Home | History | Annotate | Line # | Download | only in fpu
fpu_emu.c revision 1.52
      1 /*	$NetBSD: fpu_emu.c,v 1.52 2022/09/04 13:18:33 rin Exp $ */
      2 
      3 /*
      4  * Copyright 2001 Wasabi Systems, Inc.
      5  * All rights reserved.
      6  *
      7  * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *      This product includes software developed for the NetBSD Project by
     20  *      Wasabi Systems, Inc.
     21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     22  *    or promote products derived from this software without specific prior
     23  *    written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     35  * POSSIBILITY OF SUCH DAMAGE.
     36  */
     37 
     38 /*
     39  * Copyright (c) 1992, 1993
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * This software was developed by the Computer Systems Engineering group
     43  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
     44  * contributed to Berkeley.
     45  *
     46  * All advertising materials mentioning features or use of this software
     47  * must display the following acknowledgement:
     48  *	This product includes software developed by the University of
     49  *	California, Lawrence Berkeley Laboratory.
     50  *
     51  * Redistribution and use in source and binary forms, with or without
     52  * modification, are permitted provided that the following conditions
     53  * are met:
     54  * 1. Redistributions of source code must retain the above copyright
     55  *    notice, this list of conditions and the following disclaimer.
     56  * 2. Redistributions in binary form must reproduce the above copyright
     57  *    notice, this list of conditions and the following disclaimer in the
     58  *    documentation and/or other materials provided with the distribution.
     59  * 3. Neither the name of the University nor the names of its contributors
     60  *    may be used to endorse or promote products derived from this software
     61  *    without specific prior written permission.
     62  *
     63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     73  * SUCH DAMAGE.
     74  *
     75  *	@(#)fpu.c	8.1 (Berkeley) 6/11/93
     76  */
     77 
     78 #include <sys/cdefs.h>
     79 __KERNEL_RCSID(0, "$NetBSD: fpu_emu.c,v 1.52 2022/09/04 13:18:33 rin Exp $");
     80 
     81 #ifdef _KERNEL_OPT
     82 #include "opt_ddb.h"
     83 #endif
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/evcnt.h>
     88 #include <sys/proc.h>
     89 #include <sys/siginfo.h>
     90 #include <sys/signal.h>
     91 #include <sys/signalvar.h>
     92 #include <sys/syslog.h>
     93 
     94 #include <powerpc/instr.h>
     95 #include <powerpc/psl.h>
     96 
     97 #include <machine/fpu.h>
     98 #include <machine/reg.h>
     99 #include <machine/trap.h>
    100 
    101 #include <powerpc/fpu/fpu_emu.h>
    102 #include <powerpc/fpu/fpu_extern.h>
    103 
    104 #define	FPU_EMU_EVCNT_DECL(name)					\
    105 static struct evcnt fpu_emu_ev_##name =					\
    106     EVCNT_INITIALIZER(EVCNT_TYPE_TRAP, NULL, "fpemu", #name);		\
    107 EVCNT_ATTACH_STATIC(fpu_emu_ev_##name)
    108 
    109 #define	FPU_EMU_EVCNT_INCR(name)					\
