Home | History | Annotate | Line # | Download | only in fpu
fpu_mul.c revision 1.1.24.1
      1  1.1.24.1   skrll /*	$NetBSD: fpu_mul.c,v 1.1.24.1 2004/08/03 10:39:22 skrll Exp $ */
      2       1.1  simonb 
      3       1.1  simonb /*
      4       1.1  simonb  * Copyright (c) 1992, 1993
      5       1.1  simonb  *	The Regents of the University of California.  All rights reserved.
      6       1.1  simonb  *
      7       1.1  simonb  * This software was developed by the Computer Systems Engineering group
      8       1.1  simonb  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9       1.1  simonb  * contributed to Berkeley.
     10       1.1  simonb  *
     11       1.1  simonb  * All advertising materials mentioning features or use of this software
     12       1.1  simonb  * must display the following acknowledgement:
     13       1.1  simonb  *	This product includes software developed by the University of
     14       1.1  simonb  *	California, Lawrence Berkeley Laboratory.
     15       1.1  simonb  *
     16       1.1  simonb  * Redistribution and use in source and binary forms, with or without
     17       1.1  simonb  * modification, are permitted provided that the following conditions
     18       1.1  simonb  * are met:
     19       1.1  simonb  * 1. Redistributions of source code must retain the above copyright
     20       1.1  simonb  *    notice, this list of conditions and the following disclaimer.
     21       1.1  simonb  * 2. Redistributions in binary form must reproduce the above copyright
     22       1.1  simonb  *    notice, this list of conditions and the following disclaimer in the
     23       1.1  simonb  *    documentation and/or other materials provided with the distribution.
     24  1.1.24.1   skrll  * 3. Neither the name of the University nor the names of its contributors
     25       1.1  simonb  *    may be used to endorse or promote products derived from this software
     26       1.1  simonb  *    without specific prior written permission.
     27       1.1  simonb  *
     28       1.1  simonb  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     29       1.1  simonb  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     30       1.1  simonb  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     31       1.1  simonb  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     32       1.1  simonb  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     33       1.1  simonb  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     34       1.1  simonb  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     35       1.1  simonb  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     36       1.1  simonb  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     37       1.1  simonb  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     38       1.1  simonb  * SUCH DAMAGE.
     39       1.1  simonb  *
     40       1.1  simonb  *	@(#)fpu_mul.c	8.1 (Berkeley) 6/11/93
     41       1.1  simonb  */
     42       1.1  simonb 
     43       1.1  simonb /*
     44       1.1  simonb  * Perform an FPU multiply (return x * y).
     45       1.1  simonb  */
     46       1.1  simonb 
     47  1.1.24.1   skrll #include <sys/cdefs.h>
     48  1.1.24.1   skrll __KERNEL_RCSID(0, "$NetBSD: fpu_mul.c,v 1.1.24.1 2004/08/03 10:39:22 skrll Exp $");
     49  1.1.24.1   skrll 
     50       1.1  simonb #include <sys/types.h>
     51       1.1  simonb #if defined(DIAGNOSTIC)||defined(DEBUG)
     52       1.1  simonb #include <sys/systm.h>
     53       1.1  simonb #endif
     54       1.1  simonb 
     55       1.1  simonb #include <machine/reg.h>
     56       1.1  simonb #include <machine/fpu.h>
     57       1.1  simonb 
     58       1.1  simonb #include <powerpc/fpu/fpu_arith.h>
     59       1.1  simonb #include <powerpc/fpu/fpu_emu.h>
     60       1.1  simonb 
     61       1.1  simonb /*
     62       1.1  simonb  * The multiplication algorithm for normal numbers is as follows:
     63       1.1  simonb  *
     64       1.1  simonb  * The fraction of the product is built in the usual stepwise fashion.
     65       1.1  simonb  * Each step consists of shifting the accumulator right one bit
     66       1.1  simonb  * (maintaining any guard bits) and, if the next bit in y is set,
     67       1.1  simonb  * adding the multiplicand (x) to the accumulator.  Then, in any case,
     68       1.1  simonb  * we advance one bit leftward in y.  Algorithmically:
     69       1.1  simonb  *
     70       1.1  simonb  *	A = 0;
     71       1.1  simonb  *	for (bit = 0; bit < FP_NMANT; bit++) {
     72       1.1  simonb  *		sticky |= A & 1, A >>= 1;
     73       1.1  simonb  *		if (Y & (1 << bit))
     74       1.1  simonb  *			A += X;
     75       1.1  simonb  *	}
     76       1.1  simonb  *
     77       1.1  simonb  * (X and Y here represent the mantissas of x and y respectively.)
     78       1.1  simonb  * The resultant accumulator (A) is the product's mantissa.  It may
     79       1.1  simonb  * be as large as 11.11111... in binary and hence may need to be
     80       1.1  simonb  * shifted right, but at most one bit.
