.59 rin * format, it is stored as normalized double value in FRs;
299 1.59 rin * denormalization is required in this case.
300 1.59 rin * - When magnitude is smaller than the minimum denormalized number in
301 1.60 rin * float format, the result is undefined. For G5 (970MP Rev 1.1),
302 1.59 rin * (sign | 0) seems to be stored. For G4 and prior, some ``random''
303 1.59 rin * garbage is stored in exponent. We mimic G5 for now.
304 1.59 rin */
305 1.59 rin static uint32_t
306 1.59 rin fpu_to_single(uint64_t reg)
307 1.59 rin {
308 1.59 rin uint32_t sign, frac, word;
309 1.59 rin int exp, shift;
310 1.59 rin
311 1.59 rin sign = (reg & __BIT(63)) >> 32;
312 1.59 rin exp = __SHIFTOUT(reg, __BITS(62, 52)) - 1023;
313 1.59 rin if (exp > -127 || (reg & ~__BIT(63)) == 0) {
314 1.59 rin /*
315 1.59 rin * No denormalization required: normalized, zero, inf, NaN,
316 1.59 rin * or numbers larger than MAXFLOAT (see comment above).
317 1.59 rin *
318 1.59 rin * Note that MSB and 7-LSBs in exponent are same for double
319 1.59 rin * and float formats in this case.
320 1.59 rin */
321 1.59 rin word = ((reg & __BIT(62)) >> 32) |
322 1.59 rin __SHIFTOUT(reg, __BITS(58, 52) | __BITS(51, 29));
323 1.59 rin } else if (exp <= -127 && exp >= -149) {
324 1.59 rin /* Denormalized. */
325 1.59 rin shift = - 126 - exp; /* 1 ... 23 */
326 1.59 rin frac = __SHIFTOUT(__BIT(52) | reg, __BITS(52, 29 + shift));
327 1.59 rin word = /* __SHIFTIN(0, __BITS(30, 23)) | */ frac;
328 1.59 rin } else {
329 1.59 rin /* Undefined. Mimic G5 for now. */
330 1.59 rin word = 0;
331 1.59 rin }
332 1.59 rin return sign | word;
333 1.59 rin }
334 1.59 rin
335 1.59 rin /*
336 1.1 simonb * Execute an FPU instruction (one that runs entirely in the FPU; not
337 1.1 simonb * FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
338 1.1 simonb * modified to reflect the setting the hardware would have left.
339 1.1 simonb *
340 1.1 simonb * Note that we do not catch all illegal opcodes, so you can, for instance,
341 1.1 simonb * multiply two integers this way.
342 1.1 simonb */
343 1.54 rin static int
344 1.1 simonb fpu_execute(struct trapframe *tf, struct fpemu *fe, union instr *insn)
345 1.1 simonb {
346 1.1 simonb struct fpn *fp;
347 1.1 simonb union instr instr = *insn;
348 1.1 simonb int *a;
349 1.47 rin int ra, rb, rc, rt, type, mask, fsr, cx, bf, setcr, cond;
350 1.47 rin u_int bits;
351 1.1 simonb struct fpreg *fs;
352 1.50 rin int i;
353 1.1 simonb
354 1.1 simonb /* Setup work. */
355 1.1 simonb fp = NULL;
356 1.1 simonb fs = fe->fe_fpstate;
357 1.1 simonb fe->fe_fpscr = ((int *)&fs->fpscr)[1];
358 1.1 simonb
359 1.1 simonb /*
360 1.1 simonb * On PowerPC all floating point values are stored in registers
361 1.1 simonb * as doubles, even when used for single precision operations.