    110     fpu_emu_ev_##name.ev_count++
    111 
    112 FPU_EMU_EVCNT_DECL(stfiwx);
    113 FPU_EMU_EVCNT_DECL(fpstore);
    114 FPU_EMU_EVCNT_DECL(fpload);
    115 FPU_EMU_EVCNT_DECL(fcmpu);
    116 FPU_EMU_EVCNT_DECL(frsp);
    117 FPU_EMU_EVCNT_DECL(fctiw);
    118 FPU_EMU_EVCNT_DECL(fcmpo);
    119 FPU_EMU_EVCNT_DECL(mtfsb1);
    120 FPU_EMU_EVCNT_DECL(fnegabs);
    121 FPU_EMU_EVCNT_DECL(mcrfs);
    122 FPU_EMU_EVCNT_DECL(mtfsb0);
    123 FPU_EMU_EVCNT_DECL(fmr);
    124 FPU_EMU_EVCNT_DECL(mtfsfi);
    125 FPU_EMU_EVCNT_DECL(fnabs);
    126 FPU_EMU_EVCNT_DECL(fabs);
    127 FPU_EMU_EVCNT_DECL(mffs);
    128 FPU_EMU_EVCNT_DECL(mtfsf);
    129 FPU_EMU_EVCNT_DECL(fctid);
    130 FPU_EMU_EVCNT_DECL(fcfid);
    131 FPU_EMU_EVCNT_DECL(fdiv);
    132 FPU_EMU_EVCNT_DECL(fsub);
    133 FPU_EMU_EVCNT_DECL(fadd);
    134 FPU_EMU_EVCNT_DECL(fsqrt);
    135 FPU_EMU_EVCNT_DECL(fsel);
    136 FPU_EMU_EVCNT_DECL(fpres);
    137 FPU_EMU_EVCNT_DECL(fmul);
    138 FPU_EMU_EVCNT_DECL(frsqrte);
    139 FPU_EMU_EVCNT_DECL(fmulsub);
    140 FPU_EMU_EVCNT_DECL(fmuladd);
    141 FPU_EMU_EVCNT_DECL(fnmsub);
    142 FPU_EMU_EVCNT_DECL(fnmadd);
    143 
    144 /* FPSR exception masks */
    145 #define FPSR_EX_MSK	(FPSCR_VX|FPSCR_OX|FPSCR_UX|FPSCR_ZX|		\
    146 			FPSCR_XX|FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI|	\
    147 			FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\
    148 			FPSCR_VXSQRT|FPSCR_VXCVI)
    149 #define	FPSR_EX		(FPSCR_VE|FPSCR_OE|FPSCR_UE|FPSCR_ZE|FPSCR_XE)
    150 #define	FPSR_INV	(FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI|		\
    151 			FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\
    152 			FPSCR_VXSQRT|FPSCR_VXCVI)
    153 #define	MCRFS_MASK							\
    154     (									\
    155 	FPSCR_FX     | FPSCR_OX     |					\
    156 	FPSCR_UX     | FPSCR_ZX     | FPSCR_XX    | FPSCR_VXSNAN |	\
    157 	FPSCR_VXISI  | FPSCR_VXIDI  | FPSCR_VXZDZ | FPSCR_VXIMZ  |	\
    158 	FPSCR_VXVC   |							\
    159 	FPSCR_VXSOFT | FPSCR_VXSQRT | FPSCR_VXCVI			\
    160     )
    161 
    162 #define	FR(reg)	(fs->fpreg[reg])
    163 
    164 int fpe_debug = 0;
    165 
    166 #ifdef DDB
    167 extern vaddr_t opc_disasm(vaddr_t loc, int opcode);
    168 #endif
    169 
    170 #ifdef DEBUG
    171 /*
    172  * Dump a `fpn' structure.
    173  */
    174 void
    175 fpu_dumpfpn(struct fpn *fp)
    176 {
    177 	static const char *class[] = {
    178 		"SNAN", "QNAN", "ZERO", "NUM", "INF"
    179 	};
    180 
    181 	KASSERT(fp != NULL);
    182 
    183 	printf("%s %c.%x %x %x %xE%d\n", class[fp->fp_class + 2],
    184 		fp->fp_sign ? '-' : ' ',
    185 		fp->fp_mant[0],	fp->fp_mant[1],
    186 		fp->fp_mant[2], fp->fp_mant[3],
    187 		fp->fp_exp);
    188 }
    189 #endif
    190 
    191 /*
    192  * fpu_execute returns the following error numbers (0 = no error):
    193  */
    194 #define	FPE		1	/* take a floating point exception */
    195 #define	NOTFPU		2	/* not an FPU instruction */
    196 #define	FAULT		3
    197 
    198 
    199 /*
    200  * Emulate a floating-point instruction.
    201  * Return true if insn is consumed anyway.
    202  * Otherwise, the caller must take care of it.