     81       1.1  simonb  *
     82       1.1  simonb  * Since we do not have efficient multiword arithmetic, we code the
     83       1.1  simonb  * accumulator as four separate words, just like any other mantissa.
     84       1.1  simonb  * We use local variables in the hope that this is faster than memory.
     85       1.1  simonb  * We keep x->fp_mant in locals for the same reason.
     86       1.1  simonb  *
     87       1.1  simonb  * In the algorithm above, the bits in y are inspected one at a time.
     88       1.1  simonb  * We will pick them up 32 at a time and then deal with those 32, one
     89       1.1  simonb  * at a time.  Note, however, that we know several things about y:
     90       1.1  simonb  *
     91       1.1  simonb  *    - the guard and round bits at the bottom are sure to be zero;
     92       1.1  simonb  *
     93       1.1  simonb  *    - often many low bits are zero (y is often from a single or double
     94       1.1  simonb  *	precision source);
     95       1.1  simonb  *
     96       1.1  simonb  *    - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
     97       1.1  simonb  *
     98       1.1  simonb  * We can also test for 32-zero-bits swiftly.  In this case, the center
     99       1.1  simonb  * part of the loop---setting sticky, shifting A, and not adding---will
    100       1.1  simonb  * run 32 times without adding X to A.  We can do a 32-bit shift faster
    101       1.1  simonb  * by simply moving words.  Since zeros are common, we optimize this case.
    102       1.1  simonb  * Furthermore, since A is initially zero, we can omit the shift as well
    103       1.1  simonb  * until we reach a nonzero word.
    104       1.1  simonb  */
    105       1.1  simonb struct fpn *
    106       1.1  simonb fpu_mul(struct fpemu *fe)
    107       1.1  simonb {
    108       1.1  simonb 	struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
    109       1.1  simonb 	u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
    110       1.1  simonb 	int sticky;
    111       1.1  simonb 	FPU_DECL_CARRY;
    112       1.1  simonb 
    113       1.1  simonb 	/*
    114       1.1  simonb 	 * Put the `heavier' operand on the right (see fpu_emu.h).
    115       1.1  simonb 	 * Then we will have one of the following cases, taken in the
    116       1.1  simonb 	 * following order:
    117       1.1  simonb 	 *
    118       1.1  simonb 	 *  - y = NaN.  Implied: if only one is a signalling NaN, y is.
    119       1.1  simonb 	 *	The result is y.
    120       1.1  simonb 	 *  - y = Inf.  Implied: x != NaN (is 0, number, or Inf: the NaN
    121       1.1  simonb 	 *    case was taken care of earlier).
    122       1.1  simonb 	 *	If x = 0, the result is NaN.  Otherwise the result
    123       1.1  simonb 	 *	is y, with its sign reversed if x is negative.
    124       1.1  simonb 	 *  - x = 0.  Implied: y is 0 or number.
    125       1.1  simonb 	 *	The result is 0 (with XORed sign as usual).
    126       1.1  simonb 	 *  - other.  Implied: both x and y are numbers.
    127       1.1  simonb 	 *	The result is x * y (XOR sign, multiply bits, add exponents).
    128       1.1  simonb 	 */
    129       1.1  simonb 	DPRINTF(FPE_REG, ("fpu_mul:\n"));
    130       1.1  simonb 	DUMPFPN(FPE_REG, x);
    131       1.1  simonb 	DUMPFPN(FPE_REG, y);
    132       1.1  simonb 	DPRINTF(FPE_REG, ("=>\n"));
    133       1.1  simonb 
    134       1.1  simonb 	ORDER(x, y);
    135       1.1  simonb 	if (ISNAN(y)) {
    136       1.1  simonb 		y->fp_sign ^= x->fp_sign;
    137       1.1  simonb 		fe->fe_cx |= FPSCR_VXSNAN;
    138       1.1  simonb 		DUMPFPN(FPE_REG, y);
    139       1.1  simonb 		return (y);
    140       1.1  simonb 	}
    141       1.1  simonb 	if (ISINF(y)) {
    142       1.1  simonb 		if (ISZERO(x)) {
    143       1.1  simonb 			fe->fe_cx |= FPSCR_VXIMZ;
    144       1.1  simonb 			return (fpu_newnan(fe));
    145       1.1  simonb 		}
    146       1.1  simonb 		y->fp_sign ^= x->fp_sign;
    147       1.1  simonb 			DUMPFPN(FPE_REG, y);
    148       1.1  simonb 		return (y);
    149       1.1  simonb 	}
    150       1.1  simonb 	if (ISZERO(x)) {
    151       1.1  simonb 		x->fp_sign ^= y->fp_sign;
    152       1.1  simonb 		DUMPFPN(FPE_REG, x);
    153       1.1  simonb 		return (x);
    154       1.1  simonb 	}
    155       1.1  simonb 
    156       1.1  simonb 	/*
    157       1.1  simonb 	 * Setup.  In the code below, the mask `m' will hold the current
    158       1.1  simonb 	 * mantissa byte from y.  The variable `bit' denotes the bit
    159       1.1  simonb 	 * within m.  We also define some macros to deal with everything.
