altivec.c revision 1.9 1 1.9 nathanw /* $NetBSD: altivec.c,v 1.9 2005/04/11 18:35:38 nathanw Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (C) 1996 Wolfgang Solfrank.
5 1.1 matt * Copyright (C) 1996 TooLs GmbH.
6 1.1 matt * All rights reserved.
7 1.1 matt *
8 1.1 matt * Redistribution and use in source and binary forms, with or without
9 1.1 matt * modification, are permitted provided that the following conditions
10 1.1 matt * are met:
11 1.1 matt * 1. Redistributions of source code must retain the above copyright
12 1.1 matt * notice, this list of conditions and the following disclaimer.
13 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer in the
15 1.1 matt * documentation and/or other materials provided with the distribution.
16 1.1 matt * 3. All advertising materials mentioning features or use of this software
17 1.1 matt * must display the following acknowledgement:
18 1.1 matt * This product includes software developed by TooLs GmbH.
19 1.1 matt * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 1.1 matt * derived from this software without specific prior written permission.
21 1.1 matt *
22 1.1 matt * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 1.1 matt * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 1.1 matt * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 1.1 matt * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 1.1 matt * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 1.1 matt * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 1.1 matt * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.1 matt * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 1.1 matt * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 1.1 matt * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 matt */
33 1.5 lukem
34 1.5 lukem #include <sys/cdefs.h>
35 1.9 nathanw __KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.9 2005/04/11 18:35:38 nathanw Exp $");
36 1.4 martin
37 1.4 martin #include "opt_multiprocessor.h"
38 1.4 martin
39 1.1 matt #include <sys/param.h>
40 1.1 matt #include <sys/proc.h>
41 1.1 matt #include <sys/sa.h>
42 1.1 matt #include <sys/systm.h>
43 1.1 matt #include <sys/user.h>
44 1.1 matt #include <sys/malloc.h>
45 1.1 matt #include <sys/pool.h>
46 1.1 matt
47 1.3 thorpej #include <uvm/uvm_extern.h>
48 1.3 thorpej
49 1.1 matt #include <powerpc/altivec.h>
50 1.1 matt #include <powerpc/spr.h>
51 1.1 matt #include <powerpc/psl.h>
52 1.1 matt
53 1.1 matt void
54 1.7 matt enable_vec(void)
55 1.1 matt {
56 1.1 matt struct cpu_info *ci = curcpu();
57 1.1 matt struct lwp *l = curlwp;
58 1.1 matt struct pcb *pcb = &l->l_addr->u_pcb;
59 1.1 matt struct trapframe *tf = trapframe(l);
60 1.2 matt struct vreg *vr = &pcb->pcb_vr;
61 1.2 matt register_t msr;
62 1.1 matt
63 1.1 matt KASSERT(pcb->pcb_veccpu == NULL);
64 1.1 matt
65 1.2 matt pcb->pcb_flags |= PCB_ALTIVEC;
66 1.1 matt
67 1.1 matt /*
68 1.1 matt * Enable AltiVec temporarily (and disable interrupts).
69 1.1 matt */
70 1.1 matt msr = mfmsr();
71 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
72 1.1 matt __asm __volatile ("isync");
73 1.1 matt if (ci->ci_veclwp) {
74 1.1 matt save_vec_cpu();
75 1.1 matt }
76 1.1 matt KASSERT(curcpu()->ci_veclwp == NULL);
77 1.1 matt
78 1.1 matt /*
79 1.1 matt * Restore VSCR by first loading it into a vector and then into VSCR.
