altivec.c revision 1.13 1 1.13 garbled /* $NetBSD: altivec.c,v 1.13 2007/10/17 19:56:42 garbled Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (C) 1996 Wolfgang Solfrank.
5 1.1 matt * Copyright (C) 1996 TooLs GmbH.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by TooLs GmbH.
19 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 1.1 matt * derived from this software without specific prior written permission.
21 1.1 matt *
22 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 matt */
33 1.5 lukem
34 1.5 lukem #include <sys/cdefs.h>
35 1.13 garbled __KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.13 2007/10/17 19:56:42 garbled Exp $");
36 1.4 martin
37 1.4 martin #include "opt_multiprocessor.h"
38 1.4 martin
39 1.1 matt #include <sys/param.h>
40 1.1 matt #include <sys/proc.h>
41 1.1 matt #include <sys/systm.h>
42 1.1 matt #include <sys/user.h>
43 1.1 matt #include <sys/malloc.h>
44 1.1 matt #include <sys/pool.h>
45 1.1 matt
46 1.3 thorpej #include <uvm/uvm_extern.h>
47 1.3 thorpej
48 1.1 matt #include <powerpc/altivec.h>
49 1.1 matt #include <powerpc/spr.h>
50 1.1 matt #include <powerpc/psl.h>
51 1.1 matt
52 1.13 garbled #ifdef MULTIPROCESSOR
53 1.13 garbled #include <arch/powerpc/pic/picvar.h>
54 1.13 garbled #include <arch/powerpc/pic/ipivar.h>
55 1.13 garbled static void mp_save_vec_lwp(struct lwp *);
56 1.13 garbled #endif
57 1.13 garbled
58 1.1 matt void
59 1.7 matt enable_vec(void)
60 1.1 matt {
61 1.1 matt struct cpu_info *ci = curcpu();
62 1.1 matt struct lwp *l = curlwp;
63 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
64 1.1 matt struct trapframe *tf = trapframe(l);
65 1.2 matt struct vreg *vr = &pcb->pcb_vr;
66 1.2 matt register_t msr;
67 1.1 matt
68 1.1 matt KASSERT(pcb->pcb_veccpu == NULL);
69 1.1 matt
70 1.2 matt pcb->pcb_flags |= PCB_ALTIVEC;
71 1.1 matt
72 1.1 matt /*
73 1.1 matt * Enable AltiVec temporarily (and disable interrupts).
74 1.1 matt */
75 1.1 matt msr = mfmsr();
76 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
77 1.11 perry __asm volatile ("isync");
78 1.1 matt if (ci->ci_veclwp) {
79 1.1 matt save_vec_cpu();
80 1.1 matt }
81 1.1 matt KASSERT(curcpu()->ci_veclwp == NULL);
82 1.1 matt
83 1.1 matt /*
84 1.1 matt * Restore VSCR by first loading it into a vector and then into VSCR.
85 1.1 matt * (this needs to done before loading the user's vector registers
86 1.1 matt * since we need to use a scratch vector register)
87 1.1 matt */
88 1.11 perry __asm volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
89 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
90 1.1 matt
91 1.1 matt /*
92 1.1 matt * VRSAVE will be restored when trap frame returns
93 1.1 matt */
94 1.1 matt tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
95 1.1 matt
96 1.11 perry #define LVX(n,vr) __asm /*volatile*/("lvx %2,%0,%1" \
97 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
98 1.1 matt
99 1.1 matt /*
100 1.1 matt * Load all 32 vector registers
101 1.1 matt */
102 1.1 matt LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
103 1.1 matt LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
104 1.1 matt LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
105 1.1 matt LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
106 1.1 matt
107 1.1 matt LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
108 1.1 matt LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
109 1.1 matt LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
110 1.1 matt LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
111 1.11 perry __asm volatile ("isync");
112 1.1 matt
113 1.1 matt /*
114 1.1 matt * Enable AltiVec when we return to user-mode.
115 1.1 matt * Record the new ownership of the AltiVec unit.
