fpu_mul.c revision 1.2 1 /* $NetBSD: fpu_mul.c,v 1.2 2003/07/15 02:54:43 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * All advertising materials mentioning features or use of this software
12 * must display the following acknowledgement:
13 * This product includes software developed by the University of
14 * California, Lawrence Berkeley Laboratory.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. All advertising materials mentioning features or use of this software
25 * must display the following acknowledgement:
26 * This product includes software developed by the University of
27 * California, Berkeley and its contributors.
28 * 4. Neither the name of the University nor the names of its contributors
29 * may be used to endorse or promote products derived from this software
30 * without specific prior written permission.
31 *
32 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 * SUCH DAMAGE.
43 *
44 * @(#)fpu_mul.c 8.1 (Berkeley) 6/11/93
45 */
46
47 /*
48 * Perform an FPU multiply (return x * y).
49 */
50
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: fpu_mul.c,v 1.2 2003/07/15 02:54:43 lukem Exp $");
53
54 #include <sys/types.h>
55 #if defined(DIAGNOSTIC)||defined(DEBUG)
56 #include <sys/systm.h>
57 #endif
58
59 #include <machine/reg.h>
60 #include <machine/fpu.h>
61
62 #include <powerpc/fpu/fpu_arith.h>
63 #include <powerpc/fpu/fpu_emu.h>
64
65 /*
66 * The multiplication algorithm for normal numbers is as follows:
67 *
68 * The fraction of the product is built in the usual stepwise fashion.
69 * Each step consists of shifting the accumulator right one bit
70 * (maintaining any guard bits) and, if the next bit in y is set,
71 * adding the multiplicand (x) to the accumulator. Then, in any case,
72 * we advance one bit leftward in y. Algorithmically:
73 *
74 * A = 0;
75 * for (bit = 0; bit < FP_NMANT; bit++) {
76 * sticky |= A & 1, A >>= 1;
77 * if (Y & (1 << bit))
78 * A += X;
79 * }
80 *
81 * (X and Y here represent the mantissas of x and y respectively.)
82 * The resultant accumulator (A) is the product's mantissa. It may
83 * be as large as 11.11111... in binary and hence may need to be
84 * shifted right, but at most one bit.
85 *
86 * Since we do not have efficient multiword arithmetic, we code the
87 * accumulator as four separate words, just like any other mantissa.
88 * We use local variables in the hope that this is faster than memory.
89 * We keep x->fp_mant in locals for the same reason.
90 *
91 * In the algorithm above, the bits in y are inspected one at a time.
92 * We will pick them up 32 at a time and then deal with those 32, one
93 * at a time. Note, however, that we know several things about y:
94 *
95 * - the guard and round bits at the bottom are sure to be zero;
96 *
97 * - often many low bits are zero (y is often from a single or double
98 * precision source);
99 *
100 * - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
101 *
102 * We can also test for 32-zero-bits swiftly. In this case, the center
103 * part of the loop---setting sticky, shifting A, and not adding---will
104 * run 32 times without adding X to A. We can do a 32-bit shift faster
105 * by simply moving words. Since zeros are common, we optimize this case.
106 * Furthermore, since A is initially zero, we can omit the shift as well
107 * until we reach a nonzero word.
108 */
109 struct fpn *
110 fpu_mul(struct fpemu *fe)
111 {
112 struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
113 u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
114 int sticky;
115 FPU_DECL_CARRY;
116
117 /*
118 * Put the `heavier' operand on the right (see fpu_emu.h).
119 * Then we will have one of the following cases, taken in the
120 * following order:
121 *
122 * - y = NaN. Implied: if only one is a signalling NaN, y is.
123 * The result is y.
124 * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN
125 * case was taken care of earlier).
126 * If x = 0, the result is NaN. Otherwise the result
127 * is y, with its sign reversed if x is negative.
128 * - x = 0. Implied: y is 0 or number.
129 * The result is 0 (with XORed sign as usual).
130 * - other. Implied: both x and y are numbers.
