altivec.c revision 1.1 1 1.1 matt /* $NetBSD: altivec.c,v 1.1 2003/02/03 17:10:09 matt Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (C) 1996 Wolfgang Solfrank.
5 1.1 matt * Copyright (C) 1996 TooLs GmbH.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by TooLs GmbH.
19 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 1.1 matt * derived from this software without specific prior written permission.
21 1.1 matt *
22 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 matt */
33 1.1 matt #include <sys/param.h>
34 1.1 matt #include <sys/proc.h>
35 1.1 matt #include <sys/sa.h>
36 1.1 matt #include <sys/systm.h>
37 1.1 matt #include <sys/user.h>
38 1.1 matt #include <sys/malloc.h>
39 1.1 matt #include <sys/pool.h>
40 1.1 matt
41 1.1 matt #include <powerpc/altivec.h>
42 1.1 matt #include <powerpc/spr.h>
43 1.1 matt #include <powerpc/psl.h>
44 1.1 matt
45 1.1 matt struct pool vecpool;
46 1.1 matt
47 1.1 matt void
48 1.1 matt enable_vec()
49 1.1 matt {
50 1.1 matt struct cpu_info *ci = curcpu();
51 1.1 matt struct lwp *l = curlwp;
52 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
53 1.1 matt struct trapframe *tf = trapframe(l);
54 1.1 matt struct vreg *vr = pcb->pcb_vr;
55 1.1 matt int msr, scratch;
56 1.1 matt
57 1.1 matt KASSERT(pcb->pcb_veccpu == NULL);
58 1.1 matt
59 1.1 matt /*
60 1.1 matt * Allocate a vreg structure if we haven't done so.
61 1.1 matt */
62 1.1 matt if (!(pcb->pcb_flags & PCB_ALTIVEC)) {
63 1.1 matt vr = pcb->pcb_vr = pool_get(&vecpool, PR_WAITOK);
64 1.1 matt pcb->pcb_flags |= PCB_ALTIVEC;
65 1.1 matt
66 1.1 matt /*
67 1.1 matt * Initialize the vectors with NaNs
68 1.1 matt */
69 1.1 matt
70 1.1 matt for (scratch = 0; scratch < 32; scratch++) {
71 1.1 matt vr->vreg[scratch][0] = 0x7FFFDEAD;
72 1.1 matt vr->vreg[scratch][1] = 0x7FFFDEAD;
73 1.1 matt vr->vreg[scratch][2] = 0x7FFFDEAD;
74 1.1 matt vr->vreg[scratch][3] = 0x7FFFDEAD;
75 1.1 matt }
76 1.1 matt vr->vscr = 0;
77 1.1 matt vr->vrsave = tf->tf_xtra[TF_VRSAVE];
78 1.1 matt }
79 1.1 matt
80 1.1 matt /*
81 1.1 matt * Enable AltiVec temporarily (and disable interrupts).
82 1.1 matt */
83 1.1 matt msr = mfmsr();
84 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
85 1.1 matt __asm __volatile ("isync");
86 1.1 matt if (ci->ci_veclwp) {
87 1.1 matt save_vec_cpu();
88 1.1 matt }
89 1.1 matt KASSERT(curcpu()->ci_veclwp == NULL);
90 1.1 matt
91 1.1 matt /*
92 1.1 matt * Restore VSCR by first loading it into a vector and then into VSCR.
93 1.1 matt * (this needs to done before loading the user's vector registers
94 1.1 matt * since we need to use a scratch vector register)
95 1.1 matt */
96 1.1 matt __asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
97 1.1 matt :: "r"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
98 1.1 matt
99 1.1 matt /*
100 1.1 matt * VRSAVE will be restored when trap frame returns
101 1.1 matt */
102 1.1 matt tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
103 1.1 matt
104 1.1 matt #define LVX(n,vr) __asm /*__volatile*/("lvx %2,%0,%1" \
105 1.1 matt :: "r"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
106 1.1 matt
107 1.1 matt /*
108 1.1 matt * Load all 32 vector registers
109 1.1 matt */
110 1.1 matt LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
111 1.1 matt LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
112 1.1 matt LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
113 1.1 matt LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
114 1.1 matt
115 1.1 matt LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
116 1.1 matt LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
117 1.1 matt LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
118 1.1 matt LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
119 1.1 matt __asm __volatile ("isync");
120 1.1 matt
121 1.1 matt /*
122 1.1 matt * Enable AltiVec when we return to user-mode.
123 1.1 matt * Record the new ownership of the AltiVec unit.
