altivec.c revision 1.5 1 1.5 lukem /* $NetBSD: altivec.c,v 1.5 2003/07/15 02:54:45 lukem Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (C) 1996 Wolfgang Solfrank.
5 1.1 matt * Copyright (C) 1996 TooLs GmbH.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by TooLs GmbH.
19 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 1.1 matt * derived from this software without specific prior written permission.
21 1.1 matt *
22 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 matt */
33 1.5 lukem
34 1.5 lukem #include <sys/cdefs.h>
35 1.5 lukem __KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.5 2003/07/15 02:54:45 lukem Exp $");
36 1.4 martin
37 1.4 martin #include "opt_multiprocessor.h"
38 1.4 martin
39 1.1 matt #include <sys/param.h>
40 1.1 matt #include <sys/proc.h>
41 1.1 matt #include <sys/sa.h>
42 1.1 matt #include <sys/systm.h>
43 1.1 matt #include <sys/user.h>
44 1.1 matt #include <sys/malloc.h>
45 1.1 matt #include <sys/pool.h>
46 1.1 matt
47 1.3 thorpej #include <uvm/uvm_extern.h>
48 1.3 thorpej
49 1.1 matt #include <powerpc/altivec.h>
50 1.1 matt #include <powerpc/spr.h>
51 1.1 matt #include <powerpc/psl.h>
52 1.1 matt
53 1.1 matt void
54 1.1 matt enable_vec()
55 1.1 matt {
56 1.1 matt struct cpu_info *ci = curcpu();
57 1.1 matt struct lwp *l = curlwp;
58 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
59 1.1 matt struct trapframe *tf = trapframe(l);
60 1.2 matt struct vreg *vr = &pcb->pcb_vr;
61 1.2 matt register_t msr;
62 1.1 matt
63 1.1 matt KASSERT(pcb->pcb_veccpu == NULL);
64 1.1 matt
65 1.2 matt pcb->pcb_flags |= PCB_ALTIVEC;
66 1.1 matt
67 1.1 matt /*
68 1.1 matt * Enable AltiVec temporarily (and disable interrupts).
69 1.1 matt */
70 1.1 matt msr = mfmsr();
71 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
72 1.1 matt __asm __volatile ("isync");
73 1.1 matt if (ci->ci_veclwp) {
74 1.1 matt save_vec_cpu();
75 1.1 matt }
76 1.1 matt KASSERT(curcpu()->ci_veclwp == NULL);
77 1.1 matt
78 1.1 matt /*
79 1.1 matt * Restore VSCR by first loading it into a vector and then into VSCR.
80 1.1 matt * (this needs to done before loading the user's vector registers
81 1.1 matt * since we need to use a scratch vector register)
82 1.1 matt */
83 1.1 matt __asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
84 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
85 1.1 matt
86 1.1 matt /*
87 1.1 matt * VRSAVE will be restored when trap frame returns
88 1.1 matt */
89 1.1 matt tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
90 1.1 matt
91 1.1 matt #define LVX(n,vr) __asm /*__volatile*/("lvx %2,%0,%1" \
92 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
93 1.1 matt
94 1.1 matt /*
95 1.1 matt * Load all 32 vector registers
96 1.1 matt */
97 1.1 matt LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
98 1.1 matt LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
99 1.1 matt LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
100 1.1 matt LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
101 1.1 matt
102 1.1 matt LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
103 1.1 matt LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
104 1.1 matt LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
105 1.1 matt LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
106 1.1 matt __asm __volatile ("isync");
107 1.1 matt
108 1.1 matt /*
109 1.1 matt * Enable AltiVec when we return to user-mode.
110 1.1 matt * Record the new ownership of the AltiVec unit.
111 1.1 matt */
112 1.1 matt tf->srr1 |= PSL_VEC;
113 1.1 matt curcpu()->ci_veclwp = l;
114 1.1 matt pcb->pcb_veccpu = curcpu();
115 1.1 matt __asm __volatile ("sync");
116 1.1 matt
117 1.1 matt /*
118 1.1 matt * Restore MSR (turn off AltiVec)
119 1.1 matt */
120 1.1 matt mtmsr(msr);
121 1.1 matt }
122 1.1 matt
123 1.1 matt void
124 1.1 matt save_vec_cpu(void)
125 1.1 matt {
126 1.1 matt struct cpu_info *ci = curcpu();
127 1.1 matt struct lwp *l;
128 1.1 matt struct pcb *pcb;
129 1.1 matt struct vreg *vr;
130 1.1 matt struct trapframe *tf;
131 1.2 matt register_t msr;
132 1.1 matt
133 1.1 matt /*
134 1.1 matt * Turn on AltiVEC, turn off interrupts.
