altivec.c revision 1.7 1 1.7 matt /* $NetBSD: altivec.c,v 1.7 2004/04/16 23:58:08 matt Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (C) 1996 Wolfgang Solfrank.
5 1.1 matt * Copyright (C) 1996 TooLs GmbH.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by TooLs GmbH.
19 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 1.1 matt * derived from this software without specific prior written permission.
21 1.1 matt *
22 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 matt */
33 1.5 lukem
34 1.5 lukem #include <sys/cdefs.h>
35 1.7 matt __KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.7 2004/04/16 23:58:08 matt Exp $");
36 1.4 martin
37 1.4 martin #include "opt_multiprocessor.h"
38 1.4 martin
39 1.1 matt #include <sys/param.h>
40 1.1 matt #include <sys/proc.h>
41 1.1 matt #include <sys/sa.h>
42 1.1 matt #include <sys/systm.h>
43 1.1 matt #include <sys/user.h>
44 1.1 matt #include <sys/malloc.h>
45 1.1 matt #include <sys/pool.h>
46 1.1 matt
47 1.3 thorpej #include <uvm/uvm_extern.h>
48 1.3 thorpej
49 1.1 matt #include <powerpc/altivec.h>
50 1.1 matt #include <powerpc/spr.h>
51 1.1 matt #include <powerpc/psl.h>
52 1.1 matt
53 1.1 matt void
54 1.7 matt enable_vec(void)
55 1.1 matt {
56 1.1 matt struct cpu_info *ci = curcpu();
57 1.1 matt struct lwp *l = curlwp;
58 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
59 1.1 matt struct trapframe *tf = trapframe(l);
60 1.2 matt struct vreg *vr = &pcb->pcb_vr;
61 1.2 matt register_t msr;
62 1.1 matt
63 1.1 matt KASSERT(pcb->pcb_veccpu == NULL);
64 1.1 matt
65 1.2 matt pcb->pcb_flags |= PCB_ALTIVEC;
66 1.1 matt
67 1.1 matt /*
68 1.1 matt * Enable AltiVec temporarily (and disable interrupts).
69 1.1 matt */
70 1.1 matt msr = mfmsr();
71 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
72 1.1 matt __asm __volatile ("isync");
73 1.1 matt if (ci->ci_veclwp) {
74 1.1 matt save_vec_cpu();
75 1.1 matt }
76 1.1 matt KASSERT(curcpu()->ci_veclwp == NULL);
77 1.1 matt
78 1.1 matt /*
79 1.1 matt * Restore VSCR by first loading it into a vector and then into VSCR.
80 1.1 matt * (this needs to done before loading the user's vector registers
81 1.1 matt * since we need to use a scratch vector register)
82 1.1 matt */
83 1.1 matt __asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
84 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
85 1.1 matt
86 1.1 matt /*
87 1.1 matt * VRSAVE will be restored when trap frame returns
88 1.1 matt */
89 1.1 matt tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
90 1.1 matt
91 1.1 matt #define LVX(n,vr) __asm /*__volatile*/("lvx %2,%0,%1" \
92 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
93 1.1 matt
94 1.1 matt /*
95 1.1 matt * Load all 32 vector registers
96 1.1 matt */
97 1.1 matt LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
98 1.1 matt LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
99 1.1 matt LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
100 1.1 matt LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
101 1.1 matt
102 1.1 matt LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
103 1.1 matt LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
104 1.1 matt LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
105 1.1 matt LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
106 1.1 matt __asm __volatile ("isync");
107 1.1 matt
108 1.1 matt /*
109 1.1 matt * Enable AltiVec when we return to user-mode.
110 1.1 matt * Record the new ownership of the AltiVec unit.
111 1.1 matt */
112 1.1 matt curcpu()->ci_veclwp = l;
113 1.1 matt pcb->pcb_veccpu = curcpu();
114 1.1 matt __asm __volatile ("sync");
115 1.1 matt
116 1.1 matt /*
117 1.1 matt * Restore MSR (turn off AltiVec)
118 1.1 matt */
119 1.1 matt mtmsr(msr);
120 1.1 matt }
121 1.1 matt
122 1.1 matt void
123 1.1 matt save_vec_cpu(void)
124 1.1 matt {
125 1.1 matt struct cpu_info *ci = curcpu();
126 1.1 matt struct lwp *l;
127 1.1 matt struct pcb *pcb;
128 1.1 matt struct vreg *vr;
129 1.1 matt struct trapframe *tf;
130 1.2 matt register_t msr;
131 1.1 matt
132 1.1 matt /*
133 1.1 matt * Turn on AltiVEC, turn off interrupts.
