Home | History | Annotate | Line # | Download | only in oea
altivec.c revision 1.3
      1 /*	$NetBSD: altivec.c,v 1.3 2003/04/02 02:47:19 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1996 Wolfgang Solfrank.
      5  * Copyright (C) 1996 TooLs GmbH.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by TooLs GmbH.
     19  * 4. The name of TooLs GmbH may not be used to endorse or promote products
     20  *    derived from this software without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
     23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     25  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     26  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     27  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     28  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     29  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     30  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     31  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 #include <sys/param.h>
     34 #include <sys/proc.h>
     35 #include <sys/sa.h>
     36 #include <sys/systm.h>
     37 #include <sys/user.h>
     38 #include <sys/malloc.h>
     39 #include <sys/pool.h>
     40 
     41 #include <uvm/uvm_extern.h>
     42 
     43 #include <powerpc/altivec.h>
     44 #include <powerpc/spr.h>
     45 #include <powerpc/psl.h>
     46 
     47 void
     48 enable_vec()
     49 {
     50 	struct cpu_info *ci = curcpu();
     51 	struct lwp *l = curlwp;
     52 	struct pcb *pcb = &l->l_addr->u_pcb;
     53 	struct trapframe *tf = trapframe(l);
     54 	struct vreg *vr = &pcb->pcb_vr;
     55 	register_t msr;
     56 
     57 	KASSERT(pcb->pcb_veccpu == NULL);
     58 
     59 	pcb->pcb_flags |= PCB_ALTIVEC;
     60 
     61 	/*
     62 	 * Enable AltiVec temporarily (and disable interrupts).
     63 	 */
     64 	msr = mfmsr();
     65 	mtmsr((msr & ~PSL_EE) | PSL_VEC);
     66 	__asm __volatile ("isync");
     67 	if (ci->ci_veclwp) {
     68 		save_vec_cpu();
     69 	}
     70 	KASSERT(curcpu()->ci_veclwp == NULL);
     71 
     72 	/*
     73 	 * Restore VSCR by first loading it into a vector and then into VSCR.
     74 	 * (this needs to done before loading the user's vector registers
     75 	 * since we need to use a scratch vector register)
     76 	 */
     77 	__asm __volatile("vxor %2,%2,%2; lvewx %2,%0,%1; mtvscr %2" \
     78 	    ::	"b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
     79 
     80 	/*
     81 	 * VRSAVE will be restored when trap frame returns
     82 	 */
     83 	tf->tf_xtra[TF_VRSAVE] = vr->vrsave;
     84 
     85 #define	LVX(n,vr)	__asm /*__volatile*/("lvx %2,%0,%1" \
     86 	    ::	"b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
     87 
     88 	/*
     89 	 * Load all 32 vector registers
     90 	 */
     91 	LVX( 0,vr);	LVX( 1,vr);	LVX( 2,vr);	LVX( 3,vr);
     92 	LVX( 4,vr);	LVX( 5,vr);	LVX( 6,vr);	LVX( 7,vr);
     93 	LVX( 8,vr);	LVX( 9,vr);	LVX(10,vr);	LVX(11,vr);
     94 	LVX(12,vr);	LVX(13,vr);	LVX(14,vr);	LVX(15,vr);
     95 
     96 	LVX(16,vr);	LVX(17,vr);	LVX(18,vr);	LVX(19,vr);
     97 	LVX(20,vr);	LVX(21,vr);	LVX(22,vr);	LVX(23,vr);
     98 	LVX(24,vr);	LVX(25,vr);	LVX(26,vr);	LVX(27,vr);
     99 	LVX(28,vr);	LVX(29,vr);	LVX(30,vr);	LVX(31,vr);
    100 	__asm __volatile ("isync");
    101 
    102 	/*
    103 	 * Enable AltiVec when we return to user-mode.
    104 	 * Record the new ownership of the AltiVec unit.
    105 	 */
    106 	tf->srr1 |= PSL_VEC;
    107 	curcpu()->ci_veclwp = l;
    108 	pcb->pcb_veccpu = curcpu();
    109 	__asm __volatile ("sync");
    110 
    111 	/*
    112 	 * Restore MSR (turn off AltiVec)
    113 	 */
    114 	mtmsr(msr);
    115 }
    116 
    117 void
    118 save_vec_cpu(void)
    119 {
    120 	struct cpu_info *ci = curcpu();
    121 	struct lwp *l;
    122 	struct pcb *pcb;
    123 	struct vreg *vr;
    124 	struct trapframe *tf;
    125 	register_t msr;
    126 
    127 	/*
    128 	 * Turn on AltiVEC, turn off interrupts.