116 1.1 matt */
117 1.1 matt curcpu()->ci_veclwp = l;
118 1.1 matt pcb->pcb_veccpu = curcpu();
119 1.8 matt pcb->pcb_flags |= PCB_OWNALTIVEC;
120 1.11 perry __asm volatile ("sync");
121 1.1 matt
122 1.1 matt /*
123 1.1 matt * Restore MSR (turn off AltiVec)
124 1.1 matt */
125 1.1 matt mtmsr(msr);
126 1.1 matt }
127 1.1 matt
128 1.1 matt void
129 1.1 matt save_vec_cpu(void)
130 1.1 matt {
131 1.1 matt struct cpu_info *ci = curcpu();
132 1.1 matt struct lwp *l;
133 1.1 matt struct pcb *pcb;
134 1.1 matt struct vreg *vr;
135 1.1 matt struct trapframe *tf;
136 1.2 matt register_t msr;
137 1.1 matt
138 1.1 matt /*
139 1.1 matt * Turn on AltiVEC, turn off interrupts.
140 1.1 matt */
141 1.1 matt msr = mfmsr();
142 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
143 1.11 perry __asm volatile ("isync");
144 1.1 matt l = ci->ci_veclwp;
145 1.7 matt if (l == NULL)
146 1.1 matt goto out;
147 1.1 matt pcb = &l->l_addr->u_pcb;
148 1.2 matt vr = &pcb->pcb_vr;
149 1.1 matt tf = trapframe(l);
150 1.1 matt
151 1.11 perry #define STVX(n,vr) __asm /*volatile*/("stvx %2,%0,%1" \
152 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
153 1.1 matt
154 1.1 matt /*
155 1.1 matt * Save the vector registers.
156 1.1 matt */
157 1.1 matt STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
158 1.1 matt STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
159 1.1 matt STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
160 1.1 matt STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
161 1.1 matt
162 1.1 matt STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
163 1.1 matt STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
164 1.1 matt STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
165 1.1 matt STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
166 1.1 matt
167 1.1 matt /*
168 1.1 matt * Save VSCR (this needs to be done after save the vector registers
169 1.1 matt * since we need to use one as scratch).
170 1.1 matt */
171 1.11 perry __asm volatile("mfvscr %2; stvewx %2,%0,%1" \
172 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
173 1.1 matt
174 1.1 matt /*
175 1.1 matt * Save VRSAVE
176 1.1 matt */
177 1.1 matt vr->vrsave = tf->tf_xtra[TF_VRSAVE];
178 1.1 matt
179 1.1 matt /*
180 1.1 matt * Note that we aren't using any CPU resources and stop any
181 1.1 matt * data streams.
182 1.1 matt */
183 1.1 matt pcb->pcb_veccpu = NULL;
184 1.1 matt ci->ci_veclwp = NULL;
185 1.11 perry __asm volatile ("dssall; sync");
186 1.1 matt
187 1.1 matt out:
188 1.1 matt
189 1.1 matt /*
190 1.1 matt * Restore MSR (turn off AltiVec)
191 1.1 matt */
192 1.1 matt mtmsr(msr);
193 1.1 matt }
194 1.1 matt
195 1.13 garbled #ifdef MULTIPROCESSOR
196 1.13 garbled /*
197 1.13 garbled * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
198 1.13 garbled * The process must either be curproc or traced by curproc (and stopped).
199 1.13 garbled * (The point being that the process must not run on another CPU during
200 1.13 garbled * this function).
201 1.13 garbled */
202 1.13 garbled static void
203 1.13 garbled mp_save_vec_lwp(struct lwp *l)
204 1.13 garbled {
205 1.13 garbled struct pcb *pcb = &l->l_addr->u_pcb;
206 1.13 garbled struct cpu_info *veccpu;
207 1.13 garbled int i;
208 1.13 garbled
209 1.13 garbled /*
210 1.13 garbled * Send an IPI to the other CPU with the data and wait for that CPU
211 1.13 garbled * to flush the data. Note that the other CPU might have switched
212 1.13 garbled * to a different proc's AltiVEC state by the time it receives the IPI,
213 1.13 garbled * but that will only result in an unnecessary reload.
