Home | History | Annotate | Line # | Download | only in fpu
      1 /*	$NetBSD: fpu_mul.c,v 1.8 2022/09/06 23:05:52 rin Exp $ */
      2 
      3 /*
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This software was developed by the Computer Systems Engineering group
      8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  * contributed to Berkeley.
     10  *
     11  * All advertising materials mentioning features or use of this software
     12  * must display the following acknowledgement:
     13  *	This product includes software developed by the University of
     14  *	California, Lawrence Berkeley Laboratory.
     15  *
     16  * Redistribution and use in source and binary forms, with or without
     17  * modification, are permitted provided that the following conditions
     18  * are met:
     19  * 1. Redistributions of source code must retain the above copyright
     20  *    notice, this list of conditions and the following disclaimer.
     21  * 2. Redistributions in binary form must reproduce the above copyright
     22  *    notice, this list of conditions and the following disclaimer in the
     23  *    documentation and/or other materials provided with the distribution.
     24  * 3. Neither the name of the University nor the names of its contributors
     25  *    may be used to endorse or promote products derived from this software
     26  *    without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38  * SUCH DAMAGE.
     39  *
     40  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
     41  */
     42 
     43 /*
     44  * Perform an FPU multiply (return x * y).
     45  */
     46 
     47 #include <sys/cdefs.h>
     48 __KERNEL_RCSID(0, "$NetBSD: fpu_mul.c,v 1.8 2022/09/06 23:05:52 rin Exp $");
     49 
     50 #include <sys/types.h>
     51 #if defined(DIAGNOSTIC)||defined(DEBUG)
     52 #include <sys/systm.h>
     53 #endif
     54 
     55 #include <machine/fpu.h>
     56 #include <machine/reg.h>
     57 
     58 #include <powerpc/fpu/fpu_arith.h>
     59 #include <powerpc/fpu/fpu_emu.h>
     60 
     61 /*
     62  * The multiplication algorithm for normal numbers is as follows:
     63  *
     64  * The fraction of the product is built in the usual stepwise fashion.
     65  * Each step consists of shifting the accumulator right one bit
     66  * (maintaining any guard bits) and, if the next bit in y is set,
     67  * adding the multiplicand (x) to the accumulator.  Then, in any case,
     68  * we advance one bit leftward in y.  Algorithmically:
     69  *
     70  *	A = 0;
     71  *	for (bit = 0; bit < FP_NMANT; bit++) {
     72  *		sticky |= A & 1, A >>= 1;
     73  *		if (Y & (1 << bit))
     74  *			A += X;
     75  *	}
     76  *
     77  * (X and Y here represent the mantissas of x and y respectively.)
     78  * The resultant accumulator (A) is the product's mantissa.  It may
     79  * be as large as 11.11111... in binary and hence may need to be
     80  * shifted right, but at most one bit.
     81  *
     82  * Since we do not have efficient multiword arithmetic, we code the
     83  * accumulator as four separate words, just like any other mantissa.
     84  * We use local variables in the hope that this is faster than memory.
     85  * We keep x->fp_mant in locals for the same reason.
     86  *
     87  * In the algorithm above, the bits in y are inspected one at a time.
     88  * We will pick them up 32 at a time and then deal with those 32, one
     89  * at a time.  Note, however, that we know several things about y:
     90  *
     91  *    - the guard and round bits at the bottom are sure to be zero;
     92  *
     93  *    - often many low bits are zero (y is often from a single or double
     94  *	precision source);
     95  *
     96  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
     97  *
     98  * We can also test for 32-zero-bits swiftly.  In this case, the center
     99  * part of the loop---setting sticky, shifting A, and not adding---will
    100  * run 32 times without adding X to A.  We can do a 32-bit shift faster
    101  * by simply moving words.  Since zeros are common, we optimize this case.
    102  * Furthermore, since A is initially zero, we can omit the shift as well
    103  * until we reach a nonzero word.
    104  */
    105 struct fpn *
    106 fpu_mul(struct fpemu *fe)
    107 {
    108 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    109 	u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
    110 	int sticky;
    111 	FPU_DECL_CARRY;
    112 
    113 	/*
    114 	 * Put the `heavier' operand on the right (see fpu_emu.h).
    115 	 * Then we will have one of the following cases, taken in the
    116 	 * following order:
    117 	 *
    118 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
    119 	 *	The result is y.
    120 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
    121 	 *    case was taken care of earlier).
    122 	 *	If x = 0, the result is NaN.  Otherwise the result
    123 	 *	is y, with its sign reversed if x is negative.
    124 	 *  - x = 0.  Implied: y is 0 or number.
    125 	 *	The result is 0 (with XORed sign as usual).