    203  */
    204 bool
    205 fpu_emulate(struct trapframe *tf, struct fpreg *fpf, ksiginfo_t *ksi)
    206 {
    207 	struct pcb *pcb;
    208 	union instr insn;
    209 	struct fpemu fe;
    210 
    211 	KSI_INIT_TRAP(ksi);
    212 	ksi->ksi_signo = 0;
    213 	ksi->ksi_addr = (void *)tf->tf_srr0;
    214 
    215 	/* initialize insn.is_datasize to tell it is *not* initialized */
    216 	fe.fe_fpstate = fpf;
    217 	fe.fe_cx = 0;
    218 
    219 	/* always set this (to avoid a warning) */
    220 
    221 	if (copyin((void *) (tf->tf_srr0), &insn.i_int, sizeof (insn.i_int))) {
    222 #ifdef DEBUG
    223 		printf("fpu_emulate: fault reading opcode\n");
    224 #endif
    225 		ksi->ksi_signo = SIGSEGV;
    226 		ksi->ksi_trap = EXC_ISI;
    227 		ksi->ksi_code = SEGV_MAPERR;
    228 		return true;
    229 	}
    230 
    231 	DPRINTF(FPE_EX, ("fpu_emulate: emulating insn %x at %p\n",
    232 	    insn.i_int, (void *)tf->tf_srr0));
    233 
    234 	if ((insn.i_any.i_opcd == OPC_TWI) ||
    235 	    ((insn.i_any.i_opcd == OPC_integer_31) &&
    236 	    (insn.i_x.i_xo == OPC31_TW))) {
    237 		/* Check for the two trap insns. */
    238 		DPRINTF(FPE_EX, ("fpu_emulate: SIGTRAP\n"));
    239 		ksi->ksi_signo = SIGTRAP;
    240 		ksi->ksi_trap = EXC_PGM;
    241 		ksi->ksi_code = TRAP_BRKPT;
    242 		return true;
    243 	}
    244 	switch (fpu_execute(tf, &fe, &insn)) {
    245 	case 0:
    246 success:
    247 		DPRINTF(FPE_EX, ("fpu_emulate: success\n"));
    248 		tf->tf_srr0 += 4;
    249 		return true;
    250 
    251 	case FPE:
    252 		pcb = lwp_getpcb(curlwp);
    253 		if ((pcb->pcb_flags & PSL_FE_PREC) == 0)
    254 			goto success;
    255 		DPRINTF(FPE_EX, ("fpu_emulate: SIGFPE\n"));
    256 		ksi->ksi_signo = SIGFPE;
    257 		ksi->ksi_trap = EXC_PGM;
    258 		ksi->ksi_code = fpu_get_fault_code();
    259 		return true;
    260 
    261 	case FAULT:
    262 		DPRINTF(FPE_EX, ("fpu_emulate: SIGSEGV\n"));
    263 		ksi->ksi_signo = SIGSEGV;
    264 		ksi->ksi_trap = EXC_DSI;
    265 		ksi->ksi_code = SEGV_MAPERR;
    266 		ksi->ksi_addr = (void *)fe.fe_addr;
    267 		return true;
    268 
    269 	case NOTFPU:
    270 	default:
    271 		DPRINTF(FPE_EX, ("fpu_emulate: SIGILL\n"));
    272 #if defined(DDB) && defined(DEBUG)
    273 		if (fpe_debug & FPE_EX) {
    274 			printf("fpu_emulate:  illegal insn %x at %p:",
    275 			insn.i_int, (void *) (tf->tf_srr0));
    276 			opc_disasm((vaddr_t)(tf->tf_srr0), insn.i_int);
    277 		}
    278 #endif
    279 		return false;
    280 	}
    281 }
    282 
    283 /*
    284  * Execute an FPU instruction (one that runs entirely in the FPU; not
    285  * FBfcc or STF, for instance).  On return, fe->fe_fs->fs_fsr will be
    286  * modified to reflect the setting the hardware would have left.
    287  *
    288  * Note that we do not catch all illegal opcodes, so you can, for instance,
    289  * multiply two integers this way.
    290  */
    291 int
    292 fpu_execute(struct trapframe *tf, struct fpemu *fe, union instr *insn)
    293 {
    294 	struct fpn *fp;
    295 	union instr instr = *insn;
    296 	int *a;
    297 	int ra, rb, rc, rt, type, mask, fsr, cx, bf, setcr, cond;
    298 	u_int bits;
    299 	struct fpreg *fs;
    300 	int i;
    301 
    302 	/* Setup work. */
    303 	fp = NULL;
    304 	fs = fe->fe_fpstate;
    305 	fe->fe_fpscr = ((int *)&fs->fpscr)[1];
    306 
    307 	/*
    308 	 * On PowerPC all floating point values are stored in registers
    309 	 * as doubles, even when used for single precision operations.
    310 	 */
    311 	type = FTYPE_DBL;
    312 	cond = instr.i_any.i_rc;
    313 	setcr = 0;
    314 	bf = 0;	/* XXX gcc */
    315 
    316 #if defined(DDB) && defined(DEBUG)
    317 	if (fpe_debug & FPE_EX) {
    318 		vaddr_t loc = tf->tf_srr0;
    319 
    320 		printf("Trying to emulate: %p ", (void *)loc);
    321 		opc_disasm(loc, instr.i_int);
    322 	}
    323 #endif
    324 
    325 	/*
    326 	 * `Decode' and execute instruction.
    327 	 */
    328 
    329 	if ((instr.i_any.i_opcd >= OPC_LFS && instr.i_any.i_opcd <= OPC_STFDU) ||
    330 	    instr.i_any.i_opcd == OPC_integer_31) {
    331 		/*
    332 		 * Handle load/store insns:
    333 		 *
    334 		 * Convert to/from single if needed, calculate addr,
    335 		 * and update index reg if needed.
