altivec.c revision 1.11.20.1 1 1.11.20.1 ad /* $NetBSD: altivec.c,v 1.11.20.1 2007/01/30 13:49:37 ad Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (C) 1996 Wolfgang Solfrank.
5 1.1 matt * Copyright (C) 1996 TooLs GmbH.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by TooLs GmbH.
19 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 1.1 matt * derived from this software without specific prior written permission.
21 1.1 matt *
22 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 matt */
33 1.5 lukem
34 1.5 lukem #include <sys/cdefs.h>
35 1.11.20.1 ad __KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.11.20.1 2007/01/30 13:49:37 ad Exp $");
36 1.4 martin
37 1.4 martin #include "opt_multiprocessor.h"
38 1.4 martin
39 1.1 matt #include <sys/param.h>
40 1.1 matt #include <sys/proc.h>
41 1.1 matt #include <sys/systm.h>
42 1.1 matt #include <sys/user.h>
43 1.1 matt #include <sys/malloc.h>
44 1.1 matt #include <sys/pool.h>
45 1.1 matt
46 1.3 thorpej #include <uvm/uvm_extern.h>
47 1.3 thorpej
48 1.1 matt #include <powerpc/altivec.h>
49 1.1 matt #include <powerpc/spr.h>
50 1.1 matt #include <powerpc/psl.h>
51 1.1 matt
52 1.1 matt void
53 1.7 matt enable_vec(void)
54 1.1 matt {
55 1.1 matt struct cpu_info *ci = curcpu();
56 1.1 matt struct lwp *l = curlwp;
57 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
58 1.1 matt struct trapframe *tf = trapframe(l);
59 1.2 matt struct vreg *vr = &pcb->pcb_vr;
60 1.2 matt register_t msr;
61 1.1 matt
62 1.1 matt KASSERT(pcb->pcb_veccpu == NULL);
63 1.1 matt
64 1.2 matt pcb->pcb_flags |= PCB_ALTIVEC;
65 1.1 matt
66 1.1 matt /*
67 1.1 matt * Enable AltiVec temporarily (and disable interrupts).
68 1.1 matt */
69 1.1 matt msr = mfmsr();
70 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
71 1.11 perry __asm volatile ("isync");
72 1.1 matt if (ci->ci_veclwp) {
73 1.1 matt save_vec_cpu();
74 1.1 matt }
75 1.1 matt KASSERT(curcpu()->ci_veclwp == NULL);
76 1.1 matt
77 1.1 matt /*
78 1.1 matt * Restore VSCR by first loading it into a vector and then into VSCR.
79 1.1 matt * (this needs to done before loading the user's vector registers
80 1.1 matt * since we need to use a scratch vector register)
81 1.1 matt */
82 1.11 perry __asm volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
83 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
84 1.1 matt
85 1.1 matt /*
86 1.1 matt * VRSAVE will be restored when trap frame returns
87 1.1 matt */
88 1.1 matt tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
89 1.1 matt
90 1.11 perry #define LVX(n,vr) __asm /*volatile*/("lvx %2,%0,%1" \
91 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
92 1.1 matt
93 1.1 matt /*
94 1.1 matt * Load all 32 vector registers
95 1.1 matt */
96 1.1 matt LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
97 1.1 matt LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
98 1.1 matt LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
99 1.1 matt LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
100 1.1 matt
101 1.1 matt LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
102 1.1 matt LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
103 1.1 matt LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
104 1.1 matt LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
105 1.11 perry __asm volatile ("isync");
106 1.1 matt
107 1.1 matt /*
108 1.1 matt * Enable AltiVec when we return to user-mode.
109 1.1 matt * Record the new ownership of the AltiVec unit.
110 1.1 matt */
111 1.1 matt curcpu()->ci_veclwp = l;
112 1.1 matt pcb->pcb_veccpu = curcpu();
113 1.8 matt pcb->pcb_flags |= PCB_OWNALTIVEC;
114 1.11 perry __asm volatile ("sync");
115 1.1 matt
116 1.1 matt /*
117 1.1 matt * Restore MSR (turn off AltiVec)
118 1.1 matt */
119 1.1 matt mtmsr(msr);
120 1.1 matt }
121 1.1 matt
122 1.1 matt void
123 1.1 matt save_vec_cpu(void)
124 1.1 matt {
125 1.1 matt struct cpu_info *ci = curcpu();
126 1.1 matt struct lwp *l;
127 1.1 matt struct pcb *pcb;
128 1.1 matt struct vreg *vr;
129 1.1 matt struct trapframe *tf;
130 1.2 matt register_t msr;
131 1.1 matt
132 1.1 matt /*
133 1.1 matt * Turn on AltiVEC, turn off interrupts.