    126 	 *  - other.  Implied: both x and y are numbers.
    127 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
    128 	 */
    129 	DPRINTF(FPE_REG, ("fpu_mul:\n"));
    130 	DUMPFPN(FPE_REG, x);
    131 	DUMPFPN(FPE_REG, y);
    132 	DPRINTF(FPE_REG, ("=>\n"));
    133 
    134 	if (ISNAN(x) || ISNAN(y)) {
    135 		if (ISSNAN(x) || ISSNAN(y))
    136 			fe->fe_cx |= FPSCR_VXSNAN;
    137 		if (ISNAN(x))
    138 			y = x;
    139 		DUMPFPN(FPE_REG, y);
    140 		return (y);
    141 	}
    142 	ORDER(x, y);
    143 	if (ISINF(y)) {
    144 		if (ISZERO(x)) {
    145 			fe->fe_cx |= FPSCR_VXIMZ;
    146 			return (fpu_newnan(fe));
    147 		}
    148 		y->fp_sign ^= x->fp_sign;
    149 			DUMPFPN(FPE_REG, y);
    150 		return (y);
    151 	}
    152 	if (ISZERO(x)) {
    153 		x->fp_sign ^= y->fp_sign;
    154 		DUMPFPN(FPE_REG, x);
    155 		return (x);
    156 	}
    157 
    158 	/*
    159 	 * Setup.  In the code below, the mask `m' will hold the current
    160 	 * mantissa byte from y.  The variable `bit' denotes the bit
    161 	 * within m.  We also define some macros to deal with everything.
    162 	 */
    163 	x3 = x->fp_mant[3];
    164 	x2 = x->fp_mant[2];
    165 	x1 = x->fp_mant[1];
    166 	x0 = x->fp_mant[0];
    167 	sticky = a3 = a2 = a1 = a0 = 0;
    168 
    169 #define	ADD	/* A += X */ \
    170 	FPU_ADDS(a3, a3, x3); \
    171 	FPU_ADDCS(a2, a2, x2); \
    172 	FPU_ADDCS(a1, a1, x1); \
    173 	FPU_ADDC(a0, a0, x0)
    174 
    175 #define	SHR1	/* A >>= 1, with sticky */ \
    176 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
    177 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
    178 
    179 #define	SHR32	/* A >>= 32, with sticky */ \
    180 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
    181 
    182 #define	STEP	/* each 1-bit step of the multiplication */ \
    183 	SHR1; if (bit & m) { ADD; }; bit <<= 1
    184 
    185 	/*
    186 	 * We are ready to begin.  The multiply loop runs once for each
    187 	 * of the four 32-bit words.  Some words, however, are special.
    188 	 * As noted above, the low order bits of Y are often zero.  Even
    189 	 * if not, the first loop can certainly skip the guard bits.
    190 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
    191 	 * so we stop the loop when we move past that bit.
    192 	 */
    193 	if ((m = y->fp_mant[3]) == 0) {
    194 		/* SHR32; */			/* unneeded since A==0 */
    195 	} else {
    196 		bit = 1 << FP_NG;
    197 		do {
    198 			STEP;
    199 		} while (bit != 0);
    200 	}
    201 	if ((m = y->fp_mant[2]) == 0) {
    202 		SHR32;
    203 	} else {
    204 		bit = 1;
    205 		do {
    206 			STEP;
    207 		} while (bit != 0);
    208 	}
    209 	if ((m = y->fp_mant[1]) == 0) {
    210 		SHR32;
    211 	} else {
    212 		bit = 1;
    213 		do {
    214 			STEP;
    215 		} while (bit != 0);
    216 	}
    217 	m = y->fp_mant[0];		/* definitely != 0 */
    218 	bit = 1;
    219 	do {
    220 		STEP;
    221 	} while (bit <= m);
    222 
    223 	/*
    224 	 * Done with mantissa calculation.  Get exponent and handle
    225 	 * 11.111...1 case, then put result in place.  We reuse x since
    226 	 * it already has the right class (FP_NUM).
    227 	 */
    228 	m = x->fp_exp + y->fp_exp;
    229 	if (a0 >= FP_2) {
    230 		SHR1;
    231 		m++;
    232 	}
    233 	x->fp_sign ^= y->fp_sign;
    234 	x->fp_exp = m;
    235 	x->fp_sticky = sticky;
    236 	x->fp_mant[3] = a3;
    237 	x->fp_mant[2] = a2;
    238 	x->fp_mant[1] = a1;
    239 	x->fp_mant[0] = a0;
    240 
    241 	DUMPFPN(FPE_REG, x);
    242 	return (x);
    243 }
    244