    129 	 */
    130 	msr = mfmsr();
    131 	mtmsr((msr & ~PSL_EE) | PSL_VEC);
    132 	__asm __volatile ("isync");
    133 	l = ci->ci_veclwp;
    134 	if (l == NULL) {
    135 		goto out;
    136 	}
    137 	pcb = &l->l_addr->u_pcb;
    138 	vr = &pcb->pcb_vr;
    139 	tf = trapframe(l);
    140 
    141 #define	STVX(n,vr)	__asm /*__volatile*/("stvx %2,%0,%1" \
    142 	    ::	"b"(vr), "r"(offsetof(struct vreg, vreg[n])), "n"(n));
    143 
    144 	/*
    145 	 * Save the vector registers.
    146 	 */
    147 	STVX( 0,vr);	STVX( 1,vr);	STVX( 2,vr);	STVX( 3,vr);
    148 	STVX( 4,vr);	STVX( 5,vr);	STVX( 6,vr);	STVX( 7,vr);
    149 	STVX( 8,vr);	STVX( 9,vr);	STVX(10,vr);	STVX(11,vr);
    150 	STVX(12,vr);	STVX(13,vr);	STVX(14,vr);	STVX(15,vr);
    151 
    152 	STVX(16,vr);	STVX(17,vr);	STVX(18,vr);	STVX(19,vr);
    153 	STVX(20,vr);	STVX(21,vr);	STVX(22,vr);	STVX(23,vr);
    154 	STVX(24,vr);	STVX(25,vr);	STVX(26,vr);	STVX(27,vr);
    155 	STVX(28,vr);	STVX(29,vr);	STVX(30,vr);	STVX(31,vr);
    156 
    157 	/*
    158 	 * Save VSCR (this needs to be done after save the vector registers
    159 	 * since we need to use one as scratch).
    160 	 */
    161 	__asm __volatile("mfvscr %2; stvewx %2,%0,%1" \
    162 	    ::	"b"(vr), "r"(offsetof(struct vreg, vscr)), "n"(0));
    163 
    164 	/*
    165 	 * Save VRSAVE
    166 	 */
    167 	vr->vrsave = tf->tf_xtra[TF_VRSAVE];
    168 
    169 	/*
    170 	 * Note that we aren't using any CPU resources and stop any
    171 	 * data streams.
    172 	 */
    173 	tf->srr1 &= ~PSL_VEC;
    174 	pcb->pcb_veccpu = NULL;
    175 	ci->ci_veclwp = NULL;
    176 	__asm __volatile ("dssall; sync");
    177 
    178  out:
    179 
    180 	/*
    181 	 * Restore MSR (turn off AltiVec)
    182 	 */
    183 	mtmsr(msr);
    184 }
    185 
    186 /*
    187  * Save a process's AltiVEC state to its PCB.  The state may be in any CPU.
    188  * The process must either be curproc or traced by curproc (and stopped).
    189  * (The point being that the process must not run on another CPU during
    190  * this function).
    191  */
    192 void
    193 save_vec_lwp(l)
    194 	struct lwp *l;
    195 {
    196 	struct pcb *pcb = &l->l_addr->u_pcb;
    197 	struct cpu_info *ci = curcpu();
    198 
    199 	/*
    200 	 * If it's already in the PCB, there's nothing to do.
    201 	 */
    202 
    203 	if (pcb->pcb_veccpu == NULL) {
    204 		return;
    205 	}
    206 
    207 	/*
    208 	 * If the state is in the current CPU, just flush the current CPU's
    209 	 * state.
    210 	 */
    211 
    212 	if (l == ci->ci_veclwp) {
    213 		save_vec_cpu();
    214 		return;
    215 	}
    216 
    217 #ifdef MULTIPROCESSOR
    218 
    219 	/*
    220 	 * It must be on another CPU, flush it from there.
    221 	 */
    222 
    223 	mp_save_vec_lwp(l);
    224 #endif
    225 }
    226 
    227 #define ZERO_VEC	19
    228 
    229 void
    230 vzeropage(paddr_t pa)
    231 {
    232 	const paddr_t ea = pa + PAGE_SIZE;
    233 	uint32_t vec[7], *vp = (void *) roundup((uintptr_t) vec, 16);
    234 	register_t omsr, msr;
    235 
    236 	__asm __volatile("mfmsr %0" : "=r"(omsr) :);
    237 
    238 	/*
    239 	 * Turn on AltiVec, turn off interrupts.