    336 		 */
    337 		vaddr_t addr;
    338 		size_t size = sizeof(double);
    339 		int store, update;
    340 
    341 		cond = 0; /* ld/st never set condition codes */
    342 
    343 
    344 		if (instr.i_any.i_opcd == OPC_integer_31) {
    345 			if (instr.i_x.i_xo == OPC31_STFIWX) {
    346 				FPU_EMU_EVCNT_INCR(stfiwx);
    347 
    348 				/* Store as integer */
    349 				ra = instr.i_x.i_ra;
    350 				rb = instr.i_x.i_rb;
    351 				DPRINTF(FPE_INSN, ("reg %d has %lx reg %d has %lx\n",
    352 					ra, tf->tf_fixreg[ra], rb, tf->tf_fixreg[rb]));
    353 
    354 				addr = tf->tf_fixreg[rb];
    355 				if (ra != 0)
    356 					addr += tf->tf_fixreg[ra];
    357 				rt = instr.i_x.i_rt;
    358 				a = (int *)&fs->fpreg[rt];
    359 				DPRINTF(FPE_INSN,
    360 					("fpu_execute: Store INT %x at %p\n",
    361 						a[1], (void *)addr));
    362 				if (copyout(&a[1], (void *)addr, sizeof(int))) {
    363 					fe->fe_addr = addr;
    364 					return (FAULT);
    365 				}
    366 				return (0);
    367 			}
    368 
    369 			if ((instr.i_x.i_xo & OPC31_FPMASK) != OPC31_FPOP)
    370 				/* Not an indexed FP load/store op */
    371 				return (NOTFPU);
    372 
    373 			store = (instr.i_x.i_xo & 0x80);
    374 			if ((instr.i_x.i_xo & 0x40) == 0) {
    375 				type = FTYPE_SNG;
    376 				size = sizeof(float);
    377 			}
    378 			update = (instr.i_x.i_xo & 0x20);
    379 
    380 			/* calculate EA of load/store */
    381 			ra = instr.i_x.i_ra;
    382 			rb = instr.i_x.i_rb;
    383 			DPRINTF(FPE_INSN, ("reg %d has %lx reg %d has %lx\n",
    384 				ra, tf->tf_fixreg[ra], rb, tf->tf_fixreg[rb]));
    385 			addr = tf->tf_fixreg[rb];
    386 			if (ra != 0)
    387 				addr += tf->tf_fixreg[ra];
    388 			rt = instr.i_x.i_rt;
    389 		} else {
    390 			store = instr.i_d.i_opcd & 0x4;
    391 			if ((instr.i_d.i_opcd & 0x2) == 0) {
    392 				type = FTYPE_SNG;
    393 				size = sizeof(float);
    394 			}
    395 			update = instr.i_d.i_opcd & 0x1;
    396 
    397 			/* calculate EA of load/store */
    398 			ra = instr.i_d.i_ra;
    399 			addr = instr.i_d.i_d;
    400 			DPRINTF(FPE_INSN, ("reg %d has %lx displ %lx\n",
    401 				ra, tf->tf_fixreg[ra], addr));
    402 			if (ra != 0)
    403 				addr += tf->tf_fixreg[ra];
    404 			rt = instr.i_d.i_rt;
    405 		}
    406 
    407 		if (update && ra == 0)
    408 			return (NOTFPU);
    409 
    410 		if (store) {
    411 			/* Store */
    412 			FPU_EMU_EVCNT_INCR(fpstore);
    413 			if (type != FTYPE_DBL) {
    414 				uint64_t buf;
    415 
    416 				DPRINTF(FPE_INSN,
    417 					("fpu_execute: Store SNG at %p\n",
    418 						(void *)addr));
    419 				fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL,
    420 				    FR(rt));
    421 				fpu_implode(fe, fp, type, &buf);
    422 				if (copyout(&buf, (void *)addr, size)) {
    423 					fe->fe_addr = addr;
    424 					return (FAULT);
    425 				}
    426 			} else {
    427 				DPRINTF(FPE_INSN,
    428 					("fpu_execute: Store DBL at %p\n",
    429 						(void *)addr));
    430 				if (copyout(&fs->fpreg[rt], (void *)addr, size)) {
    431 					fe->fe_addr = addr;
    432 					return (FAULT);
    433 				}
    434 			}
    435 		} else {
    436 			/* Load */
    437 			FPU_EMU_EVCNT_INCR(fpload);
    438 			DPRINTF(FPE_INSN, ("fpu_execute: Load from %p\n",
    439 				(void *)addr));
    440 			if (copyin((const void *)addr, &fs->fpreg[rt], size)) {
    441 				fe->fe_addr = addr;
    442 				return (FAULT);
    443 			}
    444 			if (type != FTYPE_DBL) {
    445 				fpu_explode(fe, fp = &fe->fe_f1, type, FR(rt));
