altivec.c revision 1.3 1 /* $NetBSD: altivec.c,v 1.3 2003/04/02 02:47:19 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1996 Wolfgang Solfrank.
5 * Copyright (C) 1996 TooLs GmbH.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by TooLs GmbH.
19 * 4. The name of TooLs GmbH may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
28 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
30 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
31 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 #include <sys/param.h>
34 #include <sys/proc.h>
35 #include <sys/sa.h>
36 #include <sys/systm.h>
37 #include <sys/user.h>
38 #include <sys/malloc.h>
39 #include <sys/pool.h>
40
41 #include <uvm/uvm_extern.h>
42
43 #include <powerpc/altivec.h>
44 #include <powerpc/spr.h>
45 #include <powerpc/psl.h>
46
47 void
48 enable_vec()
49 {
50 struct cpu_info *ci = curcpu();
51 struct lwp *l = curlwp;
52 struct pcb *pcb = &l->l_addr->u_pcb;
53 struct trapframe *tf = trapframe(l);
54 struct vreg *vr = &pcb->pcb_vr;
55 register_t msr;
56
57 KASSERT(pcb->pcb_veccpu == NULL);
58
59 pcb->pcb_flags |= PCB_ALTIVEC;
60
61 /*
62 * Enable AltiVec temporarily (and disable interrupts).
63 */
64 msr = mfmsr();
65 mtmsr((msr & ~PSL_EE) | PSL_VEC);
66 __asm __volatile ("isync");
67 if (ci->ci_veclwp) {
68 save_vec_cpu();
69 }
70 KASSERT(curcpu()->ci_veclwp == NULL);
71
72 /*
73 * Restore VSCR by first loading it into a vector and then into VSCR.
74 * (this needs to done before loading the user's vector registers
75 * since we need to use a scratch vector register)
76 */
77 __asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
78 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
79
80 /*
81 * VRSAVE will be restored when trap frame returns
82 */
83 tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
84
85 #define LVX(n,vr) __asm /*__volatile*/("lvx %2,%0,%1" \
86 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
87
88 /*
89 * Load all 32 vector registers
90 */
91 LVX( 0,vr); LVX( 1,vr); LVX( 2,vr); LVX( 3,vr);
92 LVX( 4,vr); LVX( 5,vr); LVX( 6,vr); LVX( 7,vr);
93 LVX( 8,vr); LVX( 9,vr); LVX(10,vr); LVX(11,vr);
94 LVX(12,vr); LVX(13,vr); LVX(14,vr); LVX(15,vr);
95
96 LVX(16,vr); LVX(17,vr); LVX(18,vr); LVX(19,vr);
97 LVX(20,vr); LVX(21,vr); LVX(22,vr); LVX(23,vr);
98 LVX(24,vr); LVX(25,vr); LVX(26,vr); LVX(27,vr);
99 LVX(28,vr); LVX(29,vr); LVX(30,vr); LVX(31,vr);
100 __asm __volatile ("isync");
101
102 /*
103 * Enable AltiVec when we return to user-mode.
104 * Record the new ownership of the AltiVec unit.
105 */
106 tf->srr1 |= PSL_VEC;
107 curcpu()->ci_veclwp = l;
108 pcb->pcb_veccpu = curcpu();
109 __asm __volatile ("sync");
110
111 /*
112 * Restore MSR (turn off AltiVec)
113 */
114 mtmsr(msr);
115 }
116
117 void
118 save_vec_cpu(void)
119 {
120 struct cpu_info *ci = curcpu();
121 struct lwp *l;
122 struct pcb *pcb;
123 struct vreg *vr;
124 struct trapframe *tf;
125 register_t msr;
126
127 /*
128 * Turn on AltiVEC, turn off interrupts.
129 */
130 msr = mfmsr();
131 mtmsr((msr & ~PSL_EE) | PSL_VEC);
132 __asm __volatile ("isync");
133 l = ci->ci_veclwp;
134 if (l == NULL) {
135 goto out;
136 }
137 pcb = &l->l_addr->u_pcb;
138 vr = &pcb->pcb_vr;
139 tf = trapframe(l);
140
141 #define STVX(n,vr) __asm /*__volatile*/("stvx %2,%0,%1" \
142 :: "b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
143
144 /*
145 * Save the vector registers.
146 */
147 STVX( 0,vr); STVX( 1,vr); STVX( 2,vr); STVX( 3,vr);
148 STVX( 4,vr); STVX( 5,vr); STVX( 6,vr); STVX( 7,vr);
149 STVX( 8,vr); STVX( 9,vr); STVX(10,vr); STVX(11,vr);
150 STVX(12,vr); STVX(13,vr); STVX(14,vr); STVX(15,vr);
151
152 STVX(16,vr); STVX(17,vr); STVX(18,vr); STVX(19,vr);
153 STVX(20,vr); STVX(21,vr); STVX(22,vr); STVX(23,vr);
154 STVX(24,vr); STVX(25,vr); STVX(26,vr); STVX(27,vr);
155 STVX(28,vr); STVX(29,vr); STVX(30,vr); STVX(31,vr);
156
157 /*
158 * Save VSCR (this needs to be done after save the vector registers
159 * since we need to use one as scratch).