124 1.1 matt */
125 1.1 matt tf->srr1 |= PSL_VEC;
126 1.1 matt curcpu()->ci_veclwp = l;
127 1.1 matt pcb->pcb_veccpu = curcpu();
128 1.1 matt __asm __volatile ("sync");
129 1.1 matt
130 1.1 matt /*
131 1.1 matt * Restore MSR (turn off AltiVec)
132 1.1 matt */
133 1.1 matt mtmsr(msr);
134 1.1 matt }
135 1.1 matt
136 1.1 matt void
137 1.1 matt save_vec_cpu(void)
138 1.1 matt {
139 1.1 matt struct cpu_info *ci = curcpu();
140 1.1 matt struct lwp *l;
141 1.1 matt struct pcb *pcb;
142 1.1 matt struct vreg *vr;
143 1.1 matt struct trapframe *tf;
144 1.1 matt int msr;
145 1.1 matt
146 1.1 matt /*
147 1.1 matt * Turn on AltiVEC, turn off interrupts.
148 1.1 matt */
149 1.1 matt msr = mfmsr();
150 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
151 1.1 matt __asm __volatile ("isync");
152 1.1 matt l = ci->ci_veclwp;
153 1.1 matt if (l == NULL) {
154 1.1 matt goto out;
155 1.1 matt }
156 1.1 matt pcb = &l->l_addr->u_pcb;
157 1.1 matt vr = pcb->pcb_vr;
158 1.1 matt tf = trapframe(l);
159 1.1 matt
160 1.1 matt #define STVX(n,vr) __asm /*__volatile*/("stvx %2,%0,%1" \
161 1.1 matt :: "r"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
162 1.1 matt
163 1.1 matt /*
164 1.1 matt * Save the vector registers.
165 1.1 matt */
166 1.1 matt STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
167 1.1 matt STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
168 1.1 matt STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
169 1.1 matt STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
170 1.1 matt
171 1.1 matt STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
172 1.1 matt STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
173 1.1 matt STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
174 1.1 matt STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
175 1.1 matt
176 1.1 matt /*
177 1.1 matt * Save VSCR (this needs to be done after save the vector registers
178 1.1 matt * since we need to use one as scratch).
179 1.1 matt */
180 1.1 matt __asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
181 1.1 matt :: "r"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
182 1.1 matt
183 1.1 matt /*
184 1.1 matt * Save VRSAVE
185 1.1 matt */
186 1.1 matt vr->vrsave = tf->tf_xtra[TF_VRSAVE];
187 1.1 matt
188 1.1 matt /*
189 1.1 matt * Note that we aren't using any CPU resources and stop any
190 1.1 matt * data streams.
191 1.1 matt */
192 1.1 matt tf->srr1 &= ~PSL_VEC;
193 1.1 matt pcb->pcb_veccpu = NULL;
194 1.1 matt ci->ci_veclwp = NULL;
195 1.1 matt __asm __volatile ("dssall; sync");
196 1.1 matt
197 1.1 matt out:
198 1.1 matt
199 1.1 matt /*
200 1.1 matt * Restore MSR (turn off AltiVec)
201 1.1 matt */
202 1.1 matt mtmsr(msr);
203 1.1 matt }
204 1.1 matt
205 1.1 matt /*
206 1.1 matt * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
207 1.1 matt * The process must either be curproc or traced by curproc (and stopped).
208 1.1 matt * (The point being that the process must not run on another CPU during
209 1.1 matt * this function).
210 1.1 matt */
211 1.1 matt void
212 1.1 matt save_vec_lwp(l)
213 1.1 matt struct lwp *l;
214 1.1 matt {
215 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
216 1.1 matt struct cpu_info *ci = curcpu();
217 1.1 matt
218 1.1 matt /*
219 1.1 matt * If it's already in the PCB, there's nothing to do.
220 1.1 matt */
221 1.1 matt
222 1.1 matt if (pcb->pcb_veccpu == NULL) {
223 1.1 matt return;
224 1.1 matt }
225 1.1 matt
226 1.1 matt /*
227 1.1 matt * If the state is in the current CPU, just flush the current CPU's
228 1.1 matt * state.
229 1.1 matt */
230 1.1 matt
231 1.1 matt if (l == ci->ci_veclwp) {
232 1.1 matt save_vec_cpu();
233 1.1 matt return;
234 1.1 matt }
235 1.1 matt
236 1.1 matt #ifdef MULTIPROCESSOR
237 1.1 matt
238 1.1 matt /*
239 1.1 matt * It must be on another CPU, flush it from there.
240 1.1 matt */
241 1.1 matt
242 1.1 matt mp_save_vec_lwp(l);
243 1.1 matt #endif
244 1.1 matt }
245 1.1 matt
246 1.1 matt #define ZERO_VEC 19
247 1.1 matt
248 1.1 matt void
249 1.1 matt vzeropage(paddr_t pa)
250 1.1 matt {
251 1.1 matt const paddr_t ea = pa + NBPG;
252 1.1 matt uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
253 1.1 matt uint32_t omsr, msr;
254 1.1 matt
255 1.1 matt __asm __volatile("mfmsr %0" : "=r"(omsr) :);
256 1.1 matt
257 1.1 matt /*
258 1.1 matt * Turn on AltiVec, turn off interrupts.