    446 				fpu_implode(fe, fp, FTYPE_DBL, &FR(rt));
    447 			}
    448 		}
    449 		if (update)
    450 			tf->tf_fixreg[ra] = addr;
    451 		/* Complete. */
    452 		return (0);
    453 #ifdef notyet
    454 	} else if (instr.i_any.i_opcd == OPC_load_st_62) {
    455 		/* These are 64-bit extenstions */
    456 		return (NOTFPU);
    457 #endif
    458 	} else if (instr.i_any.i_opcd == OPC_sp_fp_59 ||
    459 		instr.i_any.i_opcd == OPC_dp_fp_63) {
    460 
    461 
    462 		if (instr.i_any.i_opcd == OPC_dp_fp_63 &&
    463 		    !(instr.i_a.i_xo & OPC63M_MASK)) {
    464 			/* Format X */
    465 			rt = instr.i_x.i_rt;
    466 			ra = instr.i_x.i_ra;
    467 			rb = instr.i_x.i_rb;
    468 
    469 
    470 			/* One of the special opcodes.... */
    471 			switch (instr.i_x.i_xo) {
    472 			case	OPC63_FCMPU:
    473 				FPU_EMU_EVCNT_INCR(fcmpu);
    474 				DPRINTF(FPE_INSN, ("fpu_execute: FCMPU\n"));
    475 				rt >>= 2;
    476 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    477 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    478 				fpu_compare(fe, 0);
    479 				/* Make sure we do the condition regs. */
    480 				cond = 0;
    481 				/* N.B.: i_rs is already left shifted by two. */
    482 				bf = instr.i_x.i_rs & 0xfc;
    483 				setcr = 1;
    484 				break;
    485 
    486 			case	OPC63_FRSP:
    487 				/*
    488 				 * Convert to single:
    489 				 *
    490 				 * PowerPC uses this to round a double
    491 				 * precision value to single precision,
    492 				 * but values in registers are always
    493 				 * stored in double precision format.
    494 				 */
    495 				FPU_EMU_EVCNT_INCR(frsp);
    496 				DPRINTF(FPE_INSN, ("fpu_execute: FRSP\n"));
    497 				fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL,
    498 				    FR(rb));
    499 				fpu_implode(fe, fp, FTYPE_SNG, &FR(rt));
    500 				fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG,
    501 				    FR(rt));
    502 				type = FTYPE_DBL | FTYPE_FPSCR;
    503 				break;
    504 			case	OPC63_FCTIW:
    505 			case	OPC63_FCTIWZ:
    506 				FPU_EMU_EVCNT_INCR(fctiw);
    507 				DPRINTF(FPE_INSN, ("fpu_execute: FCTIW\n"));
    508 				fpu_explode(fe, fp = &fe->fe_f1, type, FR(rb));
    509 				type = FTYPE_INT | FTYPE_FPSCR;
    510 				if (instr.i_x.i_xo == OPC63_FCTIWZ)
    511 					type |= FTYPE_RD_RZ;
    512 				break;
    513 			case	OPC63_FCMPO:
    514 				FPU_EMU_EVCNT_INCR(fcmpo);
    515 				DPRINTF(FPE_INSN, ("fpu_execute: FCMPO\n"));
    516 				rt >>= 2;
    517 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    518 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    519 				fpu_compare(fe, 1);
    520 				/* Make sure we do the condition regs. */
    521 				cond = 0;
    522 				/* N.B.: i_rs is already left shifted by two. */
    523 				bf = instr.i_x.i_rs & 0xfc;
    524 				setcr = 1;
    525 				break;
    526 			case	OPC63_MTFSB1:
    527 				FPU_EMU_EVCNT_INCR(mtfsb1);
    528 				DPRINTF(FPE_INSN, ("fpu_execute: MTFSB1\n"));
    529 				fe->fe_cx = (1 << (31 - rt)) &
    530 				    ~(FPSCR_FEX | FPSCR_VX);
    531 				break;
    532 			case	OPC63_FNEG:
    533 				FPU_EMU_EVCNT_INCR(fnegabs);
    534 				DPRINTF(FPE_INSN, ("fpu_execute: FNEGABS\n"));
    535 				memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
    536 					sizeof(double));
    537 				a = (int *)&fs->fpreg[rt];
    538 				*a ^= (1 << 31);
    539 				break;
    540 			case	OPC63_MCRFS:
    541 				FPU_EMU_EVCNT_INCR(mcrfs);
    542 				DPRINTF(FPE_INSN, ("fpu_execute: MCRFS\n"));
    543 				cond = 0;
    544 				rt &= 0x1c;
    545 				ra &= 0x1c;