362 1.1 simonb */
363 1.1 simonb type = FTYPE_DBL;
364 1.1 simonb cond = instr.i_any.i_rc;
365 1.1 simonb setcr = 0;
366 1.10 simonb bf = 0; /* XXX gcc */
367 1.1 simonb
368 1.1 simonb #if defined(DDB) && defined(DEBUG)
369 1.1 simonb if (fpe_debug & FPE_EX) {
370 1.15 matt vaddr_t loc = tf->tf_srr0;
371 1.1 simonb
372 1.1 simonb printf("Trying to emulate: %p ", (void *)loc);
373 1.1 simonb opc_disasm(loc, instr.i_int);
374 1.1 simonb }
375 1.1 simonb #endif
376 1.1 simonb
377 1.1 simonb /*
378 1.1 simonb * `Decode' and execute instruction.
379 1.1 simonb */
380 1.1 simonb
381 1.1 simonb if ((instr.i_any.i_opcd >= OPC_LFS && instr.i_any.i_opcd <= OPC_STFDU) ||
382 1.1 simonb instr.i_any.i_opcd == OPC_integer_31) {
383 1.1 simonb /*
384 1.1 simonb * Handle load/store insns:
385 1.1 simonb *
386 1.1 simonb * Convert to/from single if needed, calculate addr,
387 1.1 simonb * and update index reg if needed.
388 1.1 simonb */
389 1.49 rin vaddr_t addr;
390 1.48 rin size_t size = sizeof(double);
391 1.1 simonb int store, update;
392 1.1 simonb
393 1.1 simonb cond = 0; /* ld/st never set condition codes */
394 1.1 simonb
395 1.1 simonb
396 1.1 simonb if (instr.i_any.i_opcd == OPC_integer_31) {
397 1.1 simonb if (instr.i_x.i_xo == OPC31_STFIWX) {
398 1.4 thorpej FPU_EMU_EVCNT_INCR(stfiwx);
399 1.4 thorpej
400 1.1 simonb /* Store as integer */
401 1.1 simonb ra = instr.i_x.i_ra;
402 1.1 simonb rb = instr.i_x.i_rb;
403 1.7 thorpej DPRINTF(FPE_INSN, ("reg %d has %lx reg %d has %lx\n",
404 1.15 matt ra, tf->tf_fixreg[ra], rb, tf->tf_fixreg[rb]));
405 1.1 simonb
406 1.15 matt addr = tf->tf_fixreg[rb];
407 1.1 simonb if (ra != 0)
408 1.15 matt addr += tf->tf_fixreg[ra];
409 1.1 simonb rt = instr.i_x.i_rt;
410 1.1 simonb a = (int *)&fs->fpreg[rt];
411 1.1 simonb DPRINTF(FPE_INSN,
412 1.1 simonb ("fpu_execute: Store INT %x at %p\n",
413 1.1 simonb a[1], (void *)addr));
414 1.16 matt if (copyout(&a[1], (void *)addr, sizeof(int))) {
415 1.16 matt fe->fe_addr = addr;
416 1.1 simonb return (FAULT);
417 1.16 matt }
418 1.1 simonb return (0);
419 1.1 simonb }
420 1.1 simonb
421 1.1 simonb if ((instr.i_x.i_xo & OPC31_FPMASK) != OPC31_FPOP)
422 1.1 simonb /* Not an indexed FP load/store op */
423 1.1 simonb return (NOTFPU);
424 1.1 simonb
425 1.1 simonb store = (instr.i_x.i_xo & 0x80);
426 1.48 rin if ((instr.i_x.i_xo & 0x40) == 0) {
427 1.1 simonb type = FTYPE_SNG;
428 1.48 rin size = sizeof(float);
429 1.48 rin }
430 1.1 simonb update = (instr.i_x.i_xo & 0x20);
431 1.53 rin
432 1.1 simonb /* calculate EA of load/store */
433 1.1 simonb ra = instr.i_x.i_ra;
434 1.1 simonb rb = instr.i_x.i_rb;
435 1.7 thorpej DPRINTF(FPE_INSN, ("reg %d has %lx reg %d has %lx\n",
436 1.15 matt ra, tf->tf_fixreg[ra], rb, tf->tf_fixreg[rb]));
437 1.15 matt addr = tf->tf_fixreg[rb];
438 1.1 simonb if (ra != 0)
439 1.15 matt addr += tf->tf_fixreg[ra];