160 */
161 __asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
162 :: "b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
163
164 /*
165 * Save VRSAVE
166 */
167 vr->vrsave = tf->tf_xtra[TF_VRSAVE];
168
169 /*
170 * Note that we aren't using any CPU resources and stop any
171 * data streams.
172 */
173 tf->srr1 &= ~PSL_VEC;
174 pcb->pcb_veccpu = NULL;
175 ci->ci_veclwp = NULL;
176 __asm __volatile ("dssall; sync");
177
178 out:
179
180 /*
181 * Restore MSR (turn off AltiVec)
182 */
183 mtmsr(msr);
184 }
185
186 /*
187 * Save a process's AltiVEC state to its PCB. The state may be in any CPU.
188 * The process must either be curproc or traced by curproc (and stopped).
189 * (The point being that the process must not run on another CPU during
190 * this function).
191 */
192 void
193 save_vec_lwp(l)
194 struct lwp *l;
195 {
196 struct pcb *pcb = &l->l_addr->u_pcb;
197 struct cpu_info *ci = curcpu();
198
199 /*
200 * If it's already in the PCB, there's nothing to do.
201 */
202
203 if (pcb->pcb_veccpu == NULL) {
204 return;
205 }
206
207 /*
208 * If the state is in the current CPU, just flush the current CPU's
209 * state.
210 */
211
212 if (l == ci->ci_veclwp) {
213 save_vec_cpu();
214 return;
215 }
216
217 #ifdef MULTIPROCESSOR
218
219 /*
220 * It must be on another CPU, flush it from there.
221 */
222
223 mp_save_vec_lwp(l);
224 #endif
225 }
226
227 #define ZERO_VEC 19
228
229 void
230 vzeropage(paddr_t pa)
231 {
232 const paddr_t ea = pa + PAGE_SIZE;
233 uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
234 register_t omsr, msr;
235
236 __asm __volatile("mfmsr %0" : "=r"(omsr) :);
237
238 /*
239 * Turn on AltiVec, turn off interrupts.
240 */
241 msr = (omsr & ~PSL_EE) | PSL_VEC;
242 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
243
244 /*
245 * Save the VEC register we are going to use before we disable
246 * relocation.
247 */
248 __asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
249 __asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
250
251 /*
252 * Turn off data relocation (DMMU off).
253 */
254 msr &= ~PSL_DR;
255 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
256
257 /*
258 * Zero the page using a single cache line.
259 */
260 do {
261 __asm("stvx %2,%0,%1" :: "b"(pa), "r"( 0), "n"(ZERO_VEC));
262 __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(16), "n"(ZERO_VEC));
263 __asm("stvx %2,%0,%1" :: "b"(pa), "r"(32), "n"(ZERO_VEC));
264 __asm("stvxl %2,%0,%1" :: "b"(pa), "r"(48), "n"(ZERO_VEC));
265 pa += 64;
266 } while (pa < ea);
267
268 /*
269 * Restore data relocation (DMMU on);
270 */
271 msr |= PSL_DR;
272 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
273
274 /*
275 * Restore VEC register (now that we can access the stack again).
276 */
277 __asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
278
279 /*
280 * Restore old MSR (AltiVec OFF).
281 */
282 __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
283 }
284
285 #define LO_VEC 16
286 #define HI_VEC 17
287
288 void
289 vcopypage(paddr_t dst, paddr_t src)
290 {
291 const paddr_t edst = dst + PAGE_SIZE;
292 uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
293 register_t omsr, msr;
294
295 __asm __volatile("mfmsr %0" : "=r"(omsr) :);
296
297 /*
298 * Turn on AltiVec, turn off interrupts.
299 */
300 msr = (omsr & ~PSL_EE) | PSL_VEC;
301 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
302
303 /*
304 * Save the VEC registers we will be using before we disable
305 * relocation.
306 */
307 __asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
308 __asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
309
310 /*
311 * Turn off data relocation (DMMU off).
312 */
313 msr &= ~PSL_DR;
314 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
315
316 /*
317 * Copy the page using a single cache line. On most PPCs, two
318 * vector registers occupy one cache line.
319 */
320 do {
321 __asm("lvx %2,%0,%1" :: "b"(src), "r"( 0), "n"(LO_VEC));
322 __asm("stvx %2,%0,%1" :: "b"(dst), "r"( 0), "n"(LO_VEC));
323 __asm("lvxl %2,%0,%1" :: "b"(src), "r"(16), "n"(HI_VEC));
324 __asm("stvxl %2,%0,%1" :: "b"(dst), "r"(16), "n"(HI_VEC));
325 src += 32;
326 dst += 32;
327 } while (dst < edst);
328
329 /*
330 * Restore data relocation (DMMU on);
331 */
332 msr |= PSL_DR;
333 __asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
334
335 /*
336 * Restore VEC registers (now that we can access the stack again).
337 */
338 __asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
339 __asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
340
341 /*
342 * Restore old MSR (AltiVec OFF).
343 */
344 __asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
345 }
346