80 1.1 matt * (this needs to done before loading the user's vector registers
81 1.1 matt * since we need to use a scratch vector register)
82 1.1 matt */
83 1.1 matt __asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
84 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
85 1.1 matt
86 1.1 matt /*
87 1.1 matt * VRSAVE will be restored when trap frame returns
88 1.1 matt */
89 1.1 matt tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
90 1.1 matt
91 1.1 matt #define LVX(n,vr) __asm /*__volatile*/("lvx %2,%0,%1" \
92 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
93 1.1 matt
94 1.1 matt /*
95 1.1 matt * Load all 32 vector registers
96 1.1 matt */
97 1.1 matt LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
98 1.1 matt LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
99 1.1 matt LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
100 1.1 matt LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
101 1.1 matt
102 1.1 matt LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
103 1.1 matt LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
104 1.1 matt LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
105 1.1 matt LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
106 1.1 matt __asm __volatile ("isync");
107 1.1 matt
108 1.1 matt /*
109 1.1 matt * Enable AltiVec when we return to user-mode.
110 1.1 matt * Record the new ownership of the AltiVec unit.
111 1.1 matt */
112 1.1 matt curcpu()->ci_veclwp = l;
113 1.1 matt pcb->pcb_veccpu = curcpu();
114 1.8 matt pcb->pcb_flags |= PCB_OWNALTIVEC;
115 1.1 matt __asm __volatile ("sync");
116 1.1 matt
117 1.1 matt /*
118 1.1 matt * Restore MSR (turn off AltiVec)
119 1.1 matt */
120 1.1 matt mtmsr(msr);
121 1.1 matt }
122 1.1 matt
123 1.1 matt void
124 1.1 matt save_vec_cpu(void)
125 1.1 matt {
126 1.1 matt struct cpu_info *ci = curcpu();
127 1.1 matt struct lwp *l;
128 1.1 matt struct pcb *pcb;
129 1.1 matt struct vreg *vr;
130 1.1 matt struct trapframe *tf;
131 1.2 matt register_t msr;
132 1.1 matt
133 1.1 matt /*
134 1.1 matt * Turn on AltiVEC, turn off interrupts.
135 1.1 matt */
136 1.1 matt msr = mfmsr();
137 1.1 matt mtmsr((msr & ~PSL_EE) | PSL_VEC);
138 1.1 matt __asm __volatile ("isync");
139 1.1 matt l = ci->ci_veclwp;
140 1.7 matt if (l == NULL)
141 1.1 matt goto out;
142 1.1 matt pcb = &l->l_addr->u_pcb;
143 1.2 matt vr = &pcb->pcb_vr;
144 1.1 matt tf = trapframe(l);
145 1.1 matt
146 1.1 matt #define STVX(n,vr) __asm /*__volatile*/("stvx %2,%0,%1" \
147 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
148 1.1 matt
149 1.1 matt /*
150 1.1 matt * Save the vector registers.
151 1.1 matt */
152 1.1 matt STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
153 1.1 matt STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
154 1.1 matt STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
155 1.1 matt STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
156 1.1 matt
157 1.1 matt STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
158 1.1 matt STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
159 1.1 matt STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
160 1.1 matt STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
161 1.1 matt
162 1.1 matt /*
163 1.1 matt * Save VSCR (this needs to be done after save the vector registers
164 1.1 matt * since we need to use one as scratch).
165 1.1 matt */
166 1.1 matt __asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
167 1.2 matt :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
168 1.1 matt
169 1.1 matt /*
170 1.1 matt * Save VRSAVE
171 1.1 matt */
172 1.1 matt vr->vrsave = tf->tf_xtra[TF_VRSAVE];
173 1.1 matt
174 1.1 matt /*
175 1.1 matt * Note that we aren't using any CPU resources and stop any
176 1.1 matt * data streams.
177 1.1 matt */
178 1.1 matt pcb->pcb_veccpu = NULL;
179 1.1 matt ci->ci_veclwp = NULL;
180 1.1 matt __asm __volatile ("dssall; sync");
181 1.1 matt
182 1.1 matt out:
183 1.1 matt
184 1.1 matt /*
185 1.1 matt * Restore MSR (turn off AltiVec)
186 1.1 matt */
187 1.1 matt mtmsr(msr);
188 1.1 matt }
189 1.1 matt
190 1.1 matt /*
191 1.1 matt * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
192 1.1 matt * The process must either be curproc or traced by curproc (and stopped).