440 1.1 simonb rt = instr.i_x.i_rt;
441 1.1 simonb } else {
442 1.1 simonb store = instr.i_d.i_opcd & 0x4;
443 1.48 rin if ((instr.i_d.i_opcd & 0x2) == 0) {
444 1.1 simonb type = FTYPE_SNG;
445 1.48 rin size = sizeof(float);
446 1.48 rin }
447 1.1 simonb update = instr.i_d.i_opcd & 0x1;
448 1.1 simonb
449 1.1 simonb /* calculate EA of load/store */
450 1.1 simonb ra = instr.i_d.i_ra;
451 1.1 simonb addr = instr.i_d.i_d;
452 1.7 thorpej DPRINTF(FPE_INSN, ("reg %d has %lx displ %lx\n",
453 1.15 matt ra, tf->tf_fixreg[ra], addr));
454 1.1 simonb if (ra != 0)
455 1.15 matt addr += tf->tf_fixreg[ra];
456 1.1 simonb rt = instr.i_d.i_rt;
457 1.1 simonb }
458 1.1 simonb
459 1.1 simonb if (update && ra == 0)
460 1.1 simonb return (NOTFPU);
461 1.1 simonb
462 1.1 simonb if (store) {
463 1.1 simonb /* Store */
464 1.59 rin uint32_t word;
465 1.59 rin const void *kaddr;
466 1.59 rin
467 1.4 thorpej FPU_EMU_EVCNT_INCR(fpstore);
468 1.1 simonb if (type != FTYPE_DBL) {
469 1.59 rin /*
470 1.59 rin * As Power ISA specifies conversion algorithm
471 1.59 rin * for store floating-point single insns, we
472 1.59 rin * cannot use fpu_explode() and _implode() here.
473 1.59 rin * See fpu_to_single() and comment therein for
474 1.59 rin * more details.
475 1.59 rin */
476 1.1 simonb DPRINTF(FPE_INSN,
477 1.1 simonb ("fpu_execute: Store SNG at %p\n",
478 1.1 simonb (void *)addr));
479 1.59 rin word = fpu_to_single(FR(rt));
480 1.59 rin kaddr = &word;
481 1.1 simonb } else {
482 1.53 rin DPRINTF(FPE_INSN,
483 1.1 simonb ("fpu_execute: Store DBL at %p\n",
484 1.1 simonb (void *)addr));
485 1.59 rin kaddr = &FR(rt);
486 1.59 rin }
487 1.59 rin if (copyout(kaddr, (void *)addr, size)) {
488 1.59 rin fe->fe_addr = addr;
489 1.59 rin return (FAULT);
490 1.1 simonb }
491 1.1 simonb } else {
492 1.1 simonb /* Load */
493 1.4 thorpej FPU_EMU_EVCNT_INCR(fpload);
494 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: Load from %p\n",
495 1.1 simonb (void *)addr));
496 1.57 rin if (copyin((const void *)addr, &FR(rt), size)) {
497 1.16 matt fe->fe_addr = addr;
498 1.1 simonb return (FAULT);
499 1.16 matt }
500 1.1 simonb if (type != FTYPE_DBL) {
501 1.45 rin fpu_explode(fe, fp = &fe->fe_f1, type, FR(rt));
502 1.45 rin fpu_implode(fe, fp, FTYPE_DBL, &FR(rt));
503 1.1 simonb }
504 1.1 simonb }
505 1.53 rin if (update)
506 1.15 matt tf->tf_fixreg[ra] = addr;
507 1.1 simonb /* Complete. */
508 1.1 simonb return (0);
509 1.1 simonb } else if (instr.i_any.i_opcd == OPC_sp_fp_59 ||
510 1.1 simonb instr.i_any.i_opcd == OPC_dp_fp_63) {
511 1.1 simonb
512 1.1 simonb
513 1.1 simonb if (instr.i_any.i_opcd == OPC_dp_fp_63 &&
514 1.1 simonb !(instr.i_a.i_xo & OPC63M_MASK)) {
515 1.1 simonb /* Format X */
516 1.1 simonb rt = instr.i_x.i_rt;
517 1.1 simonb ra = instr.i_x.i_ra;
518 1.1 simonb rb = instr.i_x.i_rb;
519 1.1 simonb
520 1.1 simonb
521 1.1 simonb /* One of the special opcodes.... */