135 1.1 matt */
136 1.1 matt msr = mfmsr();
137 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
138 1.1 matt __asm __volatile ("isync");
139 1.1 matt l = ci->ci_veclwp;
140 1.1 matt if (l == NULL) {
141 1.1 matt goto out;
142 1.1 matt }
143 1.1 matt pcb = &l->l_addr->u_pcb;
144 1.2 matt vr = &pcb->pcb_vr;
145 1.1 matt tf = trapframe(l);
146 1.1 matt
147 1.1 matt #define STVX(n,vr) __asm /*__volatile*/("stvx %2,%0,%1" \
148 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
149 1.1 matt
150 1.1 matt /*
151 1.1 matt * Save the vector registers.
152 1.1 matt */
153 1.1 matt STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
154 1.1 matt STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
155 1.1 matt STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
156 1.1 matt STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
157 1.1 matt
158 1.1 matt STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
159 1.1 matt STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
160 1.1 matt STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
161 1.1 matt STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
162 1.1 matt
163 1.1 matt /*
164 1.1 matt * Save VSCR (this needs to be done after save the vector registers
165 1.1 matt * since we need to use one as scratch).
166 1.1 matt */
167 1.1 matt __asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
168 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
169 1.1 matt
170 1.1 matt /*
171 1.1 matt * Save VRSAVE
172 1.1 matt */
173 1.1 matt vr->vrsave = tf->tf_xtra[TF_VRSAVE];
174 1.1 matt
175 1.1 matt /*
176 1.1 matt * Note that we aren't using any CPU resources and stop any
177 1.1 matt * data streams.
178 1.1 matt */
179 1.1 matt tf->srr1 &= ~PSL_VEC;
180 1.1 matt pcb->pcb_veccpu = NULL;
181 1.1 matt ci->ci_veclwp = NULL;
182 1.1 matt __asm __volatile ("dssall; sync");
183 1.1 matt
184 1.1 matt out:
185 1.1 matt
186 1.1 matt /*
187 1.1 matt * Restore MSR (turn off AltiVec)
188 1.1 matt */
189 1.1 matt mtmsr(msr);
190 1.1 matt }
191 1.1 matt
192 1.1 matt /*
193 1.1 matt * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
194 1.1 matt * The process must either be curproc or traced by curproc (and stopped).
195 1.1 matt * (The point being that the process must not run on another CPU during
196 1.1 matt * this function).
197 1.1 matt */
198 1.1 matt void
199 1.1 matt save_vec_lwp(l)
200 1.1 matt struct lwp *l;
201 1.1 matt {
202 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
203 1.1 matt struct cpu_info *ci = curcpu();
204 1.1 matt
205 1.1 matt /*
206 1.1 matt * If it's already in the PCB, there's nothing to do.
207 1.1 matt */
208 1.1 matt
209 1.1 matt if (pcb->pcb_veccpu == NULL) {
210 1.1 matt return;
211 1.1 matt }
212 1.1 matt
213 1.1 matt /*
214 1.1 matt * If the state is in the current CPU, just flush the current CPU's
215 1.1 matt * state.
216 1.1 matt */
217 1.1 matt
218 1.1 matt if (l == ci->ci_veclwp) {
219 1.1 matt save_vec_cpu();
220 1.1 matt return;
221 1.1 matt }
222 1.1 matt
223 1.1 matt #ifdef MULTIPROCESSOR
224 1.1 matt
225 1.1 matt /*
226 1.1 matt * It must be on another CPU, flush it from there.
227 1.1 matt */
228 1.1 matt
229 1.1 matt mp_save_vec_lwp(l);
230 1.1 matt #endif
231 1.1 matt }
232 1.1 matt
233 1.1 matt #define ZERO_VEC 19
234 1.1 matt
235 1.1 matt void
236 1.1 matt vzeropage(paddr_t pa)
237 1.1 matt {
238 1.3 thorpej const paddr_t ea = pa + PAGE_SIZE;
239 1.1 matt uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
240 1.2 matt register_t omsr, msr;
241 1.1 matt
242 1.1 matt __asm __volatile("mfmsr %0" : "=r"(omsr) :);
243 1.1 matt
244 1.1 matt /*
245 1.1 matt * Turn on AltiVec, turn off interrupts.