259 1.1 matt */
260 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
261 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
262 1.1 matt
263 1.1 matt /*
264 1.1 matt * Save the VEC register we are going to use before we disable
265 1.1 matt * relocation.
266 1.1 matt */
267 1.1 matt __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
268 1.1 matt __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
269 1.1 matt
270 1.1 matt /*
271 1.1 matt * Turn off data relocation (DMMU off).
272 1.1 matt */
273 1.1 matt msr &= ~PSL_DR;
274 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
275 1.1 matt
276 1.1 matt /*
277 1.1 matt * Zero the page using a single cache line.
278 1.1 matt */
279 1.1 matt do {
280 1.1 matt __asm("stvx %2,%0,%1" :: "r"(pa), "r"( 0), "n"(ZERO_VEC));
281 1.1 matt __asm("stvxl %2,%0,%1" :: "r"(pa), "r"(16), "n"(ZERO_VEC));
282 1.1 matt __asm("stvx %2,%0,%1" :: "r"(pa), "r"(32), "n"(ZERO_VEC));
283 1.1 matt __asm("stvxl %2,%0,%1" :: "r"(pa), "r"(48), "n"(ZERO_VEC));
284 1.1 matt pa += 64;
285 1.1 matt } while (pa < ea);
286 1.1 matt
287 1.1 matt /*
288 1.1 matt * Restore data relocation (DMMU on);
289 1.1 matt */
290 1.1 matt msr |= PSL_DR;
291 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
292 1.1 matt
293 1.1 matt /*
294 1.1 matt * Restore VEC register (now that we can access the stack again).
295 1.1 matt */
296 1.1 matt __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
297 1.1 matt
298 1.1 matt /*
299 1.1 matt * Restore old MSR (AltiVec OFF).
300 1.1 matt */
301 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
302 1.1 matt }
303 1.1 matt
304 1.1 matt #define LO_VEC 16
305 1.1 matt #define HI_VEC 17
306 1.1 matt
307 1.1 matt void
308 1.1 matt vcopypage(paddr_t dst, paddr_t src)
309 1.1 matt {
310 1.1 matt const paddr_t edst = dst + NBPG;
311 1.1 matt uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
312 1.1 matt uint32_t omsr, msr;
313 1.1 matt
314 1.1 matt __asm __volatile("mfmsr %0" : "=r"(omsr) :);
315 1.1 matt
316 1.1 matt /*
317 1.1 matt * Turn on AltiVec, turn off interrupts.
318 1.1 matt */
319 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
320 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
321 1.1 matt
322 1.1 matt /*
323 1.1 matt * Save the VEC registers we will be using before we disable
324 1.1 matt * relocation.
325 1.1 matt */
326 1.1 matt __asm("stvx %2,%1,%0" :: "r"(vp), "r"( 0), "n"(LO_VEC));
327 1.1 matt __asm("stvx %2,%1,%0" :: "r"(vp), "r"(16), "n"(HI_VEC));
328 1.1 matt
329 1.1 matt /*
330 1.1 matt * Turn off data relocation (DMMU off).
331 1.1 matt */
332 1.1 matt msr &= ~PSL_DR;
333 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
334 1.1 matt
335 1.1 matt /*
336 1.1 matt * Copy the page using a single cache line. On most PPCs, two
337 1.1 matt * vector registers occupy one cache line.
338 1.1 matt */
339 1.1 matt do {
340 1.1 matt __asm("lvx %2,%0,%1" :: "r"(src), "r"( 0), "n"(LO_VEC));
341 1.1 matt __asm("stvx %2,%0,%1" :: "r"(dst), "r"( 0), "n"(LO_VEC));
342 1.1 matt __asm("lvxl %2,%0,%1" :: "r"(src), "r"(16), "n"(HI_VEC));
343 1.1 matt __asm("stvxl %2,%0,%1" :: "r"(dst), "r"(16), "n"(HI_VEC));
344 1.1 matt src += 32;
345 1.1 matt dst += 32;
346 1.1 matt } while (dst < edst);
347 1.1 matt
348 1.1 matt /*
349 1.1 matt * Restore data relocation (DMMU on);
350 1.1 matt */
351 1.1 matt msr |= PSL_DR;
352 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
353 1.1 matt
354 1.1 matt /*
355 1.1 matt * Restore VEC registers (now that we can access the stack again).
356 1.1 matt */
357 1.1 matt __asm("lvx %2,%1,%0" :: "r"(vp), "r"( 0), "n"(LO_VEC));
358 1.1 matt __asm("lvx %2,%1,%0" :: "r"(vp), "r"(16), "n"(HI_VEC));
359 1.1 matt
360 1.1 matt /*
361 1.1 matt * Restore old MSR (AltiVec OFF).
362 1.1 matt */
363 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
364 1.1 matt }
365 1.1 matt
366 1.1 matt void
367 1.1 matt init_vec(void)
368 1.1 matt {
369 1.1 matt pool_init(&vecpool, sizeof(struct vreg), 16, 0, 0, "vecpl", NULL);
370 1.1 matt }
371