214 1.13 garbled */
215 1.13 garbled
216 1.13 garbled veccpu = pcb->pcb_veccpu;
217 1.13 garbled if (veccpu == NULL)
218 1.13 garbled return;
219 1.13 garbled
220 1.13 garbled ppc_send_ipi(veccpu->ci_cpuid, PPC_IPI_FLUSH_VEC);
221 1.13 garbled
222 1.13 garbled /* Wait for flush. */
223 1.13 garbled for (i = 0; i < 0x3fffffff; i++)
224 1.13 garbled if (pcb->pcb_veccpu == NULL)
225 1.13 garbled return;
226 1.13 garbled
227 1.13 garbled aprint_error("mp_save_vec_lwp{%d} pid = %d.%d, veccpu->ci_cpuid = %d\n",
228 1.13 garbled cpu_number(), l->l_proc->p_pid, l->l_lid, veccpu->ci_cpuid);
229 1.13 garbled panic("mp_save_vec_lwp: timed out");
230 1.13 garbled }
231 1.13 garbled #endif /*MULTIPROCESSOR*/
232 1.13 garbled
233 1.1 matt /*
234 1.1 matt * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
235 1.1 matt * The process must either be curproc or traced by curproc (and stopped).
236 1.1 matt * (The point being that the process must not run on another CPU during
237 1.1 matt * this function).
238 1.1 matt */
239 1.1 matt void
240 1.7 matt save_vec_lwp(struct lwp *l, int discard)
241 1.1 matt {
242 1.7 matt struct pcb * const pcb = &l->l_addr->u_pcb;
243 1.7 matt struct cpu_info * const ci = curcpu();
244 1.1 matt
245 1.1 matt /*
246 1.1 matt * If it's already in the PCB, there's nothing to do.
247 1.1 matt */
248 1.7 matt if (pcb->pcb_veccpu == NULL)
249 1.7 matt return;
250 1.1 matt
251 1.7 matt /*
252 1.7 matt * If we simply need to discard the information, then don't
253 1.7 matt * to save anything.
254 1.7 matt */
255 1.7 matt if (discard) {
256 1.7 matt #ifndef MULTIPROCESSOR
257 1.7 matt KASSERT(ci == pcb->pcb_veccpu);
258 1.7 matt #endif
259 1.7 matt KASSERT(l == pcb->pcb_veccpu->ci_veclwp);
260 1.7 matt pcb->pcb_veccpu->ci_veclwp = NULL;
261 1.7 matt pcb->pcb_veccpu = NULL;
262 1.8 matt pcb->pcb_flags &= ~PCB_OWNALTIVEC;
263 1.1 matt return;
264 1.1 matt }
265 1.1 matt
266 1.1 matt /*
267 1.1 matt * If the state is in the current CPU, just flush the current CPU's
268 1.1 matt * state.
269 1.1 matt */
270 1.1 matt if (l == ci->ci_veclwp) {
271 1.1 matt save_vec_cpu();
272 1.1 matt return;
273 1.1 matt }
274 1.1 matt
275 1.7 matt
276 1.1 matt #ifdef MULTIPROCESSOR
277 1.1 matt /*
278 1.1 matt * It must be on another CPU, flush it from there.
279 1.1 matt */
280 1.1 matt
281 1.1 matt mp_save_vec_lwp(l);
282 1.1 matt #endif
283 1.1 matt }
284 1.1 matt
285 1.1 matt #define ZERO_VEC 19
286 1.1 matt
287 1.1 matt void
288 1.1 matt vzeropage(paddr_t pa)
289 1.1 matt {
290 1.3 thorpej const paddr_t ea = pa + PAGE_SIZE;
291 1.1 matt uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
292 1.2 matt register_t omsr, msr;
293 1.1 matt
294 1.11 perry __asm volatile("mfmsr %0" : "=r"(omsr) :);
295 1.1 matt
296 1.1 matt /*
297 1.1 matt * Turn on AltiVec, turn off interrupts.
298 1.1 matt */
299 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
300 1.11 perry __asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
301 1.1 matt
302 1.1 matt /*
303 1.1 matt * Save the VEC register we are going to use before we disable
304 1.1 matt * relocation.
305 1.1 matt */
306 1.1 matt __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
307 1.1 matt __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
308 1.1 matt
309 1.1 matt /*
310 1.1 matt * Zero the page using a single cache line.