    160       1.1  simonb 	 */
    161       1.1  simonb 	x3 = x->fp_mant[3];
    162       1.1  simonb 	x2 = x->fp_mant[2];
    163       1.1  simonb 	x1 = x->fp_mant[1];
    164       1.1  simonb 	x0 = x->fp_mant[0];
    165       1.1  simonb 	sticky = a3 = a2 = a1 = a0 = 0;
    166       1.1  simonb 
    167       1.1  simonb #define	ADD	/* A += X */ \
    168       1.1  simonb 	FPU_ADDS(a3, a3, x3); \
    169       1.1  simonb 	FPU_ADDCS(a2, a2, x2); \
    170       1.1  simonb 	FPU_ADDCS(a1, a1, x1); \
    171       1.1  simonb 	FPU_ADDC(a0, a0, x0)
    172       1.1  simonb 
    173       1.1  simonb #define	SHR1	/* A >>= 1, with sticky */ \
    174       1.1  simonb 	sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
    175       1.1  simonb 	a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
    176       1.1  simonb 
    177       1.1  simonb #define	SHR32	/* A >>= 32, with sticky */ \
    178       1.1  simonb 	sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
    179       1.1  simonb 
    180       1.1  simonb #define	STEP	/* each 1-bit step of the multiplication */ \
    181       1.1  simonb 	SHR1; if (bit & m) { ADD; }; bit <<= 1
    182       1.1  simonb 
    183       1.1  simonb 	/*
    184       1.1  simonb 	 * We are ready to begin.  The multiply loop runs once for each
    185       1.1  simonb 	 * of the four 32-bit words.  Some words, however, are special.
    186       1.1  simonb 	 * As noted above, the low order bits of Y are often zero.  Even
    187       1.1  simonb 	 * if not, the first loop can certainly skip the guard bits.
    188       1.1  simonb 	 * The last word of y has its highest 1-bit in position FP_NMANT-1,
    189       1.1  simonb 	 * so we stop the loop when we move past that bit.
    190       1.1  simonb 	 */
    191       1.1  simonb 	if ((m = y->fp_mant[3]) == 0) {
    192       1.1  simonb 		/* SHR32; */			/* unneeded since A==0 */
    193       1.1  simonb 	} else {
    194       1.1  simonb 		bit = 1 << FP_NG;
    195       1.1  simonb 		do {
    196       1.1  simonb 			STEP;
    197       1.1  simonb 		} while (bit != 0);
    198       1.1  simonb 	}
    199       1.1  simonb 	if ((m = y->fp_mant[2]) == 0) {
    200       1.1  simonb 		SHR32;
    201       1.1  simonb 	} else {
    202       1.1  simonb 		bit = 1;
    203       1.1  simonb 		do {
    204       1.1  simonb 			STEP;
    205       1.1  simonb 		} while (bit != 0);
    206       1.1  simonb 	}
    207       1.1  simonb 	if ((m = y->fp_mant[1]) == 0) {
    208       1.1  simonb 		SHR32;
    209       1.1  simonb 	} else {
    210       1.1  simonb 		bit = 1;
    211       1.1  simonb 		do {
    212       1.1  simonb 			STEP;
    213       1.1  simonb 		} while (bit != 0);
    214       1.1  simonb 	}
    215       1.1  simonb 	m = y->fp_mant[0];		/* definitely != 0 */
    216       1.1  simonb 	bit = 1;
    217       1.1  simonb 	do {
    218       1.1  simonb 		STEP;
    219       1.1  simonb 	} while (bit <= m);
    220       1.1  simonb 
    221       1.1  simonb 	/*
    222       1.1  simonb 	 * Done with mantissa calculation.  Get exponent and handle
    223       1.1  simonb 	 * 11.111...1 case, then put result in place.  We reuse x since
    224       1.1  simonb 	 * it already has the right class (FP_NUM).
    225       1.1  simonb 	 */
    226       1.1  simonb 	m = x->fp_exp + y->fp_exp;
    227       1.1  simonb 	if (a0 >= FP_2) {
    228       1.1  simonb 		SHR1;
    229       1.1  simonb 		m++;
    230       1.1  simonb 	}
    231       1.1  simonb 	x->fp_sign ^= y->fp_sign;
    232       1.1  simonb 	x->fp_exp = m;
    233       1.1  simonb 	x->fp_sticky = sticky;
    234       1.1  simonb 	x->fp_mant[3] = a3;
    235       1.1  simonb 	x->fp_mant[2] = a2;
    236       1.1  simonb 	x->fp_mant[1] = a1;
    237       1.1  simonb 	x->fp_mant[0] = a0;
    238       1.1  simonb 
    239       1.1  simonb 	DUMPFPN(FPE_REG, x);
    240       1.1  simonb 	return (x);
    241       1.1  simonb }
    242