131 * The result is x * y (XOR sign, multiply bits, add exponents).
132 */
133 DPRINTF(FPE_REG, ("fpu_mul:\n"));
134 DUMPFPN(FPE_REG, x);
135 DUMPFPN(FPE_REG, y);
136 DPRINTF(FPE_REG, ("=>\n"));
137
138 ORDER(x, y);
139 if (ISNAN(y)) {
140 y->fp_sign ^= x->fp_sign;
141 fe->fe_cx |= FPSCR_VXSNAN;
142 DUMPFPN(FPE_REG, y);
143 return (y);
144 }
145 if (ISINF(y)) {
146 if (ISZERO(x)) {
147 fe->fe_cx |= FPSCR_VXIMZ;
148 return (fpu_newnan(fe));
149 }
150 y->fp_sign ^= x->fp_sign;
151 DUMPFPN(FPE_REG, y);
152 return (y);
153 }
154 if (ISZERO(x)) {
155 x->fp_sign ^= y->fp_sign;
156 DUMPFPN(FPE_REG, x);
157 return (x);
158 }
159
160 /*
161 * Setup. In the code below, the mask `m' will hold the current
162 * mantissa byte from y. The variable `bit' denotes the bit
163 * within m. We also define some macros to deal with everything.
164 */
165 x3 = x->fp_mant[3];
166 x2 = x->fp_mant[2];
167 x1 = x->fp_mant[1];
168 x0 = x->fp_mant[0];
169 sticky = a3 = a2 = a1 = a0 = 0;
170
171 #define ADD /* A += X */ \
172 FPU_ADDS(a3, a3, x3); \
173 FPU_ADDCS(a2, a2, x2); \
174 FPU_ADDCS(a1, a1, x1); \
175 FPU_ADDC(a0, a0, x0)
176
177 #define SHR1 /* A >>= 1, with sticky */ \
178 sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
179 a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
180
181 #define SHR32 /* A >>= 32, with sticky */ \
182 sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
183
184 #define STEP /* each 1-bit step of the multiplication */ \
185 SHR1; if (bit & m) { ADD; }; bit <<= 1
186
187 /*
188 * We are ready to begin. The multiply loop runs once for each
189 * of the four 32-bit words. Some words, however, are special.
190 * As noted above, the low order bits of Y are often zero. Even
191 * if not, the first loop can certainly skip the guard bits.
192 * The last word of y has its highest 1-bit in position FP_NMANT-1,
193 * so we stop the loop when we move past that bit.
194 */
195 if ((m = y->fp_mant[3]) == 0) {
196 /* SHR32; */ /* unneeded since A==0 */
197 } else {
198 bit = 1 << FP_NG;
199 do {
200 STEP;
201 } while (bit != 0);
202 }
203 if ((m = y->fp_mant[2]) == 0) {
204 SHR32;
205 } else {
206 bit = 1;
207 do {
208 STEP;
209 } while (bit != 0);
210 }
211 if ((m = y->fp_mant[1]) == 0) {
212 SHR32;
213 } else {
214 bit = 1;
215 do {
216 STEP;
217 } while (bit != 0);
218 }
219 m = y->fp_mant[0]; /* definitely != 0 */
220 bit = 1;
221 do {
222 STEP;
223 } while (bit <= m);
224
225 /*
226 * Done with mantissa calculation. Get exponent and handle
227 * 11.111...1 case, then put result in place. We reuse x since
228 * it already has the right class (FP_NUM).
229 */
230 m = x->fp_exp + y->fp_exp;
231 if (a0 >= FP_2) {
232 SHR1;
233 m++;
234 }
235 x->fp_sign ^= y->fp_sign;
236 x->fp_exp = m;
237 x->fp_sticky = sticky;
238 x->fp_mant[3] = a3;
239 x->fp_mant[2] = a2;
240 x->fp_mant[1] = a1;
241 x->fp_mant[0] = a0;
242
243 DUMPFPN(FPE_REG, x);
244 return (x);
245 }
246