522 1.1 simonb switch (instr.i_x.i_xo) {
523 1.1 simonb case OPC63_FCMPU:
524 1.4 thorpej FPU_EMU_EVCNT_INCR(fcmpu);
525 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FCMPU\n"));
526 1.1 simonb rt >>= 2;
527 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
528 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
529 1.1 simonb fpu_compare(fe, 0);
530 1.1 simonb /* Make sure we do the condition regs. */
531 1.1 simonb cond = 0;
532 1.1 simonb /* N.B.: i_rs is already left shifted by two. */
533 1.1 simonb bf = instr.i_x.i_rs & 0xfc;
534 1.1 simonb setcr = 1;
535 1.1 simonb break;
536 1.1 simonb
537 1.1 simonb case OPC63_FRSP:
538 1.1 simonb /*
539 1.53 rin * Convert to single:
540 1.1 simonb *
541 1.1 simonb * PowerPC uses this to round a double
542 1.1 simonb * precision value to single precision,
543 1.53 rin * but values in registers are always
544 1.1 simonb * stored in double precision format.
545 1.1 simonb */
546 1.4 thorpej FPU_EMU_EVCNT_INCR(frsp);
547 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FRSP\n"));
548 1.45 rin fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL,
549 1.45 rin FR(rb));
550 1.45 rin fpu_implode(fe, fp, FTYPE_SNG, &FR(rt));
551 1.45 rin fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG,
552 1.45 rin FR(rt));
553 1.50 rin type = FTYPE_DBL | FTYPE_FPSCR;
554 1.1 simonb break;
555 1.1 simonb case OPC63_FCTIW:
556 1.1 simonb case OPC63_FCTIWZ:
557 1.4 thorpej FPU_EMU_EVCNT_INCR(fctiw);
558 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FCTIW\n"));
559 1.45 rin fpu_explode(fe, fp = &fe->fe_f1, type, FR(rb));
560 1.51 rin type = FTYPE_INT | FTYPE_FPSCR;
561 1.43 rin if (instr.i_x.i_xo == OPC63_FCTIWZ)
562 1.43 rin type |= FTYPE_RD_RZ;
563 1.1 simonb break;
564 1.1 simonb case OPC63_FCMPO:
565 1.4 thorpej FPU_EMU_EVCNT_INCR(fcmpo);
566 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FCMPO\n"));
567 1.1 simonb rt >>= 2;
568 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
569 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
570 1.1 simonb fpu_compare(fe, 1);
571 1.1 simonb /* Make sure we do the condition regs. */
572 1.1 simonb cond = 0;
573 1.1 simonb /* N.B.: i_rs is already left shifted by two. */
574 1.1 simonb bf = instr.i_x.i_rs & 0xfc;
575 1.1 simonb setcr = 1;
576 1.1 simonb break;
577 1.1 simonb case OPC63_MTFSB1:
578 1.4 thorpej FPU_EMU_EVCNT_INCR(mtfsb1);
579 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: MTFSB1\n"));
580 1.39 rin fe->fe_cx = (1 << (31 - rt)) &
581 1.39 rin ~(FPSCR_FEX | FPSCR_VX);
582 1.1 simonb break;
583 1.1 simonb case OPC63_FNEG:
584 1.4 thorpej FPU_EMU_EVCNT_INCR(fnegabs);
585 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FNEGABS\n"));
586 1.3 wiz memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
587 1.1 simonb sizeof(double));
588 1.1 simonb a = (int *)&fs->fpreg[rt];
589 1.1 simonb *a ^= (1 << 31);