134 1.1 matt */
135 1.1 matt msr = mfmsr();
136 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
137 1.1 matt __asm __volatile ("isync");
138 1.1 matt l = ci->ci_veclwp;
139 1.7 matt if (l == NULL)
140 1.1 matt goto out;
141 1.1 matt pcb = &l->l_addr->u_pcb;
142 1.2 matt vr = &pcb->pcb_vr;
143 1.1 matt tf = trapframe(l);
144 1.1 matt
145 1.1 matt #define STVX(n,vr) __asm /*__volatile*/("stvx %2,%0,%1" \
146 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
147 1.1 matt
148 1.1 matt /*
149 1.1 matt * Save the vector registers.
150 1.1 matt */
151 1.1 matt STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
152 1.1 matt STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
153 1.1 matt STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
154 1.1 matt STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
155 1.1 matt
156 1.1 matt STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
157 1.1 matt STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
158 1.1 matt STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
159 1.1 matt STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
160 1.1 matt
161 1.1 matt /*
162 1.1 matt * Save VSCR (this needs to be done after save the vector registers
163 1.1 matt * since we need to use one as scratch).
164 1.1 matt */
165 1.1 matt __asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
166 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
167 1.1 matt
168 1.1 matt /*
169 1.1 matt * Save VRSAVE
170 1.1 matt */
171 1.1 matt vr->vrsave = tf->tf_xtra[TF_VRSAVE];
172 1.1 matt
173 1.1 matt /*
174 1.1 matt * Note that we aren't using any CPU resources and stop any
175 1.1 matt * data streams.
176 1.1 matt */
177 1.1 matt pcb->pcb_veccpu = NULL;
178 1.1 matt ci->ci_veclwp = NULL;
179 1.1 matt __asm __volatile ("dssall; sync");
180 1.1 matt
181 1.1 matt out:
182 1.1 matt
183 1.1 matt /*
184 1.1 matt * Restore MSR (turn off AltiVec)
185 1.1 matt */
186 1.1 matt mtmsr(msr);
187 1.1 matt }
188 1.1 matt
189 1.1 matt /*
190 1.1 matt * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
191 1.1 matt * The process must either be curproc or traced by curproc (and stopped).
192 1.1 matt * (The point being that the process must not run on another CPU during
193 1.1 matt * this function).
194 1.1 matt */
195 1.1 matt void
196 1.7 matt save_vec_lwp(struct lwp *l, int discard)
197 1.1 matt {
198 1.7 matt struct pcb * const pcb = &l->l_addr->u_pcb;
199 1.7 matt struct cpu_info * const ci = curcpu();
200 1.1 matt
201 1.1 matt /*
202 1.1 matt * If it's already in the PCB, there's nothing to do.
203 1.1 matt */
204 1.7 matt if (pcb->pcb_veccpu == NULL)
205 1.7 matt return;
206 1.1 matt
207 1.7 matt /*
208 1.7 matt * If we simply need to discard the information, then don't
209 1.7 matt * to save anything.
210 1.7 matt */
211 1.7 matt if (discard) {
212 1.7 matt #ifndef MULTIPROCESSOR
213 1.7 matt KASSERT(ci == pcb->pcb_veccpu);
214 1.7 matt #endif
215 1.7 matt KASSERT(l == pcb->pcb_veccpu->ci_veclwp);
216 1.7 matt pcb->pcb_veccpu->ci_veclwp = NULL;
217 1.7 matt pcb->pcb_veccpu = NULL;
218 1.7 matt pcb->pcb_flags &= ~PCB_ALTIVEC;
219 1.1 matt return;
220 1.1 matt }
221 1.1 matt
222 1.1 matt /*
223 1.1 matt * If the state is in the current CPU, just flush the current CPU's
224 1.1 matt * state.
225 1.1 matt */
226 1.1 matt if (l == ci->ci_veclwp) {
227 1.1 matt save_vec_cpu();
228 1.1 matt return;
229 1.1 matt }
230 1.1 matt
231 1.7 matt
232 1.1 matt #ifdef MULTIPROCESSOR
233 1.1 matt /*
234 1.1 matt * It must be on another CPU, flush it from there.
