altivec.c revision 1.13 1 /* $NetBSD: altivec.c,v 1.13 2007/10/17 19:56:42 garbled Exp $ */
2
3 /*
4 * Copyright (C) 1996 Wolfgang Solfrank.
5 * Copyright (C) 1996 TooLs GmbH.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by TooLs GmbH.
19 * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: altivec.c,v 1.13 2007/10/17 19:56:42 garbled Exp $");
36
37 #include "opt_multiprocessor.h"
38
39 #include <sys/param.h>
40 #include <sys/proc.h>
41 #include <sys/systm.h>
42 #include <sys/user.h>
43 #include <sys/malloc.h>
44 #include <sys/pool.h>
45
46 #include <uvm/uvm_extern.h>
47
48 #include <powerpc/altivec.h>
49 #include <powerpc/spr.h>
50 #include <powerpc/psl.h>
51
52 #ifdef MULTIPROCESSOR
53 #include <arch/powerpc/pic/picvar.h>
54 #include <arch/powerpc/pic/ipivar.h>
55 static void mp_save_vec_lwp(struct lwp *);
56 #endif
57
58 void
59 enable_vec(void)
60 {
61 struct cpu_info *ci = curcpu();
62 struct lwp *l = curlwp;
63 struct pcb *pcb = &l->l_addr->u_pcb;
64 struct trapframe *tf = trapframe(l);
65 struct vreg *vr = &pcb->pcb_vr;
66 register_t msr;
67
68 KASSERT(pcb->pcb_veccpu == NULL);
69
70 pcb->pcb_flags |= PCB_ALTIVEC;
71
72 /*
73 * Enable AltiVec temporarily (and disable interrupts).
74 */
75 msr = mfmsr();
76 mtmsr((msr & ~PSL_EE) | PSL_VEC);
77 __asm volatile ("isync");
78 if (ci->ci_veclwp) {
79 save_vec_cpu();
80 }
81 KASSERT(curcpu()->ci_veclwp == NULL);
82
83 /*
84 * Restore VSCR by first loading it into a vector and then into VSCR.
85 * (this needs to done before loading the user's vector registers
86 * since we need to use a scratch vector register)
87 */
88 __asm volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
89 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
90
91 /*
92 * VRSAVE will be restored when trap frame returns
93 */
94 tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
95
96 #define LVX(n,vr) __asm /*volatile*/("lvx %2,%0,%1" \
97 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
98
99 /*
100 * Load all 32 vector registers
101 */
102 LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
103 LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
104 LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
105 LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
106
107 LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
108 LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
109 LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
110 LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
111 __asm volatile ("isync");
112
113 /*
114 * Enable AltiVec when we return to user-mode.
115 * Record the new ownership of the AltiVec unit.
116 */
117 curcpu()->ci_veclwp = l;
118 pcb->pcb_veccpu = curcpu();
119 pcb->pcb_flags |= PCB_OWNALTIVEC;
120 __asm volatile ("sync");
121
122 /*
123 * Restore MSR (turn off AltiVec)
124 */
125 mtmsr(msr);
126 }
127
128 void
129 save_vec_cpu(void)
130 {
131 struct cpu_info *ci = curcpu();
132 struct lwp *l;
133 struct pcb *pcb;
134 struct vreg *vr;
135 struct trapframe *tf;
136 register_t msr;
137
138 /*
139 * Turn on AltiVEC, turn off interrupts.
140 */
141 msr = mfmsr();
142 mtmsr((msr & ~PSL_EE) | PSL_VEC);
143 __asm volatile ("isync");
144 l = ci->ci_veclwp;
145 if (l == NULL)
146 goto out;
147 pcb = &l->l_addr->u_pcb;
148 vr = &pcb->pcb_vr;
149 tf = trapframe(l);
150
151 #define STVX(n,vr) __asm /*volatile*/("stvx %2,%0,%1" \
152 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
153
154 /*
155 * Save the vector registers.