    546 				/* Extract the bits we want */
    547 				bits = (fe->fe_fpscr >> (28 - ra)) & 0xf;
    548 				/* Clear the bits we copied. */
    549 				mask = (0xf << (28 - ra)) & MCRFS_MASK;
    550 				fe->fe_fpscr &= ~mask;
    551 				/* Now shove them in the right part of cr */
    552 				tf->tf_cr &= ~(0xf << (28 - rt));
    553 				tf->tf_cr |= bits << (28 - rt);
    554 				break;
    555 			case	OPC63_MTFSB0:
    556 				FPU_EMU_EVCNT_INCR(mtfsb0);
    557 				DPRINTF(FPE_INSN, ("fpu_execute: MTFSB0\n"));
    558 				fe->fe_fpscr &= ~(1 << (31 - rt)) |
    559 				    (FPSCR_FEX | FPSCR_VX);
    560 				break;
    561 			case	OPC63_FMR:
    562 				FPU_EMU_EVCNT_INCR(fmr);
    563 				DPRINTF(FPE_INSN, ("fpu_execute: FMR\n"));
    564 				memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
    565 					sizeof(double));
    566 				break;
    567 			case	OPC63_MTFSFI:
    568 				FPU_EMU_EVCNT_INCR(mtfsfi);
    569 				DPRINTF(FPE_INSN, ("fpu_execute: MTFSFI\n"));
    570 				rb >>= 1;
    571 				rt &= 0x1c; /* Already left-shifted 4 */
    572 				bits = rb << (28 - rt);
    573 				mask = 0xf << (28 - rt);
    574 				fe->fe_fpscr = (fe->fe_fpscr & ~mask) | bits;
    575 				break;
    576 			case	OPC63_FNABS:
    577 				FPU_EMU_EVCNT_INCR(fnabs);
    578 				DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
    579 				memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
    580 					sizeof(double));
    581 				a = (int *)&fs->fpreg[rt];
    582 				*a |= (1 << 31);
    583 				break;
    584 			case	OPC63_FABS:
    585 				FPU_EMU_EVCNT_INCR(fabs);
    586 				DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
    587 				memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
    588 					sizeof(double));
    589 				a = (int *)&fs->fpreg[rt];
    590 				*a &= ~(1 << 31);
    591 				break;
    592 			case	OPC63_MFFS:
    593 				FPU_EMU_EVCNT_INCR(mffs);
    594 				DPRINTF(FPE_INSN, ("fpu_execute: MFFS\n"));
    595 				memcpy(&fs->fpreg[rt], &fs->fpscr,
    596 					sizeof(fs->fpscr));
    597 				break;
    598 			case	OPC63_MTFSF:
    599 				FPU_EMU_EVCNT_INCR(mtfsf);
    600 				DPRINTF(FPE_INSN, ("fpu_execute: MTFSF\n"));
    601 				if ((rt = instr.i_xfl.i_flm) == -1) {
    602 					mask = -1;
    603 				} else {
    604 					mask = 0;
    605 					/* Convert 1 bit -> 4 bits */
    606 					for (i = 0; i < 8; i++)
    607 						if (rt & (1 << i))
    608 							mask |=
    609 							    (0xf << (4 * i));
    610 				}
    611 				a = (int *)&fs->fpreg[rb];
    612 				bits = a[1] & mask;
    613 				fe->fe_fpscr = (fe->fe_fpscr & ~mask) | bits;
    614 				break;
    615 			case	OPC63_FCTID:
    616 			case	OPC63_FCTIDZ:
    617 				FPU_EMU_EVCNT_INCR(fctid);
    618 				DPRINTF(FPE_INSN, ("fpu_execute: FCTID\n"));
    619 				fpu_explode(fe, fp = &fe->fe_f1, type, FR(rb));
    620 				type = FTYPE_LNG | FTYPE_FPSCR;
    621 				if (instr.i_x.i_xo == OPC63_FCTIDZ)
    622 					type |= FTYPE_RD_RZ;
    623 				break;
    624 			case	OPC63_FCFID:
    625 				FPU_EMU_EVCNT_INCR(fcfid);
    626 				DPRINTF(FPE_INSN, ("fpu_execute: FCFID\n"));
    627 				fpu_explode(fe, fp = &fe->fe_f1, FTYPE_LNG,
    628 				    FR(rb));
    629 				type = FTYPE_DBL | FTYPE_FPSCR;
    630 				break;
    631 			default:
    632 				return (NOTFPU);
    633 				break;
    634 			}
    635 		} else {
    636 			/* Format A */
    637 			rt = instr.i_a.i_frt;
    638 			ra = instr.i_a.i_fra;
    639 			rb = instr.i_a.i_frb;
    640 			rc = instr.i_a.i_frc;
    641 
    642 			/*
    643 			 * All arithmetic operations work on registers, which
    644 			 * are stored as doubles.