235 1.1 matt */
236 1.1 matt
237 1.1 matt mp_save_vec_lwp(l);
238 1.1 matt #endif
239 1.1 matt }
240 1.1 matt
241 1.1 matt #define ZERO_VEC 19
242 1.1 matt
243 1.1 matt void
244 1.1 matt vzeropage(paddr_t pa)
245 1.1 matt {
246 1.3 thorpej const paddr_t ea = pa + PAGE_SIZE;
247 1.1 matt uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
248 1.2 matt register_t omsr, msr;
249 1.1 matt
250 1.1 matt __asm __volatile("mfmsr %0" : "=r"(omsr) :);
251 1.1 matt
252 1.1 matt /*
253 1.1 matt * Turn on AltiVec, turn off interrupts.
254 1.1 matt */
255 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
256 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
257 1.1 matt
258 1.1 matt /*
259 1.1 matt * Save the VEC register we are going to use before we disable
260 1.1 matt * relocation.
261 1.1 matt */
262 1.1 matt __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
263 1.1 matt __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
264 1.1 matt
265 1.1 matt /*
266 1.1 matt * Turn off data relocation (DMMU off).
267 1.1 matt */
268 1.1 matt msr &= ~PSL_DR;
269 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
270 1.1 matt
271 1.1 matt /*
272 1.1 matt * Zero the page using a single cache line.
273 1.1 matt */
274 1.1 matt do {
275 1.2 matt __asm("stvx %2,%0,%1" :: "b"(pa), "r"( 0), "n"(ZERO_VEC));
276 1.2 matt __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(16), "n"(ZERO_VEC));
277 1.2 matt __asm("stvx %2,%0,%1" :: "b"(pa), "r"(32), "n"(ZERO_VEC));
278 1.2 matt __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(48), "n"(ZERO_VEC));
279 1.1 matt pa += 64;
280 1.1 matt } while (pa < ea);
281 1.1 matt
282 1.1 matt /*
283 1.1 matt * Restore data relocation (DMMU on);
284 1.1 matt */
285 1.1 matt msr |= PSL_DR;
286 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
287 1.1 matt
288 1.1 matt /*
289 1.1 matt * Restore VEC register (now that we can access the stack again).
290 1.1 matt */
291 1.1 matt __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
292 1.1 matt
293 1.1 matt /*
294 1.1 matt * Restore old MSR (AltiVec OFF).
295 1.1 matt */
296 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
297 1.1 matt }
298 1.1 matt
299 1.1 matt #define LO_VEC 16
300 1.1 matt #define HI_VEC 17
301 1.1 matt
302 1.1 matt void
303 1.1 matt vcopypage(paddr_t dst, paddr_t src)
304 1.1 matt {
305 1.3 thorpej const paddr_t edst = dst + PAGE_SIZE;
306 1.1 matt uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
307 1.2 matt register_t omsr, msr;
308 1.1 matt
309 1.1 matt __asm __volatile("mfmsr %0" : "=r"(omsr) :);
310 1.1 matt
311 1.1 matt /*
312 1.1 matt * Turn on AltiVec, turn off interrupts.
313 1.1 matt */
314 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
315 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
316 1.1 matt
317 1.1 matt /*
318 1.1 matt * Save the VEC registers we will be using before we disable
319 1.1 matt * relocation.
320 1.1 matt */
321 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
322 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
323 1.1 matt
324 1.1 matt /*
325 1.1 matt * Turn off data relocation (DMMU off).
326 1.1 matt */
327 1.1 matt msr &= ~PSL_DR;
328 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
329 1.1 matt
330 1.1 matt /*
331 1.1 matt * Copy the page using a single cache line. On most PPCs, two
332 1.1 matt * vector registers occupy one cache line.
333 1.1 matt */
334 1.1 matt do {
335 1.2 matt __asm("lvx %2,%0,%1" :: "b"(src), "r"( 0), "n"(LO_VEC));
336 1.2 matt __asm("stvx %2,%0,%1" :: "b"(dst), "r"( 0), "n"(LO_VEC));
337 1.2 matt __asm("lvxl %2,%0,%1" :: "b"(src), "r"(16), "n"(HI_VEC));
338 1.2 matt __asm("stvxl %2,%0,%1" :: "b"(dst), "r"(16), "n"(HI_VEC));
339 1.1 matt src += 32;
340 1.1 matt dst += 32;
341 1.1 matt } while (dst < edst);
342 1.1 matt
343 1.1 matt /*
344 1.1 matt * Restore data relocation (DMMU on);
345 1.1 matt */
346 1.1 matt msr |= PSL_DR;
347 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
348 1.1 matt
349 1.1 matt /*
350 1.1 matt * Restore VEC registers (now that we can access the stack again).
351 1.1 matt */
352 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
353 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
354 1.1 matt
355 1.1 matt /*
356 1.1 matt * Restore old MSR (AltiVec OFF).
357 1.1 matt */
358 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
359 1.1 matt }
360