156 */
157 STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
158 STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
159 STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
160 STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
161
162 STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
163 STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
164 STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
165 STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
166
167 /*
168 * Save VSCR (this needs to be done after save the vector registers
169 * since we need to use one as scratch).
170 */
171 __asm volatile("mfvscr %2; stvewx %2,%0,%1" \
172 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
173
174 /*
175 * Save VRSAVE
176 */
177 vr->vrsave = tf->tf_xtra[TF_VRSAVE];
178
179 /*
180 * Note that we aren't using any CPU resources and stop any
181 * data streams.
182 */
183 pcb->pcb_veccpu = NULL;
184 ci->ci_veclwp = NULL;
185 __asm volatile ("dssall; sync");
186
187 out:
188
189 /*
190 * Restore MSR (turn off AltiVec)
191 */
192 mtmsr(msr);
193 }
194
195 #ifdef MULTIPROCESSOR
196 /*
197 * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
198 * The process must either be curproc or traced by curproc (and stopped).
199 * (The point being that the process must not run on another CPU during
200 * this function).
201 */
202 static void
203 mp_save_vec_lwp(struct lwp *l)
204 {
205 struct pcb *pcb = &l->l_addr->u_pcb;
206 struct cpu_info *veccpu;
207 int i;
208
209 /*
210 * Send an IPI to the other CPU with the data and wait for that CPU
211 * to flush the data. Note that the other CPU might have switched
212 * to a different proc's AltiVEC state by the time it receives the IPI,
213 * but that will only result in an unnecessary reload.
214 */
215
216 veccpu = pcb->pcb_veccpu;
217 if (veccpu == NULL)
218 return;
219
220 ppc_send_ipi(veccpu->ci_cpuid, PPC_IPI_FLUSH_VEC);
221
222 /* Wait for flush. */
223 for (i = 0; i < 0x3fffffff; i++)
224 if (pcb->pcb_veccpu == NULL)
225 return;
226
227 aprint_error("mp_save_vec_lwp{%d} pid = %d.%d, veccpu->ci_cpuid = %d\n",
228 cpu_number(), l->l_proc->p_pid, l->l_lid, veccpu->ci_cpuid);
229 panic("mp_save_vec_lwp: timed out");
230 }
231 #endif /*MULTIPROCESSOR*/
232
233 /*
234 * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
235 * The process must either be curproc or traced by curproc (and stopped).
236 * (The point being that the process must not run on another CPU during
237 * this function).
238 */
239 void
240 save_vec_lwp(struct lwp *l, int discard)
241 {
242 struct pcb * const pcb = &l->l_addr->u_pcb;
243 struct cpu_info * const ci = curcpu();
244
245 /*
246 * If it's already in the PCB, there's nothing to do.
247 */
248 if (pcb->pcb_veccpu == NULL)
249 return;
250
251 /*
252 * If we simply need to discard the information, then don't
253 * to save anything.
254 */
255 if (discard) {
256 #ifndef MULTIPROCESSOR
257 KASSERT(ci == pcb->pcb_veccpu);
258 #endif
259 KASSERT(l == pcb->pcb_veccpu->ci_veclwp);
260 pcb->pcb_veccpu->ci_veclwp = NULL;
261 pcb->pcb_veccpu = NULL;
262 pcb->pcb_flags &= ~PCB_OWNALTIVEC;
263 return;
264 }
265
266 /*
267 * If the state is in the current CPU, just flush the current CPU's
268 * state.
269 */
270 if (l == ci->ci_veclwp) {
271 save_vec_cpu();
272 return;
273 }
274
275
276 #ifdef MULTIPROCESSOR
277 /*
278 * It must be on another CPU, flush it from there.
279 */
280
281 mp_save_vec_lwp(l);
282 #endif
283 }
284
285 #define ZERO_VEC 19
286
287 void
288 vzeropage(paddr_t pa)
289 {
290 const paddr_t ea = pa + PAGE_SIZE;
291 uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
292 register_t omsr, msr;
293
294 __asm volatile("mfmsr %0" : "=r"(omsr) :);
295
296 /*
297 * Turn on AltiVec, turn off interrupts.