311 1.1 matt */
312 1.11 perry __asm volatile(
313 1.9 nathanw " sync ;"
314 1.9 nathanw " mfmsr %[msr];"
315 1.9 nathanw " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
316 1.9 nathanw " mtmsr %[msr];" /* Turn off DMMU */
317 1.9 nathanw " isync;"
318 1.9 nathanw "1: stvx %[zv], %[pa], %[off0];"
319 1.9 nathanw " stvxl %[zv], %[pa], %[off16];"
320 1.9 nathanw " stvx %[zv], %[pa], %[off32];"
321 1.9 nathanw " stvxl %[zv], %[pa], %[off48];"
322 1.9 nathanw " addi %[pa], %[pa], 64;"
323 1.9 nathanw " cmplw %[pa], %[ea];"
324 1.9 nathanw " blt+ 1b;"
325 1.9 nathanw " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
326 1.9 nathanw " sync;"
327 1.9 nathanw " mtmsr %[msr];" /* Turn on DMMU */
328 1.9 nathanw " isync;"
329 1.9 nathanw :: [msr] "r"(msr), [pa] "b"(pa), [ea] "b"(ea),
330 1.9 nathanw [off0] "r"(0), [off16] "r"(16), [off32] "r"(32), [off48] "r"(48),
331 1.9 nathanw [zv] "n"(ZERO_VEC));
332 1.1 matt
333 1.1 matt /*
334 1.1 matt * Restore VEC register (now that we can access the stack again).
335 1.1 matt */
336 1.1 matt __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
337 1.1 matt
338 1.1 matt /*
339 1.1 matt * Restore old MSR (AltiVec OFF).
340 1.1 matt */
341 1.11 perry __asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
342 1.1 matt }
343 1.1 matt
344 1.1 matt #define LO_VEC 16
345 1.1 matt #define HI_VEC 17
346 1.1 matt
347 1.1 matt void
348 1.1 matt vcopypage(paddr_t dst, paddr_t src)
349 1.1 matt {
350 1.3 thorpej const paddr_t edst = dst + PAGE_SIZE;
351 1.1 matt uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
352 1.2 matt register_t omsr, msr;
353 1.1 matt
354 1.11 perry __asm volatile("mfmsr %0" : "=r"(omsr) :);
355 1.1 matt
356 1.1 matt /*
357 1.1 matt * Turn on AltiVec, turn off interrupts.
358 1.1 matt */
359 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
360 1.11 perry __asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
361 1.1 matt
362 1.1 matt /*
363 1.1 matt * Save the VEC registers we will be using before we disable
364 1.1 matt * relocation.
365 1.1 matt */
366 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
367 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
368 1.1 matt
369 1.1 matt /*
370 1.9 nathanw * Copy the page using a single cache line, with DMMU
371 1.9 nathanw * disabled. On most PPCs, two vector registers occupy one
372 1.9 nathanw * cache line.
373 1.9 nathanw */
374 1.11 perry __asm volatile(
375 1.9 nathanw " sync ;"
376 1.9 nathanw " mfmsr %[msr];"
377 1.9 nathanw " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
378 1.9 nathanw " mtmsr %[msr];" /* Turn off DMMU */
379 1.9 nathanw " isync;"
380 1.9 nathanw "1: lvx %[lv], %[src], %[off0];"
381 1.9 nathanw " stvx %[lv], %[dst], %[off0];"
382 1.9 nathanw " lvxl %[hv], %[src], %[off16];"
383 1.9 nathanw " stvxl %[hv], %[dst], %[off16];"
384 1.9 nathanw " addi %[src], %[src], 32;"
385 1.9 nathanw " addi %[dst], %[dst], 32;"
386 1.9 nathanw " cmplw %[dst], %[edst];"
387 1.9 nathanw " blt+ 1b;"
388 1.9 nathanw " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
389 1.9 nathanw " sync;"
390 1.9 nathanw " mtmsr %[msr];" /* Turn on DMMU */
391 1.9 nathanw " isync;"
392 1.9 nathanw :: [msr] "r"(msr), [src] "b"(src), [dst] "b"(dst),
393 1.9 nathanw [edst] "b"(edst), [off0] "r"(0), [off16] "r"(16),
394 1.9 nathanw [lv] "n"(LO_VEC), [hv] "n"(HI_VEC));
395 1.1 matt
396 1.1 matt /*
397 1.1 matt * Restore VEC registers (now that we can access the stack again).
398 1.1 matt */
399 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
400 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
401 1.1 matt
402 1.1 matt /*
403 1.1 matt * Restore old MSR (AltiVec OFF).
404 1.1 matt */
405 1.11 perry __asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
406 1.1 matt }
407