    645 			 */
    646 			type = FTYPE_DBL;
    647 			switch ((unsigned int)instr.i_a.i_xo) {
    648 			case	OPC59_FDIVS:
    649 				FPU_EMU_EVCNT_INCR(fdiv);
    650 				DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
    651 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    652 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    653 				fp = fpu_div(fe);
    654 				break;
    655 			case	OPC59_FSUBS:
    656 				FPU_EMU_EVCNT_INCR(fsub);
    657 				DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
    658 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    659 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    660 				fp = fpu_sub(fe);
    661 				break;
    662 			case	OPC59_FADDS:
    663 				FPU_EMU_EVCNT_INCR(fadd);
    664 				DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
    665 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    666 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    667 				fp = fpu_add(fe);
    668 				break;
    669 			case	OPC59_FSQRTS:
    670 				FPU_EMU_EVCNT_INCR(fsqrt);
    671 				DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
    672 				fpu_explode(fe, &fe->fe_f1, type, FR(rb));
    673 				fp = fpu_sqrt(fe);
    674 				break;
    675 			case	OPC63M_FSEL:
    676 				FPU_EMU_EVCNT_INCR(fsel);
    677 				DPRINTF(FPE_INSN, ("fpu_execute: FSEL\n"));
    678 				a = (int *)&fe->fe_fpstate->fpreg[ra];
    679 				if ((( a[0] & 0x80000000) &&
    680 				     ((a[0] & 0x7fffffff) | a[1])) ||
    681 				    (( a[0] & 0x7ff00000) &&
    682 				     ((a[0] & 0x000fffff) | a[1]))) {
    683 					/* negative/NaN or NaN */
    684 					rc = rb;
    685 				}
    686 				DPRINTF(FPE_INSN, ("f%d => f%d\n", rc, rt));
    687 				memcpy(&fs->fpreg[rt], &fs->fpreg[rc],
    688 					sizeof(double));
    689 				break;
    690 			case	OPC59_FRES:
    691 				FPU_EMU_EVCNT_INCR(fpres);
    692 				DPRINTF(FPE_INSN, ("fpu_execute: FPRES\n"));
    693 				fpu_explode(fe, &fe->fe_f1, FTYPE_INT, 1);
    694 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    695 				fp = fpu_div(fe);
    696 				break;
    697 			case	OPC59_FMULS:
    698 				FPU_EMU_EVCNT_INCR(fmul);
    699 				DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
    700 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    701 				fpu_explode(fe, &fe->fe_f2, type, FR(rc));
    702 				fp = fpu_mul(fe);
    703 				break;
    704 			case	OPC63M_FRSQRTE:
    705 				/* Reciprocal sqrt() estimate */
    706 				FPU_EMU_EVCNT_INCR(frsqrte);
    707 				DPRINTF(FPE_INSN, ("fpu_execute: FRSQRTE\n"));
    708 				fpu_explode(fe, &fe->fe_f1, type, FR(rb));
    709 				fp = fpu_sqrt(fe);
    710 				fe->fe_f2 = *fp;
    711 				fpu_explode(fe, &fe->fe_f1, FTYPE_INT, 1);
    712 				fp = fpu_div(fe);
    713 				break;
    714 			case	OPC59_FMSUBS:
    715 				FPU_EMU_EVCNT_INCR(fmulsub);
    716 				DPRINTF(FPE_INSN, ("fpu_execute: FMULSUB\n"));
    717 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    718 				fpu_explode(fe, &fe->fe_f2, type, FR(rc));
    719 				fp = fpu_mul(fe);
    720 				fe->fe_f1 = *fp;
    721 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    722 				fp = fpu_sub(fe);
    723 				break;
    724 			case	OPC59_FMADDS:
    725 				FPU_EMU_EVCNT_INCR(fmuladd);
    726 				DPRINTF(FPE_INSN, ("fpu_execute: FMULADD\n"));