    240 	 */
    241 	msr = (omsr & ~PSL_EE) | PSL_VEC;
    242 	__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
    243 
    244 	/*
    245 	 * Save the VEC register we are going to use before we disable
    246 	 * relocation.
    247 	 */
    248 	__asm("stvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
    249 	__asm("vxor %0,%0,%0" :: "n"(ZERO_VEC));
    250 
    251 	/*
    252 	 * Turn off data relocation (DMMU off).
    253 	 */
    254 	msr &= ~PSL_DR;
    255 	__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
    256 
    257 	/*
    258 	 * Zero the page using a single cache line.
    259 	 */
    260 	do {
    261 		__asm("stvx %2,%0,%1" ::  "b"(pa), "r"( 0), "n"(ZERO_VEC));
    262 		__asm("stvxl %2,%0,%1" :: "b"(pa), "r"(16), "n"(ZERO_VEC));
    263 		__asm("stvx %2,%0,%1" ::  "b"(pa), "r"(32), "n"(ZERO_VEC));
    264 		__asm("stvxl %2,%0,%1" :: "b"(pa), "r"(48), "n"(ZERO_VEC));
    265 		pa += 64;
    266 	} while (pa < ea);
    267 
    268 	/*
    269 	 * Restore data relocation (DMMU on);
    270 	 */
    271 	msr |= PSL_DR;
    272 	__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
    273 
    274 	/*
    275 	 * Restore VEC register (now that we can access the stack again).
    276 	 */
    277 	__asm("lvx %1,0,%0" :: "r"(vp), "n"(ZERO_VEC));
    278 
    279 	/*
    280 	 * Restore old MSR (AltiVec OFF).
    281 	 */
    282 	__asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
    283 }
    284 
    285 #define LO_VEC	16
    286 #define HI_VEC	17
    287 
    288 void
    289 vcopypage(paddr_t dst, paddr_t src)
    290 {
    291 	const paddr_t edst = dst + PAGE_SIZE;
    292 	uint32_t vec[11], *vp = (void *) roundup((uintptr_t) vec, 16);
    293 	register_t omsr, msr;
    294 
    295 	__asm __volatile("mfmsr %0" : "=r"(omsr) :);
    296 
    297 	/*
    298 	 * Turn on AltiVec, turn off interrupts.
    299 	 */
    300 	msr = (omsr & ~PSL_EE) | PSL_VEC;
    301 	__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
    302 
    303 	/*
    304 	 * Save the VEC registers we will be using before we disable
    305 	 * relocation.
    306 	 */
    307 	__asm("stvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
    308 	__asm("stvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
    309 
    310 	/*
    311 	 * Turn off data relocation (DMMU off).
    312 	 */
    313 	msr &= ~PSL_DR;
    314 	__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
    315 
    316 	/*
    317 	 * Copy the page using a single cache line.  On most PPCs, two
    318 	 * vector registers occupy one cache line.
    319 	 */
    320 	do {
    321 		__asm("lvx %2,%0,%1"   :: "b"(src), "r"( 0), "n"(LO_VEC));
    322 		__asm("stvx %2,%0,%1"  :: "b"(dst), "r"( 0), "n"(LO_VEC));
    323 		__asm("lvxl %2,%0,%1"  :: "b"(src), "r"(16), "n"(HI_VEC));
    324 		__asm("stvxl %2,%0,%1" :: "b"(dst), "r"(16), "n"(HI_VEC));
    325 		src += 32;
    326 		dst += 32;
    327 	} while (dst < edst);
    328 
    329 	/*
    330 	 * Restore data relocation (DMMU on);
    331 	 */
    332 	msr |= PSL_DR;
    333 	__asm __volatile("sync; mtmsr %0; isync" :: "r"(msr));
    334 
    335 	/*
    336 	 * Restore VEC registers (now that we can access the stack again).
    337 	 */
    338 	__asm("lvx %2,%1,%0" :: "b"(vp), "r"( 0), "n"(LO_VEC));
    339 	__asm("lvx %2,%1,%0" :: "b"(vp), "r"(16), "n"(HI_VEC));
    340 
    341 	/*
    342 	 * Restore old MSR (AltiVec OFF).
    343 	 */
    344 	__asm __volatile("sync; mtmsr %0; isync" :: "r"(omsr));
    345 }
    346