590 1.1 simonb break;
591 1.1 simonb case OPC63_MCRFS:
592 1.4 thorpej FPU_EMU_EVCNT_INCR(mcrfs);
593 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: MCRFS\n"));
594 1.1 simonb cond = 0;
595 1.1 simonb rt &= 0x1c;
596 1.1 simonb ra &= 0x1c;
597 1.1 simonb /* Extract the bits we want */
598 1.41 rin bits = (fe->fe_fpscr >> (28 - ra)) & 0xf;
599 1.1 simonb /* Clear the bits we copied. */
600 1.41 rin mask = (0xf << (28 - ra)) & MCRFS_MASK;
601 1.41 rin fe->fe_fpscr &= ~mask;
602 1.1 simonb /* Now shove them in the right part of cr */
603 1.15 matt tf->tf_cr &= ~(0xf << (28 - rt));
604 1.41 rin tf->tf_cr |= bits << (28 - rt);
605 1.1 simonb break;
606 1.1 simonb case OPC63_MTFSB0:
607 1.4 thorpej FPU_EMU_EVCNT_INCR(mtfsb0);
608 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: MTFSB0\n"));
609 1.39 rin fe->fe_fpscr &= ~(1 << (31 - rt)) |
610 1.39 rin (FPSCR_FEX | FPSCR_VX);
611 1.1 simonb break;
612 1.1 simonb case OPC63_FMR:
613 1.4 thorpej FPU_EMU_EVCNT_INCR(fmr);
614 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FMR\n"));
615 1.3 wiz memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
616 1.1 simonb sizeof(double));
617 1.1 simonb break;
618 1.1 simonb case OPC63_MTFSFI:
619 1.4 thorpej FPU_EMU_EVCNT_INCR(mtfsfi);
620 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: MTFSFI\n"));
621 1.1 simonb rb >>= 1;
622 1.1 simonb rt &= 0x1c; /* Already left-shifted 4 */
623 1.40 rin bits = rb << (28 - rt);
624 1.40 rin mask = 0xf << (28 - rt);
625 1.40 rin fe->fe_fpscr = (fe->fe_fpscr & ~mask) | bits;
626 1.1 simonb break;
627 1.1 simonb case OPC63_FNABS:
628 1.4 thorpej FPU_EMU_EVCNT_INCR(fnabs);
629 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
630 1.3 wiz memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
631 1.1 simonb sizeof(double));
632 1.1 simonb a = (int *)&fs->fpreg[rt];
633 1.1 simonb *a |= (1 << 31);
634 1.1 simonb break;
635 1.1 simonb case OPC63_FABS:
636 1.4 thorpej FPU_EMU_EVCNT_INCR(fabs);
637 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
638 1.3 wiz memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
639 1.1 simonb sizeof(double));
640 1.1 simonb a = (int *)&fs->fpreg[rt];
641 1.1 simonb *a &= ~(1 << 31);
642 1.1 simonb break;
643 1.1 simonb case OPC63_MFFS:
644 1.4 thorpej FPU_EMU_EVCNT_INCR(mffs);
645 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: MFFS\n"));
646 1.3 wiz memcpy(&fs->fpreg[rt], &fs->fpscr,
647 1.1 simonb sizeof(fs->fpscr));
648 1.1 simonb break;
649 1.1 simonb case OPC63_MTFSF:
650 1.4 thorpej FPU_EMU_EVCNT_INCR(mtfsf);
651 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: MTFSF\n"));
652 1.40 rin if ((rt = instr.i_xfl.i_flm) == -1) {
653 1.1 simonb mask = -1;
654 1.40 rin } else {
655 1.1 simonb mask = 0;
656 1.1 simonb /* Convert 1 bit -> 4 bits */
657 1.40 rin for (i = 0; i < 8; i++)
658 1.40 rin if (rt & (1 << i))