    727 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    728 				fpu_explode(fe, &fe->fe_f2, type, FR(rc));
    729 				fp = fpu_mul(fe);
    730 				fe->fe_f1 = *fp;
    731 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    732 				fp = fpu_add(fe);
    733 				break;
    734 			case	OPC59_FNMSUBS:
    735 				FPU_EMU_EVCNT_INCR(fnmsub);
    736 				DPRINTF(FPE_INSN, ("fpu_execute: FNMSUB\n"));
    737 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    738 				fpu_explode(fe, &fe->fe_f2, type, FR(rc));
    739 				fp = fpu_mul(fe);
    740 				fe->fe_f1 = *fp;
    741 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    742 				fp = fpu_sub(fe);
    743 				/* Negate */
    744 				fp->fp_sign ^= 1;
    745 				break;
    746 			case	OPC59_FNMADDS:
    747 				FPU_EMU_EVCNT_INCR(fnmadd);
    748 				DPRINTF(FPE_INSN, ("fpu_execute: FNMADD\n"));
    749 				fpu_explode(fe, &fe->fe_f1, type, FR(ra));
    750 				fpu_explode(fe, &fe->fe_f2, type, FR(rc));
    751 				fp = fpu_mul(fe);
    752 				fe->fe_f1 = *fp;
    753 				fpu_explode(fe, &fe->fe_f2, type, FR(rb));
    754 				fp = fpu_add(fe);
    755 				/* Negate */
    756 				fp->fp_sign ^= 1;
    757 				break;
    758 			default:
    759 				return (NOTFPU);
    760 				break;
    761 			}
    762 
    763 			/* If the instruction was single precision, round */
    764 			if (!(instr.i_any.i_opcd & 0x4)) {
    765 				fpu_implode(fe, fp, FTYPE_SNG | FTYPE_FPSCR,
    766 				    &FR(rt));
    767 				fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG,
    768 				    FR(rt));
    769 			} else
    770 				type |= FTYPE_FPSCR;
    771 		}
    772 	} else {
    773 		return (NOTFPU);
    774 	}
    775 
    776 	/*
    777 	 * ALU operation is complete.  Collapse the result and then check
    778 	 * for exceptions.  If we got any, and they are enabled, do not
    779 	 * alter the destination register, just stop with an exception.
    780 	 * Otherwise set new current exceptions and accrue.
    781 	 */
    782 	if (fp)
    783 		fpu_implode(fe, fp, type, &FR(rt));
    784 	cx = fe->fe_cx;
    785 	fsr = fe->fe_fpscr & ~(FPSCR_FEX|FPSCR_VX);
    786 	if (cx != 0) {
    787 		fsr |= cx;
    788 		DPRINTF(FPE_INSN, ("fpu_execute: cx %x, fsr %x\n", cx, fsr));
    789 	}
    790 	if (fsr & FPSR_INV)
    791 		fsr |= FPSCR_VX;
    792 	mask = (fsr & FPSR_EX) << (25 - 3);
    793 	if (fsr & mask)
    794 		fsr |= FPSCR_FEX;
    795 	if ((fsr ^ fe->fe_fpscr) & FPSR_EX_MSK)
    796 		fsr |= FPSCR_FX;
    797 
    798 	if (cond) {
    799 		bits = fsr & 0xf0000000;
    800 		/* Isolate condition codes */
    801 		bits >>= 28;
    802 		/* Move fpu condition codes to cr[1] */
    803 		tf->tf_cr &= ~(0x0f000000);
    804 		tf->tf_cr |= (bits << 24);
    805 		DPRINTF(FPE_INSN, ("fpu_execute: cr[1] <= %x\n", bits));
    806 	}
    807 
    808 	if (setcr) {
    809 		bits = fsr & FPSCR_FPCC;
    810 		/* Isolate condition codes */
    811 		bits <<= 16;
    812 		/* Move fpu condition codes to cr[bf/4] */
    813 		tf->tf_cr &= ~(0xf0000000>>bf);
    814 		tf->tf_cr |= (bits >> bf);
    815 		DPRINTF(FPE_INSN, ("fpu_execute: cr[%d] (cr=%x) <= %x\n", bf/4, tf->tf_cr, bits));
    816 	}
    817 
    818 	((int *)&fs->fpscr)[1] = fsr;
    819 	if (fsr & FPSCR_FEX)
    820 		return(FPE);
    821 	return (0);	/* success */
    822 }
    823