134 1.1 matt */
135 1.1 matt msr = mfmsr();
136 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
137 1.11 perry __asm volatile ("isync");
138 1.1 matt l = ci->ci_veclwp;
139 1.7 matt if (l == NULL)
140 1.1 matt goto out;
141 1.1 matt pcb = &l->l_addr->u_pcb;
142 1.2 matt vr = &pcb->pcb_vr;
143 1.1 matt tf = trapframe(l);
144 1.1 matt
145 1.11 perry #define STVX(n,vr) __asm /*volatile*/("stvx %2,%0,%1" \
146 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
147 1.1 matt
148 1.1 matt /*
149 1.1 matt * Save the vector registers.
150 1.1 matt */
151 1.1 matt STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
152 1.1 matt STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
153 1.1 matt STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
154 1.1 matt STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
155 1.1 matt
156 1.1 matt STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
157 1.1 matt STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
158 1.1 matt STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
159 1.1 matt STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
160 1.1 matt
161 1.1 matt /*
162 1.1 matt * Save VSCR (this needs to be done after save the vector registers
163 1.1 matt * since we need to use one as scratch).
164 1.1 matt */
165 1.11 perry __asm volatile("mfvscr %2; stvewx %2,%0,%1" \
166 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
167 1.1 matt
168 1.1 matt /*
169 1.1 matt * Save VRSAVE
170 1.1 matt */
171 1.1 matt vr->vrsave = tf->tf_xtra[TF_VRSAVE];
172 1.1 matt
173 1.1 matt /*
174 1.1 matt * Note that we aren't using any CPU resources and stop any
175 1.1 matt * data streams.
176 1.1 matt */
177 1.1 matt pcb->pcb_veccpu = NULL;
178 1.1 matt ci->ci_veclwp = NULL;
179 1.11 perry __asm volatile ("dssall; sync");
180 1.1 matt
181 1.1 matt out:
182 1.1 matt
183 1.1 matt /*
184 1.1 matt * Restore MSR (turn off AltiVec)
185 1.1 matt */
186 1.1 matt mtmsr(msr);
187 1.1 matt }
188 1.1 matt
189 1.1 matt /*
190 1.1 matt * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
191 1.1 matt * The process must either be curproc or traced by curproc (and stopped).
192 1.1 matt * (The point being that the process must not run on another CPU during
193 1.1 matt * this function).
194 1.1 matt */
195 1.1 matt void
196 1.7 matt save_vec_lwp(struct lwp *l, int discard)
197 1.1 matt {
198 1.7 matt struct pcb * const pcb = &l->l_addr->u_pcb;
199 1.7 matt struct cpu_info * const ci = curcpu();
200 1.1 matt
201 1.1 matt /*
202 1.1 matt * If it's already in the PCB, there's nothing to do.
203 1.1 matt */
204 1.7 matt if (pcb->pcb_veccpu == NULL)
205 1.7 matt return;
206 1.1 matt
207 1.7 matt /*
208 1.7 matt * If we simply need to discard the information, then don't
209 1.7 matt * to save anything.
210 1.7 matt */
211 1.7 matt if (discard) {
212 1.7 matt #ifndef MULTIPROCESSOR
213 1.7 matt KASSERT(ci == pcb->pcb_veccpu);
214 1.7 matt #endif
215 1.7 matt KASSERT(l == pcb->pcb_veccpu->ci_veclwp);
216 1.7 matt pcb->pcb_veccpu->ci_veclwp = NULL;
217 1.7 matt pcb->pcb_veccpu = NULL;
218 1.8 matt pcb->pcb_flags &= ~PCB_OWNALTIVEC;
219 1.1 matt return;
220 1.1 matt }
221 1.1 matt
222 1.1 matt /*
223 1.1 matt * If the state is in the current CPU, just flush the current CPU's
224 1.1 matt * state.
225 1.1 matt */
226 1.1 matt if (l == ci->ci_veclwp) {
227 1.1 matt save_vec_cpu();
228 1.1 matt return;
229 1.1 matt }
230 1.1 matt
231 1.7 matt
232 1.1 matt #ifdef MULTIPROCESSOR
233 1.1 matt /*
234 1.1 matt * It must be on another CPU, flush it from there.
235 1.1 matt */
236 1.1 matt
237 1.1 matt mp_save_vec_lwp(l);
238 1.1 matt #endif
239 1.1 matt }
240 1.1 matt
241 1.1 matt #define ZERO_VEC 19
242 1.1 matt
243 1.1 matt void
244 1.1 matt vzeropage(paddr_t pa)
245 1.1 matt {
246 1.3 thorpej const paddr_t ea = pa + PAGE_SIZE;
247 1.1 matt uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
248 1.2 matt register_t omsr, msr;
249 1.1 matt
250 1.11 perry __asm volatile("mfmsr %0" : "=r"(omsr) :);
251 1.1 matt
252 1.1 matt /*
253 1.1 matt * Turn on AltiVec, turn off interrupts.
254 1.1 matt */
255 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
256 1.11 perry __asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
257 1.1 matt
258 1.1 matt /*
259 1.1 matt * Save the VEC register we are going to use before we disable
260 1.1 matt * relocation.