298 */
299 msr = (omsr & ~PSL_EE) | PSL_VEC;
300 __asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
301
302 /*
303 * Save the VEC register we are going to use before we disable
304 * relocation.
305 */
306 __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
307 __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
308
309 /*
310 * Zero the page using a single cache line.
311 */
312 __asm volatile(
313 " sync ;"
314 " mfmsr %[msr];"
315 " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
316 " mtmsr %[msr];" /* Turn off DMMU */
317 " isync;"
318 "1: stvx %[zv], %[pa], %[off0];"
319 " stvxl %[zv], %[pa], %[off16];"
320 " stvx %[zv], %[pa], %[off32];"
321 " stvxl %[zv], %[pa], %[off48];"
322 " addi %[pa], %[pa], 64;"
323 " cmplw %[pa], %[ea];"
324 " blt+ 1b;"
325 " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
326 " sync;"
327 " mtmsr %[msr];" /* Turn on DMMU */
328 " isync;"
329 :: [msr] "r"(msr), [pa] "b"(pa), [ea] "b"(ea),
330 [off0] "r"(0), [off16] "r"(16), [off32] "r"(32), [off48] "r"(48),
331 [zv] "n"(ZERO_VEC));
332
333 /*
334 * Restore VEC register (now that we can access the stack again).
335 */
336 __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
337
338 /*
339 * Restore old MSR (AltiVec OFF).
340 */
341 __asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
342 }
343
344 #define LO_VEC 16
345 #define HI_VEC 17
346
347 void
348 vcopypage(paddr_t dst, paddr_t src)
349 {
350 const paddr_t edst = dst + PAGE_SIZE;
351 uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
352 register_t omsr, msr;
353
354 __asm volatile("mfmsr %0" : "=r"(omsr) :);
355
356 /*
357 * Turn on AltiVec, turn off interrupts.
358 */
359 msr = (omsr & ~PSL_EE) | PSL_VEC;
360 __asm volatile("sync; mtmsr %0; isync" :: "r"(msr));
361
362 /*
363 * Save the VEC registers we will be using before we disable
364 * relocation.
365 */
366 __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
367 __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
368
369 /*
370 * Copy the page using a single cache line, with DMMU
371 * disabled. On most PPCs, two vector registers occupy one
372 * cache line.
373 */
374 __asm volatile(
375 " sync ;"
376 " mfmsr %[msr];"
377 " rlwinm %[msr],%[msr],0,28,26;" /* Clear PSL_DR */
378 " mtmsr %[msr];" /* Turn off DMMU */
379 " isync;"
380 "1: lvx %[lv], %[src], %[off0];"
381 " stvx %[lv], %[dst], %[off0];"
382 " lvxl %[hv], %[src], %[off16];"
383 " stvxl %[hv], %[dst], %[off16];"
384 " addi %[src], %[src], 32;"
385 " addi %[dst], %[dst], 32;"
386 " cmplw %[dst], %[edst];"
387 " blt+ 1b;"
388 " ori %[msr], %[msr], 0x10;" /* Set PSL_DR */
389 " sync;"
390 " mtmsr %[msr];" /* Turn on DMMU */
391 " isync;"
392 :: [msr] "r"(msr), [src] "b"(src), [dst] "b"(dst),
393 [edst] "b"(edst), [off0] "r"(0), [off16] "r"(16),
394 [lv] "n"(LO_VEC), [hv] "n"(HI_VEC));
395
396 /*
397 * Restore VEC registers (now that we can access the stack again).
398 */
399 __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
400 __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
401
402 /*
403 * Restore old MSR (AltiVec OFF).
404 */
405 __asm volatile("sync; mtmsr %0; isync" :: "r"(omsr));
406 }
407