659 1.40 rin mask |=
660 1.40 rin (0xf << (4 * i));
661 1.1 simonb }
662 1.28 rin a = (int *)&fs->fpreg[rb];
663 1.40 rin bits = a[1] & mask;
664 1.40 rin fe->fe_fpscr = (fe->fe_fpscr & ~mask) | bits;
665 1.1 simonb break;
666 1.1 simonb case OPC63_FCTID:
667 1.1 simonb case OPC63_FCTIDZ:
668 1.4 thorpej FPU_EMU_EVCNT_INCR(fctid);
669 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FCTID\n"));
670 1.45 rin fpu_explode(fe, fp = &fe->fe_f1, type, FR(rb));
671 1.51 rin type = FTYPE_LNG | FTYPE_FPSCR;
672 1.43 rin if (instr.i_x.i_xo == OPC63_FCTIDZ)
673 1.43 rin type |= FTYPE_RD_RZ;
674 1.1 simonb break;
675 1.1 simonb case OPC63_FCFID:
676 1.4 thorpej FPU_EMU_EVCNT_INCR(fcfid);
677 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FCFID\n"));
678 1.52 rin fpu_explode(fe, fp = &fe->fe_f1, FTYPE_LNG,
679 1.52 rin FR(rb));
680 1.50 rin type = FTYPE_DBL | FTYPE_FPSCR;
681 1.1 simonb break;
682 1.1 simonb default:
683 1.1 simonb return (NOTFPU);
684 1.1 simonb break;
685 1.1 simonb }
686 1.1 simonb } else {
687 1.1 simonb /* Format A */
688 1.1 simonb rt = instr.i_a.i_frt;
689 1.1 simonb ra = instr.i_a.i_fra;
690 1.1 simonb rb = instr.i_a.i_frb;
691 1.1 simonb rc = instr.i_a.i_frc;
692 1.1 simonb
693 1.19 rin /*
694 1.19 rin * All arithmetic operations work on registers, which
695 1.19 rin * are stored as doubles.
696 1.19 rin */
697 1.19 rin type = FTYPE_DBL;
698 1.1 simonb switch ((unsigned int)instr.i_a.i_xo) {
699 1.1 simonb case OPC59_FDIVS:
700 1.4 thorpej FPU_EMU_EVCNT_INCR(fdiv);
701 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
702 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
703 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
704 1.1 simonb fp = fpu_div(fe);
705 1.1 simonb break;
706 1.1 simonb case OPC59_FSUBS:
707 1.4 thorpej FPU_EMU_EVCNT_INCR(fsub);
708 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
709 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
710 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
711 1.1 simonb fp = fpu_sub(fe);
712 1.1 simonb break;
713 1.1 simonb case OPC59_FADDS:
714 1.4 thorpej FPU_EMU_EVCNT_INCR(fadd);
715 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
716 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
717 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
718 1.1 simonb fp = fpu_add(fe);
719 1.1 simonb break;
720 1.1 simonb case OPC59_FSQRTS:
721 1.4 thorpej FPU_EMU_EVCNT_INCR(fsqrt);
722 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
723 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(rb));
724 1.1 simonb fp = fpu_sqrt(fe);
725 1.1 simonb break;
726 1.1 simonb case OPC63M_FSEL:
727 1.4 thorpej FPU_EMU_EVCNT_INCR(fsel);
728 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FSEL\n"));
729 1.1 simonb a = (int *)&fe->fe_fpstate->fpreg[ra];
730 1.42 rin if ((( a[0] & 0x80000000) &&
731 1.42 rin ((a[0] & 0x7fffffff) | a[1])) ||