261 1.1 matt */
262 1.1 matt __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
263 1.1 matt __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
264 1.1 matt
265 1.1 matt /*
266 1.1 matt * Zero the page using a single cache line.
267 1.1 matt */
268 1.11 perry __asm volatile(
269 1.9 nathanw " sync ;"
270 1.9 nathanw " mfmsr %[msr];"
271 1.9 nathanw " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
272 1.9 nathanw " mtmsr %[msr];" /* Turn off DMMU */
273 1.9 nathanw " isync;"
274 1.9 nathanw "1: stvx %[zv], %[pa], %[off0];"
275 1.9 nathanw " stvxl %[zv], %[pa], %[off16];"
276 1.9 nathanw " stvx %[zv], %[pa], %[off32];"
277 1.9 nathanw " stvxl %[zv], %[pa], %[off48];"
278 1.9 nathanw " addi %[pa], %[pa], 64;"
279 1.9 nathanw " cmplw %[pa], %[ea];"
280 1.9 nathanw " blt+ 1b;"
281 1.9 nathanw " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
282 1.9 nathanw " sync;"
283 1.9 nathanw " mtmsr %[msr];" /* Turn on DMMU */
284 1.9 nathanw " isync;"
285 1.9 nathanw :: [msr] "r"(msr), [pa] "b"(pa), [ea] "b"(ea),
286 1.9 nathanw [off0] "r"(0), [off16] "r"(16), [off32] "r"(32), [off48] "r"(48),
287 1.9 nathanw [zv] "n"(ZERO_VEC));
288 1.1 matt
289 1.1 matt /*
290 1.1 matt * Restore VEC register (now that we can access the stack again).
291 1.1 matt */
292 1.1 matt __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
293 1.1 matt
294 1.1 matt /*
295 1.1 matt * Restore old MSR (AltiVec OFF).
296 1.1 matt */
297 1.11 perry __asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
298 1.1 matt }
299 1.1 matt
300 1.1 matt #define LO_VEC 16
301 1.1 matt #define HI_VEC 17
302 1.1 matt
303 1.1 matt void
304 1.1 matt vcopypage(paddr_t dst, paddr_t src)
305 1.1 matt {
306 1.3 thorpej const paddr_t edst = dst + PAGE_SIZE;
307 1.1 matt uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
308 1.2 matt register_t omsr, msr;
309 1.1 matt
310 1.11 perry __asm volatile("mfmsr %0" : "=r"(omsr) :);
311 1.1 matt
312 1.1 matt /*
313 1.1 matt * Turn on AltiVec, turn off interrupts.
314 1.1 matt */
315 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
316 1.11 perry __asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
317 1.1 matt
318 1.1 matt /*
319 1.1 matt * Save the VEC registers we will be using before we disable
320 1.1 matt * relocation.
321 1.1 matt */
322 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
323 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
324 1.1 matt
325 1.1 matt /*
326 1.9 nathanw * Copy the page using a single cache line, with DMMU
327 1.9 nathanw * disabled. On most PPCs, two vector registers occupy one
328 1.9 nathanw * cache line.
329 1.9 nathanw */
330 1.11 perry __asm volatile(
331 1.9 nathanw " sync ;"
332 1.9 nathanw " mfmsr %[msr];"
333 1.9 nathanw " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
334 1.9 nathanw " mtmsr %[msr];" /* Turn off DMMU */
335 1.9 nathanw " isync;"
336 1.9 nathanw "1: lvx %[lv], %[src], %[off0];"
337 1.9 nathanw " stvx %[lv], %[dst], %[off0];"
338 1.9 nathanw " lvxl %[hv], %[src], %[off16];"
339 1.9 nathanw " stvxl %[hv], %[dst], %[off16];"
340 1.9 nathanw " addi %[src], %[src], 32;"
341 1.9 nathanw " addi %[dst], %[dst], 32;"
342 1.9 nathanw " cmplw %[dst], %[edst];"
343 1.9 nathanw " blt+ 1b;"
344 1.9 nathanw " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
345 1.9 nathanw " sync;"
346 1.9 nathanw " mtmsr %[msr];" /* Turn on DMMU */
347 1.9 nathanw " isync;"
348 1.9 nathanw :: [msr] "r"(msr), [src] "b"(src), [dst] "b"(dst),
349 1.9 nathanw [edst] "b"(edst), [off0] "r"(0), [off16] "r"(16),
350 1.9 nathanw [lv] "n"(LO_VEC), [hv] "n"(HI_VEC));
351 1.1 matt
352 1.1 matt /*
353 1.1 matt * Restore VEC registers (now that we can access the stack again).
354 1.1 matt */
355 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
356 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
357 1.1 matt
358 1.1 matt /*
359 1.1 matt * Restore old MSR (AltiVec OFF).
360 1.1 matt */
361 1.11 perry __asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
362 1.1 matt }
363