246 1.1 matt */
247 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
248 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
249 1.1 matt
250 1.1 matt /*
251 1.1 matt * Save the VEC register we are going to use before we disable
252 1.1 matt * relocation.
253 1.1 matt */
254 1.1 matt __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
255 1.1 matt __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
256 1.1 matt
257 1.1 matt /*
258 1.1 matt * Turn off data relocation (DMMU off).
259 1.1 matt */
260 1.1 matt msr &= ~PSL_DR;
261 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
262 1.1 matt
263 1.1 matt /*
264 1.1 matt * Zero the page using a single cache line.
265 1.1 matt */
266 1.1 matt do {
267 1.2 matt __asm("stvx %2,%0,%1" :: "b"(pa), "r"( 0), "n"(ZERO_VEC));
268 1.2 matt __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(16), "n"(ZERO_VEC));
269 1.2 matt __asm("stvx %2,%0,%1" :: "b"(pa), "r"(32), "n"(ZERO_VEC));
270 1.2 matt __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(48), "n"(ZERO_VEC));
271 1.1 matt pa += 64;
272 1.1 matt } while (pa < ea);
273 1.1 matt
274 1.1 matt /*
275 1.1 matt * Restore data relocation (DMMU on);
276 1.1 matt */
277 1.1 matt msr |= PSL_DR;
278 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
279 1.1 matt
280 1.1 matt /*
281 1.1 matt * Restore VEC register (now that we can access the stack again).
282 1.1 matt */
283 1.1 matt __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
284 1.1 matt
285 1.1 matt /*
286 1.1 matt * Restore old MSR (AltiVec OFF).
287 1.1 matt */
288 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
289 1.1 matt }
290 1.1 matt
291 1.1 matt #define LO_VEC 16
292 1.1 matt #define HI_VEC 17
293 1.1 matt
294 1.1 matt void
295 1.1 matt vcopypage(paddr_t dst, paddr_t src)
296 1.1 matt {
297 1.3 thorpej const paddr_t edst = dst + PAGE_SIZE;
298 1.1 matt uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
299 1.2 matt register_t omsr, msr;
300 1.1 matt
301 1.1 matt __asm __volatile("mfmsr %0" : "=r"(omsr) :);
302 1.1 matt
303 1.1 matt /*
304 1.1 matt * Turn on AltiVec, turn off interrupts.
305 1.1 matt */
306 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
307 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
308 1.1 matt
309 1.1 matt /*
310 1.1 matt * Save the VEC registers we will be using before we disable
311 1.1 matt * relocation.
312 1.1 matt */
313 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
314 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
315 1.1 matt
316 1.1 matt /*
317 1.1 matt * Turn off data relocation (DMMU off).
318 1.1 matt */
319 1.1 matt msr &= ~PSL_DR;
320 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
321 1.1 matt
322 1.1 matt /*
323 1.1 matt * Copy the page using a single cache line. On most PPCs, two
324 1.1 matt * vector registers occupy one cache line.
325 1.1 matt */
326 1.1 matt do {
327 1.2 matt __asm("lvx %2,%0,%1" :: "b"(src), "r"( 0), "n"(LO_VEC));
328 1.2 matt __asm("stvx %2,%0,%1" :: "b"(dst), "r"( 0), "n"(LO_VEC));
329 1.2 matt __asm("lvxl %2,%0,%1" :: "b"(src), "r"(16), "n"(HI_VEC));
330 1.2 matt __asm("stvxl %2,%0,%1" :: "b"(dst), "r"(16), "n"(HI_VEC));
331 1.1 matt src += 32;
332 1.1 matt dst += 32;
333 1.1 matt } while (dst < edst);
334 1.1 matt
335 1.1 matt /*
336 1.1 matt * Restore data relocation (DMMU on);
337 1.1 matt */
338 1.1 matt msr |= PSL_DR;
339 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
340 1.1 matt
341 1.1 matt /*
342 1.1 matt * Restore VEC registers (now that we can access the stack again).
343 1.1 matt */
344 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
345 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
346 1.1 matt
347 1.1 matt /*
348 1.1 matt * Restore old MSR (AltiVec OFF).
349 1.1 matt */
350 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
351 1.1 matt }
352