732 1.42 rin (( a[0] & 0x7ff00000) &&
733 1.42 rin ((a[0] & 0x000fffff) | a[1]))) {
734 1.42 rin /* negative/NaN or NaN */
735 1.1 simonb rc = rb;
736 1.42 rin }
737 1.1 simonb DPRINTF(FPE_INSN, ("f%d => f%d\n", rc, rt));
738 1.3 wiz memcpy(&fs->fpreg[rt], &fs->fpreg[rc],
739 1.1 simonb sizeof(double));
740 1.1 simonb break;
741 1.1 simonb case OPC59_FRES:
742 1.4 thorpej FPU_EMU_EVCNT_INCR(fpres);
743 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FPRES\n"));
744 1.46 rin fpu_explode(fe, &fe->fe_f1, FTYPE_INT, 1);
745 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
746 1.46 rin fp = fpu_div(fe);
747 1.1 simonb break;
748 1.1 simonb case OPC59_FMULS:
749 1.4 thorpej FPU_EMU_EVCNT_INCR(fmul);
750 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
751 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
752 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rc));
753 1.1 simonb fp = fpu_mul(fe);
754 1.1 simonb break;
755 1.1 simonb case OPC63M_FRSQRTE:
756 1.1 simonb /* Reciprocal sqrt() estimate */
757 1.4 thorpej FPU_EMU_EVCNT_INCR(frsqrte);
758 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FRSQRTE\n"));
759 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(rb));
760 1.12 scw fp = fpu_sqrt(fe);
761 1.1 simonb fe->fe_f2 = *fp;
762 1.45 rin fpu_explode(fe, &fe->fe_f1, FTYPE_INT, 1);
763 1.46 rin fp = fpu_div(fe);
764 1.1 simonb break;
765 1.1 simonb case OPC59_FMSUBS:
766 1.55 rin FPU_EMU_EVCNT_INCR(fmsub);
767 1.55 rin DPRINTF(FPE_INSN, ("fpu_execute: FMSUB\n"));
768 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
769 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rc));
770 1.1 simonb fp = fpu_mul(fe);
771 1.1 simonb fe->fe_f1 = *fp;
772 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
773 1.1 simonb fp = fpu_sub(fe);
774 1.1 simonb break;
775 1.1 simonb case OPC59_FMADDS:
776 1.55 rin FPU_EMU_EVCNT_INCR(fmadd);
777 1.55 rin DPRINTF(FPE_INSN, ("fpu_execute: FMADD\n"));
778 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
779 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rc));
780 1.1 simonb fp = fpu_mul(fe);
781 1.1 simonb fe->fe_f1 = *fp;
782 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
783 1.1 simonb fp = fpu_add(fe);
784 1.1 simonb break;
785 1.1 simonb case OPC59_FNMSUBS:
786 1.4 thorpej FPU_EMU_EVCNT_INCR(fnmsub);
787 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FNMSUB\n"));
788 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
789 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rc));
790 1.1 simonb fp = fpu_mul(fe);
791 1.1 simonb fe->fe_f1 = *fp;
792 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
793 1.1 simonb fp = fpu_sub(fe);
794 1.1 simonb /* Negate */
795 1.58 rin if (!ISNAN(fp))
796 1.58 rin fp->fp_sign ^= 1;
797 1.1 simonb break;
798 1.1 simonb case OPC59_FNMADDS:
799 1.4 thorpej FPU_EMU_EVCNT_INCR(fnmadd);