193 1.1 matt * (The point being that the process must not run on another CPU during
194 1.1 matt * this function).
195 1.1 matt */
196 1.1 matt void
197 1.7 matt save_vec_lwp(struct lwp *l, int discard)
198 1.1 matt {
199 1.7 matt struct pcb * const pcb = &l->l_addr->u_pcb;
200 1.7 matt struct cpu_info * const ci = curcpu();
201 1.1 matt
202 1.1 matt /*
203 1.1 matt * If it's already in the PCB, there's nothing to do.
204 1.1 matt */
205 1.7 matt if (pcb->pcb_veccpu == NULL)
206 1.7 matt return;
207 1.1 matt
208 1.7 matt /*
209 1.7 matt * If we simply need to discard the information, then don't
210 1.7 matt * to save anything.
211 1.7 matt */
212 1.7 matt if (discard) {
213 1.7 matt #ifndef MULTIPROCESSOR
214 1.7 matt KASSERT(ci == pcb->pcb_veccpu);
215 1.7 matt #endif
216 1.7 matt KASSERT(l == pcb->pcb_veccpu->ci_veclwp);
217 1.7 matt pcb->pcb_veccpu->ci_veclwp = NULL;
218 1.7 matt pcb->pcb_veccpu = NULL;
219 1.8 matt pcb->pcb_flags &= ~PCB_OWNALTIVEC;
220 1.1 matt return;
221 1.1 matt }
222 1.1 matt
223 1.1 matt /*
224 1.1 matt * If the state is in the current CPU, just flush the current CPU's
225 1.1 matt * state.
226 1.1 matt */
227 1.1 matt if (l == ci->ci_veclwp) {
228 1.1 matt save_vec_cpu();
229 1.1 matt return;
230 1.1 matt }
231 1.1 matt
232 1.7 matt
233 1.1 matt #ifdef MULTIPROCESSOR
234 1.1 matt /*
235 1.1 matt * It must be on another CPU, flush it from there.
236 1.1 matt */
237 1.1 matt
238 1.1 matt mp_save_vec_lwp(l);
239 1.1 matt #endif
240 1.1 matt }
241 1.1 matt
242 1.1 matt #define ZERO_VEC 19
243 1.1 matt
244 1.1 matt void
245 1.1 matt vzeropage(paddr_t pa)
246 1.1 matt {
247 1.3 thorpej const paddr_t ea = pa + PAGE_SIZE;
248 1.1 matt uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
249 1.2 matt register_t omsr, msr;
250 1.1 matt
251 1.1 matt __asm __volatile("mfmsr %0" : "=r"(omsr) :);
252 1.1 matt
253 1.1 matt /*
254 1.1 matt * Turn on AltiVec, turn off interrupts.
255 1.1 matt */
256 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
257 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
258 1.1 matt
259 1.1 matt /*
260 1.1 matt * Save the VEC register we are going to use before we disable
261 1.1 matt * relocation.
262 1.1 matt */
263 1.1 matt __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
264 1.1 matt __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
265 1.1 matt
266 1.1 matt /*
267 1.1 matt * Zero the page using a single cache line.
268 1.1 matt */
269 1.9 nathanw __asm __volatile(
270 1.9 nathanw " sync ;"
271 1.9 nathanw " mfmsr %[msr];"
272 1.9 nathanw " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
273 1.9 nathanw " mtmsr %[msr];" /* Turn off DMMU */
274 1.9 nathanw " isync;"
275 1.9 nathanw "1: stvx %[zv], %[pa], %[off0];"
276 1.9 nathanw " stvxl %[zv], %[pa], %[off16];"
277 1.9 nathanw " stvx %[zv], %[pa], %[off32];"
278 1.9 nathanw " stvxl %[zv], %[pa], %[off48];"
279 1.9 nathanw " addi %[pa], %[pa], 64;"
280 1.9 nathanw " cmplw %[pa], %[ea];"
281 1.9 nathanw " blt+ 1b;"
282 1.9 nathanw " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
283 1.9 nathanw " sync;"
284 1.9 nathanw " mtmsr %[msr];" /* Turn on DMMU */
285 1.9 nathanw " isync;"
286 1.9 nathanw :: [msr] "r"(msr), [pa] "b"(pa), [ea] "b"(ea),
287 1.9 nathanw [off0] "r"(0), [off16] "r"(16), [off32] "r"(32), [off48] "r"(48),
288 1.9 nathanw [zv] "n"(ZERO_VEC));
289 1.1 matt
290 1.1 matt /*
291 1.1 matt * Restore VEC register (now that we can access the stack again).