800 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: FNMADD\n"));
801 1.45 rin fpu_explode(fe, &fe->fe_f1, type, FR(ra));
802 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rc));
803 1.1 simonb fp = fpu_mul(fe);
804 1.1 simonb fe->fe_f1 = *fp;
805 1.45 rin fpu_explode(fe, &fe->fe_f2, type, FR(rb));
806 1.1 simonb fp = fpu_add(fe);
807 1.1 simonb /* Negate */
808 1.58 rin if (!ISNAN(fp))
809 1.58 rin fp->fp_sign ^= 1;
810 1.1 simonb break;
811 1.1 simonb default:
812 1.1 simonb return (NOTFPU);
813 1.1 simonb break;
814 1.1 simonb }
815 1.19 rin
816 1.19 rin /* If the instruction was single precision, round */
817 1.19 rin if (!(instr.i_any.i_opcd & 0x4)) {
818 1.50 rin fpu_implode(fe, fp, FTYPE_SNG | FTYPE_FPSCR,
819 1.45 rin &FR(rt));
820 1.45 rin fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG,
821 1.45 rin FR(rt));
822 1.44 rin } else
823 1.50 rin type |= FTYPE_FPSCR;
824 1.1 simonb }
825 1.1 simonb } else {
826 1.1 simonb return (NOTFPU);
827 1.1 simonb }
828 1.1 simonb
829 1.1 simonb /*
830 1.1 simonb * ALU operation is complete. Collapse the result and then check
831 1.1 simonb * for exceptions. If we got any, and they are enabled, do not
832 1.1 simonb * alter the destination register, just stop with an exception.
833 1.1 simonb * Otherwise set new current exceptions and accrue.
834 1.1 simonb */
835 1.1 simonb if (fp)
836 1.45 rin fpu_implode(fe, fp, type, &FR(rt));
837 1.1 simonb cx = fe->fe_cx;
838 1.32 rin fsr = fe->fe_fpscr & ~(FPSCR_FEX|FPSCR_VX);
839 1.1 simonb if (cx != 0) {
840 1.1 simonb fsr |= cx;
841 1.1 simonb DPRINTF(FPE_INSN, ("fpu_execute: cx %x, fsr %x\n", cx, fsr));
842 1.1 simonb }
843 1.32 rin if (fsr & FPSR_INV)
844 1.32 rin fsr |= FPSCR_VX;
845 1.38 rin mask = (fsr & FPSR_EX) << (25 - 3);
846 1.38 rin if (fsr & mask)
847 1.38 rin fsr |= FPSCR_FEX;
848 1.40 rin if ((fsr ^ fe->fe_fpscr) & FPSR_EX_MSK)
849 1.32 rin fsr |= FPSCR_FX;
850 1.1 simonb
851 1.1 simonb if (cond) {
852 1.47 rin bits = fsr & 0xf0000000;
853 1.1 simonb /* Isolate condition codes */
854 1.47 rin bits >>= 28;
855 1.1 simonb /* Move fpu condition codes to cr[1] */
856 1.34 rin tf->tf_cr &= ~(0x0f000000);
857 1.47 rin tf->tf_cr |= (bits << 24);
858 1.47 rin DPRINTF(FPE_INSN, ("fpu_execute: cr[1] <= %x\n", bits));
859 1.1 simonb }
860 1.1 simonb
861 1.1 simonb if (setcr) {
862 1.47 rin bits = fsr & FPSCR_FPCC;
863 1.1 simonb /* Isolate condition codes */
864 1.47 rin bits <<= 16;
865 1.35 rin /* Move fpu condition codes to cr[bf/4] */
866 1.15 matt tf->tf_cr &= ~(0xf0000000>>bf);
867 1.47 rin tf->tf_cr |= (bits >> bf);
868 1.47 rin DPRINTF(FPE_INSN, ("fpu_execute: cr[%d] (cr=%x) <= %x\n", bf/4, tf->tf_cr, bits));
869 1.1 simonb }
870 1.1 simonb
871 1.1 simonb ((int *)&fs->fpscr)[1] = fsr;
872 1.1 simonb if (fsr & FPSCR_FEX)
873 1.1 simonb return(FPE);
874 1.1 simonb return (0); /* success */
875 1.1 simonb }
876