292 1.1 matt */
293 1.1 matt __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
294 1.1 matt
295 1.1 matt /*
296 1.1 matt * Restore old MSR (AltiVec OFF).
297 1.1 matt */
298 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
299 1.1 matt }
300 1.1 matt
301 1.1 matt #define LO_VEC 16
302 1.1 matt #define HI_VEC 17
303 1.1 matt
304 1.1 matt void
305 1.1 matt vcopypage(paddr_t dst, paddr_t src)
306 1.1 matt {
307 1.3 thorpej const paddr_t edst = dst + PAGE_SIZE;
308 1.1 matt uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
309 1.2 matt register_t omsr, msr;
310 1.1 matt
311 1.1 matt __asm __volatile("mfmsr %0" : "=r"(omsr) :);
312 1.1 matt
313 1.1 matt /*
314 1.1 matt * Turn on AltiVec, turn off interrupts.
315 1.1 matt */
316 1.1 matt msr = (omsr & ~PSL_EE) | PSL_VEC;
317 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
318 1.1 matt
319 1.1 matt /*
320 1.1 matt * Save the VEC registers we will be using before we disable
321 1.1 matt * relocation.
322 1.1 matt */
323 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
324 1.2 matt __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
325 1.1 matt
326 1.1 matt /*
327 1.9 nathanw * Copy the page using a single cache line, with DMMU
328 1.9 nathanw * disabled. On most PPCs, two vector registers occupy one
329 1.9 nathanw * cache line.
330 1.9 nathanw */
331 1.9 nathanw __asm __volatile(
332 1.9 nathanw " sync ;"
333 1.9 nathanw " mfmsr %[msr];"
334 1.9 nathanw " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
335 1.9 nathanw " mtmsr %[msr];" /* Turn off DMMU */
336 1.9 nathanw " isync;"
337 1.9 nathanw "1: lvx %[lv], %[src], %[off0];"
338 1.9 nathanw " stvx %[lv], %[dst], %[off0];"
339 1.9 nathanw " lvxl %[hv], %[src], %[off16];"
340 1.9 nathanw " stvxl %[hv], %[dst], %[off16];"
341 1.9 nathanw " addi %[src], %[src], 32;"
342 1.9 nathanw " addi %[dst], %[dst], 32;"
343 1.9 nathanw " cmplw %[dst], %[edst];"
344 1.9 nathanw " blt+ 1b;"
345 1.9 nathanw " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
346 1.9 nathanw " sync;"
347 1.9 nathanw " mtmsr %[msr];" /* Turn on DMMU */
348 1.9 nathanw " isync;"
349 1.9 nathanw :: [msr] "r"(msr), [src] "b"(src), [dst] "b"(dst),
350 1.9 nathanw [edst] "b"(edst), [off0] "r"(0), [off16] "r"(16),
351 1.9 nathanw [lv] "n"(LO_VEC), [hv] "n"(HI_VEC));
352 1.1 matt
353 1.1 matt /*
354 1.1 matt * Restore VEC registers (now that we can access the stack again).
355 1.1 matt */
356 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
357 1.2 matt __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
358 1.1 matt
359 1.1 matt /*
360 1.1 matt * Restore old MSR (AltiVec OFF).
361 1.1 matt */
362 1.1 matt __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
363 1.1 matt }
364